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Abstract—We address the problem of controlling a partially
constrained trajectory of the manipulation frame–an arbitrary
frame of reference rigidly attached to the object–as the desired
motion about this frame is often underdefined. This may be
apparent, for example, when the task requires control only about
the translational dimensions of the manipulation frame, with
disregard to the rotational dimensions. This scenario complicates
the computation of the grasp frame trajectory, as the mobility of
the mechanism is likely limited due to the constraints imposed
by the closed kinematic chain. In this letter, we address this
problem by combining a learned, object-agnostic manipulation
model of the gripper with Model Predictive Control (MPC). This
combination facilitates an approach to simple vision-based con-
trol of robotic hands with generalized models, enabling a single
manipulation model to extend to different task requirements.
By tracking the hand-object configuration through vision, the
proposed framework is able to accurately control the trajectory of
the manipulation frame along translational, rotational, or mixed
trajectories. We provide experiments quantifying the utility of
this framework, analyzing its ability to control different objects
over varied horizon lengths and optimization iterations, and
finally, we implement the controller on a physical system.

Index Terms—Dexterous Manipulation, In-hand Manipulation,
Manipulation Planning

I. INTRODUCTION

DEXTEROUS MANIPULATION is often characterized as
the ability to reposition or reorient the object frame with

respect to the hand frame [1]. Much work has addressed such
an issue, providing generalized models that describe object
frame trajectories given joint actuation velocities [2]. In many
cases, however, the object frame is not necessarily the point
on the object in which is desired to control. For example, in
the task of handwriting, the position of the marker tip, which
we denote as the manipulation frame, generally defines the
precision of the inscribed character. In such a scenario, the
controlled dimensions of the manipulation frame are purely
translational, where we can largely relax the rotational con-
straint of the marker tip as to extend the task workspace. In
other contexts, it may be required that purely rotational or
even mixed trajectories are desired for task completion.
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Fig. 1. Partially constrained trajectories of the manipulation frame, e.g. ∈
R3, leave uncertainties in grasp frame planning since the mobility of the
mechanism is subject to constraints imposed by the closed kinematic chain.
The proposed framework utilizes Model Predictive Control to solve for a valid
grasp frame trajectory with any underconstrained reference.

In this letter, we build off the observation that many tasks
require control about a partially constrained manipulation
frame trajectory. In such cases, object (or grasp) frame tra-
jectories in SE(3) can be either difficult or impossible to
analytically compute due to the absence of a one-to-one map-
ping, especially in an underactuated system where the hand’s
joint configuration is subject to both, kinematic and energy
constraints. We propose an MPC-inspired control framework
that utilizes an object-agnostic manipulation model and an
energy-based propagation (or system dynamics) model of the
hand. We differentiate between the controlled dimensions and
the free dimensions of the manipulation frame, which can be
any combination of dimensions in SE(3).

Given a desired manipulation frame trajectory, a bidirec-
tional initialization assumes the mobility of the hand is suffi-
cient for the grasp frame to mimic the transformed trajectory
for the next timestep, while leaving the free dimensions con-
stant. By querying the learned model with this initialization,
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the resultant output is evaluated in a system propagation
model. We repeat this process through a receding horizon to
build the initial control trajectory. During this initialization,
it is likely that the trajectory is inaccurate due to the limited
mobility imposed on the mechanism by the closed kinematic
chain. This issue is accounted for by optimizing grasp frame
reference velocities in order to minimize trajectory error.
We evaluate executions of various trajectories (translational,
rotational, and mixed) with different control horizons and
optimization iterations, and compare the results. In this work,
we largely disregard object stability analyses due to the use
of a compliant mechanism.

The contributions of this letter are twofold. First, we
propose an optimization approach that extends the control
capabilities of a generalized manipulation model, bypassing
the need for task-specific training or modeling. Secondly, we
underscore the advantage of using MPC for in-hand manip-
ulation, which allows the system to recover from inaccurate
system models or unmodeled contact scenarios.

II. RELATED WORK

1) Analytical Modeling for Manipulation: Many works
have approached dexterous manipulation with various levels
of analytical modeling–from contact models [3] and fingerpad
curvature models [4], to hand kinematic models [5] and whole
hand-object system models [2]. Many powerful relationships
have been formulated with such mathematical rigor. Although,
the accuracy and efficacy of these models is highly subject to
model parameters, which may be known a priori in structured
settings, or may need to be estimated during manipulation via
sensors on the hand, e.g. to leverage slip [6]. Some of these
problems are nullified when using underactuated, adaptive
hands that inherently reconfigure to uncertainties such as noisy
control inputs or modeling errors [7]. Nevertheless, dexterous
manipulation with such hands remains difficult to model as the
output space is typically of higher dimension than the input
space.

2) Learning for Manipulation: To overcome uncertain-
ties in the analytical models, learning for manipulation–both
model-based [8], [9] and model-free approaches [10]–has be-
come popular as this approach is able to intrinsically estimate
model parameters without user intervention. Consequentially,
data for such approaches generally becomes too large to
collect physically and must be done in simulation [11]. This
caveat can be mitigated by relaxing the control dimensionality
and constraints of the task, e.g. using a soft, compliant,
or underactuated hand. While these hands are difficult to
explicitly model, various works have introduced methods for
closing the control loop through vision [12], [13] or through
tactile sensing [14]. These works, however, focus mainly on
the motion of the object/grasp frame and not on a generalized
manipulation frame attached to the object.

3) Control for Manipulation: Control for manipulation has
been similarly approached from various avenues–with methods
based purely on kinematics [15], tactile sensing [16], and
visual servoing [17], [18]. It is also possible to combine sens-
ing modalities for additional control, e.g. for grasp adaptation

[19]. However, each control approach is contingent on which
sensing modalities are available. For example, underactuated
hands are typically not equipped with joint encoders or tactile
sensors, therefore, vision has become popular. In [20], joint
configuration estimation was achieved through the use of
particle filters and vision, therefore allowing more advanced
control without the need for joint encoders. Regardless of
these previous approaches, no works have embedded MPC
with learning for controlling spatial trajectories with an un-
deractuated hand.

III. LEARNING THE MANIPULATION MODEL
In this section, we present an approach to learning the ma-

nipulation model of an underactuated hand through an energy-
based perspective [12]. Throughout this letter, we assume
all hand and object motions are quasistatic and the weights
of the objects used are negligible–disregarding the need to
explicitly model dynamics or object-specific properties, e.g.
inertias. Moreover, we leverage a compliant end effector as
these mechanisms are beneficial for maintaining stability of the
hand-object system during manipulation, mitigating concerns
of losing contact [7], [20].

A. The Grasp Frame
The establishment of the grasp frame generalizes the ge-

ometric properties of an arbitrary object within a grasp [21].
Fundamentally, it portrays the local geometry of the object and
standardizes the representation of the object frame (Fig. 1, 2).
We will reference the object frame as being one in the same as
the grasp frame, as we expect object weights to be negligible.
Assuming a single non-rolling contact is maintained on each
fingertip of a hand with k fingers, let us define contact points
P = p1, . . . , pk where pi ∈ R3, ∀i ∈ {1, . . . , k} with respect
to the hand frame. Noteworthily, with non-rolling contacts,
any 3 points in P can explicitly define the grasp frame. For
simplicity, let’s assume p1, p2, and p3 are used. Then, we can
define the grasp frame pose, X ∈ SE(3), by Gram-Schmidt
orthogonalization,

X = [Gx,Gy,Gz|Go] ∈ SE(3)

Go =
1

3
(p1 + p2 + p3)

Gx =
p2 − p1
||p2 − p1||2

Gz =
(p3 − p2)× Gx

||(p3 − p2)× Gx||2
Gy = Gz × Gx

(1)

In this formulation, Gx,Gy , and Gz represent the directional
vectors about the x, y, and z axes, respectively, with reference
to the origin, Go. Using the same object contact points, we
can calculate the contact triangle relationship,

T = (||p1 − p2||2, ||p2 − p3||2, ||p3 − p1||2) ∈ R3 (2)

representing the distance between fingertips in contact with the
object, where T = (T1, T2, T3). It is important to note that this
formulation generalizes object geometry but not necessarily
object dynamics. Additional generalization of object dynamics
will be addressed in future work.
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Fig. 2. Left: The tendon transmission of an underactuated finger is dependent
on pulley and spring parameters. Right: Object geometry can be generalized
by evaluating the triangle relationship, T , between the contacts, and offsetting
the manipulation frame, M, from the grasp frame, X .

B. Learning from the Energy Model

Underactuated systems can be modeled in terms of energy,
where the joint configuration, q ∈ R

∑k
i=1 ji , of a hand that has

ji joints per finger, equilibrates such that the internal energy of
the system is minimized. We represent the actuation position as
a, where dim(a) < dim(q) in an underactuated system. Given
an actuation velocity, ȧ, and the grasp frame, Xt, at time t, the
energy-based propagation model (or system dynamics model)
provides a prediction for the next step of the grasp frame pose,
Xt+1. This transition is calculated given a tendon transmission
constraint,

raiȧi = rpiq̇pi + rdiq̇di (3)

and the contact triangle constraint, Tt = Tt+1. Thus, we can
find the equilibrated joint configuration of the hand, q∗ by,

q∗ = argmin
∑
i

Ei(qi) s.t. (2), (3) (4)

where Ei is the potential energy of the ith finger,

Ei(qi) =
1

2
(kpq

2
pi + kdq

2
di) (5)

Here, rpi, rdi, and rai are the radii of the pulleys on the
proximal joint, distal joint, and actuator, respectively, on finger
i (Fig. 2). Similarly, ˙qpi, ˙qdi, and ȧi are the rotational velocities
about the same joint on the same finger.

This energy-based propagation model enables efficient data
collection in simulation, and has shown to easily transfer
to a physical system [12]. By predefining various contact
relationships in T and applying a random actuation input, ȧ,
we observe the grasp frame transition from Xt to Xt+1, thus
calculating Ẋ ∈ se(3) by taking the element-wise difference.
With a 15-dimensional input feature, sn = (Xn, Ẋn, Tn), and
an output feature, ȧn, we build the training set,

S = {sn}n=1:N , R = {ȧn}n=1:N

where N denotes training sample size. With these action-
reaction pairs, we create a Random Forest Regression model,

g : (X , Ẋ , T ) −→ ȧ (6)

that maps the current pose of the grasp frame, the desired
grasp frame velocity, and the contact triangle relationship to an
actuation velocity. This learned model will be further utilized
in the proposed control framework.

IV. CONTROL FRAMEWORK

For the continuation of this work, the main control process
is illustrated in Fig. 3 and is notated as follows:

• t denotes the current time and t+n denotes n steps into
the future (e.g.Mt+3 is the predicted manipulation frame
∈ SE(3) in three timesteps)

• dotted variables represent the change from t, one timestep
forward (e.g. Ẋ = [Xt −Xt+1] ∈ se(3))

• barred variables represent the initialization guess during
the bidirInit(·) process, which has not yet been executed
by the propagation model (e.g. X̄t+1 ∈ SE(3))

• primed variables have been executed by the propagation
model and are the resultant configuration after (iter)
optimization iterations (e.g. M′

t+3(25) if iter = 25)

A. Model Predictive Control

The proposed control framework utilizes Model Predictive
Control (MPC) with an optimizer based on Stochastic Hill
Climbing as to extend the task workspace. MPC is advanta-
geous for manipulation, as the next control input is optimized
after each system step. This property helps mitigate error
caused by inaccurate propagation models or when unmodeled
contact scenarios occur, e.g. rolling or slip.

MPC evaluates the cost of an input over a user defined
prediction/control horizon, kp. This horizon dictates how far
in advance the controller evaluates its trajectory, while main-
taining integrity on any system constraints, e.g. actuation con-
straints or energy constraints. In this work, we seek to control
a subset of the manipulation frame’s dimensions (referenced as
the controlled dimensions) while allowing the free dimensions
to move as to satisfy the system constraints. The manipulation
frame, M ∈ SE(3), is a frame of reference rigidly attached
to the grasp frame, X , which would typically be affixed to
a feature on the object. Let’s define our desired reference
trajectory as r, comprised of m waypoints in the controlled
dimensions. We can define the controlled dimension set as
c ⊂ (x, y, z, θR, θP , θY ), which can be any combination of
translational and rotational components for a desired trajectory.
We denote the controlled dimensions of the manipulation
frame as Mc.

While accounting for kinematic, energy, and actuation con-
straints, we seek to minimize the error between Mc,t and
r[wt], where wt is the waypoint on r currently closest toMc,t.
Additionally, we impose an extra penalty on how far Mc,t is
from the goal position, rend. We therefore formulate the cost
function J ,

J =

kc∑
i=1

γ||r[wt+i]−Mc,t+i||2+ . . .

σ||rend −Mc,t+i||2+λ||ȧt+1||2

(7)

where γ, σ, and λ are weightings that are tuned heuristically
to penalize the trajectory error, trajectory length, and the actu-
ation input, respectively. In tuning, for example, if it is desired
to increase execution speed, increasing σ and decreasing γ and
λ will do this with the trade-off of likely decreasing trajectory
accuracy.
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Fig. 3. A.) The manipulation frame,Mt, can be represented by a rigid transformation, T , from the grasp frame, Xt. In Alg. 2 a bidirectional guess initializes
the model’s input variables by assuming that the next grasp frame pose, X̄t+1, has the same velocity, ˙̄Xt+1, as the underconstrained manipulation frame
trajectory transitioning Mt to M̄t+1, which is located on the next trajectory waypoint rm[wt + 1]. B.) While this bidirectional guess serves well for
initialization, kinematic and energy constraints likely limit mobility and may not allow the grasp frame to move desirably. Thus, the resultant pose evaluated
in the propagation model,M′

t+1(0), does not follow the path. The optimization then perturbs the grasp frame velocities of the best trajectory iter times and
evaluates the result in propagation model. This depicts a trajectory convergence with a horizon kp = 3. C.) After optimization, the first actuation input of the
best evaluated trajectory is executed, providing our true next grasp frame pose Xt+1 and our next manipulation frame pose Mt+1.

B. The Manipulation Controller

Algorithm 1 MPC with Stochastic Hill Climbing Optimization
Input: Xt, r, c, kp, T , iter, ε
Output: ȧ

1: Cbest ← Trajectory() . initialize first trajectory
2: Cbest.addNode(Xt, Ẋ0 = 0, ȧ0 = 0) . start node
3: for t = 1 to kp do . prediction horizon
4:

¯̇Xt+1 ← bidirInit(Cbest.n[t].X , r, c) . Alg. 2
5: ȧt+1 ← g : (Cbest.n[t].X , ¯̇Xt+1, T ) . (6)
6: X ′

t+1(0)← Hand.evaluate(ȧt+1) . (4)
7: Ẋ ′

t+1(0)← diff(Cbest.n[t].X ,X ′

t+1(0))

8: Cbest.addNode(X
′

t+1(0), Ẋ ′

t+1(0), ȧt+1)

9: Mt+1(0)← Hand.manipFrame(X ′

t+1)
10: if ||Mc,t+1(0)− rend||2< ε then
11: break . reached goal
12:
13: for i = 1 to iter do . optimization iterations
14: Ci ← Trajectory() . initialize new trajectory
15: Ci.addNode(Xt, Ẋ0 = 0, ȧ0 = 0)
16: for t = 1 to kp do
17: Ẋ ′

t+1(i)← perturb(Cbest.n[t+ 1].Ẋ ) . Alg. 3
18: ȧt+1 ← g : (Ci.n[t].X , Ẋ ′

t+1(i), T ) . (6)
19: X ′

t+1(i)← Hand.evaluate(ȧt+1) . (4)
20: Ci.addNode(X

′

t+1(i), Ẋ ′

t+1(i), ȧt+1)

21: Mt+1(i)← Hand.manipFrame(X ′

t+1(i))
22: if ||Mc,t+1(i)− rend||2< ε then
23: break . reached goal
24: if Cost(Ci) < Cost(Cbest) then . (7)
25: Cbest = Ci . better trajectory
26:

27: return Cbest.n[1].ȧ

Using this cost-minimization approach, we formulate the
control process as illustrated in Fig. 3 and as outlined in Alg.
1. We attempt to optimize a controlled trajectory, Ci, to closely

follow r. These controlled trajectories are constructed with a
chain of kp + 1 nodes, where kp is the prediction horizon.
Each node is referenced in the trajectory chain with zero-
based indexing, so, Ci.n[2] is the third node. Each node has
3 properties–the current grasp frame (X ), the grasp frame
velocity input evaluated in the previous node (Ẋ ), and the
actuation velocity used by the propagation model in the
previous node (ȧ). Each Ci therefore has a cost defined by
(7) that can be used to compare the utility of each trajectory.

1) Initializing the Trajectory: Given r, which has the same
dimensionality as c–that can be any combination of dimen-
sions in SE(3)–the control process begins by constructing the
initial trajectory, Cbest. This process is outlined in lines 1-11
of Alg. 1 and is depicted in Fig. 3.A.

To formulate the first trajectory, we rely on a bidirectional
initialization presented in Alg. 2. This procedure initializes a
first guess for the grasp frame velocity, ¯̇Xt+1, by assuming
that the kinematic constraints of the hand allow for identical
movement about the grasp frame as that of the manipulation
frame. This process begins by computing the closest waypoint,
r[wt], from Mt to the reference trajectory. We make a
guess that the manipulation frame would like to move to the
next waypoint r[wt + 1] while attempting to keep the free
dimensions constant. Through this notion, we calculate a guess
for the next state of the manipulation frame, M̄t+1 ∈ SE(3).
A transformation, T , can then be computed relating Xt toMt.
This process becomes bidirectional as we apply the inverse of
T to M̄t+1 to obtain a guess for the next state of the grasp
frame, X̄t+1. The grasp frame velocity guess, ¯̇Xt+1, is finally
estimated by taking the element-wise difference between Xt
and X̄t+1.

After the bidirectional initialization guess, ¯̇Xt+1 is evaluated
in the learned model g(·), given the current pose of the
node. This resultant actuation velocity, ȧt+1, is executed in
the propagation model, providing the next state grasp frame
pose, X ′

t+1(0). The true grasp frame velocity, Ẋ ′

t+1(0) is then
calculated by taking the difference between Xt and X ′

t+1(0).
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These variables are then added to the trajectory, Cbest and the
entire process is repeated over the entire length of the control
horizon, or until the distance between the manipulation frame
and the endpoint of the trajectory is less than a threshold, ε.

Algorithm 2 bidirInit(·)
Input: Xt, r, c
Output: ¯̇Xt+1

1: Mt ← Hand.manipFrame(Xt)
2: wt ← nearestWaypoint(Mc,t, r)
3: for l in [x, y, z, θR, θP , θY ] do
4: if l ⊂ c then
5: M̄l,t+1 ← r[l, wt + 1]
6: else
7: M̄l,t+1 ←Ml,t

8: T ← getTransform(Xt,Mt)
9: X̄t+1 ← applyInvTransform(M̄t+1, T )

10:
¯̇Xt+1 ← diff(Xt, X̄t+1)

11: return ¯̇Xt+1

2) Trajectory Optimization: Once the first trajectory is
generated, initialized as Cbest, we construct iter temporary
trajectories that attempt to reduce the cost as defined by (7).
Here, iter represents the number of optimization iterations we
intend to compute. This process is depicted in Fig. 3.B and
references lines 13-25 of Alg. 1.

Given the grasp frame velocity of the node in timestep (t+
1) of the best trajectory, Cbest, we perturb its value with a
normal distribution of predefined interval limits. This result,
Ẋ ′

t+1(i), where i is the current value of iter, is calculated
in perturb(·)–Stochastic Hill Climbing’s exploration method
(Alg. 3). The learned model then evaluates this grasp velocity
to form the actuation velocity, ȧt+1. We execute ȧt+1 in the
propagation model to determine the next grasp frame state
X ′

t+1(i) at optimization iteration i. The resultant node is then
added to Ci and the process continues over the entire prediction
horizon. If the manipulation frame is found to have reached
within some distance threshold, ε, the loop breaks prematurely.
Once a trajectory of kp+1 in length is computed, we compare
the costs of the best trajectory, Cbest, with the cost of the
current trajectory, Ci. If this cost is smaller, we replace Cbest
with Ci and continue this loop until the number of desired
iterations is satisfied.

The algorithm concludes by returning the first actuation
input of the best trajectory, Cbest.n[1].ȧ. This input is then
executed physically (Fig. 3.C) and results in the actual system
transition from Mt to Mt+1, and similarly, Xt to Xt+1. Alg.
1 is repeated until the trajectory goal is reached.

It is important to note that the algorithm does not require
that each waypoint in r is passed through, as it may be the
case that some points along the trajectory are infeasible given
the constraints of the system. To account for this, only the
initialization step attempts to follow a waypoint, while the
optimization steps minimize the trajectory cost by staying
within a close distance and extending towards the end goal.

Algorithm 3 perturb(·)
Input: Ẋt
Output: Ẋ ′

t+1

1: δx, δy, δz ← translationalLimit
2: δθR , δθP , δθY ← rotationalLimit
3: for i in [x, y, z, θR, θP , θY ] do
4: Ẋt+1 ← Ẋt + rand.uniform(−δi, δi)
5: return Ẋ ′

t+1

V. EXPERIMENTATION
The proposed control framework was instantiated on a 3-

fingered underactuated Yale Openhand Model O. Physical
modifications to the readily available open source design
include a rounded fingertip and pulleys/bearings within the
finger as to reduce friction in the tendon’s transmission.
Each finger, composed of two links, is actuated by a single
Dynamixel XM-430 motor with return forces supplied by
springs at each of the joints (Fig. 2).

The learned model in (6) was trained with a dataset of size
300,000 over 50 different contact triangles, T , by evaluating
the input-output relationship after random actuation of the
energy model in (4). A Random Forest model of tree depth
10 and forest size of 30 was trained, which accounted for
joint limits and actuation constraints. Due to the different
values in T used for training, the learned model was able to
generalize over different object geometries, which is beneficial
as it enables adaption to undesired contact scenarios where the
relational geometry between the fingertips change, e.g. rolling
or slip, as previously presented in [12].

A. Translational Trajectory Control

We implemented translational control, i.e. c = (x, y, z), in
a simulated environment (Fig. 2) while varying the control
horizon and number of optimization iterations as to tune the
controller. This test, presented in Fig. 4, tracks the x, y, z
position of the manipulation frame over time in an attempt
to trace the letters ’GRABLAB’. Depicted in different colors,
three different-sized objects were used in experimentation,
with properties presented in Fig. 5. Each letter was 20mm in
height and 10mm in width and was written within the x − y
plane. Letters were comprised of a number of goal points–
squares (start), circles (intermediate), and stars (end)–with 50
waypoints in between each goal.

Fig. 4.A depicts a test correlating accuracy to varying
horizon lengths and optimization iterations. Generally, we note
that as the number of iterations increases (horizontal axis),
the accuracy of the manipulation frame trajectory similarly
increases. We note that it is likely that more iterations are
needed for longer control horizons. This observation is eval-
uated in Fig. 4.B, where we record similar trajectory errors
(0.72mm mean) while increasing the number of iterations for
longer horizons (5, 7, and 9). We then present the best recorded
accuracy for the tracing of ’GRABLAB’ in Fig. 4.C, with a
horizon of 3 and 100 iterations.

Quantitatively, we tune the control parameters by evaluat-
ing manipulation frame trajectory accuracy while fixing the
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Fig. 4. Translation control, c = (x, y, z), of the manipulation frame depicting the reference trajectory in the x− y plane (Red), and the trajectories of Obj.
1 (Green), Obj. 2 (Yellow), and Obj. 3 (Blue). A.) We trace the letters ’GRABLAB’ while varying control horizons and optimization iteration lengths. As
we increase the number of iterations, the manipulation frame trajectory becomes more accurate. We see that with fewer iterations, the manipulation frame is
not able to follow the desired trajectory. B.) When the control horizon increases, subsequently, the number of optimization iterations must as well to realize
similar trajectories. C.) Tracing the word ’GRABLAB’ with the most precise control horizon/iteration pair (horizon of 3 and 100 iterations).

Obj. # T1 (mm) T2 (mm) T3 (mm) Tp (mm)

1 98.1 81.3 108.5 (0, 0, 50)
2 73.2 59.7 78.6 (-20, 0, 40)
3 65.2 59.1 71.2 (0, 15, 60)

Fig. 5. Properties for the three objects used in simulation. The transformation,
T , assumes that the manipulation frame, M, and the grasp frame, X , have
the same orientation, but are offset by the positional vector Tp.

Fig. 6. With a prediction horizon of 3, the letters ’GRABLAB’ were traced
with three different objects while varying optimization iterations. The error
experienced during execution was recorded for each of the trajectories. We
identify an elbow point of 50 iterations satisfies the desired task accuracy.

horizon length to 3 and altering the number of optimization
iterations. We note that in the task of scripting, a trajectory
error of less than 2mm is sufficient for legibility. Testing up
to 100 iterations (0.45mm error), the results show that 50
iterations (0.95mm error) is sufficient to satisfy the accuracy
required by the task, presented in Fig. 6. For this reason, we
will proceed in the next sections by evaluating trajectories with
this configuration.

B. Rotational and Mixed Trajectory Control
In addition to a purely translational trajectory about the

manipulation frame, we test the control approach with other
partially constrained trajectories, namely, a purely rotational
trajectory c = (θR, θP , θY ), and a mixed trajectory, c =
(z, θR, θY ). This choice of trajectories further underscores the
diversity of dimensional combinations which can be inherently
accounted for in this framework, after retuning weighting
parameters in the cost function and scaling the controlled
dimensions to characteristic length.

In each of these tests, the hand was initialized with the
same hand configuration as in Fig. 2, using Obj. 1. With
a horizon of 3 and with 50 optimization iterations, a goal
trajectory was formed transitioning M from its current state
to a goal configuration. Five trials were executed, resetting the
hand after each trial. We record the state of the manipulation
frame along the execution trajectory. As presented in Fig. 7,
the trajectory ofM was able to successfully follow the desired
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Fig. 7. A single trajectory in Rotation Control (left) and a single trajectory
in Mixed Control (right) was executed for 5 trials. The controlled dimensions
(top) follow the trajectory as desired. The free dimensions (bottom) are
allowed to drift to any trajectory that adheres to the system constraints. The
start configuration is denoted with a square and the goal configuration (only
in the controlled dimensions) is denoted with a star.

control trajectory (0.52 ± 0.3◦ error for rotations). During this
execution, we illustrate how the free dimensions are able to
drift so long as system constraints are satisfied, and thus do not
need to follow the same trajectory each trial. This concept is
depicted in the bottom of the figure, where we note a trajectory
deviation between trials.

C. Physical Translation Control

We employed the devised control framework on a physical
system as to complete the tracing of letters ’RAL’ with
three different objects from the YCB Object and Modeling
Set (Objs. #23, 72, 77) [22]. In this case, we employed
translational controlled dimensions, c = (x, y), scripting in
the plane orthogonal to the palm as to maintain readability
of the completed manipulation. The three objects, depicted in
Fig. 8, were tracked by affixing 6-D pose AprilTags to the
object, serving as the manipulation frame. The pose of the
marker was then tracked by an overhead camera. The control
framework relies on knowing the current configuration of the
hand in order to compute the next actuation input, therefore,
we placed 3 additional cameras around the hand–developing
a 4-camera setup that is able to track the configuration of
each finger in addition to the configuration of the object (Fig.
9). Markers were placed on the back of each fingertip and a
transformation from the finger markers computes the contact
location, and thus the pose of the grasp frame.

The markers were affixed to each object as follows: placed
on the stem of the apple, placed on the bottom of the handle
of the drill, and placed on the top (any) surface of the
Rubik’s Cube (Fig. 8). This generated initial contact triangle
relationships and transformations from the grasp frame to the
manipulation frame as presented in Fig. 10.

We employed a prediction horizon of 3 and set iter to
50. As presented in Fig. 11, each letter was comprised of a
set of goal points, which constructed a system of trajectories

Fig. 8. Top view of the apple, Rubik’s Cube, and drill from the YCB Object
and Model Set used for physical testing of the control framework.

Fig. 9. A 4-camera tracking system records both, the pose of the grasp frame
and the pose of the manipulation frame via attached markers.

approximately 20mm in height and 10mm in width. The task
started with the center of the manipulation frame marker in
the square starting position. At this point, a new trajectory was
formed with 50 waypoints providing the path from the current
start location to the first goal point. After the actuation input
was solved through the MPC framework, the hand executed
the result and evaluated how close it was to the goal point.
If the manipulation frame was within a 2mm threshold, a
new trajectory was formed and the manipulation frame would
attempt to move towards the next goal point until completion.
During this process and after each input execution, the grasp
frame X , the manipulation frame M, and the contact triangle
relationship T were updated as to account for any undesired
rolling or sliding of the contacts.

Each letter was traced with the three aforementioned YCB
objects and the execution times and average trajectory errors
were recorded. We noted that the greatest error was when
tracing of the letter ’A’, but was only slightly higher than the
letter ’R’. This is likely attributed to the cross-bar tracing that
stopped prematurely. Since we did not greatly penalize the
input actuation velocity, i.e. λ was small, we noted large mo-
tions in physical execution, typically requiring 2-3 actuation
sequences to reach from goal point to goal point. Overall, these
executions resulted in clear, discernible capitalized characters
of ’RAL’.

Obj. T1 (mm) T2 (mm) T3 (mm) Tp (mm)

Apple 67.9 57.4 65.7 (3.5, 5.1, 48.6)
Drill 64.9 50.1 66.2 (5.9, -8.2, 121.2)
Cube 63.6 57.1 64.1 (-2.3, -4.2, 37.9)

Fig. 10. Grasp and transformation properties of the apple, drill, and Rubik’s
Cube used in physical experimentation. Tp is the translational offset of the
grasp frame to the manipulation frame in x, y, z directions.
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Letter R A L

Goal Points 8 7 3
Avg. Time (s) 82.4 91.3 32.4

Avg. Err. (mm) 1.23±0.37 1.42±0.45 0.53±0.24

Fig. 11. The letters ’RAL’ were traced with the manipulation frame on a
physical system for 3 different objects (kp = 3, iter = 50). Top: Three example
executions of writing the letters R (traced with the apple), A (traced with the
Rubik’s Cube), and L (traced with the drill) are presented with their associated
goal points. Middle: The path following accuracy for all three objects tracing
letters ’RAL’. Bottom: The average time and trajectory errors recorded during
execution for all three objects.

VI. DISCUSSIONS AND FUTURE WORK
In this letter, we addressed the problem controlling partially

constrained trajectories about the manipulation frame based
on a planning-enabled MPC framework. This work extends
the utility of generalized manipulation models as it is a
way to better satisfy trajectory requirements of various tasks.
We tested this approach by constraining different dimensions
of the trajectory–translational, rotational, and mixed–and we
showed that the controller was able to accurately follow the
controlled dimensions while allowing the free dimensions to
drift. We found that, generally, a horizon length of 3 with
50 iterations was sufficient for convergence that satisfied our
task requirements. This may not be the case, however, in more
complex tasks that typically operate at the boundary of system
constraints. In such cases, more sophisticated parameter tuning
and extension of the prediction horizon may be necessary for
a smooth transition to a valid configuration.

In future work, we are interested in further defining this
framework for maintaining hand-object stability–which was
largely disregarded in this work since mechanism compliance
generally provided stable grasps. Additional accuracy is also
likely possible while accounting for the mass-related dynamics
of the hand and of the object. By incorporating such compo-
nents, we believe this framework will be extremely valuable
for extending robot manipulation capabilities.
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