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Abstract—In this paper, we investigate the adversarial robust-
ness of classification problems. In the considered model, after a
sample is generated, it will be modified by an adversary before
being observed by the classifier. The classifier needs to decide
the underlying hypothesis that generates the sample from the
adversarially modified data. We formulate this problem as a
minimax hypothesis testing problem, in which the goal of the
adversary is to design attack strategy to maximize the error
probability while the decision maker aims to design decision rule
so as to minimize the error probability. We solve this minimax
problem and characterize the corresponding optimal strategies.

Index Terms—minimax problem, hypothesis testing, adversar-
ial robustness

I. INTRODUCTION

Even though neural networks have many applications, they
are not robust to adversarial attacks [1]. By adding hardly
perceptible perturbations on the input data, the decision of a
deep network can be easily manuplicated. Many follow up
works design attack algorithms to find adversarial examples
more efficiently [2]–[5]. At the same time, there are significant
amount of research works that focus on developing defense
strategies with the goal of constructing robust classifiers that
can work well in the presence of adversarial perturbations [6]–
[8]. Unfortunately, most of these defense strategies are quickly
defeated by new attack methods. This phenomenon motivates
many studies aiming to establish the fundamental limits on
the robustness of classifiers [9] [10]. Most of these works
rely on tools from concentration of measure [11] and provide
interesting results when the dimension of data is high and the
distribution of data satisfies certain conditions.

The goal of this paper is to understand the fundamental
limits of classification under adversarial attacks from decision
theoretical perspective, regardless the dimension and distri-
bution of data. In particular, we formulate the classification
problem with adversarial perturbations as a minimax hypoth-
esis testing problem, in which the goal of the adversary is to
design attack strategy to modify the data so as to maximize the
error probability while the decision maker aims at designing
decision rule to minimize the error probability. Our work is
related to but different from the large volume of work on
classic robust statistics [12]–[14]. The classic robust statistical
inference mainly focuses on distributional robustness, in which
the true distributions of data lie in the neighborhood of
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nominal distributions [15], [16]. However, these distributional
robust frameworks cannot properly address the adversarial per-
turbations scenario. On the adversarial perturbation scenario,
when sampled data is fully available for an adversary, the
attacker could be much more powerful [17].

In this work, we use the maximal allowed attack amplitude
to model the strength of an adversary. By restricting the
strength of attack vectors, we first show that the formulated
minimax problem has a saddle point solution. From this saddle
point solution, we can characterize the structure of the optimal
attack and defense strategies. In particular, the optimal defense
strategy is to perform the Bayesian test on the corresponding
probability mass functions (PMFs) after the attack. As the
result, we can write the cost function as a function of the attack
strategy only, and characterizing the optimal attack strategy is
equivalent to solving a maximization problem over the attack
strategy. However, the resulting maximization problem is a
very complex non-convex optimization problem. In this paper,
we solve this problem for a special case where the optimal
Bayesian decision regions corresponding to the PMFs before
attack consist of two consecutive regions. Using this special
structure, we first relax certain constraints and construct a
series of upper bounds for the error probability. We then check
the achievability of each bound when the constraints are added
back and find the maximum value of the error probability when
all the constraints are satisfied. Even though the maximum
error probability is unique, the attack strategy that achieves
this maximum error probability is not unique. In our paper,
we further design an efficient algorithm to characterize one of
the best attack strategies. We also provide numerical examples
to illustrate the analytical results obtained in this paper.

The remainder of this paper is organized as follows. In
Section II, we present our problem formulation. In Section
III, we analyze the saddle point of the minimax optimization
problem to obtain the structure of the solution. In Section IV,
we characterize the optimal attack and decision strategies. In
Section V, we provide numerical examples to illustrate the
analytical results. In Section VI, we offer concluding remarks.
Due to space limitations, we omit details of proof.

II. PROBLEM FORMULATION

Consider a discrete random variable X defined on a finite
set X = {x1, x2, ..., xn}, where under Hk, with k = 0, 1,
the probability mass function(PMF) of X is pk, where pk,j =
Pr(X = xj |Hk).



We consider a powerful hypothesis-aware adversary who
can conduct randomized attacks. In particular, the adversary
can change sample X = xi to an attacked sample X ′ = xj
with 1 ≤ i, j ≤ n. Denote the attack rule as (A,B) ∈ A×B,
where the adversary performs A under H0 and B under H1.
The components of A are ai,j = Pr(X ′ = xj |X = xi,H0).
The components of B are bi,j = Pr(X ′ = xj |X = xi,H1).
Motivated by adversarial examples in neural network, we
assume that the change introduced by the adversary has limited
amplitude δ. Under the attack rule (A,B), the PMF of X ′

is q0 = p0A under H0 and q1 = p1B under H1, where
qk,j = Pr(X ′ = xj |Hk), with k = 0, 1.

Let T = [0, 1]n be the set of all decision rules, denote
t = [t1, · · · , tn] ∈ T as a randomized decision rule such that
if X = xi, the detector selects H1 with probability ti, where
0 ≤ ti ≤ 1.

Assuming that the prior probability of two hypotheses are
equal, i.e., Pr(H0) = Pr(H1), for decision rule t, the error
probability PE can be written as

PE(p0,p1,A,B, t) =
1

2
[PF (p0,A, t)+PM (p1,B, t)]. (1)

In the following, to simplify the notation, we will drop
p0,p1 from the expression of PE and will simply write it
as PE(A,B, t).

The goal of the attacker is to choose the attack rule (A,B)
to maximize the error probability (1), while the goal of the
defender is to choose the decision rule t to minimize the
error probability (1). In this paper, we seek to characterize
the optimal (A∗,B∗) and t∗ by solving the minimax problem

min
t∈T

max
(A,B)∈A×B

PE(A,B, t). (2)

III. SADDLE POINT ANALYSIS

In this section, we characterize the structure of the optimal
decision rules by analyzing the saddle point of the minimax
problem (2).

Note that PE(A,B, t) is continuous and linear, and there-
fore is both convex and concave in (A,B) and t respectively.
Furthermore, sets A×B and T are both compact and convex.
Therefore, using Von Neumann minimax theorem [18], we
have

min
t∈T

max
(A,B)∈A×B

PE(A,B, t)

= max
(A,B)∈A×B

min
t∈T

PE(A,B, t).
(3)

This implies that the solution (A∗,B∗, t∗) to this minimax
problem satisfies the saddle point property

PE(A
∗,B∗, t) ≥ PE(A∗,B∗, t∗) ≥ PE(A,B, t∗). (4)

From these two inequalities, we can characterize the struc-
ture of the optimal attack and decision strategies.

The first inequality in (4) indicates that the best decision rule
must be the Bayesian test with respect to the best adversary
(A∗,B∗). It is well known that, for a given arbitrary adversary

attack rule (A,B), the optimal detection rule, denoted as
t∗(A,B), is simply a threshold rule [19]:

t∗i (A,B) =


0 q0,i > q1,i,

arbitrary q0,i = q1,i,

1 q0,i < q1,i.

(5)

For the optimal adversary (A∗,B∗), the optimal decision rule
is t∗ = t∗(A∗,B∗).

Then we can use the second inequality in (4) to characterize
the optimal (A∗,B∗) by solving

max
A,B

1

2
[p0A(t∗(A,B))T + p1B(1− (t∗(A,B))T )],(6)

ai,j ≥ 0, bi,j ≥ 0, i, j = 1, .., n, (7)
n∑
j=1

ai,j = 1,
n∑
j=1

bi,j = 1, i = 1, .., n, (8)

1|i−j|>δai,j = 1|i−j|>δbi,j = 0, i, j = 1, .., n. (9)

Here, constraints (7) and (8) guarantee that each row of A and
B is a conditional PMF, while constraint (9) makes sure that
the changes introduced by the attacker have a limited range.

Once we solve (6) and obtain (A∗,B∗), we can use (5) to
obtain the optimal t∗(A∗,B∗).

IV. DERIVATION OF THE OPTIMAL ADVERSARY

In this section, we characterize the optimal solution to
the complicated optimization problem in (6) under certain
assumptions on p0 and p1. Let R0 = {i|p0,i ≥ p1,i} and
R1 = {i|p0,i ≤ p1,i}, i.e., R0 is the set of index where
p0,i is larger while R1 is the set of index where p1,i is
larger. In this section, we assume that R0 (and hence R1)
is a consecutive region in [1, n]. Without loss of generality,
we write R0 = {i|1 ≤ i ≤ m} and R1 = {i|m+ 1 ≤ i ≤ n}.

We now compare this assumption with the assumptions in
[16], which assumes that the original PMFs satisfy certain
monotonicity and symmetry conditions. Specifically, mono-
tonicity means that p1,i/p0,i is a monotonically increasing
function of i and symmetry implies p1,n−i+1 = p0,i, 1 ≤ i ≤
n. It is easy to check that the monotonicity assumption implies
the assumption made in this paper. Moreover, the symmetry
condition is not required here. Hence, our assumption is
significantly weaker than the assumptions in [16].

We first present a lemma that simplifies PE(A,B, t∗).
Lemma 1: PE(A,B, t∗) can be written as

PE(A,B, t
∗) =

1

2

n∑
i=1

min{q0,i, q1,i}. (10)

To proceed further, we denote the mass moved into region
[1, i] as I0,i under H0 and I1,i under H1. Similarly, define the
mass moved out from [1, i] as O0,i under H0 and O1,i under
H1 as shown in Figure 1.

Lemma 2: The relationship between PMFs p0, p1 before
attack and q0, q1 after attack can be represented by the moved
mass defined above:

O0,i−1 + I0,i + p0,i = O0,i + I0,i−1 + q0,i, ∀i, (11)
O1,i−1 + I1,i + p1,i = O1,i + I1,i−1 + q1,i, ∀i. (12)
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Fig. 1. Mass moved between two regions

The basic idea behind (11) and (12) is that the mass is
conserved. For any component i, the sum of original mass
and moved in part always equal to the sum of remaining mass
and moved out part.

Define D(A,B) as

D(A,B) = PE(A,B, t
∗)− 1

2

(∑
i∈R0

p1,i +
∑
i∈R1

p0,i

)
,

(13)
It is easy to see that maximizing PE(A,B, t

∗) is same as
maximizing D(A,B).

Proposition 1: D(A,B) is upper bounded by the sum of
mass moved between two regions:

2D(A,B)
(a)

≤
m∑
i=1

[min(q0,i, q1,i)− p1,i] +O0,m

(b)

≤ I1,m +O0,m, (14)

in which the equality in (a) holds when

q1,i ≥ q0,i, ∀i ∈ R1, (15)
I0,m = 0, (16)

and the equality in (b) holds when

q0,i ≥ q1,i, ∀i ∈ R0, (17)
O1,m = 0. (18)

Our approach to find the maximum value of 2D(A,B)
consists of two major steps. In the first step, we maximize the
upper bound I1,m+O0,m under constraints (16) (17) and (18).
This will result in a maximum value of I1,m+O0,m, denoted
as F ∗m, and a new domain set (A∗m,B∗m) containing all attack
strategies that achieve F ∗m. In the second step, we will show
that the optimal attack strategy is in (A∗m,B∗m) and provide
an algorithm to find such strategy.

A. Step 1: Maximizing I1,m +O0,m

First, we have

I1,m +O0,m

(m)

≤ I1,m−1 +O0,m−1 + p0,m − p1,m
· · ·

(i)

≤ I1,i−1 +O0,i−1 +
m∑
j=i

(p0,j − p1,j)

· · ·
(1)

≤
m∑
j=1

(p0,j − p1,j), (19)

in which inequality (i), 1 ≤ i ≤ m, corresponds to the
constraint q1,i ≤ q0,i. To achieve the equality in (i), we need
to satisfy O1,i−1 = 0, I0,i−1 = 0 and q1,i = q0,i. In general,
to achieve all the equalities in (19), the following conditions
need to be satisfied

I0,i = 0, O1,i = 0, 1 ≤ i ≤ m− 1, (20)
q0,i = q1,i, 1 ≤ i ≤ m. (21)

Condition (20) can always be satisfied if we restrict the mass
moving directions, i.e., (A,B) ∈ (Ac,Bc) = {(A,B)|aj,i =
0, 1 ≤ i < j ≤ m, bj,i = 0, 1 ≤ j < i ≤ m}. In the following
sections, (A,B) is limited to the set (Ac,Bc) ≡ (A∗0,B∗0).
Hence, to achieve the equalities in (19), we only need to
check (21).

Starting from
(1)

≤ in (19) and going upwards, we check
the achievability of each equality. In step one, there always
exist some attack strategies (A,B) ∈ (Ac,Bc), such that
q0,1 = q1,1. Hence, the equality holds and the feasible set is
(A∗1,B∗1) = {(A,B)|q0,1 = q1,1}. Denote the upper bound for
I1,m+O0,m obtained in this step as F ∗1 =

∑m
j=1(p0,j−p1,j).

We continue this process. Suppose until step
(i)

≤ in (19),
all the previous equalities can be reached, indicating that
(A∗i−1,B∗i−1) = {(A,B)|q0,t = q1,t, 1 ≤ t ≤ i − 1} and
F ∗i−1 = F ∗1 . Let Ui = I1,i−1 +O0,i−1 +

∑m
j=i(p0,j − p1,j). If

there exists (A,B) ∈ (A∗i−1,B∗i−1) such that q0,i = q1,i (the
method to check this existence is stated in Lemma 3), then
the upper bound derived in the step (i) is F ∗i = F ∗1 and the
feasible set is (A∗i ,B∗i ) = {(A,B)|q0,t = q1,t, 1 ≤ t ≤ i}.
Otherwise, we have

F ∗i = max
(A,B)∈(Ac,Bc)

Ui+1

(a)
=

i+δ∑
t=i+1

p1,t +
i∑

t=max{1,i−δ+1}

p0,t +
m∑

j=t+1

(p0,j − p1,j).

We denote the set that contains all the strategies satisfying
(a) as (A∗i ,B∗i ). Then, with restriction to (A∗i ,B∗i ), continue
the previous steps to check the remaining equalities in (19).

When it comes to step
(m)

≤ , the maximum achievable value
of I1,m + O0,m, denoted as F ∗m, is found. The solutions to
the above maximization problem make up the set (A∗m,B∗m),
which might contain multiple elements.

Lemma 3: The possibility of q0,i = q1,i, 1 ≤ i ≤ m, can be
easily determined by the original PMF as follows

(a) min
(A,B)∈(A∗i−1,B∗i−1)

(q1,i − q0,i) ≤ 0 is always true;

(b) If 1 ≤ i ≤ δ, max
(A,B)∈(A∗i−1,B∗i−1)

(q1,i − q0,i) ≥ 0 is true.

(c) For i ≥ δ+1, when F ∗i−1 = F ∗1 , max
(A,B)∈(A∗i−1,B∗i−1)

(q1,i−

q0,i) ≥ 0 if and only if
∑i+δ
t=1 p1,t −

∑i−δ
t=1 p0,t ≥ 0;

When F ∗i−1 = F ∗k , k ≥ 1, max
(A,B)∈(A∗i−1,B∗i−1)

(q1,i−q0,i) ≥

0 if and only if
∑i+δ
t=k+δ+1 p1,t −

∑i−δ
t=k−δ+1 p0,t ≥ 0.



B. Step 2: Showing the optimal attack strategy is in (A∗m,B∗m)

In Step 1, we have derived the maximum value F ∗m of
Fm = I1,m + O0,m under constraints (16), (17) and (18).
In this step, we will show that the optimal attack strategy,
when considering all constraints (15), (16), (17) and (18),
is contained in (A∗m,B∗m). We will also provide an efficient
procedure to find such a strategy in (A∗m,B∗m).

Lemma 4: There is an optimal solution to
max(A,B)∈(Ac,Bc)D(A,B) in the set (A∗m,B∗m).

Before providing outline of the proof, we
introduce some definitions first. Denote Fm =
{Fm|(A,B) satisfies (16), (17) and (18) } = {Fm|q0,i ≥
q1,i, i ∈ R0, (A,B) ∈ (Ac,Bc)}. For an arbitrary F ′m ∈ Fm,
define a set (A′m,B′m) = {(A,B) : I1,m +O0,m = F ′m}.

Here, we describe the main ideas of our proof. It is easy to
see that Lemma 4 is true if for any valid set (A′m,B′m), the
following inequality holds

max
(A,B)∈(A′m,B′m)

D(A,B) ≤ max
(A,B)∈(A∗m,B∗m)

D(A,B). (22)

To prove (22), for any given F ′m, we will develop series of up-
per bounds for D(A,B) using similar steps in Section IV-A.
Denote the upper bound obtained in step j as H ′j when
(A,B) ∈ (A′m,B′m) and H∗j when (A,B) ∈ (A∗m,B∗m). We
will show H∗j ≥ H ′j , for m+1 ≤ j ≤ n. Finally, H ′n is found
to be the achievable upper bound or the maximum value for
D(A,B) and has the property H ′n ≤ H∗n.

In particularly, by restricting (A,B) in (A′m,B′m), we have

F ′m
(m+1)

≥ I1,m +min{q0,m+1, q1,m+1} − p0,m+1

+O0,m+1

...
(j)

≥ I1,m +

j∑
t=m+1

(min{q0,t, q1,t} − p0,t)

+O0,j

...
(n)

≥ I1,m +
n∑

t=m+1

(min{q0,t, q1,t} − p0,t)

= 2D(A,B), (23)

in which the equality in (j), m+1 ≤ j ≤ n, holds when one
of the constraints in (15), q1,j − q0,j ≥ 0, is satisfied.

In the following, we will maximize I1,m +∑j
t=m+1 (min{q0,t, q1,t} − p0,t) + O0,j for each j, which

will leads to a series of upper bound H
′

j mentioned above.
Suppose H ′j = H ′i , indicating that ∀(A′,B′) ∈ (A′j ,B′j),

q0,t ≤ q1,t, i+1 ≤ t ≤ j are true. Then we have the following
theorem.

Theorem 1:

H ′j+1 = min
{
H ′j ,

j∑
t=j−δ+2

p0,t −
j∑

t=m+1

p0,t +

j+δ+1∑
t=m+1

p1,t

 .

To make it true, q0,t = q1,t, i+1 ≤ t ≤ j needs to be satisfied
if possible.

Since H ′m = F ′m and F ′m ≤ F ∗m, for ∀F ′m ∈ Fm, H ′j+1 ≤
H∗j+1 can be obtained recursively. Finally, we have H ′n ≤ H∗n
and Lemma 4 is proved.

C. Algorithm to find the optimal adversary

In practice, to find the exact maxima of D(A,B) and the
attack strategy, we design an efficient algorithm to generate
one particular optimal strategy. We use two loops to represent
the two steps in Section IV-A and IV-B. For each component
i, we calculate max q1,i,min q1,i,max q1,i,min q0,i and assign
values to q∗0,i and q∗1,i according to the following principles:

1) If ∃(A,B) ∈ (A∗i−1,B∗i−1), s.t. q0,i = q1,i, then

q∗0,i = q∗1,i = min{ max
A∈A∗i−1

q0,i, max
B∈B∗i−1

q1,i}.

2) If ∀(A,B) ∈ (A∗i−1,B∗i−1), q0,i > q1,i, then

q∗1,i = max
B∈B∗i−1

q1,j and q∗0,i = min
A∈A∗i−1

q0,j .

3) If ∀(A,B) ∈ (A∗i−1,B∗i−1), q0,i < q1,i, then

q∗1,i = min
B∈B∗i−1

q1,j and q∗0,i = max
A∈A∗i−1

q0,j .

After finishing the first loop in R0, the optimal F ∗m is
obtained. Then we step into the second loop corresponding
to R1 and calculate H∗i for each i until H∗n is generated,
which leads to the maximum PE . Therefore, by conducting
this algorithm, we find one of the best PMF after attack and
the maximum error probability.

V. NUMERICAL RESULTS

In this section, we first give an example about the optimal
attack strategy found by our algorithm. We then give an
example to illustrate the relationship between attack amplitude
and minimax prediction error.

In the first example, we set the original PMF under
H0 and H1 as p0 = 1

103 [9, 10, 20, 29, 13, 7, 3, 5, 3, 4] and
p1 = 1

103 [8, 7, 3, 8, 6, 16, 20, 21, 7, 7] respectively. Clearly,
R0 = {1, 2, 3, 4, 5} and R1 = {6, 7, 8, 9, 10}.

For this setup, we first consider δ = 1. By calculating
max
B∈Bc

∑k
j=1 q1,k and min

A∈Ac

∑k
j=1 q0,j , we find the smallest

k = 4 that makes max
B∈B

∑k
j=1 q1,k < min

A∈A

∑k
j=1 q0,j , in-

dicating that q0,4 > q1,4 must be true if we maintain
q0,i = q1,i, 1 ≤ i ≤ 3. Hence, for this attack amplitude,
it is impossible for the attacker to make two hypotheses
indistinguishable. Eventually, the mass functions after at-
tack are q∗0 = 1

103 [9, 9, 8, 13, 29, 20, 3, 5, 3, 4] and q∗1 =
1

103 [9, 9, 8, 6, 16, 20, 3, 18, 7, 7] respectively. When applying
Bayesian test, the prediction error is 0.2816 before attack
and 0.4029 after attack. When we set δ = 2, it is possible
to make q0 and q1 the same. The PMF after attack is
q∗0 = q∗1 = [9, 10, 13, 16, 20, 20, 3, 5, 3, 4]. The minimax
prediction error is 0.5.

We also find that the vulnerabilities of similar distribu-
tions to adversary could be quite different. For example, by
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Fig. 2. Prediction error v.s. δ, n = 100
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Fig. 3. Prediction error v.s. δ, n = 500

switching the mass of component 1 and 4 under H0, i.e.,
p′0 = 1

103 [29, 10, 20, 9, 13, 7, 3, 5, 3, 4] and p′1 = p1, the
prediction error PE(δ) has the value PE(1) = 0.3689 <
0.4029, PE(2) = 0.4854 < 0.5 and PE(3) = 0.5, meaning
that this small change weakens the power of attackers. In
other words, (p′0,p

′
1) has stronger robustness compared with

(p0,p1) which might be due to the boundary effect. Hence,
we will allow the attacker to perform circularly and explore
this boundary effect in the future.

In the second example, we explore how δ affects the
prediction error for given p0 and p1. In our experiment, for
p0, we first generate a vector with n components each of
which is independently generated using uniform distribution
between 0 and 1, and then normalize the vector so that it is
a valid PMF. For p1, we follow the same process. After that,
we adjust the indexes of entries of these two vectors so that
p0 and p1 satisfy the assumption of in the paper. We then
apply the proposed algorithm to find the best attack strategy
and its prediction error under Bayesian test. Fig. 2 illustrate
the result for the case with n = 100,m = 50. For this case,
the result shows that the minimum δ to make q0 and q1 the
same is δ = 13. When n = 500,m = 263, to make PE = 0.5,
the minimum attack amplitude is δ = 65, as shown in Fig. 3.
Hence, the attacker becomes more powerful as the allowed
attack amplitude increases and experiments show that most
PMFs can be made the same when δ = 0.15n or even smaller,
indicating that quite small perturbations could cause negative
effect on the prediction accuracy.

VI. CONCLUSION

In this paper, we have solved a minimax hypothesis testing
problem corresponding to realistic classification tasks with
adversarial perturbations. The optimal attack strategy has been
found to maximize the error probability and the best decision
maker has been shown to perform Bayesian test on the attacked
PMF to minimize error probability. Numerical results are
provided to support our work and the robustness of different
hypotheses has been discussed.
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