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ABSTRACT

The eukaryotic pathway of galactolipid synthesis involves fatty acid synthesis in
the chloroplast, followed by assembly of phosphatidylcholine (PC) in the endoplasmic
reticulum (ER), and then tumover of PC to provide a substrate for chloroplast
galactolipid synthesis. However, the mechanisms and classes of lipids transported
between the chloroplast and the ER are unclear. PC, PC-derived diacylglycerol,
phosphatidic acid, and lyso-phosphatidylcholine (LPC) have all been implicated in ER-
to-chloroplast lipid transfer. LPC transport requires lysophosphatidylcholine
acyltransferase (LPCAT) activity at the chloroplast to form PC prior to conversion to
galactolipids. However, LPCAT has also been implicated in the opposite chloroplast-to-
ER trafficking of newly synthesized fatty acids through PC acyl editing. To understand
the role of LPC and LPCAT in acyl trafficking we produced and analyzed the
Arabidopsis thaliana act1 Ipcat1 Ipcat2 triple mutant. LPCAT1 and LPCATZ encode the
major lysophospholipid acyltransferase activity of the chloroplast, and it is
predominantly for incorporation of nascent fatty acids exported form the chloroplast into
PC by acyl editing. In vivo acyl flux analysis revealed eukaryotic galactolipid synthesis is
not impaired in act? Ipcat? Ipcat? and utilizes a PC pool distinct from that of PC acyl
editing. We present a model for the eukaryotic pathway with metabolically distinct pools
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of PC, suggesting an underlying spatial organization of PC metabolism as part of the
ER—chloroplast metabolic interactions.

INTRODUCTION

Membranes that encompass, subdivide, and provide scaffolds for protein
localization are essential to all living cells. In plant leaf tissue, the thylakoid membranes
within the chloroplast are composed predominantly from the galactolipids
monogalactosyldiacylglycerol (MGDG) and digalactosyldiacylglycerol (DGDG) and are
the essential structures that hold the photosynthetic apparatuses. The metabolic
pathways of photosynthetic membrane production have been studied for over 40 years
through biochemical, genetic, and molecular biology approaches and have been
extensively reviewed across the decades (Roughan and Slack, 1982; Browse and
Somerville, 1991; Ohlrogge and Browse, 1995; Moreau et al_, 1998; Kelly and Dormann,
2004; Benning, 2008, 2009; Shimojima et al_, 2009; Li-Beisson et al_, 2013; Boudiére et
al_, 2014; Hurlock et al_, 2014; Block and Jouhet, 2015; Bastien et al_, 2016; Botella et
al., 2017; Li-Beisson et al, 2017; LaBrant et al, 2018). This research has led to a
complicated metabolic model that requires the trafficking of lipid substrates from the
chloroplast, to the endoplasmic reticulum (ER), and then back into the chloroplast to
produce galactolipids (Fig. 1). Most of the biosynthetic enzymes and associated genes
of fatty acid synthesis, glycerolipid assembly, and fatty acid desaturation crucial to
produce galactolipids have been identiied. However, a major area of uncertainty
surrounds the process of lipid transfer between the chloroplast and the ER, and even
the lipid species that is transferred from the ER back into the plastid is still unclear
(LaBrant et al_, 2018).

Figure 1 displays the current state of the two-pathway model of leaf MGDG
synthesis (for more detailed comprehensive recent reviews please see (Li-Beisson et
al_, 2013; Hurlock et al_, 2014; Botella et al., 2017; Li-Beisson et al., 2017; LaBrant et
al_, 2018)). Fatty acids are synthesized up to 18-carbon saturated or monounsaturated
fatty acids while esterified to acyl carrer protein (ACP) within the chloroplast stroma. In
some plants these acyl-ACPs can be utilized by the acyl selective glycerol-3-phosphate

acyltransferase (GPAT) and lysophosphatidic acid acyliransferase (LPAT) of the
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“prokaryotic pathway” (ACT1/ATS1 and ATS2, respectively (Kunst et al_, 1988; Nishida
et al., 1993; Yu et al_, 2004)) to produce a molecular species of phosphatidic acid (PA)
containing oleate (18:1, number carbons: number double bonds) at the sn-1 position,
and palmitate (16:0) at the sn-2 position. Dephosphorylation produces the diacylglycerol
(DAG) substrate of MGDG synthase (MGD1) (Jarvis et al., 2000). Subsequent
desaturation of the 18:1/16:0 molecular species to 18:3/16:3 produces the abundant
polyunsaturated molecular species of MGDG characteristic of chloroplast membranes.

Plants that produce up to half of the MGDG through the prokaryotic pathway are
known as 16:3 plants in reference to the 16:3 that accumulates at sn-2 of MGDG. Only
about 12% of Angiosperms (including Arabidopsis thaliana) are 163 plants (Mongrand
et al_, 1998). In contrast to 16:3 plants, 18:3 plants accumulate 18:3 at the sn-2 position
of MGDG through glycerolipid assembly by the ER-localized “eukaryotic pathway”
where sn-2 acyltransferases are selective for 18-carbon unsaturated fatty acids. In all
plants, the eukaryotic pathway GPAT and LPAT (AiGPAT9 and AtLPAT2, respectively
(Kim et al_, 2005; Shockey et al_, 2016; Singer et al_, 2016)) utilize cytosolic acyl-CoA to
produce PA, and DAG in a parallel pathway to that in chloroplast (Fig. 1). The de novo
synthesized DAG is utilized to produce ER phospholipids such as phosphatidylcholine
(PC) and phosphatidylethanolamine (PE). PC is also the exira-plastidic site for
desaturation of 18:1, to 182 and 18:3 through the FAD2 and FAD3 enzymes,
respectively (Arondel et al_, 1992; Okuley et al_, 1994). Eukaryotic MGDG is synthesized
from a polyunsaturated DAG backbone derived from PC (Slack et al., 1977). However,
the mechanism and location of PC turnover, and the lipid class transferred from the ER
to the chloroplast are still unclear (Fig. 1, blue dashed lines). A key aspect of the
eukaryotic pathway Is that extensive trafficking of acyl groups between the chloroplast
and the ER is required.

Fatty acid export from the chloroplast begins with hydrolysis of acyl-ACPs by
fatty acid thioesterases (Fig. 1) (Bates et al., 2013). The subsequent free fatty acids
(FFA) are transported across the chloroplast inner envelope membrane (IEM) by FAX1
(Li et al_, 2015), and likely other members of the FAX family. The mechanism of FFA
transfer across the chloroplast outer envelope membrane (OEM) is not clear but may

involve vectoral diffusion driven by activation of FFA to acyl-CoA by long chain acyl-
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coenzyme A synthetases (LACS) on the cytoplasmic side of the OEM and/or the ER
(Schnurr et al_, 2002; Koo et al_, 2004; Zhao et al_, 2010; Jessen et al., 2015), which
prevents FFA diffusion back into the plastid. Original models of the eukaryotic pathway
assumed acyl-CoA-containing newly synthesized fatty acids were utilized by the ER-
localized GPAT and LPAT to produce initial molecular species of glycerolipids
containing 16:0 or 18:1 at sn-1, and 18:1 at sn-2 prior to further desaturation on PC (e.g.
(Ohlrogge and Browse, 1995)). However, metabolic tracing experiments in various plant
tissues have demonstrated that the majority of newly synthesized fatty acids exported
from the plastid are initially rapidly incorporated into PC by a process known as acyl
editing, which is essentially an acyl-CoA:PC fatty acid exchange cycle (Williams et al_,
2000; Bates et al_, 2007; Bates et al_, 2009; Bates et al., 2012; Tjellstrém et al_, 2012;
Yang et al., 2017). This exchange between PC and the acyl-CoA pool produces a
mixture of nascent fatty acids exported from the plastid with previously synthesized fatty
acids denived from PC, some of which may have been desaturated to 18:2, or 18:3. This
mixed acyl-CoA pool is thus the substrate for the eukaryotic GPAT and LPAT reactions
for de novo glycerolipid assembly. In particular, short time point (£ 1 min) [”C]acetate
labeling of fatty acid synthesis in pea (Pisum sativum) leaves and Arabidopsis cells was
crucial to demonstrating that nascent fatty acids are predominantly incorporated into the
sn-2 position of PC by a lysophosphatidylcholine acyltransferase (LPCAT)-type reaction
faster than incorporation into de novo DAG of the eukaryotic pathway (Bates et al,
2007; Tjellstrom et al., 2012). These results suggest that the lysophosphatidylcholine
(LPC) pool and LPCAT enzymes involved in acyl editing may be part of the acyl
trafficking of nascent fatty acids from the chloroplast to the ER (Fig. 1).

The lipids DAG, PA, PC, and LPC have all been suggested as the species
transported from the ER to the chloroplast in the eukaryotic pathway (Fig. 1). DAG was
first suggested to be transferred from the ER to the plastid after metabolic labeling
expenments indicated that both the glycerol and fatty acids of PC were incorporated into
MGDG together (Slack et al., 1977), and analysis of Arabidopsis PA hydrolase mutants
(pah1 and pah?2) under phosphate starvation supported this conclusion (Nakamura et
al., 2009). However, combining the pahl and pahZ mutants with the act? mutation

which eliminates the prokaryotic pathway did not appear to affect eukaryotic galactolipid
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synthesis under phosphate replete conditions (Fan et al, 2014). Recent work
charactenzing the Arabidopsis fgd7-5 mutants has indicated a transporter system
involved in transferring the lipid substrate for MGDG synthesis from the chloroplast
OEM to the IEM where MGDG synthesis occurs (Xu et al_, 2003; Xu et al_, 2005; Awai
et al_, 2006; Lu et al_, 2007; Wang et al., 2012b; Wang et al_, 2013; Fan et al., 2015).
The mutants have impaired eukaryotic MGDG production and accumulate unusual
trigalactosyldiacylglycerols (TGDG) as a phenotype. The TGD2 and TGD4 components
of this transporter system bind to PA, and isolated chloroplasts from the tdg? mutant
effectively convert exogenous DAG into MGDG but exogenous PA conversion to MGDG
Is partially reduced. Therefore, PA has been proposed as the molecule transported from
the ER to the plastid (Xu et al_, 2005; Lu and Benning, 2009; Wang et al_, 2012b; Wang
et al., 2013). However, it is also been suggested that the role of PA is to destabilize
membranes to reduce the energy barmer to transport of a different lipid species (LaBrant
et al., 2018). A recent mathematical modeling approach suggested DAG was a better
substrate to transport than PA, but limited PA transport was also required to activate
MGDG synthesis (Maréchal and Bastien, 2014). Both DAG and PA can be produced by
lipases in the ER, and thus could be transferred from the ER to the chloroplast and then
into the IEM for MGDG synthesis. A different approach would be to first move PC from
the ER to the chloroplast, and then denve PA or DAG from PC for transport to the IEM
by the mechanisms discussed above.

PC is highly abundant in the outer leaflet of the OEM but is not present in other
chloroplast membranes (Dome et al., 1985), while the ER lipid PE is absent from
chloroplasts. PC can be selectively transferred over PE from liposomes to isolated
chloroplasts, a process which is dependent on the proteins within the chloroplast OEM
(Yin et al_, 2015), suggesting PC could be directly transferred from the ER, possibly
through ER-chloroplast membrane contact sites (Andersson and Doérmann, 2008;
Mueller-Schuessele and Michaud, 2018). Recent characterization of the flippase ALA10
(Botella et al., 2016) suggests it could be involved in enriching PC in ER membrane
contact sites prior to transfer to the plastid (Botella et al_, 2017). Rather than trafficking
of a whole membrane lipid, LPC is a more water-soluble derivative of PC that could

more easily traverse an aqueous space between the two compartments. The abundant
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LPCAT activities associated with the exterior of the chloroplast would then regenerate
PC at the OEM (Bessoule et al_, 1995; Tjellstrém et al_, 2012). The transfer of LPC from
the ER to plastid was supported by long time point (2—100 h) pulse-chase metabolic
labeling studies in leek seedlings, which demonstrated a loss of fatty acids from sn-
1/sn-2 PC and the subsequent accumulation in mostly sn-1 MGDG (Mongrand et al_,
1997; Mongrand et al_, 2000). The authors concluded that it was labeled sn-1-acyl-LPC
that was transferred to the chloroplast and then reacylated with unlabeled fatty acids by
LPCAT at the OEM dunng the chase in route to MGDG production. These results
suggest that LPC and chloroplast LPCAT activity may be part of the ER-to-chloroplast
lipid transfer reactions of the leaf eukaryotic pathway.

The discussion of previous research above indicates that LPC and LPCAT
activity may have roles in both trafficking of fatty acids from the chloroplast to the ER,
and from the ER to the chloroplast. Arabidopsis has four enzymes with demonstrated in
vitro LPCAT activity: AtLPCAT1 and AtLPCATZ2 (Stahl et al_, 2008; Wang et al_, 2012a;
Lager et al, 2013; Wang et al., 2014), and the Ilysophosphatidylethanolmine
acyltransferases AtLPEAT1 and AtLPEATZ2 (Stalberg et al., 2009; Jasieniecka-
Gazarkiewicz et al_, 2016). AtLPCAT1 and AtLPCATZ2 have a strong preference for 18-
carbon unsaturated acyl-CoAs over 16:0-CoA, and thus could produce the sn-1/2 18-
carbon molecular species of PC (and subsequent MGDG) characternistic of the
eukaryotic pathway (Lager et al., 2013). Short timepoint metabolic tracing of lipid
metabolism in developing seeds of the LPCAT1 LPCATZ2 double mutant (/pcat1 Ipcat?)
indicated the initial incorporation of nascent fatty acids into PC through sn-2 acyl editing
was abolished (Bates et al., 2012). Instead the acyl groups are rerouted and initially
esterified to G3P through the GPAT and LPAT reactions of the eukaryotic pathway prior
to de novo PC synthesis. This result suggests that the Arabidopsis LPCAT1 and
LPCAT2 enzymes are involved in the flux of acyl groups from the plastid to the ER in
developing seeds, and that LPEAT1 and LPEATZ2 cannot compensate for the loss of
LPCATs in the acyl-editing cycle. However, these previous results are not directly
applicable to leaves for two reasons: (1) In developing seeds LPCAT1 and LPCAT2 are
expressed at 2-3 fold higher levels than LPEAT1 and LPEATZ2 (Supplemental Fig. 1)
which may explain the lack of compensatory acyl-editing activity by LPEAT1 and
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LPEATZ In the Ipcatl Ipcat? mutant seeds. In leaves LPEAT1 and LPEATZ2Z are
expressed at similar or even higher levels than LPCAT1 and LPCATZ2 (Supplemental
Fig. 1). Therefore, it is possible that LPCAT1/LPCATZ2 and LPEAT1/LPEATZ2 may both
contribute the acyl-editing LPCAT activity in leaves. (2) Quantitative acyl flux between
the plastid and the ER is distinctly different between developing leaves and developing
oilseed tissues. In leaves of 18:3 plants >60% of all fatty acids exported to the ER are
reincorporated into the plastid for chloroplast membrane production. However, in
oilseeds the major flux of acyl groups is for ER-localized triacylglycerol (TAG) synthesis
such that =95% of acyl groups accumulate in extra-plastidial oil bodies and membranes,
with very little flux back into the plastid (Li-Beisson et al_, 2013). Thus, previous acyl flux
studies on developing seeds of lpcat1 Ipcat? are not appropriate for measuring the role
of LPCATs In the flux of acyl groups from the ER to the plastid for galactolipid
production in leaves.

Therefore, to understand the roles of LPC and LPCAT activity in acyl flux to and
from the ER and chloroplast we crossed the Arabidopsis Ipcat1 Ipcat? double mutant
(Bates et al_, 2012) with the act? mutant (Kunst et al_, 1988). ACT1 (also called ATS1
(Nishida et al., 1993)) encodes the chloroplast GPAT. The act? mutant eliminates
prokaryotic pathway MGDG synthesis and enhances acyl flux through the eukaryotic
pathway, similar to 18:3 plants. Our analysis of lipid accumulation, chloroplast-
associated LPCAT activity, and in wvivo acyl fluxes through both short timepoint
metabolic tracing and long timepoint pulse-chase experiments further clanfy the role of
LPCATs within leaf PC acyl editing, and distinguish a separate metabolically-active pool

of PC involved in providing the substrate for chloroplast lipid synthesis.

RESULTS

Production and characterization of the act1 Ipcat1 Ipcat2 triple mutant

In Arabidopsis leaves both the eukaryotic pathway and prokaryotic pathway

contribute approximately equally to MGDG production (Browse et al., 1986). To better
understand the roles of LPCAT1 and LPCATZ2 specifically in eukaryotic pathway
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galactolipid production we crossed the Ipcat? Ipcat? double mutant (Bates et al_, 2012)
with the act? mutant, which essentially eliminates prokaryotic pathway galactolipid
production (Kunst et al., 1988). The act? allele is partially leaky, and residual GPAT
activity remaining in the chloroplast is utilized for phosphatidylglycerol (PG) production
(Xu et al_, 2006). Previous crosses of act? with fgd7-1 (a component of the transporter
complex that imports the eukaryotic pathway lipid substrate into the chloroplast) was
embryo lethal (Xu et al_, 2005). We reasoned if the transport of LPC to chloroplasts and
its subsequent conversion to PC by LPCAT at the chloroplast OEM was a key part of
the eukaryotic pathway, then the act? Ipcat? Ipcat? triple mutant may also demonstrate
developmental or vegetative growth defects. Crossed F1 seeds were grown to maturity,
and seed was collected and re-sown. The segregating F2 plants were screened for
homozygosity of the Ipcatl Ipcat? double T-DNA mutation by PCR, and for
homozygosity of the act? mutation by the lack of 16:3 in leaf lipids by gas
chromatography (Kunst et al., 1988). Dunng the initial screening no growth phenotypes
were observed. Homozygous act? Ipcat? Ipcat? triple mutants were subsequently grown
side-by-side with parental lines and wild-type Col-0. Across vegetative growth, the size
of the triple mutants was within the plant-to-plant variation range of the parental lines
(Supplemental Fig. 2). Therefore, the act? Ipcatl Ipcat? triple mutation has minimal
effects on plant vegetative growth.

To determine if the act? Ipcatl Ipcat? triple mutant had defects in leaf lipid
production we measured the relative accumulation of leaf membrane lipids at three
developmental stages (2, 3, and 4 weeks after germination) in four lines of Arabidopsis:
wild-type Col-0, act?, Ipcatl Ipcat? double mutant, and the act? Ipcat? Ipcat2 triple
mutant (Fig. 2). In general the relative accumulation of leaf membrane lipids in the
Ipcat? Ipcat? mutant was similar to Col-0; however as previously charactenized, the act1
mutant has a significant change from Col-0 with less MGDG and PG, and a
comresponding increase in PC and DGDG (Fig. 2A-C) (Kunst et al_, 1988). Therefore, to
understand the effect of the Ipcat? Ipcat? mutation when acyl flux through the eukaryotic
pathway is enhanced in the act? background, our main comparison is between act? and
the act? Ipcat? Ipcat? triple mutant. At two and three weeks there were no significant

changes in membrane lipid abundance between the two lines (Fig. 2A-B). At four weeks
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(Fig. 2C), only PG demonstrated a significant increase from 2.2% + 1.0% in the act1 line
to 10.1 # 3.1% in the act? Ipcat1 Ipcat?2 line (P-value = 0.0013).

Even though the amount of PC or PE did not significantly change between act1
and act? Ipcat! Ipcat2, there were significant changes to their fatty acid compositions,
especially at later stages in development (Fig. 3). There was no change in either PC or
PE at 2 weeks after germination (Fig. 3A, 3D). At 3 weeks PC 18:1 content decreased
from 23.1% = 0.3% in the act? line to 18.5% = 0.05% in the act? Ipcat1 Ipcat2 line (Fig.
3B). At 4 weeks PC 18:1 decreased from 29.7% *= 1.1% in act? to 20.8% = 0.6% in act1
Ipcat? Ipcat2, which was mostly compensated for by significant increases in 18:2 (from
37.8% + 0.9% to 42.4% + 0.4%) and 18:3 (from 15.6% + 0.3% to 17.8% = 0.5%). The
only significant change in PE between act? and act? Ipcat? Ipcat2 was at 4 weeks (Fig.
3F), where 16:0 decreased (from 27.0% * 0.3% to 25.1% * 0.3%), 18:2 decreased
(from 43.1% *= 0.7% to 40.7% + 0.5%), and 18:3 increased (from 13.6% * 04% to
16.6% = 0.7%). Supplemental Figures 3, 4 and 5 report the fatty acid composition for all
other lipids measured in Fig. 2 at 2, 3, and 4 weeks respectively. The major galactolipid
products of the eukaryotic pathway (MGDG and DGDG) did not have any significant
changes In fatty acid composition between act? and act? Ipcat1 IpcatZ2. The change in
abundance of PG measured at 4 weeks (Fig. 2C), only had a limited effect on its fatty
acid composition with a significant increase in 18:3 in the in act? Ipcat? Ipcat?2 line (from
30.7% = 0.3% to 32.3% = 0.1%).

Together, the limited effect of the act? Ipcat? Ipcat? tnple mutation compared to
the act? mutation alone on plant growth and lipid accumulation across leaf development
suggests that LPCAT1 and LPCATZ2 are not essential for eukaryotic pathway lipid
metabolism when the prokaryotic pathway is limiting. However, other lysophospholipid
acyltransferases (such as LPEAT1 and LPEATZ2) have demonstrated LPCAT activity in
vitro (Stalberg et al., 2009; Jasieniecka-Gazarkiewicz et al_, 2016), and are expressed
at similar levels to LPCAT1 LPCATZ in leaves (Supplemental Fig. 1). Thus, it is possible
that other lysophospholipid acyltransferases may compensate for the loss of LPCAT
activity in the act? Ipcat? Ipcat? background. /n vitro LPCAT activity has also been
associated with multiple subcellular membrane fractions (Bessoule et al, 1995;

Tiellstrom et al., 2012; Wang et al., 2014). To measure if the chloroplast-associated
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LPCAT activity that has been hypothesized to be involved in the eukaryotic pathway of
galactolipid synthesis (Mongrand et al., 1997; Moreau et al., 1998; Mongrand et al_,
2000) is actually reduced in the Ipcat? Ipcat?2 mutants, we performed LPCAT assays on
chloroplasts isolated from each plant line (Fig. 4). The controls Col-0 and act? did not
exhibit a significant difference in the LPCAT activity that produced ["“C]PC from the
addition of LPC and [*“CJoleoyl-CoA to the isolated chloroplasts. However, [“C]PC
production was reduced ~85% in act? Ipcat? Ipcat2 from wild-type levels (Fig. 4).

There was also no significant difference in [”C]PC synthesis between Ipcat?
Ipcat2 and act1 Ipcat1 Ipcat?2 lines. It is not clear if the residual ["*C]PC synthesis within
the Ipcat? Ipcat2 backgrounds is chloroplast-localized LPCAT activity, or if it is due to
the activity of other lysophospholipid acyliransferases from partial contamination of the
isolated chloroplasts with other cellular membrane fractions (Larsson et al., 2007;
Stalberg et al., 2009; Bulat and Garrett, 2011; Jasieniecka-Gazarkiewicz et al_, 2016).
Mevertheless, the major chloroplast-associated LPCAT activity in the act? Ipcat1 Ipcat?2
triple mutant was mostly eliminated (Fig. 4), and it had little to no effect on growth or leaf
galactolipid accumulation (Fig. 2, Supplemental Fig. 2), suggesting LPCAT activity is not
an essential part of eukaryotic pathway galactolipid synthesis. However, the mass
accumulation of MGDG and DGDG does not indicate the metabolic pathway of
synthesis. To better understand how the loss of the major chloroplast LPCAT activity
affects acyl flux out of the chloroplast and through the eukaryotic pathway into
galactolipids of the act? Ipcat1 Ipcat?2 triple mutant, we moved on to an in vivo metabolic

labeling approach during the stage of rapid leaf growth (3-week-old plants).

Rapid in vivo metabolic labeling to characterize the effect of Ipcat1 Ipcat2 on the
entry of nascent fatty acids into the eukaryotic pathway through acyl editing

MNewly synthesized fatty acids produced in the stroma of the plastid are exported
as free fatty acids and esterified to co-enzyme A in the ER for use by the varnous
acyltransferases of the eukaryotic pathway (Li-Beisson et al., 2013). Rapid metabolic
labeling experiments in leaves, seeds, and plant suspension cells have demonstrated

that nascent fatty acids exported from the plastid are predominantly directly

10
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incorporated into PC through an LPCAT-type reaction within the acyl-editing cycle,
rather than first estenfied to glycerol-3-phosphate through de novo glycerolipid
biosynthesis (Bates et al_, 2007; Bates et al., 2009; Bates et al_, 2012; Tjellstrom et al_,
2012; Yang et al., 2017). This rapid incorporation into PC may take place on the
chloroplast surface where significant LPCAT activity resides and ER-plastid connection
sites are present (Andersson et al., 2007; Tjellstrom et al., 2012; Botella et al_, 2017).
We demonstrated that the Ipcat? Ipcat? knockout eliminates most of the chloroplast-
associated LPCAT activity (Fig. 4). To determine if the knockout of Ipcat? Ipcat? also
affects the initial incorporation of nascent fatty acids into the eukaryotic pathway through
PC acyl editing, we followed the continual incorporation of [“Clacetate into fatty acid
synthesis and lipid assembly (Allen et al., 2015) in developing leaves of act? and act1
Ipcatl Ipcat? over a short time course from 5 to 60 min (Fig. 5). [”C]acetate
incorporation into total lipids was linear and had the same rate of accumulation in each
line (Fig. 5A). However, on average act? had more total DPM/ug chlorophyll than act1
Ipcat? Ipcat2. Higher accumulation of label but with the same rate may be due to a
difference in [14C]acetate concentration in the incubation medium for each line, or
possibly a small difference in total chlorophyll content utilized for normalization.
Accumulation of C labeled fatty acids into different glycerolipids was also linear,
indicating continuous biosynthesis of each lipid over the time course in each line (Fig.
5B-C). Together these results indicate similar rates of total fatty acid biosynthesis in
each line, and no indication of lipid degradation during the time course.

The relative accumulation of labeled lipids in act? and act? Ipcat1 Ipcat2 from
Figure 5 is shown in Figure 6. At 60 min the relative labeling between lipids was similar
in both lines; however, the initial incorporation of nascent fatty acids into PC of the act1
Ipcat? Ipcat? line was delayed compared to act? (Fig. 6A). The decrease in PC was
mostly compensated for by significant increases in DAG and PE (Fig.6B-C). There was
no significant difference measured between the lines for labeling of PA, PG, and PI/PS
(Fig. 6B-C), and notably MGDG (Fig. 6D).

To gain a better understanding of the mechanisms of newly synthesized fatty
acid incorporation into the eukaryotic pathway, we characterized the positional

distribution of the "*C-labeled fatty acids in PC and DAG across the labeling time course
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for both act? and act? Ipcat1 Ipcat2 (Fig. 7). In act1 DAG contained similar amounts of
nascent fatty acids at both stereochemical positions with a slight preference for sn-1
(55-60%) over sn-2 (40-45%) across the time course (Fig. 7A). In the PC of act? most of
the nascent fatty acids accumulated at the sn-2 position (~75%) at all time points (Fig.
7C). In act? Ipcatl Ipcat?2, DAG stereochemical labeling was similar to that of DAG in
act1 with a slight preference for the sn-1 position (Fig. 7B). However, PC of act1 lpcat1
Ipcat? was distinctly different than act? PC, with the stereochemical labeling
demonstrating a preference for sn-1 labeling (~60%) across the time course, similar to
DAG from both lines. The rapid incorporation of nascent fatty acids predominantly in sn-
2 of PC of act? (Fig. 5B, Fig. 7C) i1s characteristic of newly synthesized fatty acids first
entering eukaryotic glycerolipids through PC acyl editing. However, in act? Ipcat? Ipcat?2
the initial delay of PC labeling and increase of DAG labeling (Fig. 5C, 6A-B), combined
with the similar stereochemical labeling of PC and DAG across the time course (Fig. 7B,
7D) is consistent with an elimination of nascent fatty acid entry into eukaryotic
glycerolipids through PC acyl editing and a reorientation of acyl flux to first move
through DAG then into PC. These results indicate that LPCAT1 and LPCATZ2 are
involved in the direct incorporation of nascent fatty acids into PC through acyl editing as
the fatty acids exit the chloroplast, and that other lysophospholipid acyltransferases do
not compensate for the loss of LPCAT1 and LPCAT2 activity in the leaf acyl editing

cycle.

Pulse-chase metabolic labeling to characterize the effect of Ipcat1 Ipcat2 on the
PC-MGDG precursor—product relationship of the eukaryotic pathway

To measure acyl flux through the longer-term precursor—product relationships
within leaf lipid metabolism, we performed a pulse-chase metabolic tracing experiment.
Three-week-old rosettes from both the act? and act? Ipcatl Ipcat? lines were pulsed
with [”C]acetate for 15 min, the radioisotope was washed off, and then the samples
were chased without radiolabel for an additional 51 h to measure the redistribution of
fatty acids as eukaryotic pathway intermediates tum over with time (Fig. 8). Similar to

the short-timepoint continuous [14C]acetate labeling expenment (Fig. 5, 6), at the end of
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the pulse most of the newly synthesized radioactive fatty acids were in PC in both the
act1 (Fig. 8A) and act? Ipcat1 Ipcat2 (Fig. 8B) lines. During the chase the radioactivity in
PC rapidly declined, and the fatty acids were redistnbuted predominantly into MGDG,
followed by PE, and then TAG. All other measured lipids (PG, PA, DAG, PI/PS, DGDG)
contained only minor amounts of radioactivity over the chase penod (Fig. 8A-B). When
the relative labeling of individual lipids was compared between the plant lines, there was
no statistical difference in the labeling pattern for the major labeled lipids PC, MGDG,
and PE. PC levels differed only at the 51 h time point where there was more labeled PC
in actl Ipcat1 Ipcat? than in act? (Fig. 8C-E). In addition, there was no difference
between the lines over the time course for labeling of DAG (Fig. 8C) and PA (Fig. 8E),
which are intermediates of glycerolipid synthesis. This result suggests that the
quantitative turnover of PC to provide the substrate for MGDG synthesis within the
eukaryotic pathway Is not affected by the Ipcat? Ipcat2 mutations.

Interestingly, TAG labeling was significantly different between the two plant lines
(Fig. 8F). TAG accumulation is very minor in leaf tissue under normal circumstances
(typically < 1% of total lipid mass), but a dynamic small pool of TAG that is constantly
synthesized and degraded can be measured through radiolabeling (Fan et al., 2014;
Tiellstrom et al., 2015). Both lines demonstrated the same trend, with the continual
increase of labeled fatty acid in TAG until the 22 h timepoint, and then a decrease
through the remaining time course. However, starting at the 4 h timepoint the act? line
had a significantly higher proportion of labeled fatty acids in TAG than the act? lpcat1
Ipcat? line did (Fig. 8F).

To gain a better understanding of the role of the LPCAT1 LPCATZ2 enzymes in
leaf eukaryotic pathway metabolism, we analyzed the changes in both the labeled fatty
acid composition (Fig. 9), and their stereochemical location (Fig. 10) within DAG, PC,
and MGDG across the [”C]acetate pulse-chase time course (Fig. 8). DAG, PC, and
MGDG each had a unique profile of 14C—fatty acid accumulation. However, when the
composition of labeled fatty acids within each lipid was compared between the act? and
act1 Ipcat1 Ipcat2 lines there was no significant differences between the lines (Fig. 9).
There was limited change in the composition of DAG over the 51 h chase perniod (Fig.

9A-B), consistent with its role as an intermediate of lipid metabolism that is not a
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substrate of fatty acid desaturases. However, PC and MGDG had larger changes in
composition as both lipid classes are substrates for desaturases, and the acyl groups
that are initially incorporated into PC eventually accumulate in MGDG (Fig. 8). In PC the
major change In composition was a decrease Iin monoenoic fatty acids, with a
concomitant increase in both diencic and trienoic fatty acids as a proportion of the
labeled fatty acids remaining in PC (Fig. 9C-D). The major change in MGDG was a
large Increase in trenoic fatty acids (Fig. 9F). Considering the precursor—product
relationship of acyl transfer between PC and MGDG (Fig. 8), these results are
consistent with the loss of nascent C-18:1 initially incorporated into PC (through both
desaturation and acyl transfer) and its subsequent accumulation as C-18:3 in MGDG.
These results are consistent with the current understanding of the eukaryotic pathway
(Fig. 1). Together with Figure 8, this result suggests the Ipcat? Ipcat2 mutations have
little to no effect on the flux of total acyl groups (Fig. 8) or select fatty acids (Fig. 9) from
PC to MGDG within the eukaryotic pathway.

Despite the similarities of acyl accumulation and composition over the pulse-
chase between the act? and act? Ipcat1 Ipcat? lines, the stereochemical location of the
labeled acyl groups revealed significant differences between the lines (Fig. 10). During
the pulse-chase experiment labeled DAG can represent de novo DAG at early time
points. At later time points labeled DAG can represent de novo DAG synthesized with
fatty acids removed from other lipids, and DAG derived from membrane lipid or TAG
tumover. The “C-fatty acid stereochemistry in DAG throughout the pulse-chase time
course indicated more labeled fatty acids at the sn-1 position than the sn-2 position (Fig.
10A), similar to the short timepoint continuous [14C]acetate labeling expenment (Fig. 7A-
B). There was no significant difference between act? or act? Ipcat1 Ipcat2 at any time
point, indicating the loss of LPCAT1 LPCATZ2 does not affect initial or prolonged DAG
metabolism. The act? PC stereochemistry was similar to the continuous labeling
expenment (Fig. 7C) throughout the pulse-chase with more ”C—fatty acids at sn-2 than
sn-1 (Fig. 10B), consistent with the incorporation of nascent fatty acids into sn-2 PC by
LPCAT-mediated acyl editing. The act? Ipcat! Ipcat2 PC stereochemistry was initially
similar to the short timepoint continuous labeling expenment (Fig. 7D) with more label at

sn-1 than sn-2, consistent with the loss of rapid incorporation of nascent fatty acids into
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PC through acyl editing. However, after 4 hours of chase there was a switch in
stereochemistry, with more labeled fatty acids in the sn-2 position rather than the sn-1
(Fig. 10B), more similar to PC from the act? mutant. At all timepoints the labeled fatty
acid stereochemistry in PC was significantly different between the act? and act1 Ipcat1
Ipcat? lines. For MGDG, the early timepoints indicated similar stereochemical
localization of the "*C-fatty acids in both lines, at later time points in the chase more sn-
1 labeled fatty acids accumulated in both lines (Fig. 10C). It is important to point out that
MGDG accumulated as the major labeled lipid by the end of the chase perniod (Fig. 8A-
B), and that the stereochemistry of labeled acyl groups was similar to that of DAG
throughout the time course (Fig. 10A) and that of initial PC of the act? Ipcat? Ipcat? line
(Fig. 7D, 10B), but not similar to the labeled PC which remains near the end of the time
course in both lines (Fig. 10B).

DISCUSSION

Biochemical, genetic, and molecular biology research on plant membrane lipid
assembly over the past 40 years has indicated a complicated metabolic network of
reactions (Fig. 1) that requires the trafficking of intermediates between multiple
subcellular compartments to produce the diverse molecular species of lipids crucial to
cellular function. While many of the acyltransferases and desaturases involved in lipid
assembly have been identified the pathways of acyl trafficking, the identity of lipid
intermediates, and the trafficking proteins involved in the eukaryotic pathway have
remained more elusive. Major advances over the past 15 years include the identification
of a free fatty acid transporter for export of nascent fatty acids from the plastid (Li et al_,
2015), the determination that nascent fatty acids exported from the chloroplast in leaves
are predominantly first incorporated into PC by an LPCAT-type reaction of acyl editing
rather than the initial attachment to G3P through de novo glycerolipid assembly (Bates
et al., 2007), and the characternization of a protein complex involved in the transport of
the eukaryotic pathway assembled lipid intermediate into the plastid for galactolipid
production (Xu et al., 2005). However, the exact lipid species transported from the ER to

the chloroplast has remained unclear; DAG, PA, PC and LPC have all been suggested.
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Eukaryotic pathway-derived lipids are characterized by 18-carbon fatty acids at the sn-2
position, while the sn-2 acyltransferases of the prokaryotic pathway in the plastid utilize
16-carbon fatty acids. If LPC is transported to the outer membrane of the plastid it must
be acylated to PC by an LPCAT activity prior to tumover to DAG or PA to produce the
comrect molecular species of the eukaryotic pathway. Since LPCAT activity has been
implicated in both the trafficking of fatty acids from the chloroplast to the ER in seeds
(Bates et al_, 2012) and from the ER to the chloroplast in leaves (Mongrand et al_, 1997;
Moreau et al_, 1998; Mongrand et al_, 2000), we sought to gain a better understanding
of the roles of LPCAT1 and LPCAT2 in leaf acyl trafficking by analyzing the lipid

accumulation and acyl fluxes within the act? Ipcat1 Ipcat2 mutant background.

LPCAT1 and LPCAT2 encode chloroplast-localized LPCATs that are involved in
the direct incorporation of newly synthesized fatty acids into PC through acyl

editing

The rapid incorporation of nascent fatty acids into predominantly the sn-2
position of PC through acyl editing, rather than through de novo glycerolipid synthesis,
was originally characterized in developing pea leaves, an 18:3 plant (Bates et al_, 2007).
In this study the act? mutation (Kunst et al., 1988) was utilized to essentially convert
Arabidopsis into an 18:3 plant. Here we demonstrate that in act? leaves nascent fatty
acids are also predominantly incorporated initially into the sn-2 position of PC,
consistent with a highly active PC acyl-editing cycle in Arabidopsis leaves (Fig. 5B, 6A,
7C). When LPCAT1 and LPCATZ2 were additionally mutated in the act? Ipcat? Ipcat?
line, the chloroplast-associated LPCAT activity was reduced at least 85% (Fig. 4), the
initial incorporation of nascent fatty acids into PC was reduced concomitantly with an
increase into DAG (Fig. 6A-B), and the stereochemistry of incorporation into PC was
completely switched to favor sn-1 in a proportion similar to the rapidly synthesized de
novo DAG (Fig. 7B,D). These results suggest that without chloroplast-associated
LPCAT1 and LPCATZ2 activity the newly synthesized fatty acids are rerouted to enter
PC through the GPAT and LPAT reactions of de novo glycerolipid synthesis rather than
LPCAT-based acyl editing in leaves (Fig. 11)_ It is not clear if the residual ~15% of wild-
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type LPCAT activity measured in the act? Ipcat1 [pcat2 isolated chloroplasts is due to
other chloroplast-associated lysophospholipid acyltransferases (LPLAT) (Larsson et al_,
2007; Stalberg et al., 2009; Bulat and Garrett, 2011; Jasieniecka-Gazarkiewicz et al_,
2016), or due to partial contamination of the isolated chloroplasts with other cellular
membrane fractions containing LPLATs (Larsson et al., 2007; Tjellstrom et al_, 2012).
However, the complete switch in the in vivo-labeled PC stereochemistry suggests that
any other putative chloroplast-associated LPLATs do not compensate for the lack of
LPCAT1 and LPCATZ2 In the direct flux of nascent fatty acids into PC through acyl
editing.

Roles of PC acyl editing in leaves

Here we demonstrate a role for LPCAT1 and LPCATZ2 in the direct incorporation
of newly synthesized fatty acids into PC as they exit the chloroplast in leaves and show
that this role is dispensable in the Ipcat? Ipcat? background (Fig. 11A-B). However, the
role of LPCAT1 and LPCATZ2 in leaves likely extends beyond trafficking of nascent fatty
acids to PC. PC is the site of ER-localized fatty acid desaturation (Li-Beisson et al_,
2013). Previously, LPCAT1 and LPCATZ2 were demonstrated to be involved in acyl flux
through PC to provide polyunsaturated fatty acids (PUFA) for seed triacylglycerol
biosynthesis (Bates et al., 2012; Wang et al_, 2012a). Acyl flux through PC for PUFA
production is likely also a key role for acyl editing in leaves. Recent work has indicated
that the amount of PUFA that accumulate in ER lipids is related to both desaturase
activity and the rate of acyl flux through PC. When acyl flux slows down, more PUFA
accumulate due to enhanced residence time on PC for desaturation (Maatta et al_,
2012; Mei et al_, 2015; Botella et al_, 2016). While young leaves are expanding, acyl flux
through PC is high for membrane lipid production, and little change in PC fatty acid
composition was observed in the act? Ipcat1 Ipcat? mutant (Fig. 3A). However, as
leaves matured, more 18:2 and 18:3 and less 18:1 accumulated in PC as compared to
act1 (Fig. 3B,C), and a similar change was observed in PE (Fig. 3F). This result
suggests that LPCAT1- and LPCATZ2-based acyl editing has homeostatic roles likely

involving distribution of PUFA to other lipids across the leaf life cycle. In the [pcat?
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Ipcat? mutant background, the plant may compensate for the loss of acyl editing by
increasing other mechanisms of acyl flux through PC as indicated in seeds (Bates et al_,
2012; Wang et al_, 2012a), or providing PUFA from chloroplast sources. Recently, a PG
lipase was implicated in the export of PUFA from the chloroplast for seed oil
biosynthesis (Wang et al_, 2017; Aulakh and Durrett, 2019). The only lipid with a change
in abundance in the act? Ipcat? Ipcat2 line was PG (Fig. 2C). It is possible that the loss
of LPCAT1- and LPCATZ2-based acyl editing has activated this or other mechanisms of
chloroplast-to-ER trafficking of PUFA. However, the in wvivo metabolic labeling
expenments (Fig. 6, 8) did not measure a significant difference in PG labeling,
suggesting acyl flux through PG may be a minor contnbution to ER. PUFA content.

The only lipid that had significant differences in [14C]fatty acid accumulation
between lines across the pulse-chase time course was TAG (Fig. 8F). The act? Ipcat1
Ipcat? line accumulated less labeled TAG than did the act? line. TAG does not
accumulate to high mass levels in leaves, but a small metabolically-active pool that is
constantly synthesized and turned over is believed to act as a free fatty acid buffer
during times of high rates of fatty acid synthesis or stress (Xu and Shanklin, 2016).
Recently, phospholipid:diacylglycerol acyltransferase (PDAT) was demonstrated to be a
key part of TAG production in Arabidopsis leaves (Fan et al_, 2013a; Fan et al_, 2013b;
Fan et al., 2014). PDAT transfers a fatty acid from the sn-2 position of PC to DAG,
producing TAG and LPC. LPCAT works in tandem with PDAT to regenerate PC from
the co-produced LPC (Xu et al., 2012). Together, PDAT and LPCAT could lead to
channeling of nascent fatty acids exported from the plastid into PC and then TAG during
high rates of fatty acid synthesis. The reduced TAG labeling in the act? Ipcati Ipcat?
mutant is likely due to inefficient PDAT activity without an LPCAT to regenerate the PC
substrate. Together, these results suggest a variety of possible roles for LPCAT1- and
LPCATZ2-based acyl editing in leaves.

MGDG production from PC is independent of LPCAT1 and LPCAT2

LPCAT activity has been implicated in the acylation of LPC transported from the
ER to the chloroplast as part of eukaryotic pathway trafficking of substrates for MGDG
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synthesis. This previous conclusion originally came from in wifro expenments
demonstrating the transfer of LPC from isolated microsomes to isolated chloroplasts
from leek seedlings, and its acylation to PC by the chloroplast-associated LPCAT
activity (Bessoule et al., 1995). Further in wvivo metabolic labeling pulse-chase
expenments in leek seedlings demonstrated that PC containing predominantly sn-2
labeled fatty acids gave rise to MGDG labeled mostly at sn-1 (Mongrand et al_, 1997;
Mongrand et al_, 2000). The conclusion was that only the sn-1 fatty acid was transferred
to the chloroplast and, combined with the previous in vitro expenments, suggested that
LPC was the molecule transferred from the ER to the chloroplast.

The act? mutation eliminates the prokaryotic pathway of MGDG synthesis. When
this mutant was crossed with the fgd7-7 mutant (a part of the OEM to IEM transporter
that provides substrate for chloroplast lipid synthesis) no viable double mutants were
recovered (Xu et al., 2005), indicating that disruptions of the eukaryotic pathway in the
act1 background are lethal. However, we demonstrate that the act? Ipcat1 Ipcat2 triple
mutation causes at least an 85% reduction in chloroplast LPCAT activity (Fig. 4), little to
no growth alteration (Supplemental Fig. 2), and no effect on the accumulation of
galactolipids (Fig. 2). Therefore, we conclude that LPCAT1 and LPCAT2, and LPC
trafficking are not a key part of eukaryotic pathway galactolipid synthesis. However, we
cannot rule out that the residual ~15% of wild-type LPLAT activity associated with
isolated act? Ipcatl Ipcat? chloroplasts may represent a minimal flow of LPC
transported from the ER for other purposes, such as incorporation of PC into the outer
leaflet of the chloroplast OEM. If this minimal flow of LPC occurs, the formation of PC
must be through a LPLAT other than LPCAT1 and LPCATZ2.

To gain a better understanding of the mechanisms involved in the PC-MGDG
precursor—product relationship we performed a long term [“Clacetate pulse-chase
expenment. The act? mutant and act? Ipcat1 Ipcat?2 triple mutant showed little difference
in quantitative turnover of initially-labeled PC or in the subsequent incorporation of the
labeled fatty acids into MGDG (Fig. 8). In addition, the labeled fatty acid composition of
DAG, PC, and MGDG was the same between the two lines across the pulse-chase time
course (Fig. 9). These results further suggest that the Ipcat? Ipcat? mutation does not
affect the ER-to-chloroplast trafficking of the eukaryotic pathway. When the
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stereochemistry of labeled fatty acids in PC and MGDG of act? were analyzed, we
found a similar result to that of the leek seedlings (Mongrand et al., 2000) where PC
was mostly sn-2 labeled and the labeled MGDG that accumulated from tumover of PC
was mostly sn-1 labeled (Fig. 10). From the act? labeling data alone (in an essentially
18:3 plant, similar to leek), the transfer of LPC would make sense. However, the
stereochemical analysis of DAG, PC, and MGDG of the act? Ipcat1 [pcat?2 line revealed
a different underlying mechanism.

In both the short continuously labeling time course and at the end of the pulse
(time 0), the stereochemistry of DAG and PC from act1 lpcat1 Ipcat? were very similar,
with more nascent labeled fatty acids at sn-1 than sn-2 (Fig. 7, 10). Therefore, the lack
of LPCAT1- and LPCATZ2-based acyl editing leads to nascent fatty acid incorporation
into PC though eukaryotic de novo glycerolipid assembly, which dictates the
stereochemical distnbution of fatty acids in DAG and PC. The labeled fatty acid
stereochemical distribution that accumulates in MGDG over time in both lines (Fig. 10C)
Is also very similar to the de novo synthesized DAG and PC (Fig. 10A-B). Therefore, we
conclude that the DAG backbone utilized to synthesize eukaryotic MGDG is denved
from a PC pool produced from de novo eukaryotic glycerolipid assembly and is distinct
from the pool of PC undergoing LPCAT1- and LPCATZ2-based acyl editing.

Figure 11 incorporates the [14C]acetate pulse-chase data onto new models of
eukaryotic pathway acyl flux that demonstrate the metabolically distinct pools of PC
involved in acyl editing and eukaryotic pathway MGDG production. When LPCAT1 and
LPCAT2 are present in act? the labeling of PC is dominated by the rapid sn-2 acyl
editing (Fig. 11A). Acyl editing is a constant exchange of acyl groups in PC with the
acyl-CoA pool, and it allows the PUFA produced on PC to be utilized by the GPAT and
LPAT reactions of the eukaryotic pathway (Bates et al_, 2007; Bates et al_, 2009; Bates
et al., 2012; Bates, 2016). Therefore, during the pulse-chase the labeled acyl groups
can leave PC by acyl editing and are assembled into DAG with more sn-1 labeling than
sn-2, which is then used for PC synthesis. If this de novo synthesized pool of PC is
rapidly turmed over to produce the substrate for MGDG synthesis, MGDG will have the
same sn-1-labeled stereochemistry, and it would not have much effect on the

stereochemistry of “total labeled PC”, which is dominated by the separate highly-labeled
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acyl-editing PC pool_ It is only when LPCAT activity is removed in the act? Ipcat? Ipcat?
triple mutant that the flux through de novo PC to MGDG can be measured separately
from the acyl-edited PC pool (Fig. 10), which reveals a clear PC-MGDG precursor—
product relationship (Fig. 11B-C). Therefore, the glycerol backbone and both fatty acids
(derived mostly from PC acyl editing) that are assembled onto de novo PC are
ultimately the “DAG backbone” utilized for chloroplast MGDG synthesis. This model is
also supported by recent characterization of an unusual A6 desaturated fatty acid
produced transgenically in Arabidopsis leaves at only the sn-2 position of PC. However,
the AGBD fatty acid was redistributed approximately equally to the sn-1 and sn-2
positions of MGDG (Hurlock et al., 2018). Removal of the AGD fatty acid from PC by
acyl editing (Fig. 11A) and its subsequent incorporation into both positions of de novo
DAG by GPAT/LPAT activities of the eukaryotic pathway prior to MGDG synthesis is

consistent with our new model of acyl flux.

Changes to eukaryotic pathway acyl flux within the act1 Ipcat1 Ipcat2 background

In wild-type and act? leaves, the PC acyl-editing cycle may occur by at least
three mechanisms (Bates, 2016): (1) both the forward and reverse reactions of LPCAT
(Lager et al., 2013; Jasieniecka-Gazarkiewicz et al., 2016); (2) a phospholipase Az
(PLAz) hydrolysis of PC to LPC and a free fatty acid (FFA), FFA activation to acyl-CoA
by LACS, and LPC conversion to PC by the forward LPCAT reaction using a different
acyl-CoA (also known as the Lands Cycle (Lands, 1965)); (3) either mechanism 1 or 2
plus a LPC:LPC transacylase (LPCT) (Lager et al_, 2015) and a glycerophosphocholine
acyltransferase (GPCAT) (Lager et al_, 2015; Glab et al_, 2016). LPCT transfers an acyl
group from one LPC to another producing PC and glycerophosphocholine, which is then
converted back to PC by the combined action of GPCAT and LPCAT. In relation to the
multiple possible enzymatic mechanisms for acyl editing, two important details from the
[14C]acetate pulse-chase experiment must be pointed out. (1) In both act? and act?
Ipcat1 Ipcat?, DAG has approximately 30% “C-PUFA at the end of the pulse (time 0
chase), indicating newly synthesized 18:1 s rapidly Incorporated into PC for
desaturation, and then incorporated into DAG. (2) The act? Ipcatl Ipcat?2 PC
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stereochemical labeling within the pulse-chase expenment switches from more sn-1
label at time 0 to more sn-2 label at the end of the time course. Based on the
mechanisms of acyl editing, multiple possible scenaros could explain both the act1
Ipcat Ipcat?2 DAG PUFA content and the stereochemistry switch in PC (Fig. 11B-C).

First, in model Fig. 11B the lpcat1 Ipcat? mutation eliminates acyl chain removal
from PC by acyl editing (e.g. eliminating acyl-editing mechanism 1). Therefore, the
PUFA-labeled DAG represents PC-derived DAG after desaturation. In model 11B, the
switch in labeled PC stereochemistry may be through selective molecular species
trafficking. Not all PC that is synthesized de novo i1s turned over for chloroplast lipid
synthesis. Some PC has a structural role within vanous cellular endomembrane
systems. It is possible that the turmmover of mostly sn-1 labeled molecular species for
chloroplast lipid synthesis has left behind a majority of molecular species that contain
sn-2 labeled fatty acids.

Second, the lpcat? Ipcat? mutation eliminates the LPCAT portion of a Lands
Cycle, but not the continual generation of LPC by PLA-. In model Fig. 11C red and blue
arrows only, PLAs- or PLAB-based turnover of LPC generated by the PLA-> would
completely remove the fatty acids from PC leading to complete PC tumover.
Considering PC is also undergoing desaturation (Fig. 9), the [“C]18:1 originally
incorporated into PC will be converted to [*C]18:2 and ["*C]18:3 over time. When these
fatty acids are removed and then reutilized for de novo glycerolipid synthesis it will
produce de novo DAG containing PUFA, and the labeled fatty acid stereochemistry in
PC will then be determined by the acyl selectivity of GPAT/LPAT. This will lead to
different labeled stereochemical molecular species of PC produced from the “C-PUFA
and newly synthesized 2Cc-18:1 during the chase. In support this hypothesis, increased
expression of various lipases with as-yet uncharacterized functions were measured in
developing seeds of the Ipcat? [pcat? mutant, suggesting the possibility of a modified
method to remove PUFA from PC in the Ipcat? Ipcat2 background (Wang et al_, 2012a).

Third (model Fig. 11C, all arows), PLAz activity in act? Ipcat1 Ipcat? would
produce LPC, which could be converted back to PC by LPCT (as in acyl-editing
mechanism 3). This type of reaction would transfer an sn-1 acyl group from one LPC to

a second LPC and thus could move a labeled fatty acid from the sn-1 to sn-2 position in
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PC. The GPC also produced can be reacylated to LPC by GPCAT, and thus could
produce a cycle of sn-1/sn-2 acyl switching within the /pcat? Ipcat? background. From
the current experiments it is not clear which of these three possibiliies may be
occurmng, but it is likely that a pool of PC that remains in the ER (model 1, Fig. 11B)
may be undergoing acyl turnover (models 2/3, Fig. 11C), which leads to a different

stereochemistry of the labeled fatty acids in PC over time (Fig. 10B).

Current model for leaf glycerolipid synthesis and trafficking in wild-type

Arabidopsis leaves

Figure 12 is a modification of Fig. 1 based on our current results and displays the
current areas of uncertainty in the eukaryotic pathway of leaf glycerolipid synthesis. The
model no longer indicates that LPC can be transferred from the ER to the chloroplast for
galactolipid production. It also has three metabolically distinct pools of PC. PC(1) is
involved in LPCAT1- and LPCATZ2-based acyl editing and may be located at the
chloroplast surface or a ER-chloroplast membrane contact site. A membrane contact
site might make the most sense because it would allow PC containing newly
synthesized 18:1 to diffuse through the ER to the FADZ and FAD3 enzymes for
desaturation. PC(2) is the pool that is produced by de novo PC synthesis within the
eukaryotic pathway; it is a substrate for desaturases and provides PC that migrates
through the ER to other locations. PC(3) is the pool that is turned over to produce the
substrate for MGDG synthesis, and it may have been further desaturated by FADZ2 and
FAD3 than PC(2). In addition, the exact PC(3)-denved intermediate (DAG or PA)
transported to the IEM by the TGD1-5 complex is still unclear. The location of PC(3)
tumover is also unclear; it could be the ER, the chloroplast surface, or a ER-chloroplast
membrane contact site. Recent characterization of the ALA10 flippase mutant suggest
the likely involvement of a membrane contact site for ER-to-chloroplast trafficking
(Botella et al_, 2016). Considering the multiple possible roles for membrane contact sites
in acyl trafficking, it may be plausible that there are ER-chloroplast contact sites with

specific functions in acyl export from the chloroplast involving LPCAT1- and LPCATZ2-
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based acyl editing and separate contact sites with specific function in eukaryotic lipid
import into the chloroplast for galactolipid production.

The findings presented here strongly enhance our understanding of eukaryotic
pathway of membrane lipid production in leaves by demonstrating that (1) LPCAT1T and
L PCATZ encode the major chloroplast-associated LPCAT activities; (2) the major role of
LPCAT1 and LPCAT?2 is for direct incorporation of newly synthesized fatty acids into PC
through acyl editing as the fatty acids are transported out of the chloroplast; (3) LPCAT1
and LPCATZ2 activity is not involved in the transfer of LPC from the ER to the chloroplast
within eukaryotic pathway galactolipid production; (4) the PC-MGDG precursor—product
relationship of acyl flux involves removal of acyl chains from PC by acyl editing prior to
de novo PC synthesis and the subsequent turmover of PC for MGDG production; and (5)
PC acyl editing and PC turnover for MGDG production involve metabolically distinct
pools of PC. This last result suggests that an underlying spatial organization of distinct
PC metabolism may be a key part of the efficient acyl trafficking through the eukaryotic
pathway. While there is still uncertainty regarding which PC-derived lipid is trafficked
from the ER to the chloroplast, the Arabidopsis act? Ipcat1 Ipcat? line charactenzed
here may be particularly useful for future studies because it allows for metabolic tracing
of the PC-MGDG precursor—product relationship without the complications of acyl flux

around the PC acyl-editing cycle.

METHODS

Plant materials

Arabidopsis thaliana lines used in this study include: wild-type Columbia-0 (Col-0), act1
mutant (ACT1, At1G32200; Kunst et al., 1988), Ipcat! Ipcat? double mutant (LPCAT1,
AT1G12640; LPCATZ2, AT1G63050; Bates et al_, 2012), and the act? Ipcat1 Ipcat2 triple

mutant generated here.

Plant germination and growth
Seeds were stenlized in aqueous 10% bleach, 27% ethanol, and 0.1% SDS,
rinsed with water 5 times and applied to germination plates (1x MS salts, 0.05% MES
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free acid, 1% sucrose, and 0.8% Agar, pH 5.7) in a 0.1% agar solution. The plates were
incubated at 4 °C for 3 days, then placed in a growth chamber under ~150 pmol
photons m~ s white light using 14 h/10 h day/night cycle at 23 °C constant temperature
until all lines germinated and produced two true leaves (approximately 7-10 days). The
seedlings were then transferred to soil and placed back into the growth chambers. All
plants were watered 3 times a week with on watering consisting of Peter's NPK 20-20-
20 (0.957g/l) fertilizer solution. During the crossing and harvest of seeds, the plants

were grown at the same growth condition but with constant light.

Production of act1 Ipcat1 Ipcat2 triple mutant

The act? and Ipcatl Ipcat? were crossed via cross-pollination by hand. The
screening of act? was done by identifying absence of hexadecatrienoic acid (16:3) in
whole leaf FAME by gas chromatography. The screening of Ipcat? Ipcat? was done by
PCR of leaf tissue with previously described primers (Bates et al., 2012; Xu et al,
2012). With the Phire Plant Dnect PCR Mastermix (Thermo Scientific) as per the

manufacturer's instructions.

Production of FAME and gas chromatography

Plant tissue and collected lipid samples were converied to fatty acid methyl
esters (FAME) with an internal 17:0 TAG standard by heating to 85 °C for 1.5 h in 5%
sulfuric acid in methanol. After forcing a phase separation by adding hexane and 0.88%
potassium chlonde, the hexane phase containing the FAME was analyzed by gas
chromatography with flame ionization detection on a Shimadzu GC-2010 with a
RESTEK Rtx®-65 column (30m, 0.25mm 1D, df = 0.25 pm), with method run parameters
of 190 °C pnor for 2 min, and then the temperature increased to 270 °C at 10 “C/min
and held at 270 °C for 2 min. The detector was set at 275 °C.

Lipid extraction
The lipid extraction is based off of Hara and Radin (1978). Plant tissues were
quenched in 80-85 °C isopropanol with 0.01% butylated hydroxytoluene for 10 min. The

tissue was homogenized with polytron and moved to new glass tubes. The polytron was
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washed with isopropanol and hexane to recover all remaining sample and combined
with the ground tissue to a final proportion of hexane/isopropanol/water of 6/4/0.2
(viviv). The polytron was washed further between samples to avoid cross-
contamination. Lipids were collected into the hexane phase by adding half of the sample
volume of 6.6% sodium sulfate. The aqueous phase was back extracted using
hexane/isopropanol (7/2) and combined with the previous hexane extract. The
combined organic sample was dried down under nitrogen and resuspended in known
volume of toluene. For radiolabeled samples, the lipids were resuspended in
chloroform/methanol (2:1) and subjected to a second phase separation by the addition
of 0.88% potassium chloride to remove any excess radiolabel. The organic phase was
collected, dried down In nitrogen, and resuspended in known volume of toluene.
Chlorophyll was measured as in Amon (1949). Each replicate was a separate extraction

of enough leaf material from many plants to make approximately 0.3 g fresh weight.

Chloroplast isolation and LPCAT assays

Arabidopsis lines were grown on soil in a growth chamber set to 12/12-h
day/night cycle, 25°C, and 150 pmol photons m™ s7' light. 25 grams of leaf tissue was
harvested at 36 days (Col-0, Ipcat1 Ipcat2) and 44 days (act?, act1 Ipcat1 Ipcat2) after
16 hours of dark treatment. Chloroplast isolation was as described by (Kubis et al,
2008), with a modified concentration of 0.33 M sorbitol (instead of 0.3 M) for the
isolation and resuspension buffers. The chlorophyll content of isolated chloroplasts was
measured as in Amon (1949) with a Thermo Scientific Genesys 50 UV-Vis
spectrophotometer.

LPCAT assays were performed on chloroplasts equivalent to 150 pg chlorophyll,
in 0.3 mL in a 1.5-mL tube containing 1 mM soy LPC, and 13.6 uM ["*C]Joleoyl-CoA 55
mCi/mmol (American Radiolabeled Chemicals, Inc.), at 30 °C, with 300 rpm mixing for
30 minutes on an Eppendorf Thermomixer. The reaction was stopped by adding 1.2 mL
CHCIs/MeOH/Formic Acid (2/1/.1, viviv) and vigorous vertexing. The assay mixture was
transferred to 8 mL glass tubes and the assay vessel was washed once with a second
aliquot of CHCls/MeOH/formic acid, then combined with the previous extract. Addition
of 0.3 mL KCI to the mixture and centrifugation at 2000 g produced phase separation,
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and the lower organic phase was removed to a new 8 mL glass tube. The aqueous
phase was washed with 1 mL of CHCls and combined with previous organic phase.
The CHCIs extract was evaporated under a stream of N2 and resuspended in 100 pL
CHCIs. Two aliquots of 5 plL were dissolved in 5 mL Eco-5Scint liquid scintillation cocktail
(National Diagnostics) and radioactivity measured with a Packard 2200CA Liguid
Scintillation Counter to quantify the radioactivity in the whole extract. The remaining
extract was loaded onto Millipore-Sigma Silica gel 60 TLC plates in 1 cm bands with
non-radioactive lipid standards in adjacent lanes. The TLC plate was developed in
CHCI3/MeOH/acetic acid/acetone/water (35/25/4/14/2, viviviviv). After development, the
TLC plate was air dried and stained with iodine vapor for visualization of lipid mass
bands, and the standards were marked with a radioactive dot. The TLC plate was
placed against phosphor imaging screen for 24 hours and developed by a GE Typhoon
FLA 7000 phosphor imager. ldentification of radioactive lipids from the assays was
based on comigration with lipid standards. Relative quantification of all radioactive

bands was by ImageQuant software version 7.0.

In vivo [**C]acetate metabolic labeling

For both continuous and pulse-chase labeling 3-week-old plant tissue was
floated on incubation medium consisting of 20 mM MES, 0.1X MS salts, and 0.01%
Tween 20 at pH 5.5, in a shaking water bath at 23 °C under ~150 pmol photons mZs’
white light.

For the continuous labeling, leaves were harvested into the incubation media and
placed in the shaking water bath to equilibrate temperature. To start the time course the
medium was removed and replaced with incubation medium containing 0.255 mM [1-
Clacetate sodium salt 55 mCi/mmol (American Radiolabeled Chemicals Inc.) at 12.75
HCVml. The leaves were incubated for different timepoints (5, 10, 15, and 60 minutes)
after which they were removed from the medium and quenched in isopropanol with
0.01% BHT at 85 °C prior to lipid extraction. Fifteen leaves were used per time point
replicate. The labeled medium was reused between different timepoints of same
replicate/plant line. Each timepoint was harvested/radiolabeled separately in replicates

of three per plant line.
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For the pulse-chase labeling, whole rosettes were harvested by removing the
roots, and immediately placed into the incubation medium. Once rosettes for all
timepoints for each replicate/plant line were collected, the incubation medium was
removed and replaced with medium containing 0.153 mM [14C]acetate at 7.65 pCi/ml.
After 15 mins of pulse, the radiolabeled medium was removed, and the tissues were
washed 5 times using incubation medium. The O-timepoint was immediately collected
and the remaining rosettes were incubated in incubation medium for 1, 4, 22, 28, and 51
hours. The collected tissues were quenched in isopropanol with 0.01% BHT at 85 °C
prior to lipid extraction. Three to four whole rosettes were used per time point replicate.
Three replicate pulse-chase time courses were carried out per line, and the radiolabeled
medium for the pulse was reused for the three replicates within each line.

Analysis of radioactivity of extracts in disintegrations per minute (DPM) by liquid
scintillation counting in EcoScint Original scintillation fluid (National Diagnostics) was on
a Beckman Coulter LS 6500 liquid scintillation counter. Relative radioactivity of lipids
separated on TLC plates was measured using phosphor imaging on a GE Typhoon

FLA7000, and ImageQuant analysis software.

Glycerolipid and FAME separations by TLC

Polar lipids were separated using thin layer chromatography (TLC) plates (20 x
20 em Analtech Silica gel HL 250 pM thickness) pre-treated with 0.15 M ammonium
sulfate and baked at 120 °C for 3 hours. Less than 250 pg lipid was loaded per cm and
separated in toluene/acetone/water (30/91/7, viviv). Neutral lipids were loaded directly
onto the untreated EMD Millipore silica gel 60 20 x 20 cm TLC plates and separated in
hexane/ether/acetic acid (70/30/1, viviv). FAME were loaded onto EMD Millipore plates
treated in 7.5% silver nitrate in acetonitrile and baked at 100 °C for 5 minutes prior to
use. The FAME were first separated to 75% of plate height in hexane/ether (1/1, v/v),
then fully developed in hexane/ether (9/1, viv).

Stereochemical Analysis of '*C labeled lipids
Lipids were separated by TLC, stained with 0.005% pnmulin in acetone/water

(4/1, viv) and visualized under UV light. Polar lipids were eluted from silica gel with
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chloroform/methanol/water (5/5/1, viv/v), and the chloroform phase was collected after
phase partitioning with 0.88% KCI. Neutral lipids were eluted from silica gel with
chloroform/methanol (9/1, v/v). All lipids were dried under nitrogen prior to being
suspended in diethyl ether for lipase digestion.

Stereochemical analysis of DAG and MGDG was done by enzymatic digest with
lipase from Rhizomucor nuehei (Sigma). Buffer consisting of 50 mM bornc acid and 5
mM calcium chloride at 7.8 pH and the lipase were added at 4:1 ratio for diacylglycerol
(DAG) and 39:1 ratio for MGDG. The reaction was camed out for 15 minutes for both
DAG and MGDG with a goal of 50% to 60% and 20% to 30% digestion respectively.
The reaction was stopped by adding chloroform/methanol (1:1), the chloroform phase
was collected for TLC. The digested lipids were separated using hexane/diethyl
ether/acetic acid (35/70/1.5, viviv) for DAG and acetone/toluene/water (91/30/7 .5, viviv)
for MGDG on non-treated silica TLC plates.

Stereochemical analysis of PC was done with Phospholipase As from bee venom
(Apis mellifera) (Sigma). Buffer containing 50 mM Tris-HCI and 5 mM calcium chlonde
at 87 pH and PLA; were added such that the enzyme was about 025 units. The
reaction was carried out for 5 minutes and the reaction mixture was dried down under
nitrogen. The digested lipids were extracted by adding chloroform/methanol/0.15 M
acetic acid (38/19/15, viviv) and collecting the organic phase. The lipids extracted were
separated using chloroform/methancl/acetic acid/water (50/30/8/4, viviviv) on silica TLC

plates.
Data analysis
All calculations from raw data were done in Microsoft Excel. Graphing and

statistical analysis done with GraphPad Prism version 7.04.

Accession Numbers
LPCATT (At1g12640), LPCATZ2 (At1g63050), ACT1/ATS1 (At1g32200)

Supplemental Data
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Supplemental Figure 1. Relative gene expression of LPCAT1, LPCATZ2, LPEAT1,
LPEATZ in leaves and seeds of wild-type Arabidopsis.

Supplemental Figure 2. Pictures of growth of Col-0, act?, Ipcat! Ipcat?, and act1
Ipcati Ipcat?2.

Supplemental Figure 3. Lipid fatty acid composition at 2 weeks.

Supplemental Figure 4. Lipid fatty acid composition at 3 weeks.

Supplemental Figure 5. Lipid fatty acid composition at 4 weeks.
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Figure legends

Figure 1. Model of wild-type Arabidopsis acyl trafficking within leaf glycerolipid
synthesis

The model focuses on the trafficking of acyl groups between the chloroplast and the ER
for MGDG synthesis. The model is centered around the ER “PC pool”, which is involved
in de novo PC synthesis, desaturation, acyl editing, and tumover to produce the
substrate for MGDG production. Chloroplast OEM PC produced from transfer of LPC or
PC may also be a substrate for MGDG synthesis. Key enzymes/transporters are in
yellow, uncertain reactions are in blue and have dashed lines. Abbreviations are as in
text.

Figure 2. Membrane lipid composition of leaves across development from wild-
type and mutant lines. The relative abundance of leaf membrane lipids was
determined at three developmental stages: two weeks (A), three weeks (B), and four
weeks (C) after germination. The data represent the average and standard error of 2-4

biological replicates. Significant (P-value < 0.05, Twoway ANOVA with multiple
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comparisons) differences within individual lipid abundances between act? and act1

Ipcat? Ipcat? are indicated by asterisks above the bars.

Figure 3. Fatty acid composition of PC and PE across leaf development from wild-
type and mutant lines. The fatty acid composition of PC (A-C) and PE (D-F) were
determined at three developmental stages: two weeks (A, D), three weeks (B, E), and
four weeks (C, F) after germination. The data represent the average and standard error
of 2-4 biological replicates. Significant (p-value < 0.05, Two-way ANOVA with multiple
comparisons) differences within individual lipid abundances between act? and act1

Ipcat? Ipcat? are indicated by asterisks above the bars.

Figure 4. LPCAT activity in isolated chloroplasts. Isolated chloroplasts from Col-0,
act1, Ipcat1 Ipcat2, and act1 Ipcat1 Ipcat2 were incubated with 1 mM soy LPC, and 13.6
pM [“Cloleoyl-CoA for 30 min at 30 °C and radioactivity incorporated into PC
measured. The data represent the average and SEM of three independent assays from
chloroplasts isolated from each line. Significant (p-value < 0.05, students t-test)

differences from the Col-0 control are indicated by asterisks above the bars.

Figure 5. Initial incorporation of ["C]acetate-labeled nascent fatty acids into leaf
lipids. Continuous [”C]acetate labeling of 3-week-old leaves over a 1 hour time course.
(A) Total C accumulation in organic extractable lipids, and linear regression.
Significant differences (students t-test, p-value <0.05) in lipid labeling between lines at
each time point are indicated by asterisks above the data points. (B-C) Incorporation of
[14C]acetate into major labeled membrane lipids and DAG in the act? and act? Ipcati

Ipcat? lines respectively.

Figure 6. Relative accumulation of ["C]acetate-laheled nascent fatty acids into
leaf lipids. The relative labeling of individual lipids to the total labeled lipids in each line
compared between lines. (A) PC. (B) DAG and PA. (C) PE, PG, and PI/PS. (D) MGDG.
All data points are average and SEM from three sets of independently-labeled plants.

Significant differences (students t-test, p-value <0.05) in lipid labeling between lines at
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each time point are indicated by asterisks above the data points. An a above the data

indicates a p-value <0.07.

Figure 7. Stereochemical analysis of ["C]acetate-labeled nascent fatty acids
incorporation into DAG and PC. Continuous [*Clacetate-labeled DAG and PC from
Figures 5 and 6 were collected and subjected to lipase-based regiochemical analysis of
e fatty acid locations in the sn-1 or sn-2 position of the glycerol backbone. (A) act1
DAG. (B) act1 Ipcat1 Ipcat?2 DAG. (C) act? PC. (D) act? Ipcat1 Ipcat?2 PC. All data points
are average and SEM from three sets of independently-labeled plants.

Figure 8. Pulse-chase ["C]acetate tracking of leaf lipid precursor—product
relationships. A 15 min [14C]acetate pulse of 3-week-old whole rosettes was followed
by a chase up to 51 hours. (A-B) Relative labeling of lipids within act? (A), or act1
Ipcat? Ipcat? (B). (C-F) Relative labeling of major labeled individual lipids to the total
labeled lipids in each line compared between lines. (C) PC and DAG. (D) MGDG. (E)
PE and PA. (F) TAG. All data points are average and SEM from three sets of
independently-labeled plants, except for PA which had 1-3 replicates. In (C-F),
significant differences (students t-test, p-value <0.05) in lipid labeling between lines at

each time point are indicated by asterisks above the data points.

Figure 9. Radiolabeled fatty acid composition of DAG, PC, and MGDG over the
["C]acetate pulse-chase time course. The radiolabeled fatty acids in different lipids
from Fig. 8 are represented as total saturated fatty acids (e.g. 16:0, 18:0), monoenoic
fatty acids (e.g. 18:1), diencic (e.g. 18:2), and trienoic (e.g. 18:3). The proportion of
each fatty acid within each lipid is compared between plant lines with act? as solid lines,
and act? Ipcat1 Ipcat? as dashed lines. (A-B) DAG. (C-D) PC. (E-F) MGDG. All data
points are average and SEM from three sets of independently-labeled plants from Fig.
8. Significant differences (students t-test, p-value <0.05) in lipid labeling between lines

at each time point are indicated by asterisks above the data points.
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Figure 10. Stereochemical analysis of ["C]acetate-laheled fatty acids within DAG,
PC, and MGDG over the pulse-chase time course. The sn-1 position 1s solid lines;
the sn-2 position is dashed lines. The act? samples are blue lines; the act? Ipcat1 Ipcat?
samples are red lines. (A) DAG. (B) PC. (C) MGDG. All data points are average and
SEM from three sets of independently-labeled plants from Fig. 8. Significant differences
(students t-test, p-value <0.05) in lipid labeling between act? and act? Ipcat? Ipcat?
stereochemical positions at each time point are indicated by astensks next to the act1

blue lines in (B), and next to the act? Ipcat? Ipcat2 red lines in (C).

Figure 11: Models of ['*C]acetate pulse-chase labeling of MGDG synthesis in act1
and act1 Ipcat1 Ipcat2 leaves.

The models indicate the relative rate of labeled fatty acid flux through the eukaryotic
pathway of MGDG synthesis within the pulse-chase experiment. Red solid lines
represent initial reactions, blue large dashed lines represent the next set of reactions
labeled over time, and the green small dashed lines represent the slowest set of
reactions labeled over time within each model. Likewise, for the DAG, PC, and MGDG
pools, the major labeled stereochemical position at various time points is indicated by
the position noted with an asterisk and color coding the same as the lines. No specific
time points are intended, and each model color coding is independent from the others,
representing only relative labeling within each model. Abbreviations are as in the text. A,
act1. B, act1 Ipcat1 Ipcat?2 with no PC acyl chain removal from residual acyl-editing
mechanisms. C, act? Ipcat1 Ipcat2 with compensating acyl-editing reactions that lead to
acyl chain removal from PC and incorporation into the acyl-CoA pool, and the switching

of PC labeled stereochemistry from sn-1 to sn-2.

Figure 12. Updated model of wild-type Arabidopsis acyl trafficking within leaf
glycerolipid assembly clarifying the role of LPCAT1 and LPCAT2.

The model focuses on the trafficking of acyl groups between the chloroplast and the ER
for MGDG synthesis. Here the model separates PC involved in acyl editing “PC(1)” from
PC synthesized de novo “PC(2)" and PC that provides the substrate for MGDG
synthesis “PC(3)". The model also allows that PC acyl editing may take place in the ER
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or at the chloroplast surface, which could be a way to move acyl groups into the ER by
PC movement through membrane contact sites. The PC(3) pool is denved from de novo
synthesized PC(2) which may have been further desaturated by FAD2 and FAD3. The
substrate for MGDG synthesis may come from turnover of the PC(3) pool in the ER, or
tumover of the PC(3) at the chloroplast surface. Key enzymes/transporters are in
yellow, uncertain reactions are in blue and have dashed lines. Abbreviations are as in
text, rLPCAT is the reverse LPCAT reaction
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Figure 1. Model of wild-type Arabidopsis acyl trafficking within leaf glycerolipid
synthesis

The model focuses on the trafficking of acyl groups between the chloroplast and the ER for
MGDG synthesis. The model is centered around the ER “PC pool” which is involved in de
novo PC synthesis, desaturation, acyl editing, and tumover to produce the substrate for
MGDG production. Chloroplast OEM PC produced from transfer of LPC or PC may also be
a substrate for MGDG synthesis. Key enzymes/transporters are in yellow, uncertain

reactions are in blue and have dashed lines. Abbreviations are as in text.
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Figure 2. Membrane lipid composition of leaves across development from wild-type

and mutant lines. The relative abundance of leaf membrane lipids was determined at
three developmental stages: two weeks (A), three weeks (B), and four weeks (C) after
germination. The data represents the average and standard error of 2-4 biological
replicates. Significant (P-value < 0.05, Two-way ANOVA with multiple comparisons)
differences within individual lipid abundances between act! and acti/lpcat!/2 are
indicated by asterisks above the bars.
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Figure 3. Fatty acid composition of PC and PE across leaf development from wild-
type and mutant lines. The fatty acid composition of PC (A-C) and PE (D-F) were
determined at three developmental stages: two weeks (A, D), three weeks (B, E), and
four weeks (G, F) after germination. The data represents the average and standard error
of 2-4 biological replicates. Significant (p-value < 0.05, Two-way ANOVA with multiple
comparisons) differences within individual lipid abundances between acf? and
act1/pcat1/2 are indicated by asterisks above the bars.
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Figure 4. LPCAT activity in isolated chloroplasts. Isolated chloroplasts from Col-0,
act1, Ipcat1/2, and actl/pcatl/2 were incubated with 1mM soy LPC, and 136 M
[“Cloleoyl-CoA for 30 min at 30 C and radioactivity incorporated into PC measured. The
data represents the average and SEM of three independent assays from chloroplasts
isolated from each line. Significant (p-value < 0.05, students t-test) differences from the
Col-0 control are indicated by asterisks above the bars.
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Figure 6. Relative accumulation of [ **Clacetate labeled nascent fatty acids
into leaf lipids. The relative labeling of individual lipids to the total labeled lipids in
each line compared between lines. (A) PC. (B) DAG and PA. (C) PE, PG, and
PVPS. (D) MGDG. All data points are average and SEM from three sets of
independently labeled plants. Significant differences (students t-test, p-value
<0.05) in lipid labeling between lines at each time point is indicated by an asterisk

above the data point. Ano. above the data indicates a p-value <0.07.
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Figure 7. Stereochemical analysis of ['*C]acetate labeled nascent fatty acids incorporation into DAG
and PC. Continuous ['*Clacetate labeled DAG and PC from Figures 5 and 6 were collected and subjected
to lipase based regiochemical analysis of '*C fatty acid locations in the sn-1 or sn-2 position of the glycerol

backbone. (A) act! DAG. (B) acti/lpeat1/2 DAG. (C) act! PC. (D) acti/lpcati/2 PC. All data points are
average and SEM from three sets of independently labeled plants.
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Figure 8. Pulse-chase ['“Clacetate tracking of leaf lipid precursor-product
relationships. A 15 min ['*Clacetate pulse of 3 week old whole rosettes was followed by
a chase up to 51 hours. (A-B) relative labeling of lipids within act? (A), or act1/lpcat1/2
(B). (G-F), the relative labeling of major labeled individual lipids to the total labeled lipids
in each line compared between lines. (C) PC and DAG. (D) MGDG. (E) PE and PA. (F)
TAG. All data points are average and SEM from three sets of independently labeled
plants, accept PA which is 1-3 reps. In (G-F), significant differences (students t-test, p-
value <0.05) in lipid labeling between lines at each time point is indicated by an asterisk

above the data point.
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Figure 9. Radiolabeled fatty acid composition of DAG, PC, and MGDG over the
['“Clacetate pulse-chase time course. The radiolabeled fatty acids in different lipids
from Fig. 8 are represented as total saturated fatty acids (e.g. 16:0, 18:0), monoenoic
fatty acids (e.g. 18:1), dienoic (e.g. 18:2), and trienoic (e.g. 18:3). The proportion of each
fatty acid within each lipid is compared between plant lines with act? as solid lines, and
act1/lpcat1/2 as dashed lines. (A-B) DAG. (C-D) PC. (E-F) MGDG. All data points are
average and SEM from three sets of independently labeled plants from Fig. 8. Significant
differences (students t-test, p-value <0.05) in lipid labeling between lines at each time
point is indicated by an asterisk above the data point.
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Figure 10. Stereochemical analysis of ['*C]acetate labeled fatty acids within DAG,
PC, and MGDG over the pulse-chase time course. The sn-1 position is solid lines, the
sn-2 position is dashed lines. The act? samples are blue lines, the act1/pcat1/2 samples
are red lines. (A) DAG. (B) PC. (C) MGDG. All data points are average and SEM from
three sets of independently labeled plants from Fig. 8. Significant differences (students t-
test, p-value <0.05) in lipid labeling between act! and acti/lpcati/2 stereochemical
positions at each time point is indicated by an asterisk next to the act? blue lines in (B),
and next to the act1/lpcat1/2 red lines in (C).
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Figure 11: Models of [*CJacetate pulse-chase labeling of MGDG synthesis in act? and act1/lpcat1/2 leaves.
The models indicate the relative rate of labeled fatty acid flux through the eukaryotic pathway of MGDG synthesis
within the pulse-chase experiment. Red solid lines represent initial reactions, blue large dashed lines represent the
next set of reactions labeled, the green small dashed lines represent the slowest set of reactions labeled within each
model. Likewise, for the DAG, PC and MGDG pools, the major labeled stereochemical position at various time
points is indicated by the position noted with an asterisk and color coding the same as the lines. No specific time
points are intended and each model color coding is independent from the others, representing only relative labeling
within each model. Abbreviations are as in the text. A, acf1. B, acti/pcat1/2 with no PC acyl chain removal from
residual acyl editing mechanisms. C, act/pcat1/2 with compensating acyl editing reactions which lead to acyl chain
removal from PC and incorporation into the acyl-CoA pool, and the switching of PC labeled stereochemistry from sn-

1tosn-2.
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Figure 12. Updated model of wild-type Arabidopsis acyl trafficking within leaf
glycerolipid assembly clarifying the role of LPCAT1/2.

The model focuses on the trafficking of acyl groups between the chloroplast and the ER for
MGDG synthesis. Here the model separates PC involved in acyl editing “PC(1)" from PC
synthesized de novo “PC(2)" and PC which provides the substrate for MGDG synthesis
“PC(3)". The model also allows that PC acyl editing may take place in the ER or at the
chloroplast surface, which could be a way to move acyl groups into the ER by PC movement
through membrane contact sites. The PC(3) pool is denved from de novo synthesized PC(2)
which may have been further desaturated from by FAD2/3. The substrate for MGDG synthesis
may come from tumover of the PC(3) pool in the ER, or tumover of the PC(3) at the
chloroplast surface. Key enzymes/transporters are in yellow, uncertain reactions are in blue

and have dashed lines. Abbreviations are as in text, LPCAT is the reverse LPCAT reaction.
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