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Abstract

Background: For decades, 16S ribosomal RNA sequencing has been the primary means for identifying the bacterial
species present in a sample with unknown composition. One of the most widely used tools for this purpose today is
the QIIME (Quantitative Insights Into Microbial Ecology) package. Recent results have shown that the newest release,
QIIME 2, has higher accuracy than QIIME, MAPseq, and mothur when classifying bacterial genera from simulated
human gut, ocean, and soil metagenomes, although QIIME 2 also proved to be the most computationally expensive.
Kraken, first released in 2014, has been shown to provide exceptionally fast and accurate classification for shotgun
metagenomics sequencing projects. Bracken, released in 2016, then provided users with the ability to accurately
estimate species or genus relative abundances using Kraken classification results. Kraken 2, which matches the
accuracy and speed of Kraken 1, now supports 16S rRNA databases, allowing for direct comparisons to QIIME and
similar systems.

Methods: For a comprehensive assessment of each tool, we compare the computational resources and speed of
QIIME 2's g2-feature-classifier, Kraken 2, and Bracken in generating the three main 16S rRNA databases: Greengenes,
SILVA, and RDP. For an evaluation of accuracy, we evaluated each tool using the same simulated 16S rRNA reads from
human gut, ocean, and soil metagenomes that were previously used to compare QIIME, MAPseq, mothur, and QIIME
2. We evaluated accuracy based on the accuracy of the final genera read counts assigned by each tool. Finally, as
Kraken 2 is the only tool providing per-read taxonomic assignments, we evaluate the sensitivity and precision of
Kraken 2's per-read classifications.

Results: For both the Greengenes and SILVA database, Kraken 2 and Bracken are up to 100 times faster at database
generation. For classification, using the same data as previous studies, Kraken 2 and Bracken are up to 300 times faster,
use 100x less RAM, and generate results that more accurate at 16S rRNA profiling than QIIME 2's g2-feature-classifier.

Conclusion: Kraken 2 and Bracken provide a very fast, efficient, and accurate solution for 16S rRNA metataxonomic
data analysis.
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Introduction
Since the 1970s, sequencing of the 16S ribosomal RNA
gene has been used for analyzing and identifying bac-
terial communities [1, 2]. This technology targets the
16S rRNA gene, which has regions that are both highly
conserved and highly variable (hypervariable) among bac-
terial species. The highly conserved regions allow for the
design of “universal” PCR primers to target and amplify
the 16S rRNA sequence, while the hypervariable regions
allow for discrimination among different bacterial clades.
These properties allow 16S rRNA sequencing experi-
ments to capture nearly all of the bacteria in a microbial
community, which can then be compared to large 16S
rRNA databases to determine their identities.
Researchers have utilized 16S rRNA sequencing for a
very broad range of environmental and clinical studies.
For example, the Earth Microbiome Project [3] and other
environmental studies have used 16S rRNA sequencing to
reveal the bacterial diversity of soil [4, 5], beach sand [6],
and ocean environments [7], while other studies targeted
the microbiome of plants [8—10]. In the clinic, 16S rRNA
has been used for diagnostic purposes to identify infec-
tious bacterial species [11-13] and to characterize the
role of bacterial diversity in diseases such as diabetes [14],
Alzheimer’s disease [15], cancer [16], and autism [17].
The Human Microbiome Project, along with other human
microbiome studies, has used 16S rRNA data to charac-
terize the bacterial community present in the human gut,
feces, skin, and other areas of the body [18-20].

16S rRNA classification

Analysis of the bacterial community from a 16S rRNA
sequencing experiment includes comparing the reads to
reference database. The tool most widely used for 16S
rRNA analysis and classification today is the Quantitative
Insights into Microbial Ecology (QIIME) software pack-
age [21], which compares sequencing reads against a 16S
rRNA reference database. The three standard 16S rRNA
databases, each of which has somewhat different content,
are Greengenes [22], SILVA [23], and RDP [24].

First released in 2011, QIIME 1 [21] provided 4 classi-
fication algorithms for 16S rRNA, respectively based on
the RDP classifier [25], BLAST [26], UCLUST [27], and
SortMeRNA [28]. In 2018, QIIME 2 [29]’s q2-feature-
classifier was released [30], adding 3 new classification
algorithms based on scikit-learn’s naive Bayes algorithm
[31], VSEARCH [32], and BLAST+ [33]. By default,
QIIME 1 uses the UCLUST algorithm for classification
while QIIME 2 suggests usage of the naive Bayes algo-
rithm.

In 2018, Almeida et al. [34] performed benchmark
tests comparing QIIME 2 to its predecessor, QIIME 1,
and to two additional 16S rRNA classification tools,
MAPseq [35] and mothur [36]. Almeida et al. evaluated
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the performance of each tool by classifying 16S rRNA
reads that were simulated from bacteria known to be
present in human gut, soil, and ocean microbiomes. That
study concluded that QIIME 2’s q2-feature-classifier pro-
vides the best accuracy on the basis of recall and F-score.
However, they also noted that QIIME 2 was the most com-
putationally expensive, requiring substantially more CPU
time and more memory than other tools.

Kraken, Kraken 2, and Bracken

The Kraken program uses an alignment-free algorithm
that, when first released in 2014, was hundreds of times
faster than any previously described program for shotgun
metagenomics sequence analysis, with accuracy compa-
rable to BLAST and superior to other tools [37]. Using a
single thread, Kraken can classify sequence data at a rate
of > 1 million reads per minute.

In 2016, Bracken was released as an extension to Kraken
to estimate species abundance from Kraken’s output [38].
As originally designed, Kraken attempts to classify each
read as specifically as possible, allowing reads to be clas-
sified at any taxonomic level depending on how many
genomes share the same sequence. For example, a read
that has identical matches to two species will be clas-
sified at the genus level. Bracken adds the capability of
abundance estimation to Kraken, i.e., using Kraken’s read
counts and prior knowledge of the database sequences, it
estimates read counts for all species, genera, or higher-
level taxa in a sample. For example, when Bracken is asked
to estimate species counts, it will re-distribute all reads
that Kraken assigns at the genus level (or higher) down to
the species level.

Kraken 2, released in 2018, implemented significant
changes to the database structure and classification steps
to make databases smaller and classifications faster [39].
Because it uses the same classification algorithm, Kraken
2 has nearly the same precision and sensitivity as Kraken
1. However, Kraken 2 now also provides direct support
for 16S rRNA classification with any of the three standard
16S rRNA databases: Greengenes, SILVA, and RDP. This
new feature allowed us to compare Kraken 2 to the current
state-of-the-art programs for 16S rRNA classification, as
described below.

Kraken 2 versus QIIME 2

In 2016, Lindgreen et al. evaluated 14 metagenomics
classifiers, including Kraken 1 and QIIME 1 (UCLUST)
[40]. That study showed that Kraken achieved the lowest
false positive rate, 0%, while QIIME had a false pos-
itive rate of 0.28%. Kraken also had higher sensitivity
than QIIME, correctly labeling 70% of the reads while
QIIME was correct on 60%. Finally, Kraken obtained a
Pearson correlation between the known and predicted rel-
ative abundances of phyla and genera of 0.99, versus 0.78
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for QIIME. However, that study used different databases
and different input data (reads produced by metagenomic
shotgun sequencing) to evaluate these tools. For Kraken
1, Lindgreen et al. measured its performance on all input
sequences from a shotgun metagenomics experiment,
using a database containing all complete bacteria and
archaeal genomes from RefSeq, while for QIIME 1, they
analyzed its performance only on 16S rRNA sequences
against the 16S Greengenes database.

Because QIIME has primarily been used for 16S rRNA
sequencing projects and Kraken has previously been used
primarily for metagenomics shotgun sequencing projects,
the tools have not been directly compared. Here, we com-
pare QIIME 2’s q2-feature-classifier and Kraken 2 using
the 16S rRNA reads generated in the Almeida et al. bench-
mark study, using both the Greengenes and SILVA 16S
rRNA databases. We also show results for Kraken on the
RDP database, which is not compatible with QIIME 2.
Because we only tested the most recent version of each
tool, we will henceforth refer to QIIME 2 as QIIME and
Kraken 2 as Kraken.

Results

Prior to classification, Kraken requires users to first build
a specialized database consisting of three files: taxo.k2d,
opts.k2d, and hash.k2d. The user also can choose the value
k that determines the length of the sequences that Kraken
uses for its index; every sequence (or k-mer) of length k is
associated with the species in which it occurs. K-mers that
occur in two or more species are associated with the low-
est common ancestor of those species. The database files
contain the taxonomy and k-mer information for the spec-
ified database. Following generation of these files, Bracken
requires users to generate a k-mer distribution file. Kraken
and Bracken additionally allow the use of multiple threads
to accelerate database construction. We tested building all
files for the 16S rRNA Greengenes 13_8, SILVA 132, and
RDP 11.5 databases using 1, 4, 8, and 16 threads. Table 1
summarizes the contents of each of these databases.

For QIIME, users can generate the database (called a
“classifier”) by first converting sequence and taxonomy
files into QIIME compatible qza files. QIIME classifier
generation is single-threaded. QIIME does provide pre-
built SILVA and Greengenes taxonomy classifiers for q2-
feature-classifier at https://docs.qiime2.0rg/2020.6/data-
resources/. However, to evaluate the classifier generation
requirements, we built QIIME naive-bayes classifiers for
Greengenes 13_8 and SILVA 132.

Figure la compares the combined database building
time for Kraken/Bracken against the classifier generation
time of QIIME. Kraken was at least 9x faster than QIIME
for database creation, e.g., it took 9 min to build the
Greengenes database index, while QIIME required 78 min
for the same database. For the SILVA database, Kraken
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required only 34 min while QIIME required more than 58
h to build the same database. Supplemental File 1 lists all
command lines used for building the databases.

To compare the accuracy of Kraken, Bracken, and
QIIME, we classified 12 samples generated by Almeida et
al. These 12 samples, each containing just under 200,000
reads, represent 3 different metagenomes (human, ocean,
and soil) and 4 different 16S rRNA primers (V12, V34,
V4, and V45). The number of reads in each sample is
shown in Table 2. See the “Methods” section for additional
information about sample generation and pre-processing
steps.

QIIME classifiers require one single file containing
all de-multiplexed reads. Therefore, we provided QIIME
with one file per metagenome, each containing reads from
all 4 primer sets. However, Kraken and Bracken classify
samples one at a time, requiring each of the 12 samples to
be processed individually.

Kraken and QIIME provide multi-threading options
to speed up classification. We therefore tested Kraken
and the QIIME Greengenes classifier using 1, 4, 8, and
16 threads. The QIIME SILVA classifier with 8 threads
required approximately 1.5 days of run time, and for this
reason, we only tested it using 16 and 8 threads and did not
evaluate the QIIME 2 SILVA classifier using 1 or 4 threads.

Figure 1b compares the average time in min-
utes required by QIIME’s q2-feature-classifier vs.
Kraken/Bracken to classify a single metagenome using
the 16S rRNA Greengenes and SILVA databases. Due
to the very large difference in run time between tools,
this figure compares the multi-threaded options of
QIIME against the single-threaded classification time of
Kraken/Bracken. Figure 1c reports the classification times
of Kraken/Bracken in seconds.

Another important consideration for software selec-
tion is the computational memory resources required.
We evaluated this by measuring the RAM in gigabytes
(GB) required for both classifiers. Figure 1d com-
pares the RAM required for the single-threaded runs
of Kraken/Bracken against the multi-threaded runs
using QIIME. Notably, all Kraken/Bracken runs used
less than 0.5 GB of RAM, which appears in the figure
as zero GB. To provide more detail on RAM usage,
Fig. le reports the RAM required by Kraken/Bracken
in megabytes (MB) for all multi-threading
options.

The resulting counts per genus for each of the human,
ocean, and soil samples are listed in Supplemental Tables
1, 2, and 3, respectively. Figure 2 compares the true dis-
tribution of genera in each metataxonomic sample against
the genus-level counts reported by Kraken 2, Bracken, and
QIIME 2. For clarity, this figure shows the combined read
counts across the V12, V34, V4, and V45 samples for each
metagenome.
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Table 1 16S rRNA databases used for the metataxonomic classifiers in this study

Database Version Release date Sequences Domains Phyla Classes Orders Family Genera Species
Greengenes 13_8 August 15,2013 203,452 2 89 248 404 513 2102 2952
SILVA 132 December 13,2017 695,171 5 228 514 1277 1531 9379 -

RDP 1.5 September 30,2016 3,356,808 2 60 99 154 384 2466 -

For each of the most recently released versions of three 165 rRNA databases, this table describes the total number of sequences and the number of “traditional” nodes

represented in their respective taxonomies. The Greengenes numbers refer to the 99% OTU database, and the SILVA values reflect the Ref NR 99 database
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Table 2 Sample read counts

Read counts V12 V34 V4 V45 Total
Human microbiome 186,689 189,972 193,787 192,319 762,767
Soil microbiome 196,254 193,564 196,226 194,325 780,369
Ocean microbiome 193,867 193,962 196,198 195,135 779,162

The read counts in each metagenome-primer sample. Each sample was generated as described in the Supplementary Methods

We used two different metrics to evaluate the genus
distribution accuracy: mean absolute percentage error
(MAPE) and Bray-Curtis dissimilarity (BC). Both error
rates measure how different the predicted sample dis-
tribution is from the true genera counts. See the

“Methods” section for details on how each error rate is
calculated. Given these two metrics, we evaluate accu-
racy as 1 — MAPE and 1 — BC. Figure 3a compares
the accuracy of each tool when calculating the cor-
rect combined read counts at the genus level for each
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metagenome. For further insight into how the choice
of 16S rRNA primer affects genus distribution accuracy,
we evaluated the average MAPE and average BC across
all 3 metagenome samples for each program/database.
Figure 3b uses these averages to compare the accuracy
between 16S rRNA primers. Supplemental Table 4 lists
all MAPE and BC values for each combination of soft-
ware/database/primer/metagenome.

While all tools tested provide general read counts per
genus, Kraken is the only tool that directly assigns each
read with a taxonomic label. Using this information, we
can calculate Kraken’s accuracy when classifying reads
at major taxonomic levels in terms of sensitivity and
precision. We measure precision by positive predictive
value (PPV, see Supplemental Methods for more details).
Figure 4 displays Kraken’s average sensitivity and PPV
for each database used (Fig. 4A) and for each 16S rRNA
primer used in generating the samples (Fig. 4b).

Discussion

In this study, we evaluated three systems for classifi-
cation and relative abundance estimation of 16S rRNA
sequencing data sets: Kraken 2, Bracken, and QIIME
2. For Kraken and Bracken, we used three 16S rRNA
databases: Greengenes, SILVA, and RDP, while for QIIME,
we only evaluated Greengenes and SILVA. We then used
these tools/databases to classify 12 samples generated by
Almeida et al., which represent 3 simulated metagenomes
(human gut, ocean, and soil) and 4 different 16S rRNA
primers (V12, V34, V4, and V45). In total, we collected
36 different results using Kraken/Bracken and 24 different
results using QIIME.

Database building time

For all systems compared here, database build time is
a function of the number of sequences in the database.
Because 16S Greengenes is the smallest database (with
200,000 sequences) and 16S RDP is the largest (with 3.4
million sequences), generation of database files is fastest
with Greengenes and slowest with RDP.

When comparing single-threaded Kraken/Bracken
against QIIME’s q2-feature-classifier, Kraken and Bracken
combined require far less build time. For the smallest 16S
rRNA database, Greengenes, QIIME required more than
an hour to generate the naive Bayes classifier (Fig. 1a). By
comparison, single-threaded Kraken and Bracken com-
bined required less than 10 min to create the database
files. For 16S SILVA, with nearly 700,000 sequences,
QIIME 2 required more than 58 h for classifier genera-
tion while the single-threaded Kraken/Bracken required
only ~ 30 min. We additionally note that the largest 16S
rRNA database, RDP, required a little more than an hour
for single-threaded Kraken 2 and Bracken to create the
database files. As mentioned above, the RDP database is
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incompatible with QIIME 2. The multi-threaded nature
of Kraken 2 and Bracken further accelerate the database
building process, with 4 threads halving the required
build time (Fig. 1a).

Classification time/memory requirements
As observed by Almeida et al., QIIME 2’s q2-feature-
classifier requires more computational resources than
other methods during classification. With the use of 16
CPU threads, QIIME required 35 min on average to clas-
sify the human, ocean, and soil metataxonomic samples
using the Greengenes database (Fig. 1b). The QIIME’s
SILVA classifier required 16 h on average. By compari-
son, single-threaded Kraken 2 and Bracken required on
average 1 min per metataxonomic sample. This runtime
decreases from 1 min to 15, 10, and 6 s for 4, 8, and 16
threads respectively (Fig. 1c). The runtime of Kraken 2 and
Bracken was nearly the same for all three databases. Thus,
Kraken or Braken is at least 350 times faster (6 s vs. 35
min) than QIIME 2 when run with 16 parallel threads.
The amount of computer memory (RAM) required by
each system also varied widely (Fig. 1d). For all three
databases, single-threaded Kraken required < 260 MB of
RAM. However, the single-threaded QIIME Greengenes
classifier required 3.6 GB of RAM. Increasing the number
of threads for Kraken also increases the total RAM used,
with 16 threads using 400-500 MB of RAM for each of the
Kraken databases (Fig. 1e). However, for QIIME, increas-
ing the number of threads decreased the total RAM: the
QIIME Greengenes classifier with 16 threads used ~ 2.7
GB, and the QIIME SILVA classifier with 16 threads used
48 GB of RAM (Fig. 1d).

Accuracy of relative abundance estimation

Finally, we compared the accuracy of all three tools based
on their ability to recreate the true genus distribution of
the simulated samples (Fig. 2). We quantified the accuracy
of these distributions using both MAPE and Bray-Curtis
dissimilarity (Supplemental Table 4).

In all cases, Bracken performed better than Kraken 2,
which was expected because Kraken is a classification
tool, not an abundance estimation system. Kraken clas-
sifies reads at any level in the taxonomy, which means
that some reads might be assigned to a higher level
genus, e.g., any read that has equally good matches to
two genera will be assigned to the family containing
them. For the simulated datasets in this study, Kraken
assigned from 7-30% of the reads to levels above genus.
These reads are not incorrectly classified, but the result
is that Kraken underestimates the abundances of their
genera. By contrast, Bracken is designed to use Kraken’s
classification data to estimate all read counts at the
genus level, thereby improving on Kraken’s genus-level
distribution.
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On average, Bracken performed the best, having the
lowest average error rates across all three 16S rRNA
databases (Supplemental Table 4). Bracken also had the
lowest error rate for 8/9 combinations of samples and
databases. The only sample where QIIME 2 had a lower
error rate than Bracken was in the classification of
the ocean samples against the 16S Greengenes database
(Fig. 3a). However, QIIME 2 had the highest error rate
when classifying the human sample against Greengenes
or SILVA, regardless of whether measured by MAPE or
Bray-Curtis dissimilarity.

In analyzing the trends across the databases using both
MAPE and Bray-Curtis, Bracken performed the best using
the 16S SILVA database and performed the worst using
the 16S RDP database. 16S RDP yielded on average 0.391
MAPE and 0.221 BC Index while 16S SILVA only yielded
a 0.286 MAPE and a 0.153 BC Index. 16S Greengenes
with Bracken had an average of 0.313 MAPE and a 0.165
BC Index. Although QIIME 2 was not tested on 16S RDP,
QIIME 2 yielded the same trends when comparing 16S
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Greengenes and SILVA, with 16S SILVA outperforming
16S Greengenes in almost all cases.

In addition to evaluating the different tools, we also
evaluated the accuracy of each of the primer sets (V12,
V34, V4, and V45) that were used by Almeida et al.
Figure 3b shows the average accuracy of each primer set
across all 3 metagenomes for a given software/database
pairing. For both Greengenes and SILVA, the samples gen-
erated using V34 and V12 performed slightly better. How-
ever, for RDP, the difference in accuracy between primer
samples is further magnified. When classifying with the
RDP database, both Kraken and Bracken had significantly
better results for the V12 and V34 samples (Fig. 3b).

Per-read classification accuracy

Kraken is the only program of the three tested here that
provide per-read assignments by default, allowing us to
compute the read-level accuracy of its taxonomy assign-
ments. Per-read accuracy is somewhat dependent on the
reference database, but highly dependent on the 16S
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rRNA primer set (Fig. 4b). In particular, Kraken had three
times higher sensitivity (60%) and PPV (65%) when clas-
sifying reads generated using V12 primers versus those
generated from V45 primers (20% and 21%).

As expected, sensitivity and precision increased with
taxonomic level, with class and phylum sensitivity and
precision exceeding 0.95 for all sample sets and all
databases. Supplemental Table 6 contains exact numbers
for sensitivity and precision for each dataset and database.

Taxonomy inconsistencies

In our experiments, we observed that the accuracy of
16S rRNA analysis is highly dependent on the choice of
16S rRNA database, a phenomenon well known to the
16S rRNA community [13, 25]. The 170 distinct genera
present in our human, ocean, and soil metagenomes were
selected from the NCBI taxonomy, but none of the three
16S rRNA database taxonomies contains precisely the
same genera. Each 16S rRNA database is independently
curated from different reference sets, resulting in sub-
stantial differences among the taxonomies [41]. Among
the 170 unique genera uses here, 22 are missing from
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Greengenes, 19 have different names or are mapped to
multiple genera in RDP, and 16 have different names in
Silva (see Supplemental Table 5). For example, Agrobac-
terium, Burkholderia, and Rhizobium are not unique
genera in the 16S SILVA taxonomy, but are combined into
a single “Allorhizobium-Neorhizbium-Pararhizobium-
Rhizobium” genus. Escherichia and Shigella are also
combined into the “Escherichia-Shigella” genus in 16S
SILVA. The Clostridium sequences in 16S SILVA are
split between 19 different genera, each with the prefix of
“Clostridium sensu stricto” followed by a number 1-19
[42].

Conclusion

Although each of the 16S rRNA databases represents
a large number of bacterial organisms, the accuracy of
metataxonomic classifiers varied substantially among
them. In our experiments, 16S SILVA provided the
lowest error rates and highest per-read accuracy regard-
less of the software used in classification. Across all
databases, Kraken 2 and Bracken outperformed QIIME
2’s q2-feature-classifier in terms of computational
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requirements, runtime, and accuracy. Single-threaded
Kraken/Bracken was nearly 8x faster than QIIME 2
at building the 16S Greengenes database and 100x
faster at building a 16S SILVA database. Kraken and
Bracken also allow for multi-threaded database build-
ing, which allows any 16S rRNA database to be built
in less than 20 min. For classification, Kraken/Bracken
used 20 times less RAM, performed 300 times faster,

and achieved better genus-level resolution than
QIIME 2.

Methods

Almeida simulated data

QIIME 2, Kraken 2, and Bracken were evaluated
using the A500 synthetic microbiome samples

generated by Almeida et al. and available at
ftp://ftp.ebi.ac.uk/pub/databases/metagenomics/taxon_
benchmarking/. The A500 set contains 12 samples
representing three different microbial environments:
the human gut, ocean, and soil. For each of these envi-
ronments, genomic sequences for their most abundant
genera were extracted and randomly sampled. These
human gut, ocean, and soil genomes then were sub-
sampled four times to simulate 16S rRNA profiling using
four different primer sets, generating 200,000,250-bp
paired-end reads per primer sequence. The sub-sampling
introduced a 2% random mutation to each sequencing
read. Almeida et al. then performed pre-processing
and quality control to filter sequences with ambigu-
ous base calls, as is suggested for QIIME 2 analysis
([30, 43]). With three microbial environments and
four primer sets, Almeida et al. thereby generated 12
sets of synthetic communities for testing. Information
about the software and primers used in dataset gener-
ation is further described in the “Methods” section of
Almeida et al. [34].

Software and databases

The software packages tested are Kraken 2 (downloaded
on 2020/03/05), Bracken v2.5, and QIIME 2 v2017.11.
Kraken and Bracken database files were generated for
Greengenes 13_8, SILVA 132, and RDP 11.5 database
releases. QIIME 2 database files were generated for
Greengenes 13_8 and SILVA 132.

Error rate calculations

For evaluating the accuracy of Kraken 2, Bracken, and
QIIME 2, we calculated two different error metrics
which compare the true genera distributions against those
reported by each program. The first error metric is a
modified mean absolute proportion error (MAPE) which
compares the difference between the true read counts (T)
for a given genus and the measured read counts (4,) for
that same genus.
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T, ATyl
Zgzl T, Tg

MAPE = Xn:
g=1

1)

Each difference is calculated as a fraction of the true
counts and then weighted by the fraction of the total
sample. 7 is the total number of true genera in the sample.

The second metric, Bray-Curtis dissimilarity [44], is a
similar measurement of the dissimilarity between the true
genera distribution and the measured genera distribution.
The formula for Bray-Curtis dissimilarity is:

2GCjj

BCj=1-
/ Si+5;

2)

where Cjj is the sum of lesser reads for genera in common
and §; = §; is the total number of reads. In other words,
for every true genus g in the sample, if T, < A,, Cj =
Cij + T,. Otherwise, if T, > Ag, Cjj = Cjj + Ay

MAPE and BC values both fall between 0 and 1, where
larger values indicate a greater difference between samples
and smaller values indicate a greater similarity.

Sensitivity and precision (PPV) calculations
As Kraken 2 provides taxonomic assignments for every
read, we can use the true taxonomic tree of each read to
calculate sensitivity and precision at all taxonomic levels.
For this explanation, we describe our calculations of sensi-
tivity and precision for the genus level. First, we calculate
true positive (7P), vague positive (VP), false positive (FP),
and false negative (FN) read counts. We define TP read
counts as the number of reads correctly classified at the
genus level. This includes reads that are classified as any
species within the true genus. Vague positive (VP) reads
account for the possibility that a read is classified as any
ancestor of the true taxon. Therefore, VP reads include
all TP reads and all reads assigned to ancestor taxa of the
true genus. FN reads are all classified reads that are not
VP reads. This thereby includes reads classified at any taxa
not within the direct lineage of the true genera. Finally, we
define FN as the number of unclassified reads. Notably,
in all experiments, Kraken 2 did not label any read as
unclassified (FN = 0).

From these values, we define sensitivity and precision
(measured by positive predictive value, PPV) using the
following two equations:

P
Sensitivity =
TP+ VP + FN + FP 3)
B TP
~ TP+ VP +FP
P
PPV (4)

~ TP+ FP
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