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Abstract — Interactions with an object during within-hand
manipulation (WIHM) constitutes an assortment of gripping,
sliding, and pivoting actions. In addition to manipulation
benefits, the re-orientation and motion of the objects within-the-
hand also provides a rich array of additional haptic information
via the interactions to the sensory organs of the hand. In this
work, we utilize Variable Friction (VF) robotic fingers to execute
a rolling WIHM on a variety of objects, while recording
‘proprioceptive’ actuator data, which is then used for object
classification (i.e. without tactile sensors). Rather than hand-
picking a select group of features for this task, our approach
begins with 66 general features, which are computed from
actuator position and load profiles for each object-rolling
manipulation, based on gradient changes. An Extra Trees
classifier performs object classification while also ranking each
feature’s importance. Using only the 6 most-important ‘Key
Features’ from the general set, a classification accuracy of 86%
was achieved for distinguishing the 6 geometric objects included
in our data set. Comparatively, when all 66 features are used, the
accuracy is 89.8%.

I. INTRODUCTION

It is easy to take for granted the wide range of manipulation
actions that people make use of in their daily lives. Something
as simple as using a touch-screen smartphone one-handed, or
removing a credit card from a wallet and inserting into an
ATM, involves gripping, sliding and re-orientation of objects.
Central to this capability is the sensory facilities of the fingers.
Reaching into a pocket and being able to distinguish coins
from keys involves complex sensing capabilities tied to active
hand and finger motions that enhance perception. Exploratory
Procedures (EPs) are the classic embodiment of hand-based
interactions that humans complete to extract particular haptic
properties from objects [1]. Over a number of years many
researchers have looked at the potential of applying
exploratory procedures to robotic systems, using a variety of
hardware platforms and tactile sensors [2]-[5]. For example,
in [6], a robot picked up and pushed objects to determine their
weight and resistance to motion. Rather than such large
manipulation actions that require the motion of the whole
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Figure 1: The robot hand used in this work is composed on two single-
link, active variable friction (VF) fingers mounted on a modified Yale
OpenHand base. Proprioceptive (position and load) data are collected
from the Dynamixel actuators and form the basis of classification.

robotic arm, in our work we are more specifically interested in
the haptic data that may be obtained via Within-Hand-
Manipulation (WIHM) of objects. WIHM, which is also
known as In-Hand-Manipulation, is defined in [7] as
producing motion of an object within the hand (i.e. in a grasp)
via parts of the hand moving with respect to a frame fixed at
the base of a hand. Such object motion is classified as
‘dexterous manipulation’ via the resulting rotational or
translational object motions.

WIHM has proven to be a difficult task for robotic and
prosthetic hands, with past attempts to achieve WIHM relying
on complex dynamic/quasi-static models [8]-[11] of the hand-
object system and/or high-DOF robotic hardware [12]-[16].
Recently we have developed novel variable friction (VF)
robotic fingers that are able to significantly change the
effective coefficient of friction of their contact surface. Using
the VF fingers in a simple 2-DOF gripper configuration with a
simple controller, we have demonstrated that the fingers can
enable selective gripping, rolling and sliding of an object
maintained in a stable grasp [17].
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Figure 2: The Variable Friction (VF) fingers are composed of a low-
friction surface that protrudes through cavities in a high-friction
surface. The low-friction surface is suspended with springs and retracts
when high-force is applied. A servo motor may also be used to retract
the low-friction surface, as in the right image.

In this current paper we use the same platform to
demonstrate how these WIHM actions with the VF fingers can
be used to classify object geometries via machine-learning
techniques. We achieve this with minimum sensing
requirements, i.e. utilizing only the proprioceptive data from
the robot actuators (i.e. position and load), rather than any
tactile or vision sensor data. Furthermore, to negate the need
for hand-selected features, we implement a technique where
66 general features are automatically computed from each
manipulation action at pre-defined events in the data, i.e. at or
between sharp gradient changes (‘elbows’) of position
demand, position and torque. These general features are then
numerically rated with regard to their contribution to
classification performance. This process allows our machine
learning system to determine the most important ‘key features’
extracted from the WIHM actions to enable efficient object
classification.

II. RELATED WORK

In this section we examine haptic exploration and human
finger properties in the framework of within-hand-
manipulation (WIHM), which is also known as ‘in-hand-
manipulation’.

A. Within Hand Manipulation

As explained in the previous section, WIHM enables
manipulation tasks to be completed without wrist/arm motion
or bi-lateral (two-handed) interactions [7]. Resultantly, tasks
may be performed faster, with less energy expenditure and in
more confined spaces.

Robotic efforts at WIHM have typically led to high-DOF
anthropomorphic mechanical systems [13], [18] and/or model-
dependent control approaches with in-depth pre-planning and
object pose modelling and sensing [9], [10], [19]. Additional
efforts have attempted to understand the mechanics of object
sliding/slip [20], [21] or rolling [22] to permit emulation of
such actions in robotic WIHM. This has led to modelling of

frictional effects for dynamic and quasi-static cases [23], [24]
and frictional limit surfaces [25]-[27] for various contact
assumptions. Low DOF, non-model based approaches to
WIHM are also apparent. In [28] an anthropomorphic two-
finger gripper design was based on kinematic observations of
human hand motion during WIHM translation and re-
orientation tasks. Non-anthropomorphic gripper designs to
optimize object re-orientation are also present in [29]. In [30]
a simple 2 DOF manipulator was combined with an iterative
learning approach to establish object re-orientation control
schemes. Compared to these other designs, the hand with VF
fingers used in this work allows us to exploit various contact
friction configurations in much simpler way. This design aims
to simplify models required for WIHM, and enable dexterity
by adapting the gripper’s frictional properties according to
desired manipulation actions.

B. Haptic Exploration

Not only does WIHM potentially simplify many
manipulation actions, but WIHM actions facilitate the
acquisition of rich haptic sensory information via the process
of active exploration and ‘exploratory procedures’ [1]. Rather
than the limited tactile data information resulting from a light
touch or single grasp [31], [32], exploratory procedures
involve dedicated patterns of manipulation, such as squeezing
objects to detect their stiffness, or rubbing a surface to detect
texture. These procedures are often fluidly combined to extract
multiple properties [33].

Exploratory procedures are often defined based on the
pioneering work of Lederman and Klatzky, who illustrated
eight distinct EPs [1]. It is worth noting that six of the original
Eps show bi-manual object interaction, while WIHM tends to
focus on a single hand. In [33], study participants were
observed combining EPs into efficient compound motions
when palpating unknown objects for feature extraction with a
single hand. Additionally, in [34] it was noted that adaptive
grasping/molding of the human hand around objects facilitated
better haptic object identification.

The ability to determine haptic object properties without
vision is appealing in numerous scenarios involving occlusion
or poor lighting conditions. As such, various roboticists have
attempted to implement exploratory procedures, though these
processes often require time consuming palpatory motion
sequences and complex and expensive high-DOF
manipulators and/or tactile sensors (as summarized in [31]).
With the design of the VF fingers and gripper used in this work
we aimed for simple hardware that may be re-created by
anyone with access to a research-grade 3D printer and
approximately $600 for additional components (including
actuators, dowel pins and springs).

C. Biological Inspiration / Finger Properties

A variety of disciplines have identified that skin friction
plays a key role in human manipulation of objects [35]. In
particular, the deformability of the finger pad leads to an
increasing contact area as normal force is applied. This contact
area is related to the effective co-efficient of friction, which
saturates after the application of ~IN of normal force [35]-
[37]. By modulating their grasp and force on objects, humans
are therefore able to regulate whether objects are gripped by,
or slide over, the finger surfaces. This ability to selectively grip



and slide has been previously considered as beneficial for
haptic exploration [3]. We also believe this capability is central
to the highly-dexterous manipulation actions commonly
observed in our species. This natural gripping and sliding
ability is greatly aided by the anatomical structure of the
human finger pad.

The finger pad consists of soft internal fatty tissue, which is
contained within a more rigid layer of epidermal skin. The skin
layer allows sliding over surfaces with light touch, supporting
objects without securing them and enabling active exploration
motions used for surface discrimination (i.e. stroking/rubbing)
[1], [38]-[40]. Beneath the skin, the soft subcutaneous tissue
is able to conform around object geometry, gripping features
firmly for pivoting or stabilization when sufficient normal
force overcomes the limit of compressibility [22], [41]. This
deformation also contributes to haptic identification of object
contours and hardness [1].

Soft, deformable robotic fingers are often implemented in
robotic systems and have been shown to be beneficial to
establishing grasps, in comparison to rigid systems [22], [42],
[43]. Unlike human fingers however, robotic finger pads tend
to consist of homogenous rubbers that do not provide the same
variety of interaction characteristics as the layered skin and fat
of glabrous (smooth & hairless) tissue [42]. Though Chorley
et al. investigated bio-mimetic multi-material assemblies from
cast human fingers, the authors did not implement those
fingers in object manipulation [38].

Variable Friction (VF) fingers are a recent development
from our lab that use a simple mechanism to achieve a
functional analogy to the gripping/sliding behavior of the
human finger [17]. In past work we have shown that
selectively switching between high and low friction while
performing side to side motions of the fingers enables
controlled sliding and rolling of objects against the finger
surfaces (as illustrated in Fig 3). The VF fingers will be
described in more details in the following section.

III. SYSTEM DESCRIPTION

A. Mechanical Components

This work makes use of a simple 2DOF robot gripper
constructed from a Yale OpenHand base (which has been
modified to accommodate two Dynamixel XM430-W350-R
actuators) and 2 VF fingers (Fig 1). These are robot fingers
that are able to modify their coefficient of friction using either
a passive mechanism (in which an increase in normal force
causes an increase in friction) or a mini-servo actuator
mounted on each finger, which can convert the fingers from
passive VF mode to a constant high-friction mode.

The VF fingers consist of a high-friction deformable finger
surface (molded from ‘Vytaflex 30’ Urethane Rubber) and a
low friction, rigid finger surface (made of smooth 3D-printed
ABS). The low friction surface is suspended behind the high-
friction surface by means of four elastic dental bands (1/4”
‘heavy’ variety, manufactured by Essix). This arrangement
enables the low friction element’s contact surface to protrude
through cavities in the high-friction elements contact surface

(Fig 2).

When the VF fingers exert low (<1.2N) normal contact
forces on objects, the low friction surface remains exposed,
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Figure 3: Variable friction (VF) fingers enable controlled within-hand
rotation and translation of objects, despite limited finger dexterity and
simple control approach. Here an open-loop control sequence moves an
object to a target pose with 180 degree rotation but no translation.

enabling the finger to behave as if it was made of smooth
plastic. Once the normal force exceeds that of the elastic
elements, the low-friction element is pushed into the cavity of
the high-friction element (Fig. 1), exposing the soft and
textured high-friction surface. This variation in surface
properties allows the contacting finger surface to either slide
over objects or grip and pivot them, as in the human finger
[28].

The coefficient of static friction for the low and high
friction finger surfaces are 0.32 and 0.69 in contact with
aluminum and 0.13 and 0.69 in contact with ABS. Modifying
the friction surface therefore changes the coefficient by a
factor of 2.2 (against aluminum) and 5.5 (against ABS).

The high-friction finger pads are 30mm wide 95mm long.
The low friction inserts consist of two rectangular sections
(5.5mm wide and 80mm long) with a separation of 7.5mm,
joined by a common base. These protrude 1.25mm beyond the
ridges of the high-friction surface when no normal force is
applied. Full details of the VF finger fabrication may be found
in [17]. The design of these fingers is open source and CAD
files for 3d-printing may be downloaded from
www.eng.yale.edu/grablab/openhand, which also hosts links
to associated videos of the urethane molding process.

B. Proprioceptive Sensing

Proprioception is the ability of the body to know its
configuration based on internal sensing of the musculoskeletal
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Figure 4: The hybrid position and torque controlled nature of the end
effector enables a stable grasp on objects during WIHM. As such, the
torque controlled finger (which switches from the left to right digit
depending on direction of object motion) generates different position and
load trajectories for each object in relation to the relatively consistent
driving motion of the position controlled finger.

system. In this work, the robot’s main drive actuators (Fig. 4)
provide proprioception in terms of position encoder and load
(current) values. These are standard measurable parameters in
Dynamixel XM actuators. Video data is also recorded
synchronously, but only for debugging purposes; it is not
processed by the controller or learning algorithm. All control
is performed open-loop, in the sense that we only provide joint
position commands as ramp functions (as will be described in
the next section) and do not measure object pose.

C. Control Approach

Our control approach makes use of the inherent torque
(current) and position control modes of the Dynamixel Model-
X actuators, which may be switched between at run-time. This
enables the hand to maintain a stable grasp on the object as
manipulation actions (such as rolling a square object between
the fingers) are being executed, while also allowing the
capability to adjust normal force application. This capability is
beneficial to feature generation, as the same manipulation
action by the position controlled finger tends to generate
different position and load outputs from the torque controlled
finger, when different objects are being manipulated. Please
note that the controller is fully described in [17], but will be
summarized here.

During object motion with our controller, the finger that is
moving towards the object is placed in torque control mode,
with a reference torque /» The other finger is placed in
position control mode and leads the motion with a varying
position reference (a ramp function). More explicitly, if both
fingers are moving clockwise then the left finger (which is
moving towards the object) will be in torque mode, as
illustrated in Fig. 5. When the fingers move anti-clockwise, the
roles will reverse. Note that a similar concept was applied to
velocity and torque control of simple robot fingers for object
manipulation in [30].

As the position controlled finger moves, the torque
controlled finger attempts to maintain the constant torque
reference I &. This causes the fingers to sustain contact with the
grasped object during motion, while also attempting to apply
a constant normal force. The reference, 'z, may either be set
as low (0.25Nm) or high (INm). This magnitude determines
the normal force on the grasped object and therefore
compression of the suspended low-friction surface, (Fig. 2 &
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Figure 5: The six manipulation objects, ordered by size. They are also
described in Table 1.

3). When a low-torque reference is provided, the low-friction
surface of the VF finger will remain exposed during
manipulation, enabling object sliding (Fig. 2 top right). If a
high-torque reference is provided, the high resulting normal
force will push the low-friction surface behind the high-
friction surface, causing the VF finger to grip and/or roll the
object.

IV. METHODS

The goal of this study was to determine if proprioceptive
actuator data from VF finger manipulations could be used to
distinguish a variety of objects of different sizes and shapes,
when automatically parsed without any prior associations by a
machine learning based classifier.

For example, it is clear that variations in grasp aperture (the
distance between fingers) during within-hand object
manipulation should be able to allow discrimination between
circular objects (which roll) and rectangular objects (which
pivot and rotate). However, we provide the classifier with no
kinematic calculations that converts raw actuator position to
finger position, or associates the two actuator position
variables together in a way that would lead to grasp aperture
determination. This also applies to features related to actuator
load, position error and associated time derivatives (as will be
discussed in Section IV.B).

We therefore define the following task for the machine
learning approach: given a large set of arbitrary, general and
pre-defined proprioceptive features, select those which are
most relevant to object classification.

A. Objects

The objects used for the test scenario are shown in Fig 6
and described in Table 1. All objects were 3D printed in ABS
with a wall thickness of 2.5mm. Note that particular attributes
of shape and size were repeated between objects to focus
investigations on whether the system would be better at
differentiating either size or shape. These objects were
manipulated in a planar fashion, with the robot hand supported
above a flat surface on which the object rests before being
manipulated (Fig. 1).

B. Data collection

Though initial hopes were to use both sliding and rolling
capabilities to explore objects through functional motion
sequences. It was soon observed that certain cylindrical
objects were often ejected from the hand following several
sliding actions. Considering that this is an initial proof-of-
concept study, it was decided that reliable baseline data from
simple manipulations was preferable to data from more varied,
but error-prone manipulations. A back-and-forth rolling action



Figure 6: One half-cycle of the object-rotation WIHM action used for
proprioceptive data collection. For a full cycle, the fingers would return
to the start pose.

was therefore utilized as the exploratory procedure for this
work (Fig 6), following the initial positioning of the object into
the start pose, which is achievable by sliding.

The rolling action is achieved by moving to the rightmost,
then leftmost limits of the workspace while applying a high 7'z
value, causing the object to pivot. Fig 1 shows the rolling being
executed from left (panel 1) to right (panel 4) for the 25.4mm
(1 inch) square object. Following this, the motion is reversed
and the object returned to the start pose. This constitutes one
cycle. The object exploration was completed in four sets of
seven cycles per object. Between each set the object was
removed and replaced in roughly the same location in the
gripper. This permitted some variation in starting conditions.
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Table 1: Size and shape characteristics of the six manipulation objects

Object  Shape Size Diameter (mm)
1 Circle Small 25.4
2 Circle Medium 38.1
3 Square Small 25.4
4 Square  Medium 38.1
5 R-Square Small 25.4
6 Circle Large 50.8

C. Recorded Data

Fig 7 illustrates the captured data over one object rolling
cycle with the 25.4mm square object. The data consists of each
actuator’s position, position reference (demand), and load
data. Note that the position reference signals are only followed
by a finger when it is in position control mode, which we
illustrate in Fig 7 using a dotted line, with a solid line
indicating that the actuator (and finger) is in torque controlled
mode. Note also that, as described in Section III.C, the
position-controlled and torque-controlled roles of the fingers
switch depending on whether the object is being moved toward
the left or right.

D. Gross Feature Extraction

Fig 7 illustrates that the trajectories of position, position
reference and load are approximately trapezoid profiles. This
allows us to automatically extract features based on key
aspects of these profiles, notably the ‘elbows’ of the trapezoids
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Figure 7: Actuator Position, Position Reference (demand) and Load signals for one back-and-forth manipulation of the small square object. The
manipulation changes direction at approximately 9.6 seconds. The labels A-T show events (specified by large changes in gradient) where values of time
and magnitude were sampled to create the general set of 66 features. Additional features were created by taking the difference (between Position and
Position Reference) or gradient (in the case of Load) in the intervals between the labels (illustrated by small circles). This process automatically generates
66 features to comprehensively describe the manipulation action, as further detailed in Table 2.



Table 2: The 66 gross features are constructed from a number of
measurements of several variables at pre-defined events in the data
(though the timing of these events changes between trials). These
measuements are also illustrated in Fig 7.

Value Points Sub Points Number of Features
Time A-l, M-T No 14
Magnitude AT No 20
Gradient MN, NO, OP, QR, RS, ST No 6
Central Gradient  MN, NO, OP, QR, RS, ST Yes 6
Error AD-BE (5), BE-CF (5) Yes 20
GJ-HK (5), HK-KL (5)
Total 66

(which may also be considered as regions of significant
gradient change). These 20 points (denoted A-T) are encoded
in terms of time, magnitude, gradient (between points) and
error (in the case of Position and Position Reference) as
described in Table 2. The time indices of the reference points
in position and position reference (i.e. points A-C and D-F) are
the same and therefore are only sampled once. Also, in order
to capture the more subtle differences between trajectories,
several waypoints between points were added for sampling
(e.g. the gradient is sampled between M and N, but also
sampled in the central 1/3™ of the trajectory between M and
N).

This method provides a total of 66 ‘gross features’ which
are provided to the classifier. From these gross features, we
will later extract ‘key features’, as will be discussed in Section
V.B.

E. Machine Learning Approach

A total of 168 movement cycles were available for the 6
objects (28 cycles per object). Each cycle was represented by
the 66 features previously described. The data was randomly
split using stratified 5-fold cross validation. This split the trials
so that 80% of the data was used for training, and the
remaining 20% was used for testing the model. This splitting
is completed 5 times and then the training is run 100 times, the
classification accuracies converging to the presented
classification value to follow.

For classifier selection, we implemented TPOT (Tree-
based Pipeline Optimization Tool [44]), a machine learning
pipeline that makes use of genetic algorithms to find the best
classification model for the given data. From this analysis, we
found the Extra Trees classifier (with 100 estimators), an
extended version of the Random Forests classifier, presented
the best cross validation results. For validation, we also tested
a Random Forests classifier and a Support Vector Machine,
which fell marginally short (about 5%) in classification
accuracy compared to that of Extra Trees.

F. Classification Experiments

Three separate classification approaches were completed
in order to identify how well the machine learning approach
was able to distinguish between different properties of objects.
These experiments are as follows:

A) Different size (but constant shape)
B) Different shape (but constant size)
C) Different shape and size

This involved separate training and testing of the classifiers
with selected object data.

Table 3: Results of the three classification expeirments when using all
66 features

Experiment Test Accuracy
A Size 90.40%
B Shape 93.70%
C Size & Shape 89.80%

For experiment A, the system was trained and tested using
only data from cylindrical shaped objects, in three different
sizes (diameters). These sizes are shown in Table 1, but are
referred to in the test as ‘small, medium and large’.

For experiment B, three objects with different shapes
(circle, square and rounded square) were selected with the
same ‘small’ size (25.4mm diameter).

For experiment C, which includes all objects, is the most
difficult as certain objects resemble other objects at particular
time instances. For example, when the medium size square
object is in the middle of the rotation (i.e. held by opposing
corners) the grasp aperture (space between the fingers)
resembles that of the large circle. Additionally, the rounded
square may resemble a circle or square at different points of
the manipulation action.

V. RESULTS

A. Gross Feature Classification

Using the Extra Trees classifier with parameters selected
by the TPOT algorithm and all 66 features, the classification
accuracies for the three experiments are displayed in Table 3.
While a classification rate of 89.8% was achieved for both the
size and shape classification task (Experiment C), this rate
rises when the classifier has only to predict one of these object
parameters. These classification accuracies were therefore
90.4% for size distinction (experiment A) and 93.7% for shape
(experiment B) distinction.

The confusion matrices associated with these experiments
are presented in Fig 8 (experiments A and B) and Fig 10
(experiment C).

In experiment A, the classifier has the most difficulty with
the small object, misclassifying it as a large object. This may
be due to the reduction in manipulation workspace size that
occurs with large objects. This has the effect of diluting other
features.

Experiment B illustrates better classification accuracy,
most likely due to different shape objects causing notable
differences in actuator trajectories. This is highlighted in Fig
9, which illustrates how square objects, with sharp corners, can
cause sudden changes in actuator trajectories at certain points
of the workspace.

This is apparent in the quite different range of finger and
object trajectories that stem from rotation of a square (which
pivot on its corners), the rounded square (which pivots to a less
degree), and the circle (which rolls without pivoting). As a
result, most of the errors in this experiment are caused by the
system misclassifying the rounded square as a circle.

Finally, when the system trained on all of the objects in
Table 1 (a variety of shapes and sizes) with all 66 features, the
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Figure 8: Confusion matrices for experiments A (size classification)
and B (shape classification)

model makes the most errors when predicting rounded squares
and large circles. Intuitively, we presumed that this
classification would be the most difficult since we only have
one example of a large size object and one example of a
rounded shape object. The classification of these two objects
is therefore actually testing some of the interpolation and
extrapolation of our learned model.

B. Key Feature Identification/Classification

Key features are features of the data that were determined
to have the greatest contribution to overall classification
accuracy. To determine key features we used an ‘Importance’
metric, which determines how much a feature contributes to
the overall classification for an experiment. This importance
metric was based on the Gini impurity measure, which was
introduced in [45] and is often used in ensemble tree
classifiers. When a random element in the data set is selected,
the Gini impurity represents the likelihood of accurate
classification given a random class selected from the
distribution of labels. This measure is extracted for each
feature when determining how to split the branches for each
tree in the forest, which has the main intention of measuring
purity of the node after a split.

The feature importance measure is then calculated by
averaging the Gini measures for each split in the forest. We
then characterize feature contribution by scaling the Gini
impurities to add up to 100 and finding percentages. These
percentages characterize how important a feature is to our
learned model.
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Figure 9: Actuator 1 position recordings for two different rolling
manipulations with a medium square (top) and medium circle (bottom).
The change in trajectory caused by corner pivoting has been highlighted.

A complete set of importance values for all 66 features for
a ‘pilot’ classification of experiment A’s data is given in the
Appendix. To create ‘Key Feature’ classifiers, we selected the
top 6 features, i.e. those that contribute most to the
classification of objects in each of the three experiments.
These key features are provided in Table 4, where the letters
coincides with the feature labels in Fig. 7.

Somewhat surprisingly, in all experiments the algorithm has
selected the key features to only be position or position
reference magnitudes. More specifically, it has not given much
importance to any load, gradient, sub-points, errors or time
index values (as described in Table 2). Indeed, features of this
kind can be seen to take much lower ranking in the table
provided in the Appendix.

We believe that the importance of position based features is
due to the adaptive nature of the grasping and manipulation
scheme, where the torque based control of one of the fingers
means that contact is always maintained with the object,
regardless of object shape and size. Though manipulation with

Table 4: Key Features and importance measures (Imp) from the Extra
Trees Classifier for experiments A, B and C. The feature notations are
referened from Fig 8. All key features referring to a position value have
been shaded grey, while unshaded features refer to position reference
value. Note that no key features were identified from actuator load.

Key Experiment Features
Feature A Imp (%) | B Imp (%) C Imp (%)
1 G 8.57 B 8.14 G 6.08
2 J 7.69 D 7.97 B 6.02
3 L 5.24 G 6.78 J 571
4 I 5.06 H 6.27 D 5.69
3 K 5.04 1 5.53 H 5.01
6 D 3.91 A 5.40 A 5.00
Legend: 1 Position J Position Reference




different shapes and sizes no doubt cause changes in load
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Figure 10: Confusion matrix for experiment C (size and shape
classification) with key to object labels (object numbers are same as in
Table 1)

trajectories, such variations appear more subtle than the
variations that occur in the positioning of the fingers over the
span of the manipulation action.

Table 5 illustrates the classification accuracy that is
achieved for each experiment when only limited numbers of
key features are used. These results are presented for a range
of classifiers that make use of between 6 and 1 key feature.
This data is also represented in Fig. 11, along with the accuracy
achieved when all features are used.

It is noticeable that the relationship between accuracy and
feature number is non-linear in all of the experiments, with
accuracy actually increasing in some occasions, when the
number of features are reduced. This non-intuitive behavior is
related to the randomness of the machine learning approach,
which also does not consider the dependency that may occur
between features. Nonetheless, reducing the number of
features in experiment C (the most challenging classification
task) from 66 to 6 leads to a reduction of only 4% classification

Table 5: Classification accuracy for experiments A, B and C given the
reduced features presented in Table 4

Number of Accuracy (%)

Key Features A B C
6 80.2 92.8 86
5 80.1 92.2 86.8
4 81.9 93.1 859
3 83.6 94 83.7
2 797 80 845
1 81.1 76.8 65.8

Accuracy (%)
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Figure 11: Change in classification accuracy for all three experiments
using all 66 features versus only 1 to 6 key features.

Number of Features

accuracy, while using only a single feature gives classification
accuracy of over 80% for experiment A.

VI. CONCLUSION AND FUTURE WORK

This work introduces the concept of proprioceptive object
sensing and discrimination using novel and mechanically
simple ‘Variable Friction’ fingers capable of performing
within-hand manipulation (WIHM). The simple but novel
switching position/torque-based control method facilitates the
extraction of haptic object data via active manipulation, as the
gripper adaptively maintains contact with objects through
manipulation actions, despite variations in size and shape. It is
this adaptation that allows distinct manipulation data to be
generated from rather simple within-hand exploratory
manipulation actions that do not require explicit re-
programming for different objects. This reflects a major goal
of the VF finger design methodology, which is to enable
WIHM with low mechanical and control complexity,
compared to related work in the field.

Due to the previously unexplored nature of the manipulation
and control scheme, we deliberately did not hand-select
features for our object classifier. Instead, we have taken an
approach of automatically extracting a large number of
features related to position, position-reference and load.
Following initial classification of objects using all of the
features (in three categories of size, shape and both), we
subsequently were able to arrange the 66 features in order of
importance. This enabled classification to be attempted again,
but using only a heavily reduced number of automatically
selected ‘key features’. Notably, the experiments were
performed again using only 1-6 key features.

It is worth noting that these key features were all automatically
selected to have their origin either in the position trajectory of
the actuators or in the position reference signals (Table 5).
Though it is somewhat surprising that actuator torque/load did
not play a significant role in the key features. While the
position controlled finger drives the motion of the gripper and
object, the torque controlled finger demonstrates inherent
compliance in order to maintain a grasp on the object during
this motion. As a result, actuator torque has an indirect role in
achieving our classification results, by adaptation of finger
position trajectories with respect to the object size and shape,
therefore leading to different actuator profiles for each object.

The classification results were promising at >90% accuracy
when all 66 features were used, showing that there is potential
for using a simple WIHM scheme for object classification,



without the use of tactile sensors. Interestingly this accuracy
remained about 80% for all experiments when only 6 features
were used. Indeed, experiment A produced results that could
still be considered satisfactory with only 1 feature, though this
was not the case for the more challenging experiment C.

Overall, this work has provided an application of the
recently developed VF fingers, showing their potential for
haptic feature extraction via within-hand object manipulation
without the requirement of force, torque or tactile sensors. As
the VF fingers are open source and simple to fabricate, we
hope that others are able to make use of the various properties
of these manipulators. On the other hand, the approach
presented in this paper is currently specific to the Model VF
variable friction robot gripper. To our knowledge, this is the
only variable friction hand in literature, and the only hand that
uses such a controller for WIHM. The novelty of our robotic
platform therefore makes consideration of a general approach
to proprioceptive-based object classification difficult.

In the future, we wish to extend this work beyond the
controlled geometric primitives of this study into more
realistic and irregular objects manipulated three dimensional
(rather than planar) workspaces. The robust handling of such
objects, in addition to the capability of using sliding as well as
rolling WIHMs for data gathering, are likely to be inherently
linked to more complex and versatile variable-friction finger
morphologies, probably consisting of multiple phalanges
and/or additional fingers. Of course, the current control
scheme will require modification to be compatible with these
new finger designs while enabling more complex
manipulation actions and richer proprioceptive data extraction.
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