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Abstract — Interactions with an object during within-hand 
manipulation (WIHM) constitutes an assortment of gripping, 
sliding, and pivoting actions. In addition to manipulation 
benefits, the re-orientation and motion of the objects within-the-
hand also provides a rich array of additional haptic information 
via the interactions to the sensory organs of the hand. In this 
work, we utilize Variable Friction (VF) robotic fingers to execute 
a rolling WIHM on a variety of objects, while recording 
‘proprioceptive’ actuator data, which is then used for object 
classification (i.e. without tactile sensors). Rather than hand-
picking a select group of features for this task, our approach 
begins with 66 general features, which are computed from 
actuator position and load profiles for each object-rolling 
manipulation, based on gradient changes. An Extra Trees 
classifier performs object classification while also ranking each 
feature’s importance. Using only the 6 most-important ‘Key 
Features’ from the general set, a classification accuracy of 86% 
was achieved for distinguishing the 6 geometric objects included 
in our data set. Comparatively, when all 66 features are used, the 
accuracy is 89.8%.  

I. INTRODUCTION 

It is easy to take for granted the wide range of manipulation 
actions that people make use of in their daily lives. Something 
as simple as using a touch-screen smartphone one-handed, or 
removing a credit card from a wallet and inserting into an 
ATM, involves gripping, sliding and re-orientation of objects. 
Central to this capability is the sensory facilities of the fingers. 
Reaching into a pocket and being able to distinguish coins 
from keys involves complex sensing capabilities tied to active 
hand and finger motions that enhance perception. Exploratory 
Procedures (EPs) are the classic embodiment of hand-based 
interactions that humans complete to extract particular haptic 
properties from objects [1]. Over a number of years many 
researchers have looked at the potential of applying 
exploratory procedures to robotic systems, using a variety of 
hardware platforms and tactile sensors [2]–[5]. For example, 
in [6], a robot picked up and pushed objects to determine their 
weight and resistance to motion. Rather than such large 
manipulation actions that require the motion of the whole 
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robotic arm, in our work we are more specifically interested in 
the haptic data that may be obtained via Within-Hand-
Manipulation (WIHM) of objects. WIHM, which is also 
known as In-Hand-Manipulation, is defined in [7] as 
producing motion of an object within the hand (i.e. in a grasp) 
via parts of the hand moving with respect to a frame fixed at 
the base of a hand. Such object motion is classified as 
‘dexterous manipulation’ via the resulting rotational or 
translational object motions. 

WIHM has proven to be a difficult task for robotic and 
prosthetic hands, with past attempts to achieve WIHM relying 
on complex dynamic/quasi-static models [8]–[11] of the hand-
object system and/or high-DOF robotic hardware [12]–[16]. 
Recently we have developed novel variable friction (VF) 
robotic fingers that are able to significantly change the 
effective coefficient of friction of their contact surface. Using 
the VF fingers in a simple 2-DOF gripper configuration with a 
simple controller, we have demonstrated that the fingers can 
enable selective gripping, rolling and sliding of an object 
maintained in a stable grasp [17].  
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Figure 1: The robot hand used in this work is composed on two single-
link, active variable friction (VF) fingers mounted on a modified Yale 
OpenHand base. Proprioceptive (position and load) data are collected 
from the Dynamixel actuators and form the basis of classification.  
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In this current paper we use the same platform to 
demonstrate how these WIHM actions with the VF fingers can 
be used to classify object geometries via machine-learning 
techniques. We achieve this with minimum sensing 
requirements, i.e. utilizing only the proprioceptive data from 
the robot actuators (i.e. position and load), rather than any 
tactile or vision sensor data. Furthermore, to negate the need 
for hand-selected features, we implement a technique where 
66 general features are automatically computed from each 
manipulation action at pre-defined events in the data, i.e. at or 
between sharp gradient changes (‘elbows’) of position 
demand, position and torque. These general features are then 
numerically rated with regard to their contribution to 
classification performance. This process allows our machine 
learning system to determine the most important ‘key features’ 
extracted from the WIHM actions to enable efficient object 
classification.  

II. RELATED WORK 
In this section we examine haptic exploration and human 

finger properties in the framework of within-hand-
manipulation (WIHM), which is also known as ‘in-hand-
manipulation’. 

A. Within Hand Manipulation 
As explained in the previous section, WIHM enables 

manipulation tasks to be completed without wrist/arm motion 
or bi-lateral (two-handed) interactions [7]. Resultantly, tasks 
may be performed faster, with less energy expenditure and in 
more confined spaces.  

Robotic efforts at WIHM have typically led to high-DOF 
anthropomorphic mechanical systems [13], [18] and/or model-
dependent control approaches with in-depth pre-planning and 
object pose modelling and sensing [9], [10], [19]. Additional 
efforts have attempted to understand the mechanics of object 
sliding/slip [20], [21] or rolling [22] to permit emulation of 
such actions in robotic WIHM. This has led to modelling of 

frictional effects for dynamic and quasi-static cases [23], [24] 
and frictional limit surfaces [25]–[27] for various contact 
assumptions. Low DOF, non-model based approaches to 
WIHM are also apparent. In [28] an anthropomorphic two-
finger gripper design was based on kinematic observations of 
human hand motion during WIHM translation and re-
orientation tasks. Non-anthropomorphic gripper designs to 
optimize object re-orientation are also present in [29]. In [30] 
a simple 2 DOF manipulator was combined with an iterative 
learning approach to establish object re-orientation control 
schemes. Compared to these other designs, the hand with VF 
fingers used in this work allows us to exploit various contact 
friction configurations in much simpler way. This design aims 
to simplify models required for WIHM, and enable dexterity 
by adapting the gripper’s frictional properties according to 
desired manipulation actions.  

B. Haptic Exploration 
Not only does WIHM potentially simplify many 

manipulation actions, but WIHM actions facilitate the 
acquisition of rich haptic sensory information via the process 
of active exploration and ‘exploratory procedures’ [1]. Rather 
than the limited tactile data information resulting from a light 
touch or single grasp [31], [32], exploratory procedures 
involve dedicated patterns of manipulation, such as squeezing 
objects to detect their stiffness, or rubbing a surface to detect 
texture. These procedures are often fluidly combined to extract 
multiple properties [33]. 

Exploratory procedures are often defined based on the 
pioneering work of Lederman and Klatzky, who illustrated 
eight distinct EPs [1]. It is worth noting that six of the original 
Eps show bi-manual object interaction, while WIHM tends to 
focus on a single hand. In [33], study participants were 
observed combining EPs into efficient compound motions 
when palpating unknown objects for feature extraction with a 
single hand. Additionally, in [34] it was noted that adaptive 
grasping/molding of the human hand around objects facilitated 
better haptic object identification. 

The ability to determine haptic object properties without 
vision is appealing in numerous scenarios involving occlusion 
or poor lighting conditions. As such, various roboticists have 
attempted to implement exploratory procedures, though these 
processes often require time consuming palpatory motion 
sequences and complex and expensive high-DOF 
manipulators and/or tactile sensors (as summarized in [31]). 
With the design of the VF fingers and gripper used in this work 
we aimed for simple hardware that may be re-created by 
anyone with access to a research-grade 3D printer and 
approximately $600 for additional components (including 
actuators, dowel pins and springs). 

C. Biological Inspiration / Finger Properties 
A variety of disciplines have identified that skin friction 

plays a key role in human manipulation of objects [35]. In 
particular, the deformability of the finger pad leads to an 
increasing contact area as normal force is applied.  This contact 
area is related to the effective co-efficient of friction, which 
saturates after the application of ~1N of normal force [35]–
[37]. By modulating their grasp and force on objects, humans 
are therefore able to regulate whether objects are gripped by, 
or slide over, the finger surfaces. This ability to selectively grip 

 
Figure 2: The Variable Friction (VF) fingers are composed of a low-
friction surface that protrudes through cavities in a high-friction 
surface. The low-friction surface is suspended with springs and retracts 
when high-force is applied. A servo motor may also be used to retract 
the low-friction surface, as in the right image. 
 



  

and slide has been previously considered as beneficial for 
haptic exploration [3]. We also believe this capability is central 
to the highly-dexterous manipulation actions commonly 
observed in our species. This natural gripping and sliding 
ability is greatly aided by the anatomical structure of the 
human finger pad.  

The finger pad consists of soft internal fatty tissue, which is 
contained within a more rigid layer of epidermal skin. The skin 
layer allows sliding over surfaces with light touch, supporting 
objects without securing them and enabling active exploration 
motions used for surface discrimination (i.e. stroking/rubbing) 
[1], [38]–[40]. Beneath the skin, the soft subcutaneous tissue 
is able to conform around object geometry, gripping features 
firmly for pivoting or stabilization when sufficient normal 
force overcomes the limit of compressibility [22], [41]. This 
deformation also contributes to haptic identification of object 
contours and hardness [1]. 

Soft, deformable robotic fingers are often implemented in 
robotic systems and have been shown to be beneficial to 
establishing grasps, in comparison to rigid systems [22], [42], 
[43]. Unlike human fingers however, robotic finger pads tend 
to consist of homogenous rubbers that do not provide the same 
variety of interaction characteristics as the layered skin and fat 
of glabrous (smooth & hairless) tissue [42]. Though Chorley 
et al. investigated bio-mimetic multi-material assemblies from 
cast human fingers, the authors did not implement those 
fingers in object manipulation [38]. 

Variable Friction (VF) fingers are a recent development 
from our lab that use a simple mechanism to achieve a 
functional analogy to the gripping/sliding behavior of the 
human finger [17]. In past work we have shown that 
selectively switching between high and low friction while 
performing side to side motions of the fingers enables 
controlled sliding and rolling of objects against the finger 
surfaces (as illustrated in Fig 3). The VF fingers will be 
described in more details in the following section.   

III. SYSTEM DESCRIPTION 

A. Mechanical Components 
This work makes use of a simple 2DOF robot gripper 

constructed from a Yale OpenHand base (which has been 
modified to accommodate two Dynamixel XM430-W350-R 
actuators) and 2 VF fingers (Fig 1). These are robot fingers 
that are able to modify their coefficient of friction using either 
a passive mechanism (in which an increase in normal force 
causes an increase in friction) or a mini-servo actuator 
mounted on each finger, which can convert the fingers from 
passive VF mode to a constant high-friction mode.  

The VF fingers consist of a high-friction deformable finger 
surface (molded from ‘Vytaflex 30’ Urethane Rubber) and a 
low friction, rigid finger surface (made of smooth 3D-printed 
ABS). The low friction surface is suspended behind the high-
friction surface by means of four elastic dental bands (1/4” 
‘heavy’ variety, manufactured by Essix). This arrangement 
enables the low friction element’s contact surface to protrude 
through cavities in the high-friction elements contact surface 
(Fig 2).  

When the VF fingers exert low (<1.2N) normal contact 
forces on objects, the low friction surface remains exposed, 

enabling the finger to behave as if it was made of smooth 
plastic. Once the normal force exceeds that of the elastic 
elements, the low-friction element is pushed into the cavity of 
the high-friction element (Fig. 1), exposing the soft and 
textured high-friction surface. This variation in surface 
properties allows the contacting finger surface to either slide 
over objects or grip and pivot them, as in the human finger 
[28]. 

The coefficient of static friction for the low and high 
friction finger surfaces are 0.32 and 0.69 in contact with 
aluminum and 0.13 and 0.69 in contact with ABS. Modifying 
the friction surface therefore changes the coefficient by a 
factor of 2.2 (against aluminum) and 5.5 (against ABS). 

The high-friction finger pads are 30mm wide 95mm long. 
The low friction inserts consist of two rectangular sections 
(5.5mm wide and 80mm long) with a separation of 7.5mm, 
joined by a common base. These protrude 1.25mm beyond the 
ridges of the high-friction surface when no normal force is 
applied. Full details of the VF finger fabrication may be found 
in [17]. The design of these fingers is open source and CAD 
files for 3d-printing may be downloaded from 
www.eng.yale.edu/grablab/openhand, which also hosts links 
to associated videos of the urethane molding process.  

B. Proprioceptive Sensing 
Proprioception is the ability of the body to know its 

configuration based on internal sensing of the musculoskeletal 

 
Figure 3: Variable friction (VF) fingers enable controlled within-hand 
rotation and translation of objects, despite limited finger dexterity and 
simple control approach. Here an open-loop control sequence moves an 
object to a target pose with 180 degree rotation but no translation.  
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system. In this work, the robot’s main drive actuators (Fig. 4) 
provide proprioception in terms of position encoder and load 
(current) values. These are standard measurable parameters in 
Dynamixel XM actuators. Video data is also recorded 
synchronously, but only for debugging purposes; it is not 
processed by the controller or learning algorithm. All control 
is performed open-loop, in the sense that we only provide joint 
position commands as ramp functions (as will be described in 
the next section) and do not measure object pose. 

C. Control Approach 
Our control approach makes use of the inherent torque 

(current) and position control modes of the Dynamixel Model-
X actuators, which may be switched between at run-time. This 
enables the hand to maintain a stable grasp on the object as 
manipulation actions (such as rolling a square object between 
the fingers) are being executed, while also allowing the 
capability to adjust normal force application. This capability is 
beneficial to feature generation, as the same manipulation 
action by the position controlled finger tends to generate 
different position and load outputs from the torque controlled 
finger, when different objects are being manipulated. Please 
note that the controller is fully described in [17], but will be 
summarized here.    

During object motion with our controller, the finger that is 
moving towards the object is placed in torque control mode, 
with a reference torque ГR. The other finger is placed in 
position control mode and leads the motion with a varying 
position reference (a ramp function). More explicitly, if both 
fingers are moving clockwise then the left finger (which is 
moving towards the object) will be in torque mode, as 
illustrated in Fig. 5. When the fingers move anti-clockwise, the 
roles will reverse. Note that a similar concept was applied to 
velocity and torque control of simple robot fingers for object 
manipulation in [30]. 

As the position controlled finger moves, the torque 
controlled finger attempts to maintain the constant torque 
reference ГR. This causes the fingers to sustain contact with the 
grasped object during motion, while also attempting to apply 
a constant normal force. The reference, ГR, may either be set 
as low (0.25Nm) or high (1Nm). This magnitude determines 
the normal force on the grasped object and therefore 
compression of the suspended low-friction surface, (Fig. 2 & 

3). When a low-torque reference is provided, the low-friction 
surface of the VF finger will remain exposed during 
manipulation, enabling object sliding (Fig. 2 top right). If a 
high-torque reference is provided, the high resulting normal 
force will push the low-friction surface behind the high-
friction surface, causing the VF finger to grip and/or roll the 
object.  

IV. METHODS 
The goal of this study was to determine if proprioceptive 

actuator data from VF finger manipulations could be used to 
distinguish a variety of objects of different sizes and shapes, 
when automatically parsed without any prior associations by a 
machine learning based classifier.  

For example, it is clear that variations in grasp aperture (the 
distance between fingers) during within-hand object 
manipulation should be able to allow discrimination between 
circular objects (which roll) and rectangular objects (which 
pivot and rotate). However, we provide the classifier with no 
kinematic calculations that converts raw actuator position to 
finger position, or associates the two actuator position 
variables together in a way that would lead to grasp aperture 
determination. This also applies to features related to actuator 
load, position error and associated time derivatives (as will be 
discussed in Section IV.B).  

We therefore define the following task for the machine 
learning approach: given a large set of arbitrary, general and 
pre-defined proprioceptive features, select those which are 
most relevant to object classification.  

A. Objects  
The objects used for the test scenario are shown in Fig 6 

and described in Table 1. All objects were 3D printed in ABS 
with a wall thickness of 2.5mm. Note that particular attributes 
of shape and size were repeated between objects to focus 
investigations on whether the system would be better at 
differentiating either size or shape. These objects were 
manipulated in a planar fashion, with the robot hand supported 
above a flat surface on which the object rests before being 
manipulated (Fig. 1). 

B. Data collection 
Though initial hopes were to use both sliding and rolling 

capabilities to explore objects through functional motion 
sequences. It was soon observed that certain cylindrical 
objects were often ejected from the hand following several 
sliding actions. Considering that this is an initial proof-of-
concept study, it was decided that reliable baseline data from 
simple manipulations was preferable to data from more varied, 
but error-prone manipulations. A back-and-forth rolling action 

 
 

Figure 4: The hybrid position and torque controlled nature of the end 
effector enables a stable grasp on objects during WIHM. As such, the 
torque controlled finger (which switches from the left to right digit 
depending on direction of object motion) generates different position and 
load trajectories for each object in relation to the relatively consistent 
driving motion of the position controlled finger. 
 

 
 

Figure 5: The six manipulation objects, ordered by size. They are also 
described in Table 1. 

 



  

was therefore utilized as the exploratory procedure for this 
work (Fig 6), following the initial positioning of the object into 
the start pose, which is achievable by sliding.  

The rolling action is achieved by moving to the rightmost, 
then leftmost limits of the workspace while applying a high ГR 
value, causing the object to pivot. Fig 1 shows the rolling being 
executed from left (panel 1) to right (panel 4) for the 25.4mm 
(1 inch) square object. Following this, the motion is reversed 
and the object returned to the start pose. This constitutes one 
cycle. The object exploration was completed in four sets of 
seven cycles per object. Between each set the object was 
removed and replaced in roughly the same location in the 
gripper. This permitted some variation in starting conditions.  

C. Recorded Data 
Fig 7 illustrates the captured data over one object rolling 

cycle with the 25.4mm square object. The data consists of each 
actuator’s position, position reference (demand), and load 
data. Note that the position reference signals are only followed 
by a finger when it is in position control mode, which we 
illustrate in Fig 7 using a dotted line, with a solid line 
indicating that the actuator (and finger) is in torque controlled 
mode. Note also that, as described in Section III.C, the 
position-controlled and torque-controlled roles of the fingers 
switch depending on whether the object is being moved toward 
the left or right.  

D. Gross Feature Extraction 
Fig 7 illustrates that the trajectories of position, position 

reference and load are approximately trapezoid profiles. This 
allows us to automatically extract features based on key 
aspects of these profiles, notably the ‘elbows’ of the trapezoids 

 
Figure 6: One half-cycle of the object-rotation WIHM action used for 
proprioceptive data collection. For a full cycle, the fingers would return 
to the start pose.  

 

Table 1: Size and shape characteristics of the six manipulation objects 

 

Figure 7: Actuator Position, Position Reference (demand) and Load signals for one back-and-forth manipulation of the small square object. The 
manipulation changes direction at approximately 9.6 seconds. The labels A-T show events (specified by large changes in gradient) where values of time 
and magnitude were sampled to create the general set of 66 features. Additional features were created by taking the difference (between Position and 
Position Reference) or gradient (in the case of Load) in the intervals between the labels (illustrated by small circles). This process automatically generates 
66 features to comprehensively describe the manipulation action, as further detailed in Table 2.  

 



  

(which may also be considered as regions of significant 
gradient change). These 20 points (denoted A-T) are encoded 
in terms of time, magnitude, gradient (between points) and 
error (in the case of Position and Position Reference) as 
described in Table 2. The time indices of the reference points 
in position and position reference (i.e. points A-C and D-F) are 
the same and therefore are only sampled once. Also, in order 
to capture the more subtle differences between trajectories, 
several waypoints between points were added for sampling 
(e.g. the gradient is sampled between M and N, but also 
sampled in the central 1/3rd of the trajectory between M and 
N).  

This method provides a total of 66 ‘gross features’ which 
are provided to the classifier. From these gross features, we 
will later extract ‘key features’, as will be discussed in Section 
V.B. 

E. Machine Learning Approach 
A total of 168 movement cycles were available for the 6 

objects (28 cycles per object). Each cycle was represented by 
the 66 features previously described. The data was randomly 
split using stratified 5-fold cross validation. This split the trials 
so that 80% of the data was used for training, and the 
remaining 20% was used for testing the model. This splitting 
is completed 5 times and then the training is run 100 times, the 
classification accuracies converging to the presented 
classification value to follow.  

For classifier selection, we implemented TPOT (Tree-
based Pipeline Optimization Tool [44]), a machine learning 
pipeline that makes use of genetic algorithms to find the best 
classification model for the given data. From this analysis, we 
found the Extra Trees classifier (with 100 estimators), an 
extended version of the Random Forests classifier, presented 
the best cross validation results. For validation, we also tested 
a Random Forests classifier and a Support Vector Machine, 
which fell marginally short (about 5%) in classification 
accuracy compared to that of Extra Trees.   

F. Classification Experiments 
Three separate classification approaches were completed 

in order to identify how well the machine learning approach 
was able to distinguish between different properties of objects. 
These experiments are as follows: 

A) Different size (but constant shape) 
B) Different shape (but constant size) 
C) Different shape and size 

This involved separate training and testing of the classifiers 
with selected object data.  

For experiment A, the system was trained and tested using 
only data from cylindrical shaped objects, in three different 
sizes (diameters). These sizes are shown in Table 1, but are 
referred to in the test as ‘small, medium and large’. 

For experiment B, three objects with different shapes 
(circle, square and rounded square) were selected with the 
same ‘small’ size (25.4mm diameter). 

For experiment C, which includes all objects, is the most 
difficult as certain objects resemble other objects at particular 
time instances. For example, when the medium size square 
object is in the middle of the rotation (i.e. held by opposing 
corners) the grasp aperture (space between the fingers) 
resembles that of the large circle. Additionally, the rounded 
square may resemble a circle or square at different points of 
the manipulation action.  

V. RESULTS 

A. Gross Feature Classification 
Using the Extra Trees classifier with parameters selected 

by the TPOT algorithm and all 66 features, the classification 
accuracies for the three experiments are displayed in Table 3. 
While a classification rate of 89.8% was achieved for both the 
size and shape classification task (Experiment C), this rate 
rises when the classifier has only to predict one of these object 
parameters. These classification accuracies were therefore 
90.4% for size distinction (experiment A) and 93.7% for shape 
(experiment B) distinction.  

The confusion matrices associated with these experiments 
are presented in Fig 8 (experiments A and B) and Fig 10 
(experiment C).  

In experiment A, the classifier has the most difficulty with 
the small object, misclassifying it as a large object. This may 
be due to the reduction in manipulation workspace size that 
occurs with large objects. This has the effect of diluting other 
features.  

Experiment B illustrates better classification accuracy, 
most likely due to different shape objects causing notable 
differences in actuator trajectories. This is highlighted in Fig 
9, which illustrates how square objects, with sharp corners, can 
cause sudden changes in actuator trajectories at certain points 
of the workspace.  

This is apparent in the quite different range of finger and 
object trajectories that stem from rotation of a square (which 
pivot on its corners), the rounded square (which pivots to a less 
degree), and the circle (which rolls without pivoting). As a 
result, most of the errors in this experiment are caused by the 
system misclassifying the rounded square as a circle.  

Finally, when the system trained on all of the objects in 
Table 1 (a variety of shapes and sizes) with all 66 features, the 

Table 2: The 66 gross features are constructed from a number of 
measurements of several variables at pre-defined events in the data 
(though the timing of these events changes between trials). These 

measuements are also illustrated in Fig 7. 

 

Table 3: Results of the three classification expeirments when using all 
66 features 

 



  

model makes the most errors when predicting rounded squares 
and large circles. Intuitively, we presumed that this 
classification would be the most difficult since we only have 
one example of a large size object and one example of a 
rounded shape object. The classification of these two objects 
is therefore actually testing some of the interpolation and 
extrapolation of our learned model.    

B. Key Feature Identification/Classification 
Key features are features of the data that were determined 

to have the greatest contribution to overall classification 
accuracy. To determine key features we used an ‘Importance’ 
metric, which determines how much a feature contributes to 
the overall classification for an experiment. This importance 
metric was based on the Gini impurity measure, which was 
introduced in [45] and is often used in ensemble tree 
classifiers. When a random element in the data set is selected, 
the Gini impurity represents the likelihood of accurate 
classification given a random class selected from the 
distribution of labels. This measure is extracted for each 
feature when determining how to split the branches for each 
tree in the forest, which has the main intention of measuring 
purity of the node after a split.   

The feature importance measure is then calculated by 
averaging the Gini measures for each split in the forest. We 
then characterize feature contribution by scaling the Gini 
impurities to add up to 100 and finding percentages. These 
percentages characterize how important a feature is to our 
learned model.  

A complete set of importance values for all 66 features for 
a ‘pilot’ classification of experiment A’s data is given in the 
Appendix. To create ‘Key Feature’ classifiers, we selected the 
top 6 features, i.e. those that contribute most to the 
classification of objects in each of the three experiments. 
These key features are provided in Table 4, where the letters 
coincides with the feature labels in Fig. 7.  

Somewhat surprisingly, in all experiments the algorithm has 
selected the key features to only be position or position 
reference magnitudes. More specifically, it has not given much 
importance to any load, gradient, sub-points, errors or time 
index values (as described in Table 2). Indeed, features of this 
kind can be seen to take much lower ranking in the table 
provided in the Appendix. 

We believe that the importance of position based features is 
due to the adaptive nature of the grasping and manipulation 
scheme, where the torque based control of one of the fingers 
means that contact is always maintained with the object, 
regardless of object shape and size. Though manipulation with 

Table 4: Key Features and importance measures (Imp) from the Extra 
Trees Classifier for experiments A, B and C. The feature notations are 

referened from Fig 8. All key features referring to a position value have 
been shaded grey, while unshaded features refer to position reference 
value. Note that no key features were identified from actuator load. 

 

 

Figure 9: Actuator 1 position recordings for two different rolling 
manipulations with a medium square (top) and medium circle (bottom). 
The change in trajectory caused by corner pivoting has been highlighted.  
 

 
Figure 8: Confusion matrices for experiments A (size classification) 
and B (shape classification) 

 



  

different shapes and sizes no doubt cause changes in load 

trajectories, such variations appear more subtle than the 
variations that occur in the positioning of the fingers over the 
span of the manipulation action.  

Table 5 illustrates the classification accuracy that is 
achieved for each experiment when only limited numbers of 
key features are used. These results are presented for a range 
of classifiers that make use of between 6 and 1 key feature. 
This data is also represented in Fig. 11, along with the accuracy 
achieved when all features are used.  

It is noticeable that the relationship between accuracy and 
feature number is non-linear in all of the experiments, with 
accuracy actually increasing in some occasions, when the 
number of features are reduced. This non-intuitive behavior is 
related to the randomness of the machine learning approach, 
which also does not consider the dependency that may occur 
between features. Nonetheless, reducing the number of 
features in experiment C (the most challenging classification 
task) from 66 to 6 leads to a reduction of only 4% classification 

accuracy, while using only a single feature gives classification 
accuracy of over 80% for experiment A.  

VI. CONCLUSION AND FUTURE WORK 
This work introduces the concept of proprioceptive object 

sensing and discrimination using novel and mechanically 
simple ‘Variable Friction’ fingers capable of performing 
within-hand manipulation (WIHM). The simple but novel 
switching position/torque-based control method facilitates the 
extraction of haptic object data via active manipulation, as the 
gripper adaptively maintains contact with objects through 
manipulation actions, despite variations in size and shape. It is 
this adaptation that allows distinct manipulation data to be 
generated from rather simple within-hand exploratory 
manipulation actions that do not require explicit re-
programming for different objects. This reflects a major goal 
of the VF finger design methodology, which is to enable 
WIHM with low mechanical and control complexity, 
compared to related work in the field.  

Due to the previously unexplored nature of the manipulation 
and control scheme, we deliberately did not hand-select 
features for our object classifier. Instead, we have taken an 
approach of automatically extracting a large number of 
features related to position, position-reference and load. 
Following initial classification of objects using all of the 
features (in three categories of size, shape and both), we 
subsequently were able to arrange the 66 features in order of 
importance. This enabled classification to be attempted again, 
but using only a heavily reduced number of automatically 
selected ‘key features’. Notably, the experiments were 
performed again using only 1-6 key features.    

It is worth noting that these key features were all automatically 
selected to have their origin either in the position trajectory of 
the actuators or in the position reference signals (Table 5). 
Though it is somewhat surprising that actuator torque/load did 
not play a significant role in the key features. While the 
position controlled finger drives the motion of the gripper and 
object, the torque controlled finger demonstrates inherent 
compliance in order to maintain a grasp on the object during 
this motion. As a result, actuator torque has an indirect role in 
achieving our classification results, by adaptation of finger 
position trajectories with respect to the object size and shape, 
therefore leading to different actuator profiles for each object. 

The classification results were promising at ≥90% accuracy 
when all 66 features were used, showing that there is potential 
for using a simple WIHM scheme for object classification, 

 
Figure 11: Change in classification accuracy for all three experiments 
using all 66 features versus only 1 to 6 key features.  
 

 
Figure 10: Confusion matrix for experiment C (size and shape 
classification) with key to object labels (object numbers are same as in 
Table 1) 
 

Table 5: Classification accuracy for experiments A, B and C given the 
reduced features presented in Table 4 

 
 

 



  

without the use of tactile sensors. Interestingly this accuracy 
remained about 80% for all experiments when only 6 features 
were used. Indeed, experiment A produced results that could 
still be considered satisfactory with only 1 feature, though this 
was not the case for the more challenging experiment C. 

Overall, this work has provided an application of the 
recently developed VF fingers, showing their potential for 
haptic feature extraction via within-hand object manipulation 
without the requirement of force, torque or tactile sensors. As 
the VF fingers are open source and simple to fabricate, we 
hope that others are able to make use of the various properties 
of these manipulators. On the other hand, the approach 
presented in this paper is currently specific to the Model VF 
variable friction robot gripper. To our knowledge, this is the 
only variable friction hand in literature, and the only hand that 
uses such a controller for WIHM. The novelty of our robotic 
platform therefore makes consideration of a general approach 
to proprioceptive-based object classification difficult.  

In the future, we wish to extend this work beyond the 
controlled geometric primitives of this study into more 
realistic and irregular objects manipulated three dimensional 
(rather than planar) workspaces. The robust handling of such 
objects, in addition to the capability of using sliding as well as 
rolling WIHMs for data gathering, are likely to be inherently 
linked to more complex and versatile variable-friction finger 
morphologies, probably consisting of multiple phalanges 
and/or additional fingers. Of course, the current control 
scheme will require modification to be compatible with these 
new finger designs while enabling more complex 
manipulation actions and richer proprioceptive data extraction. 
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