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Abstract— We address the problem of developing precision,
quasi-static control strategies for fingertip manipulation in robot
hands. In general, analytically specifying useful object transition
maps, or hand-object Jacobians, for scenarios in which there is
uncertainty in some key aspect of the hand-object system is
difficult or impossible. This could be in scenarios with standard
fully-actuated hands where, for instance, there is not an accurate
model of the contact conditions, or in scenarios with fewer
control inputs than mechanical degrees of freedom (such as
underactuated hands or those that are controlled by synergies or
impedance controlled frameworks), since the output space is of
higher dimension than the input space. In this work, we develop
a method for extracting object transition maps by tracking the
state of the grasp frame. We begin by modeling a compliant,
underactuated hand and its mechanical properties through an
energy-based approach. From this energy model, we provide
controlled actuation inputs to change the state of the grasp
frame. We observe the response from these actions and develop
a regression map of the action-reaction pairs, where the map is
subject to our intent for grasp frame movement and the regional
relationship between the contacts. Once the regression model is
developed, we perform within-hand planning of the grasp frame
with newly introduced objects. This approach is agnostic to the
global geometry of the object and is able to adapt when
undesirable contact conditions, such as sliding, occur. The
learning-based methodology estimates the non-linearities
representative in the properties of the system. We test our
framework physically on an adapted Yale Openhand Model O.
By transferring the learned model from simulation to the
physical hand without adaptation, we show that this energy
modeling approach is robust to inaccuracies in parameter
estimation. We demonstrate its efficacy in a handwriting task.

[. INTRODUCTION

Enabling robots to perform fine-grained manipulation tasks
in unstructured, unmodeled environments is essential to
successful implementations of future service robots. However,
current planning and control for dexterous manipulation is
faced with inherent challenges in these dynamic environments.
Specifically, it is imperative that the robot estimates
parameters for its model of the world [1]. Manipulation within
such settings typically requires a priori knowledge of object,
contact, and gripper models, or alternatively, expensive high-
fidelity sensor suites for parameter estimation. Even so, these
advanced sensing capabilities are not always enough for the
task at hand. Tradeoffs are introduced in soft, compliant, and
underactuated hands that passively adapt to the environment,
which enables them to easily grasp objects. Though, encoders
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Fig. 1. Fingertip manipulation performed with the Yale Openhand

Model O to write out the letters, ‘I', ‘R, ‘O, *S' with the tip of an
object, after being trained from 29,000 path tracing experiences.

are typically not installed at each of the joints and tactile
sensing is often unavailable. Moreover, their state is not fully
controllable via the available actuation inputs, making the
development of traditional object transition maps, which
represent the function from input actuator velocities to output
object velocity, a strenuous task.

This quest for dexterous capabilities has introduced various
levels of modeling in the field of grasping and manipulation,
investigating topics ranging from contact and fingertip models
[2] to stability measures of the whole hand-object system [3].
These mechanics-inspired models have aided in prediction of
how contacts, fingertips, and objects react in given conditions
[4]. This underlying understanding has led to additional works
in grasp planning [5], [6], fingerpad geometry optimization
[7], finger gaiting [8], [9], and object stability analyses [10].
Nevertheless, manipulation remains difficult for tractable
systems in real-world applications.

Traditional approaches to grasping and manipulation have
been through the use of high-dimensional, fully-actuated
hands often augmented with tactile sensing capabilities. While
these systems enable users to control each actuator
individually, their high degree of dimensionality becomes
difficult to control post-contact, since the closed kinematic
chain risks overconstraint [11]. During overconstraint, linearly
coupled actuation makes precise object manipulation difficult.
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An advantageous approach to manipulation has been
through the use of soft, compliant, and underactuated hands,
which passively adapt to the geometries of the object [12],
[13]. Numerous works have shown their efficacy in grasping
tasks, even presenting their utility in the difficult pinch and flip
manipulation [14]. Although their inherent compliance of such
hands is beneficial for grasping, manipulation remains difficult
since the closed mechanism has more degrees of freedom than
degrees of actuation. In [15], it was shown that precision
dexterous manipulation is possible with underactuated hands
given quasi-static assumptions in elastic perturbations and
when holonomic contact configurations can be guaranteed.
Through this notion, our previous works have addressed
manipulation with underactuated hands in the planar case by
simplifying quasi-static control inputs through the formulation
of Precision Manipulation Primitives (PMPs) represented by a
signed binary Jacobian. Though, this simplified approach
presented its shortcomings in object motion accuracy, and
required additional control modeling to increase manipulation
resolution [16]. Following work developed a state transition
model for object movement based on the PMPs, and was
shown to increase accuracy in the planar manipulation case
[17]. Nonetheless, most previous work has addressed
underactuated manipulation in 2D, where only one other work
in the spatial domain has been completed to the best of the
authors’ knowledge [18].

This work builds on the observation that precision
dexterous capabilities with underactuated, compliant, or soft
hands is possible but likely follows in the form of a non-linear
map from actuation input velocities to object velocity.
Through leveraging their inherent ability to easily acquire and
maintain a stable grasp, even with parametric uncertainties or
undesirable external perturbations, we model the system as a
parallel mechanism in fingertip manipulation [19]. Its
configuration is then obtained by solving for the minimum
energy configuration of the hand-object system, while
maintaining a stable grasp frame € SE(3).

Training data is acquired by observing the movement of the
grasp frame after random actuation, and doing so over many
regional contact relationships. The grasp frame is comprised
of exactly three contacts. By varying the distances between the
three contacts with respect to one another, while also honoring
the kinematic constraints of the hand, we can represent a fluid
representation of varied object geometries. Ultimately, this
framework represents an approach that is agnostic to the global
geometry of the object, allowing for object generalization.
Additionally, it allows the system to recover when undesirable
events occur at the contacts, e.g. slip or rolling, since the
regression framework is trained with various relationships
between the contacts.

We train a Random Forests Regressor (RFR) subject to
object velocity intent (Cartesian velocity reference). This
learned model is later used for predicting actuation inputs
required to reach a desired object pose. In order to control the
movement of newly introduced geometries, we define a point
on the object we intend to control, Point of Manipulation,
(POM), and compute the rigid body transformation from the
grasp frame to create a plan. Once computing a Cartesian
velocity reference, we control our grasp frame, consequently
the POM, through a closed-loop approach by continuously
querying our RFR model until completion (Fig. 1).

To the best of our knowledge, this is the first work that
learns object transition maps in a data-driven framework for
spatial, underactuated dexterous manipulation. The rest of this
paper is organized as follows: Sec. II presents the energy
model used to describe the hands, Sec. III presents the
framework and the control algorithm, Sec. IV presents data
collection, Sec. V. analyzes the experimentation results, and,
Sec. VI concludes this paper with a future work discussion.

II. OBJECT MOTION MODELS

In this section, we will discuss the underlying problems in
formulating the hand-object Jacobian for underactuated
hands. We will follow by presenting the formulation of the
grasp frame and the energy model used for this work to
estimate motions of an underactuated system.

A. The Hand-Object Jacobian

In traditional, fully-actuated manipulators, there exist
models that fully describe how an object should respond to
actuation inputs during fingertip manipulation. These models
typically come in the form of forward and inverse kinematic
relationships that can be calculated analytically given a priori
knowledge of the system. Depending on the system's input
dimensionality, these models can become non-trivial to derive.
Additionally, accuracy of the manipulation is subject to
estimation in physical contact parameters. Unfortunately for
underactuated hands, developing an analytic map from
actuation inputs to object movements is still an unsolved
problem, since reconfiguration of the hand is solved with
respect to forces applied by the hand on the object. Estimating
the reconfiguration of the finger at the point of contact requires
knowledge about the contact force specifically, such as
location and direction, which is not always known when the
hand is not equipped with tactile sensing capabilities.

Without the use of force sensing, finding the analytic input-
output relationship for an underactuated system is non-trivial
since input dimensionality is less than that of the constrained
degrees of freedom of the mechanical system. For a
manipulator comprised of k serial-link fingers, each having
Ji, joints per finger, the hand or joint configuration, q €

szzlji, fully defines the state of the system. In traditional
grasping and manipulation modeling, the manipulator
Jacobian, or similarly noted as the hand Jacobian, J,(q),
represents the map from actuator velocities to fingertip
velocities. We will suppress the g dependence for the rest of
this paper. In fact, J, = blkdiag(J, ...,J;),1.e. the block
diagonal matrix of Jacobians for each finger in the hand.
Similar to the hand configuration, a manipulator can be
represented by its actuator positions, a. A system is fully
actuated if dim(a) = dim(q) and underactuated if dim(a) <
dim(q). For soft robotic systems, or in general for systems
with fewer control inputs than degrees of freedom, the overall
controllability of the system decreases as the difference
between dim(q) and dim(a) increases. We can represent the
spatial representation of the hand Jacobian as:

X =Jnq (D

where fingertip velocities x € R3%, J, € R¥*9, and joint
velocities g € R?. Similarly, the Grasp Matrix, G, in the
velocity domain represents the map from external contact
velocities to object frame velocity, v € se(3). This
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Fig. 2. A single motor controls the actuation of a single finger about
its proximal and distal joints via a tendon. Abduction between
fingers is kept constant in this work.

representation, assuming a single point contact on the tip of
each finger, follows the form:

%*=G6Tv 2)

In the spatial case, G € R®*?, where b = Y;rank(B;).
For this notation, B; is the basis contact model for each contact
on the i*" finger. According to the fundamental grasping
constraint [20], in order to maintain a stable grasp on the object
without sliding, contact velocities of the manipulator must be
equal to contact velocities on the object. This further eludes to
the hand-object Jacobian, H, which is a direct map from
actuator velocities to object velocity. This formulation
assumes a point contact with friction model, enabling the
finger to apply a force in x, y, and z™ directions. This requires
B; € R®3,vi € {1, ...,k} and (GT)™ to be solvable as the
pseudo-inverse of the Grasp Matrix transposed:

v=(6")"]qg=Hq 3
Concretely, in order to solve for the hand-object Jacobian
for underactuation, we want to find a transformation matrix, T,

which maps H and input actuation velocities, d, to object
frame velocity, v:

v=HTa 4

where, Ta=q and T € R™% If T can be represented
symbolically and H can be formed analytically, the object can
be manipulated as desired by solving for the representative
actuator velocities to control the system.

In serial-link, tendon-driven underactuated mechanisms, a
tendon constraint dictates the relationship between subsequent
joints controlled by the same actuator. Evaluating a single i*"
finger in the two-link case and by assuming the routed tendon
is inextensible:

a4 = rpqp + 14494 ®)

where 7, 7;,. and 7 are the radii of the actuator, proximal, and
distal pulleys and 4, q,, and ¢, are the velocities about the
same joints, respectively (Fig. 2). Similarly, previous texts
have represented this constraint in the form of an actuator

Jacobian, J, [15]:

N

Contact
Triangle

Finger
Marker

Fig. 3. The grasp frame is comprised of exactly three points between
the hand and the object, represented by the frame in the center of the
blue contact triangle constraint. The Point of Manipulation (POM)
is then a rigid body transformation from the grasp frame as to allow
for object manipulation planning.

Though, through this single velocity constraint and due to
the coupling of the joints, g, and g, are linearly dependent,
presenting our inability to solve for matrix T symbolically.
Therefore, without any additional constraints added to the
system, in this work, we want to learn a representation of HT
so that we can map a to v.

B.  The Grasp Frame

Given a stable grasp, any point on an object can be
represented by a transformation from the object frame to any
desired point on the rigid body. In this work, we denote the
object frame as the grasp frame, which is adapted from [21].
The grasp frame formulates a standardized representation for
object movement constructed by three contacts. While
assuming a stable, point contact grasp, the grasp frame
uniquely describes the motion of any point on the object during
manipulation. Let us define contact points between the object
and finger tip P = py, ..., p; where p; € R3,Vi € {1, ..., k}and
where any three points in P can define the grasp frame.
Additional contacts can be added, but the relative positions
between three uniquely defines a grasp constraint, i.e.
additional contacts {p,, ..., py} € P are redundant if all remain
fixed to the object. We will define X to be the pose of the grasp
frame, defined by:

X = [9x 95 92 |90] € SE(3)

1
Yo =§(p1 +p; +p3)

gy = P2 — D1
* o —pall ™

_ (b3 —p2) X gx
l(s — p2) X gx l

9y = 9z X 9x

In this notation, g, gy, and g, are the directional vectors
ofthe x, y, and z axes, respectively, about an origin g,, all with
respect to the world frame. Given X, any desirable Point of
Manipulation (POM) which represents a frame, M € SE(3),
can be a point represented in space, p, € R3 by a
transformation from X. This transformation assumes the

Yz
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Fig. 4. Energy model simulation for manipulating the grasp frame.
For data collection, the grasp frame was randomly manipulated to
acquire the object transition map, while varying contact relationships
between the fingers. Final evaluation of the map was conducted by
querying random points within the POM's potential workspace (red
sphere) and executing the path. (Bottom) We note that the POM path
(green) executed deviates slightly from the projected path (blue) at
the beginning but converges to the end location.

object is a rigid body, in addition to the contact triangle
constraint const(T) where T € R3. This constraint signifies
that the distances between contacts formulating the grasp
frame remain constant during manipulation, i.e. a point contact
is maintained and no sliding or rolling is observed on the
object. The relationship between contacts is, T =
{dist(p,, p2), dist(p,, p3), dist(ps,p1)} where dist(:)is
Euclidean distance. This contact triangle constraint is used
later in the regression framework (Sec. III).

C. The Manipulation Energy Model

Underactuated mechanisms that leverage springs for
passive adaptability can be modeled in accordance to energy.
Each finger is modeled as a serial-link chain of rigid bodies
and springs. The tendon force supplied by the actuator is
counteracted by the force of the contacts and the return force
of the springs, and is typically dampened by friction in the
tendon's transmission. Leveraging the simplicity of acquiring
and maintaining a stable grasp with underactuated hands, we
can form a simple parallel mechanism with springs model of
the system. While this formulation appears to neglect contact
force at the fingertips, this requirement is maintained from the
triangle constraint in Sec. IIB. We also assume that friction in
the tendon's transmission is negligible.

As a parallel mechanism, the actuation of a single link, or
finger, corresponds to a change in pose for X and can be
solved through energy balancing. We expect the hand-object
system to maintain energy equilibrium between the contacts
{p1,p2,p3} and the grasp frame after movement. In fact,
while neglecting friction about the joints, the system will
equilibrate to the minimum energy configuration subject to
Eq. (5) after an actuation input or external disturbance. The
energy, EY, within each finger is, of course, configuration
dependent. For the two-link case, where 6% = {Hpi, Gdi}, or
the joint configuration of the proximal and distal joint,
respectively, the energy of the finger can be represented as:

oo 1
E'(0Y) = 5 (kyp: + ka: ) (8)

where kj, and k,; are the spring constants for the proximal
joint and the distal joint, respectively (Fig. 2). Through this
constraint, we can solve for the joint configuration of the hand
by minimizing the elastic energy between all of the fingers.
Assuming our grasp constraint is still valid, and that a single
point contact at the fingertips is maintained, the integrity of
the grasp frame should still hold. Therefore, the equilibrated
configuration of the hand, g*, can be found through:

f= i E'(0Y) s.t. Eq.(5
q argqmmZ (6" s.t. Eq.(5) )

III. LEARNING THE OBJECT TRANSITION MAP

The proposed methodology in this work fundamentally
estimates the pseudo-inverse of the product of the hand-object
Jacobian, H, and the transformation matrix, T, namely (HT)*,
creating a map from desired object movement (Cartesian
velocity reference, X) to actuation velocities, d. In the
traditional system estimation problem, we observe X given d
and formulate a forward map of how a system responds to an
input. Conversely, in the control problem, we want to control
X through @, which clarifies the formulation of the inverse
function. In the simplified understanding of this problem, we
estimate what actuation inputs result in desirable movement of
the contacts in order to manipulate the grasp frame.

As in Sec. IIA, analytically deriving this transition map for
soft or underactuated mechanisms is infeasible if solely using
the velocity constraints previously described. It may be
possible that additional constraints are justified for specific
mechanisms, but this is not the case in general. By creating a
representative model of the system, we are able to estimate the
input-output relationship, or the action-reaction pairs, by
performing an action and observing the reaction. This reaction
is likely a non-linear relationship between contact movement
and actuation inputs. We find that the proposed energy model
is tolerant to uncertainties in physical parametric estimation,
allowing us to easily transfer the regression model learned
from simulation to the physical hand. While this model serves
our purpose well, other input-output models would suffice
depending on the mechanism used and the task.

The desired transition map is learned through the presented
energy minimization approach. Holistically, actuation inputs
to the hand, a result in a Cartesian velocity movement of the
grasp frame, X, displacing the grasp frame to a new pose X.
While maintaining a constant relationship for the triangle
constraint J which ensures a point contact, the model is
actuated randomly throughout the entire workspace to evaluate
the relationship between X, X', and d. This presents the
forward system estimation problem, where (X, d,7) - X. By
collecting this reaction, X, from an action, d, we can form the
inverse of this function for the control problem.

Once a single relationship in 7 is exhausted, i.e. X has
reached all points in the workspace for the given triangle
constraint, we can randomly re-initialize q. By doing so, this
specifies a new relationship in I for the next iteration, that
fundamentally represents a new hand-object configuration
with a dissimilar object geometry. The configuration is
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validated for force closure and the object is then manipulated
randomly once again according to the energy model. Through
this initialization approach, the learned map observes a fluid
representation of relational object geometries, increasing
object generality. Additionally, as aforementioned, this
formulation is beneficial in that it neglects global object
geometry. This not only allows the learned map to generalize
over different objects, but also to adapt when undesirable
contact scenarios occur. Specifically, we seek to learn the
function, h(-), with our non-linear regressor:

h: (X, X,T) - a

In the system estimation problem, the Cartesian velocity
reference, X, represents a reaction given actuation. In the
control problem, it now serves as an abstraction for intended
object movement. Given X and the intended goal of the grasp
frame, X5, we can calculate the vector representing the linear
transition between the two, and scale it according to our
desired object transition velocity, calculating X. Naturally,
there is a trade-off between speed and stability during
manipulation, due to our quasi-static assumptions, influencing
the length of the vector X used in execution. Now, the learned
function h(:) estimates the actuation velocity, a, required to
receive the desired system reaction.

Algorithm 1 POM Control
Input: M. d, iter
Qutput: ¢
: T+ Camera.caleT()
: M + Camera.readPOM()
b4 calcTrans(T, M)
0 Xy invd'rans(Mgy, t)
for i = 1 to iter do
X« invTrans(M,t)
X + carVel(X,Xy)
i@+ h(X,X,T)
Hand.execute(a)
10: T < Camera.caleT()
11: M + Camera.readPOM()
12: t  calcTrans(T, M)
13: € + dist(M, M)

> waypoint offset

> grasp frame to POM
> POM to X coord

> compute cart. vel. ref.
& find actuator velocity
> move hand

oo bR W

14: if ¢ < d then = solution found
15: break
l6: return ¢

Specifically, for the handwriting task, we seek to control a
given point on the object that is offset from the grasp frame.
Once the object transition map is created, controlling the POM
pose, M, is achieved by controlling the pose of the grasp frame.
The algorithm for control is summarized in Alg. 1. Inputs
include the goal position of the POM, M, minimum distance
threshold from M to M, signifying completion, d, and the
number of iterations allotted to complete the task, iter. The
algorithm begins by computing the transformation, t, from the
grasp frame into the POM. This requires knowing J°, which is
calculated in calcT(-) by either extracting location from
markers on the hand or from the simulation environment. The
invTrans(-) method then converts coordinates from the POM
into X given t to solve for the final grasp frame configuration
of the hand, X;. The Cartesian velocity reference is then

computed in carVel(-) by taking the difference between X
and X, then scaling appropriately for the task. Actuation
velocities are then estimated in the learned function, h(-), and
executed on the hand. The loop breaks once M has reached a
distance within the threshold, d, to its desired goal position or
exceeds the number of loop iterations. Waypoints are
completed iteratively, by changing the goal position of the
POM to a new waypoint upon completion.

IV. DATA COLLECTION

A.  The Model O

An adapted Model O from the Yale Openhand Project [22]
was used for this work. Physical modifications include a soft,
rounded fingertip (durometer 30), pulleys throughout the
finger to reduce friction in the tendon's transmission, and
bearings within each of the joints. As a tendon-driven
mechanism, each finger is powered by a single actuator
(Dynamixel XM430-W350-R) in position control mode. The
hand is comprised of three fingers, each of two links. An
additional motor is attached to enable ab/adduction for the
fingers, which is set to a fixed position of 8, = 90° and is not
used in this work (Fig. 2,3,4). Return forces for each finger are
supplied by a torsional spring about the proximal joint, and an
extension spring about the distal joint. The Model O is not
symmetric about the z axis of the gripper, i.e. the locations of
the proximal joints do not form an equilateral triangle, further
adding geometric complexities to the manipulation problem.

B. Collection and Training

Data collection was achieved through the use of the
aforementioned energy minimization approach (Sequential
Least Squares Programming Optimization). We began by
constructing a representative Model O in simulation with
estimated pulley radii, spring constants, and link lengths. Due
to the energy model’s robustness to parametric uncertainties,
general estimation of these values did suffice. We then solved
for the initial configuration of the hand given three contact
points in space. This defined the values static in 7. Once a
valid configuration was found, we applied a random actuation
set to the fingers and recorded the movement (Fig. 4).

We observed the original location of the grasp frame as X .
Given this random actuation, d, we then observed the change,
X for a single actuation step. Evaluating these action-reaction
pairs, we formed a feature set, S, and regression set,
R, describing the state of the system and its motion, while
maintaining integrity on 7. Denoted by s,, = (Xn,xn,f]"n) an
input feature, and by a,,, an output feature, the training dataset
is defined as:

S ={suhp=ivy R={dntn-1v

A total of 29,000 action-reaction pairs were collected in
simulation over the course of 50mins for § and R, representing
500 different relationships in T'. For each representation in T, a
virtual object radius, i.e. a circle fit to intersect all three contact
points, was computed and was restricted to be within 3.5-
5.5cm. To maintain a tractable amount of data, every possible
X with respect to T that is possible according to the gripper's
workspace was not computed. This would merely result in a
very large dataset and would likely be redundant for similar
relationships in ', e.g. when a single contact segment slightly
changes. It was assured that for similar relationships in T, a
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Letter A B (& D E
Waypoints 7) 7 4 5 7
Time (s) 2422 21.5 9.3 28.9 206
PTP Distance 3.92cm 4.42cm 1.91cm 3.68cm 2.85¢cm
Dist. Traveled 4.60cm 531lcm 2.13cm 4.72cm 3.10cm
Waypoint Evr. | 1.01£0.33mm 0.85+0.24mm 0.85+0.32mm 1.6+0.38mm 1.5+0.2mm

Fig. 5. Physical experiment tracking the point of manipulation of the object in Figure 1. Letters A-E are written according to their respective
waypoints in a top-down view (start: square, connecting: circle, finish: star). The progression of waypoints, depicted in letter B, represents
the intended linear manipulation path for the object. The number of waypoints, time, expected point-to-point (PTP) distance, actual distance
traveled, and waypoint error is recorded. Letters with abrupt transitions in Cartesian velocity references deviate slightly off the path.

’ Top
Side Camera
Camera 3
Side
Camera 2
Side
Camera 1

POM
Marker

Fig. 6. Four-camera setup for tracking state of the contacts and the
grasp frame.

representative spread of the workspace was realized through a
nearest-neighbors approach. A Random Forests Regressor
(RFR) [23] consisting of 200 trees at a depth of 30 was trained
using 5-fold cross validation, with an average R? score of
0.965 for all three regressed outputs. This regressed model,
composed from data solely collected in simulation, will serve
as the basis for our execution in the following section.

V. EXPERIMENTS

To show the efficacy of the proposed RFR model, we
evaluated it both in simulation and on a physical hand using
Alg. 1. For the physical evaluations, a state detection system
(Fig. 6) was created to track the location of the contacts and
pose of the POM via 4 overhead cameras during manipulation.
AprilTags provided a pose € SE (3) for each finger and for the
POM. Contact positions to construct 7 were extracted by
calculating a transformation from the AprilTag on the back of
the finger (see Finger Marker, Fig. 3) to the point of contact.

A. Waypoint Evaluation

The hand was initialized to five different starting
configurations in the energy-based simulation, representing

five different object geometries. The virtual object radius was
ensured to be within that of the training data. The POM was
translated to Scm above the grasp frame and with the same
rotation as X'. Once initialized for each object, the hand was
commanded to move between 500 randomly selected
waypoints within a sphere of radius 2.5cm (Fig. 4). During
random waypoint selection, it was ensured that each waypoint
was unique, but it was not guaranteed that the waypoint was
within the reachable workspace of the learned model or that of
the hand-object system. Once executed, if the previous
waypoint was completed, the system started from that location.
Conversely, if the POM did not reach its intended waypoint,
the system was reset before continuation to the next waypoint.

The trajectory of the POM is tracked through the
manipulation. We note that in the example, Fig. 4, the path of
the POM deviates slightly at the beginning of the movement
before finally converging within Imm of the intended
waypoint. This response appeared often for the completed
trajectories. Waypoints that were tagged as incomplete
reached within Smm of the desired goal location 73% of the
time, and could not move closer without violating the contact
constraint. While we seek to have a fully connected, fluid
workspace for all object geometries, this is not always feasible
given physical system constraints. Increased waypoint
completion is likely to be realized if all waypoint goals were
suited within the workspace of the hand-object system, which
we did not guarantee. Results are summarized in Table 1.

TABLE L EVALUATION OF 500 WAYPOINTS
Object | Segl Seg? Seg3 | Radius | Completed/  Completed/
(em) (cm) (em) | (cm) | Traveledicm) Traveled(cm)
(100 iter:) (300 iter)
1 9.1 6.1 9.1 4.87 211/1.7 334/2.0
2 6.7 4.2 6.7 3.53 318/1.8 441/2.0
3 7.4 4.8 7.8 4.03 243/1.8 397/2.1
4 7.3 5.2 7.3 3.93 358/1.9 499/2.4
5 1.7 4.7 6.7 3.90 297/1.9 417/2.2
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CC

o m

Co*

A B C D
Obj Sm/Med/Lg Lg Med Sm
Radius (cm) 4.51/4.05/3.52 4.51 4.05 3.52
Dist, Traveled (cm) 2.62 2.13 242 2.53
‘Waypoint Err. (mm) 0.92+0.38 0.85£0.32  1.12042  1.320.33

Fig. 7. Evaluation of writing the letter ‘C’ when changing contact
location on a single object (A) and varying radii on different objects
(B-D). Dots on the object signify contact points. The two objects are
designed such that they have the same radii as observed during the
contact changes in (A) (4.05cm and 3.52cm, respectively). When
executing (A), the system must adjust to the rigid body
transformation change from the POM to reach the desired waypoints
in a top-down view.

Five different objects were tested with virtual radii ranging
from 3.5cm to 4.9cm. The segment lengths constructing the
relationship in T = {Seg1,Seg2,Seg3} were selected to
represent varying object geometries. For each object, we
record the speed in which the object transitioned to the desired
goal configuration and if the waypoint was completed. As
provided in Table 1, time was captured by evaluating the
number of iterations required to reach each waypoint, 100
iterations (3.3 seconds) and 300 iterations (10 seconds). As the
number of iterations increases, the average distance traveled
and the number of waypoints completed also increases. We
found that the best virtual object radius for waypoint
completion was around 4 cm with equal segment lengths for
Segl and Seg3 of the contact triangle. We observed during
experimentation that as the object radius increased, the
workspace of the POM tended to decrease. Intuitively, this
corresponds to the limited workspace of the finger post-contact
with a growing object radius. The observed phenomena did not
affect the average length of completed waypoints.

B. Handwriting Task

The learned model was evaluated physically by analyzing
its performance in a modified handwriting task. For this
execution, the learned model was transferred directly from
simulation to the physical environment. This experiment was
performed with an irregular-shaped, tapered object as to allow
slippage and recovery (Fig. 1, 5) of virtual radius 4.51cm
(T ={7.5cm, 8.0cm, 7.8cm}, 41g). The task was to write the
first five letters of the English alphabet in capital form.
Waypoints were created according to the rigid body
transformation from X to the POM, which was tracked

according to the AprilTag attached to the top of the object
(7.5cm above the grasp frame). Once transformed, we queried
the RFR model in X coordinates to find the actuation inputs
required for movement, as in Alg. 1. The center of the object
AprilTag was tracked during the manipulation and performed
the 'writing' of the letters, i.e. the traced letters of the alphabet
were written according to the center of the tag. Once a single
waypoint was reached within a threshold of 2mm, or the
maximum number of 300 iterations (10 seconds) was
exceeded, the Cartesian velocity reference was updated to
direct the system to the next waypoint. In physical
experimentation, the waypoints were always reached within
the allotted iteration limit.

As depicted in Fig. 5, the model's execution resulted in
discernible English letters in capital form (letters A-E are
evaluated). It is noted that in some cases the POM did deviate
slightly from the expected point-to-point path signified by the
waypoints (Fig. 5, Letter B). We believe this response to be an
artifact of the current configuration of g, where, as learned
from the simulated energy model, there are instances where
the hand has difficulty changing directions abruptly while
maintaining integrity on 7°. This phenomenon tends to occur
when the system realizes that the force application direction of
the finger would be insufficient to maintain force closure,
allowing the contacts to slip. Thus, the grasp frame must move
slightly away from its desired linear motion in order to set up
the approach for the next waypoint. This phenomenon is most
clearly depicted in the writing of letters, 'B' and 'D'. In these
executions, the POM traveled approximately an additional
centimeter during writing.

During this experiment, we also noted the waypoint error
realized during execution. Depending on the grasp frame
location within the workspace, POM movement generally
resulted in Cartesian steps from 0.5 to 1.4mm as observed by
the overhead camera. As in Alg. 1, the object was manipulated
until the POM reached within d =2mm of the intended
waypoint. The waypoint error was calculated individually for
each letter. As noted in Figure 5, we did not see a direct
correlation between the waypoint error and the additional
distance traveled between waypoints. We again attribute the
increase in error to the current configuration of g during
manipulation. Given these results, we believe it is possible to
further increase waypoint resolution by appropriately scaling
the Cartesian velocity reference as the POM approaches the
waypoint. In all cases, the POM was able to reach the waypoint
within the set threshold and within the allotted time.

C. Adaptability to Contact Changes and Varied Radii

A final evaluation was completed with the same physical
setup as in the handwriting experiment. In this execution, we
desired to write the letter ‘C” with the POM of an object. Using
the same object as previously, which we will denote as the
large object, we evaluated the robustness of waypoint
completion and system updating once undesirable contact
conditions occur. We simulate this by first moving the POM
to the desired waypoint and then pushing the object down in
the grasp, shrinking the virtual object radius by determining a
new relationship in T and changing the transformation
between X and M. Results are depicted in Fig. 7A.

Execution began by tracing the top portion of the letter ‘C’
with the same contact relationship in Sec. VB. By pushing the
object down in the grasp, we formed a new contact relationship
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T ={6.9cm, 6.7cm, 7.4cm} with a virtual radius of 4.05cm
and a POM distance of 6.3cm. Once the long edge of the letter
was completed, the object was again moved down towards the
palm creating a relationship 7 = {5.9¢m, 5.9cm, 6.3cm} with
a virtual radius of 3.52cm and a POM distance of 5.2cm. The
final section of the letter ‘C’ was then completed.

During this evaluation, we note that the waypoint error and
the overall geometry of the traced letter is similar to that of the
execution in Sec. VB, showing robustness to Alg. 1 and the
system. To further illustrate this, two additional objects, noted
medium and small, were created to be representative of the
virtual radii noted after object movement during the
experiment. The distance to POM was set to the same as in
Sec. VB, equal to 7.5cm. We again performed the writing of
the letter ‘C’ to evaluate the waypoint error and completion.
We find that this execution deviates slightly compared the
original execution (Fig. 7C-D).

VI. CONCLUSIONS AND FUTURE WORK

In this work we described a framework for extracting
object transition maps for systems with fewer actuation inputs
than mechanical degrees of freedom. This approach attempts
to directly estimate the inherent non-linearities evident in
controlling compliant or underactuated systems by evaluating
an energy model and training a non-linear regressor. For our
instantiation of this framework on the Yale OpenHand Model
0O, we formulated an energy model for passively elastic hands
and it serves as the basis for data collection.

This approach benefits from its simplicity to implement, its
robustness to parameter estimations, and its generalization to
object geometries. The object was represented as a
standardized grasp frame between three contacts, which in turn
neglects the requirement to know global object geometry. By
changing the relationship between contacts during data
collection, we are able to fundamentally simulate an array of
objects. We find that we can transfer the learned regression
model from simulation with ease to the physical hand, through
only roughly estimating spring constants.

By evaluating the action-reaction pairs of the system, we
formed a Random Forests regression map that represents the
actuation input required to transition the object pose towards
the desired state. From training over varied contact
relationships, the learned regression map is able to adapt to
newly introduced objects and even continue manipulating
when undesirable contact conditions, such as rolling, occur.
We show the efficacy of the developed framework by
deliberately moving contacts during manipulation, which
changes the local object geometry, to complete a writing task.

As future work, we are interested in extending this
framework for additional contacts, and evaluating how finger-
gaiting can play a role in extending object manipulation. We
plan to evaluate how models differ between those developed
in simulation and that of data collected on a physical hand. We
believe advanced within-hand manipulation planning can play
a vital role in precision of the POM movement. Additionally,
we plan to define this framework by further investigating the
analytic structure of its estimated models.
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