

1 **Short title:** Leaf oil production rearranges membrane lipid flux

2 **Corresponding author:** Philip D. Bates

3

4 **Title:** Reorganization of acyl flux through the lipid metabolic network in oil-accumulating

5 tobacco leaves

6

7

8 Xue-Rong Zhou¹, Sajina Bhandari², Brandon S. Johnson², Hari Kiran Kotapati², Doug K.

9 Allen³, Thomas Vanhercke¹, Philip D. Bates²

10

11 1. CSIRO Agriculture & Food, Canberra, ACT, Australia

12 2. Washington State University, Pullman, WA, USA

13 3. United States Department of Agriculture-Agricultural Research Service, Donald

14 Danforth Plant Science Center, St. Louis, MO, USA

15

16 **One-sentence Summary:**

17 Engineering leaves to accumulate oils induced unexpected changes to fatty acid flux

18 through the leaf lipid metabolic network.

19

20 **Footnotes:**

21 Author contributions:

22 X.Z., T.V., and P.D.B. conceived the original research plans; X.Z., S.B., B.S.J., H.K.,

23 and P.D.B performed the experiments and analyzed the data; D.K.A. analyzed the data

24 and contributed to the scope; P.D.B. wrote the article with contributions of all the

25 authors; P.D.B. agrees to serve as the author responsible for contact and ensures

26 communication.

27

28 **Funding information:**

29 This work is supported by Agriculture and Food Research Initiative Grant No. 2017-

30 67013-26156, No. 2017-67013-29481, and the Hatch umbrella project #1015621 from

31 the USDA National Institute of Food and Agriculture, and the National Science
32 Foundation Grant No. 1930559.

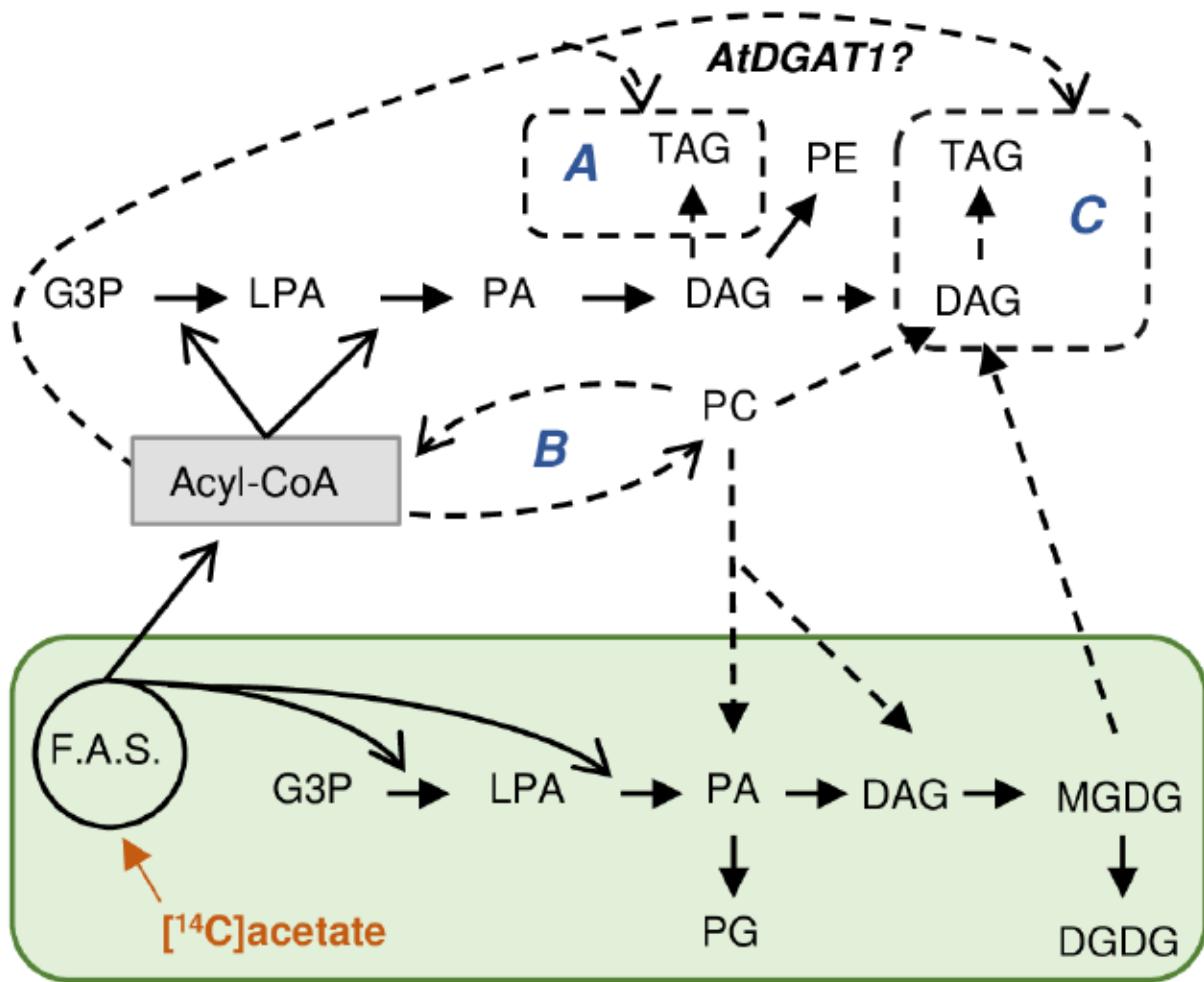
33

34 Author of Contact: phil_bates@wsu.edu

35 **Abstract:**

36 The triacylglycerols (TAGs; i.e., oils) that accumulate in plants represent the most
37 energy dense form of biological carbon storage, and are used for food, fuels, and
38 chemicals. The increasing human population and decreasing amount of arable land
39 have amplified the need to produce plant oil more efficiently. Engineering plants to
40 accumulate oils in vegetative tissues is a novel strategy, because most plants only
41 accumulate large amounts of lipids in the seeds. Recently, tobacco (*Nicotiana tabacum*)
42 leaves were engineered to accumulate oil at 15% of dry weight due to a push
43 (increased fatty acid synthesis) and pull (increased final step of TAG biosynthesis)
44 engineering strategy. However, to accumulate both TAG and essential membrane lipids,
45 fatty acid flux through non-engineered reactions of the endogenous metabolic network
46 must also adapt, which is not evident from total oil analysis. To increase our
47 understanding of endogenous leaf lipid metabolism and its ability to adapt to metabolic
48 engineering, we utilized a series of *in vitro* and *in vivo* experiments to characterize the
49 path of acyl flux in wild-type and transgenic oil-accumulating tobacco leaves. Acyl flux
50 around the phosphatidylcholine acyl editing cycle was the largest acyl flux reaction in
51 wild-type and engineered tobacco leaves. In oil-accumulating leaves, acyl flux into the
52 eukaryotic pathway of glycerolipid assembly was enhanced at the expense of the
53 prokaryotic pathway. However, a direct Kennedy pathway of TAG biosynthesis was not
54 detected as acyl flux through phosphatidylcholine preceded the incorporation into TAG.
55 These results provide insight into the plasticity and control of acyl lipid metabolism in
56 leaves.

57


58 **Introduction**

59

60 A finite supply of petroleum and a growing demand for energy to support
61 increasingly industrialized nations are global factors that emphasize the vital need to

62 develop renewable and sustainable sources of energy dense liquid fuels. The demand
63 is further exacerbated by growing populations and concerns linked to fossil fuel use and
64 associated waste streams. Seed-derived vegetative oil, mainly consisting of
65 triacylglycerol (TAG), provides a sustainable alternative. TAG-based plant oils are one
66 of the most energy-dense compounds found in nature. Plant oils are predominantly
67 used in the food industry (~80%), with the remainder supplying oleochemical production
68 (Carlsson et al., 2011). Due to their high energy density, they are increasingly viewed as
69 an attractive feed stock for production of biofuels (Lu et al., 2011). Breeding programs
70 and crop research in the last half century have substantially raised yields of oilseed
71 production, taking advantage of improved land, nutrient management, and more
72 efficient farming practices. Nevertheless, further gains in yield will require innovative, if
73 not disruptive, scientific approaches. The amount of arable land is finite and decreasing
74 with urban sprawl. As the world population continues to grow, agriculture production
75 must do more with less to meet food and energy demands. Non-seed derived plant oils
76 which can accumulate more lipids per acre of land are an attractive strategy, including
77 the production of oils in vegetative tissues of high biomass crops (Vanhercke et al.,
78 2019).

79 Attempts to engineer oil in non-seed tissues have demonstrated increased TAG
80 levels by targeting different aspects of lipid biosynthesis, storage, and protection. These
81 include leaf, stem, tuber, root, or various vegetative tissues, in multiple plant species
82 including: *Arabidopsis* (*Arabidopsis thaliana*), tobacco (*Nicotiana tabacum*), potato
83 (*Solanum tuberosum*), sorghum (*Sorghum bicolor*), and sugarcane (*Saccharum officinarum*) (reviewed in: Rahman et al., 2016; Xu and Shanklin, 2016; Vanhercke et al., 2019). Our previous work generated a high oil (HO) tobacco line that accumulated
86 more than 15% dry weight TAG in leaf tissue by overexpressing: the *Arabidopsis*
87 transcription factor *WRINKLED1* (*AtWRI1*) that upregulates glycolysis and fatty acid
88 synthesis (Focks and Benning, 1998; Cernac and Benning, 2004; Ma et al., 2013); the
89 *Arabidopsis* TAG biosynthetic enzyme *ACYL-CoA: DIACYLGLYCEROL ACYLTRANSFERASE 1* (*AtDGAT1*) (Katavic et al., 1995; Zou et al., 1999); and the
91 *Sesamum indicum* *OLEOSIN* gene in a combined push and pull strategy (Vanhercke et al., 2014). The genetic changes in the HO line produced a large accumulation of fatty

93 acids in leaf TAG. However, the relationship between TAG synthesis and the underlying
 94 leaf lipid metabolic network (Fig. 1), including effects on the accumulation of essential
 95 leaf photosynthetic membranes, is unknown. The path (or flux) of fatty acids from
 96 synthesis in the chloroplast to assembly into TAG in the endoplasmic reticulum (ER) is
 97 critical to effectively control the amount and fatty acid composition of TAG without
 98 detrimentally affecting membrane production. In particular for plant oil-based biofuels,
 99 TAG containing high levels of monounsaturated fatty acids (e.g. oleate, 18:1 (# carbons:
 100 # double bonds)) are desirable for the optimal mix of energy density, cold flow
 101 properties, and oxidative stability of the fuels (Durrett et al., 2008). The HO leaves
 102 accumulate TAG containing ~30% oleate and ~33% polyunsaturated fatty acids (PUFA)
 103 (Vanhercke et al., 2014), indicating that substantial improvement of TAG composition

104 may be possible through further engineering. Changes to the PUFA level in plant TAG
105 are dependent on acyl flux through membrane lipid bound fatty acid desaturases
106 (Bates, 2016), however the impact of enhanced leaf oil production on acyl flux through
107 this biosynthetic network is less clear (Fig. 1).

108 Plant leaves have two parallel metabolic pathways of glycerol-3-phosphate (G3P)
109 acylation to produce membrane glycerolipids which have been characterized
110 biochemically and genetically over the past 50 years, and reviewed extensively, for
111 example: Roughan and Slack, 1982; Ohlrogge and Browse, 1995; Li-Beisson et al.,
112 2013; Hurlock et al., 2014; Allen et al., 2015; LaBrant et al., 2018; Holzl and Dormann,
113 2019. In brief, plants synthesize fatty acids while esterified to acyl carrier proteins (ACP)
114 in the plastid. The plastid localized “prokaryotic” pathway of glycerolipid synthesis
115 utilizes acyl-ACPs to esterify 18:1 and 16:0 fatty acids to the *sn*-1 and *sn*-2 positions of
116 G3P respectively, producing first lysophosphatidic acid (LPA), then phosphatidic acid
117 (PA). Phosphatidylglycerol (PG) is produced from prokaryotic PA in the plastid, where
118 only “16:3” plants (including tobacco), also dephosphorylate PA to diacylglycerol (DAG)
119 producing a prokaryotic glycerolipid backbone containing a *sn*-2 16-carbon fatty acid for
120 synthesis of some of the plastid localized galactolipids, monogalactosyldiacylglycerol
121 (MGDG) and digalactosyldiacylglycerol (DGDG) (Mongrand et al., 1998). Plastid
122 localized desaturases produce the 16:3 by desaturation of the 16:0 incorporated into the
123 *sn*-2 position of MGDG and DGDG (Li-Beisson et al., 2013). The glycerolipid backbone
124 for the remaining galactolipids (or all galactolipids in 18:3 plants) is produced by the
125 “eukaryotic” pathway in the endoplasmic reticulum (ER) utilizing ER localized lipid
126 assembly enzymes. In the eukaryotic pathway, free fatty acids are exported from the
127 plastid and activated to acyl-CoAs prior to utilization by extra-plastidic acyltransferases.
128 The production of PA parallels that of the prokaryotic pathway except that 18-carbon
129 fatty acids are found at both *sn*-1 and *sn*-2. Any 16:0 present is localized to the *sn*-1
130 position (Frentzen et al., 1983), and is not further desaturated. Subsequent
131 dephosphorylation of PA produces the eukaryotic DAG backbone for synthesis of the
132 major ER membrane lipids phosphatidylcholine (PC) and phosphatidylethanolamine
133 (PE) (Li-Beisson et al., 2013). The production of eukaryotic galactolipids involves the
134 plastid localized assembly of MGDG from a eukaryotic DAG moiety derived from PC,

135 although the exact lipid that is transported from the ER to the plastid is unclear, but
136 could be PC, or the PC-derived intermediates PA or DAG (Hurlock et al., 2014;
137 Maréchal and Bastien, 2014; LaBrant et al., 2018; Karki et al., 2019).

138 Direct production of leaf TAG containing oleate in the HO tobacco line could
139 occur through utilization of newly synthesized oleoyl-CoA by the Kennedy pathway (Fig.
140 1A); however, the presence of PUFA in HO TAG indicates that other mechanisms of
141 acyl flux must be involved. Reactions which exchange acyl groups on and off PC are
142 integral to the eukaryotic pathway. PC is the site of ER localized fatty acid desaturation
143 of oleate ($18:1^{\Delta 9}$) to make the PUFAs linoleate ($18:2^{\Delta 9,12}$) and α -linolenate ($18:3^{\Delta 9,12,15}$)
144 (Li-Beisson et al., 2013). PUFAs can enter the acyl-CoA pool to be used by the
145 eukaryotic pathway acyltransferases through a PC deacylation and lyso-PC acylation
146 cycle coined “acyl editing” (Fig. 1B) (Bates et al., 2007). Through acyl editing oleate is
147 incorporated into PC for desaturation, and the corresponding PUFA can reenter the
148 acyl-CoA pool to be used for the synthesis of glycerolipids by Kennedy pathway
149 reactions (Bates, 2016). Quantitative analysis of acyl flux through the eukaryotic
150 pathway with *in vivo* metabolic labeling has indicated that most nascent fatty acids first
151 are incorporated into PC through acyl editing prior to acylation of G3P, and that fatty
152 acid flux around the acyl editing cycle is the largest lipid metabolic flux in many plant
153 tissues including: developing pea (*Pisum sativum*) leaves (Bates et al., 2007); soybean
154 (*Glycine max*) and camelina (*Camelina sativa*) embryos (Bates et al., 2009; Yang et al.,
155 2017); and Arabidopsis seeds, leaves, and cell cultures (Bates et al., 2012; Tjellström et
156 al., 2012; Wang et al., 2012; Karki et al., 2019). Mechanisms of acyl transfer from
157 membrane lipids into TAG also include membrane lipid turnover resulting in DAG
158 containing PUFAs that are used for TAG biosynthesis (Fig. 1C) (Bates, 2016). In
159 various oilseed tissues PC-derived DAG is the major source for TAG synthesis (Bates
160 et al., 2009; Bates and Browse, 2011; Yang et al., 2017). In leaves, DAG derived from
161 chloroplast galactolipids can also be used to produce TAG by homeostatic mechanisms
162 (Xu and Shanklin, 2016), and during stress (Sakaki et al., 1990; Moellering et al., 2010;
163 Narayanan et al., 2016; Arisz et al., 2018). Thus, the composition of TAG produced in
164 leaves is a consequence of the relative rates of acyl flux through various membrane
165 lipid pools, and the relative rate of fatty acid desaturation within these lipid pools.

166 The expression of the genes encoding AtWRI1, AtDGAT1, and sesame
167 OLEOSIN have led to an increased level of fatty acid synthesis and accumulation of
168 TAG in leaves of the HO tobacco line (Vanhercke et al., 2014). Transcriptomic analysis
169 of the HO line indicated upregulation of glycolysis and fatty acid synthesis (Vanhercke
170 et al., 2017), consistent with the function of WRI1 in plant tissues (Focks and Benning,
171 1998; Ma et al., 2013). However, there was little to no change in expression of the
172 acyltransferases involved in TAG and membrane lipid assembly (Vanhercke et al.,
173 2017). Previous studies have indicated that transcript abundance may not correlate with
174 protein levels (Hajduch et al., 2010; Vogel and Marcotte, 2012), and transcript
175 abundance alone is a poor indicator of metabolic flux (Fernie and Stitt, 2012;
176 Schwender et al., 2014; Allen et al., 2015). Thus, the path of acyl flux through the lipid
177 metabolic network into TAG is unclear (Fig. 1A-C), including if turnover of the abundant
178 chloroplast lipids in leaves may be feeding TAG biosynthesis. Future leaf oil engineering
179 efforts may need to specifically target these facets of the lipid metabolic network to
180 optimize leaf TAG accumulation and composition. Therefore, to better understand the
181 pathways of acyl flux in wild-type tobacco leaves, and how these pathways are altered
182 when accumulating high levels of leaf TAG in the transgenic HO line, we performed a
183 series of *in vitro* enzymatic assays, and *in vivo* continuous pulse and pulse-chase
184 metabolic labeling studies that provide new insights into tobacco leaf lipid metabolism
185 and its engineering.

186

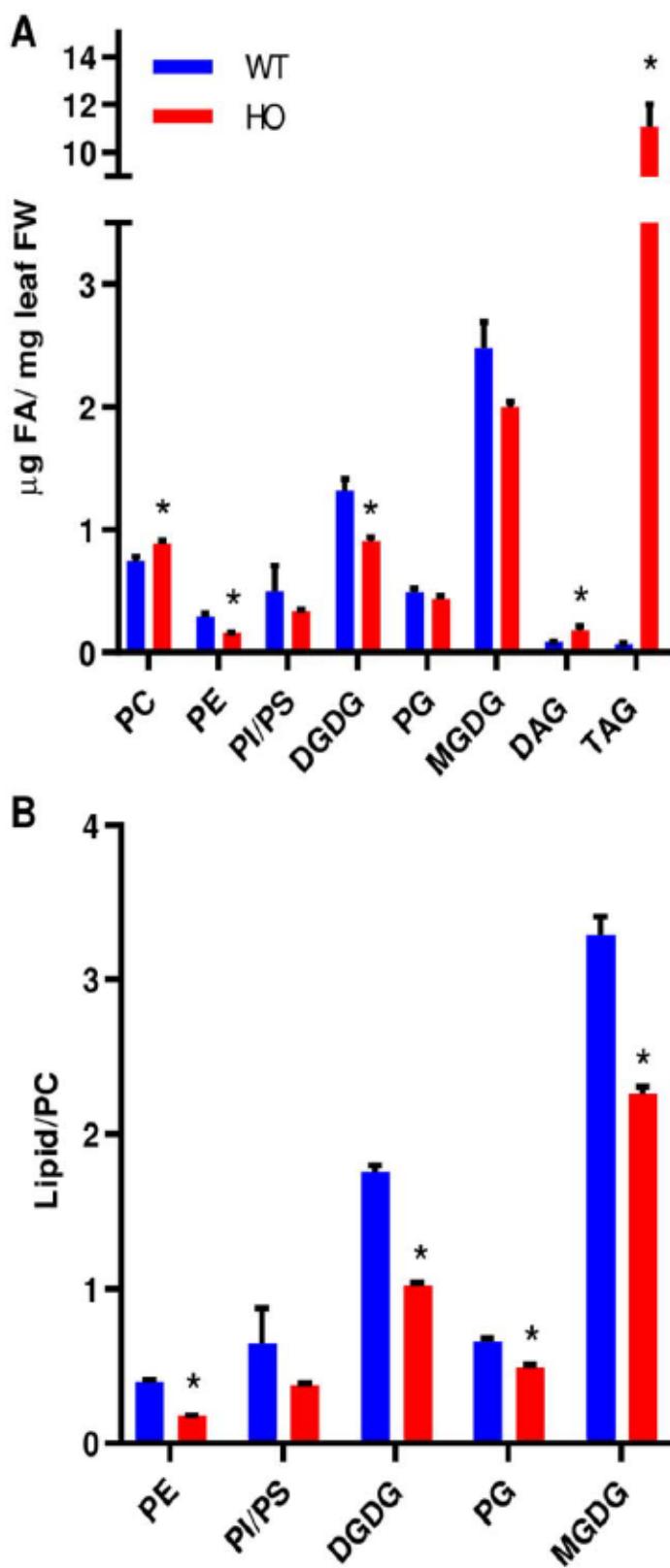
187

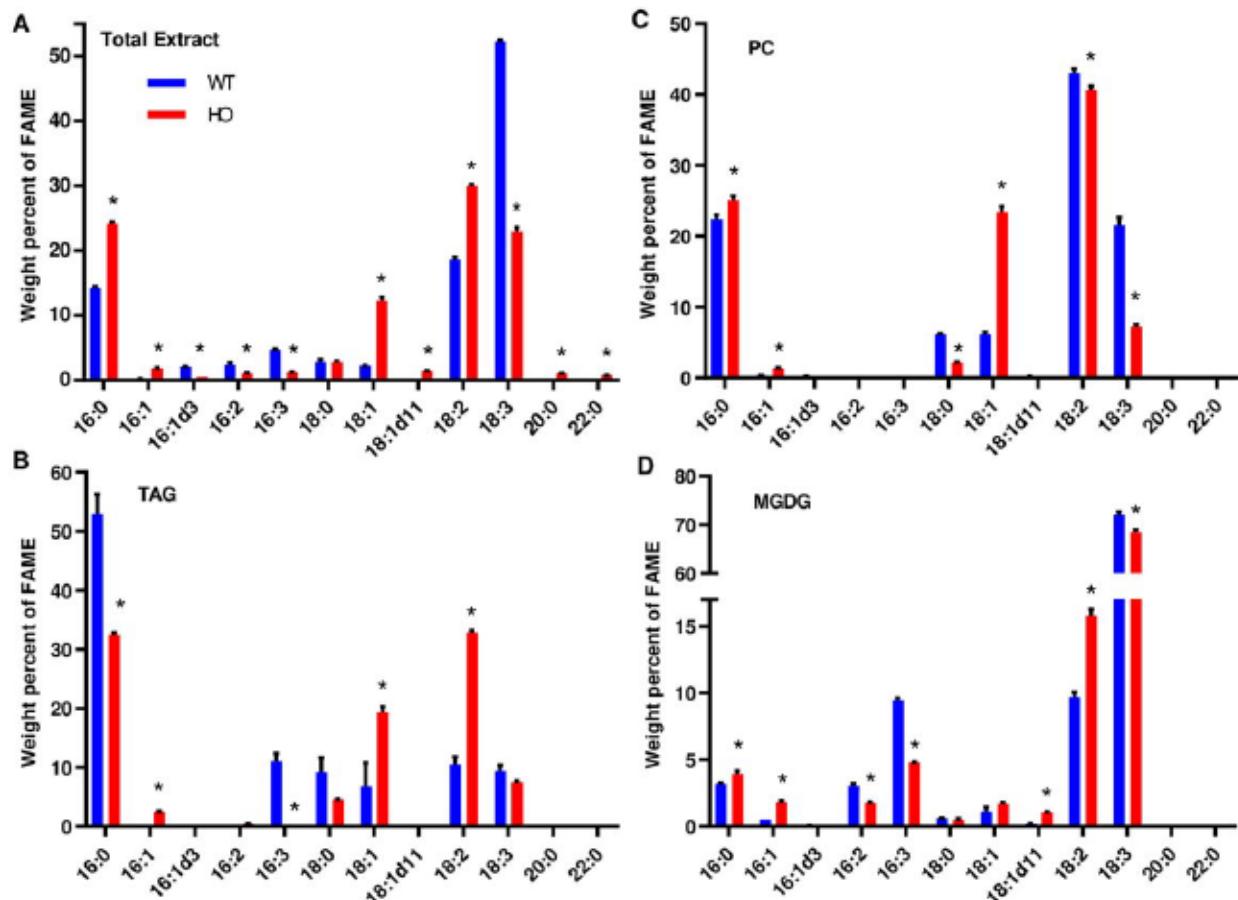
188 **Results**

189

190 **Engineering leaf TAG accumulation also effects the accumulation of leaf**
191 **membrane lipids**

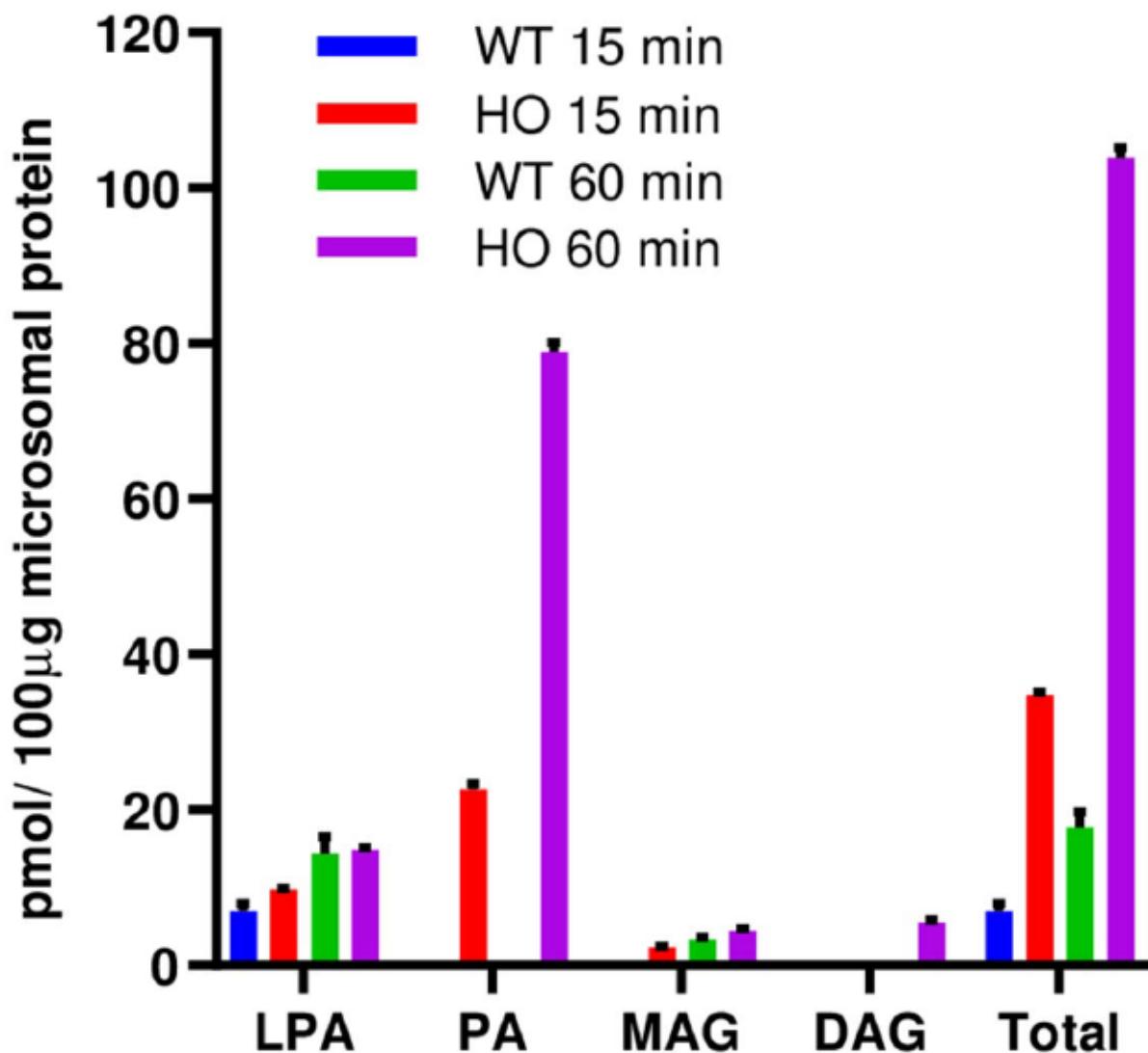
192


193 The HO line has a large increase in leaf TAG accumulation (Vanhercke et al.,
194 2014), which was confirmed in the current effort. Our results indicate that the boost in
195 TAG was accompanied by changes to leaf membrane lipid abundance (Fig. 2). PC and
196 DAG increased whereas other membrane lipids including the galactolipids that are the
197 bulk of the chloroplast photosynthetic membranes, decreased, compared to the wild-
198 type (WT) (Fig. 2A). The difference in lipid abundance was also reflected through
199 changes in fatty acid compositions (Fig. 3). Total leaf fatty acid composition (Fig. 3A) of
200 the HO line reflected alterations in the fatty acid composition of TAG (Fig. 3B) which
201 accumulated as the major lipid product (Fig. 2A). PC had a notable decrease in the
202 unsaturation index as 18:3 decreased and 18:1 significantly increased (Fig. 3C). MGDG
203 16:3 content decreased by half and 18:2 significantly increased (Fig. 3D). The change in
204 MGDG fatty acid composition was predominantly due to a reduction in 16-carbon fatty
205 acids at the *sn*-2 position, indicating an ~40% reduction in the proportion of prokaryotic
206 pathway produced MGDG (Supplemental Fig. S1A-C).

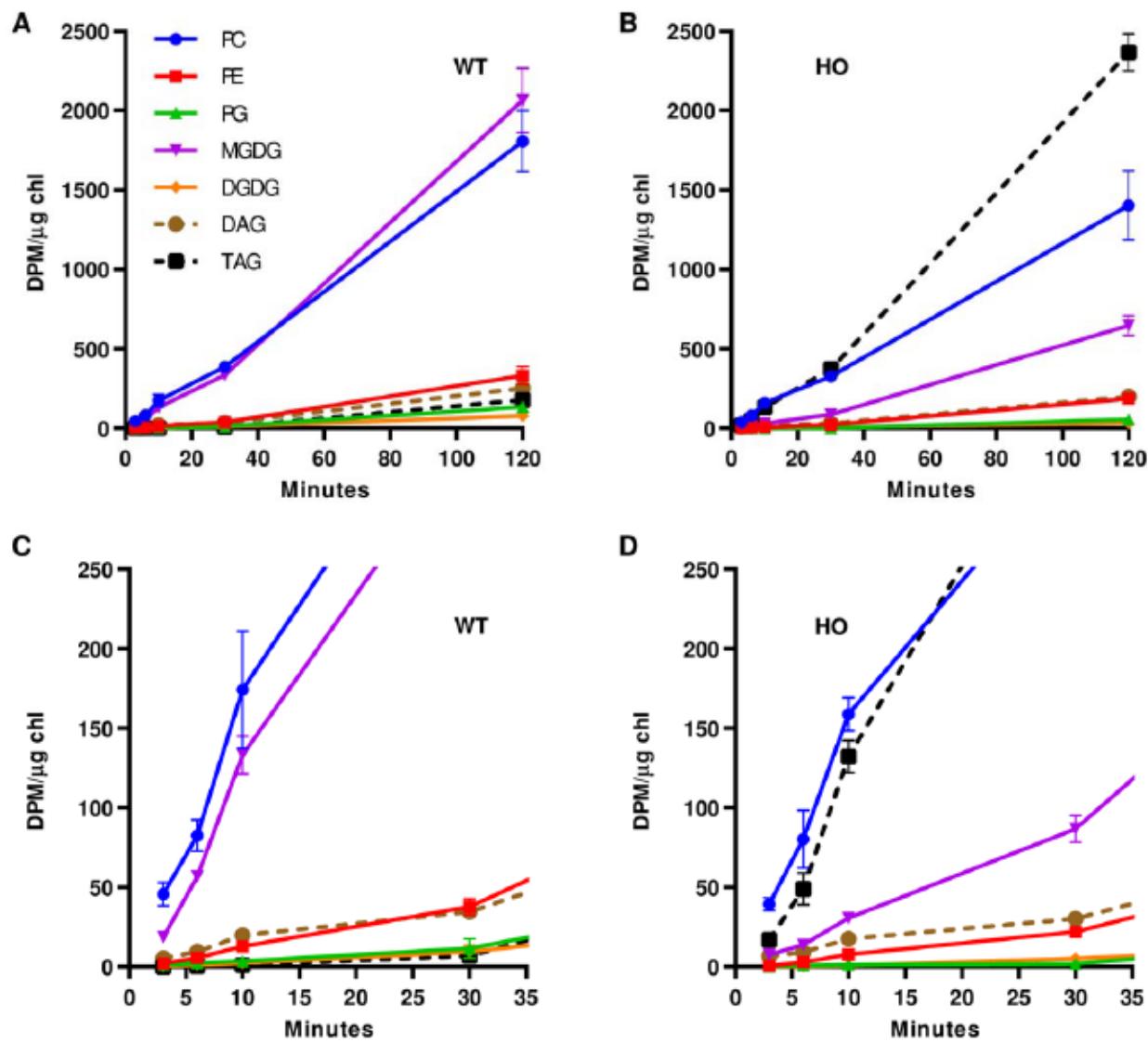

207 Considering that acyl and glycerol flux through PC is key to producing other
208 membrane lipids, we calculated the ratio of membrane lipids to PC (Fig. 2B). The
209 lipid/PC ratios dropped in the HO line and indicated a change in the redistribution of
210 fatty acid from PC to other lipids, though it is less clear if this is a consequence of
211 reduced biosynthesis, or enhanced turnover, or both. To better understand the changes
212 in the lipid metabolic network that accommodate TAG accumulation, the flux of acyl
213 groups through the lipid metabolic network was analyzed by both *in vitro* assays and *in*
214 *vivo* tracing of leaf lipid metabolism in the WT and HO line.

215

216 **A direct linear Kennedy pathway of TAG biosynthesis is not active in WT or HO**
217 **leaf microsomes**


218

220 that produce TAG through the linear Kennedy pathway in plants (Barron and Stumpf,
221 1962; Stymne and Stobart, 1984; Bafor et al., 1991). To determine if a direct Kennedy
222 pathway of TAG biosynthesis (Fig. 1A) is present, we assayed WT and HO tobacco leaf
223 microsomes for TAG production with [¹⁴C]G3P and 18:1-CoA (Fig. 4). No significant
224 TAG accumulation was detected within a 60 min assay, though the total label in lipids
225 produced by HO microsomes was approximately 5-fold higher than that in the WT
226 suggesting an overall upregulation in *de novo* glycerolipid assembly. In the HO line PA
227 was the major labeled product, suggesting that PA conversion to DAG may be limiting in
228 the isolated microsomes. The *in vitro* results indicate that efficient channeling of
229 substrates into TAG through a Kennedy pathway (Fig. 1A) may not occur in the HO line;
230 however, since some proteins can be lost during microsomal preparation, additional *in*
231 *vivo* pulse and pulse-chase metabolic labeling experiments were performed to further
232 study the acyl flux through lipids.


233

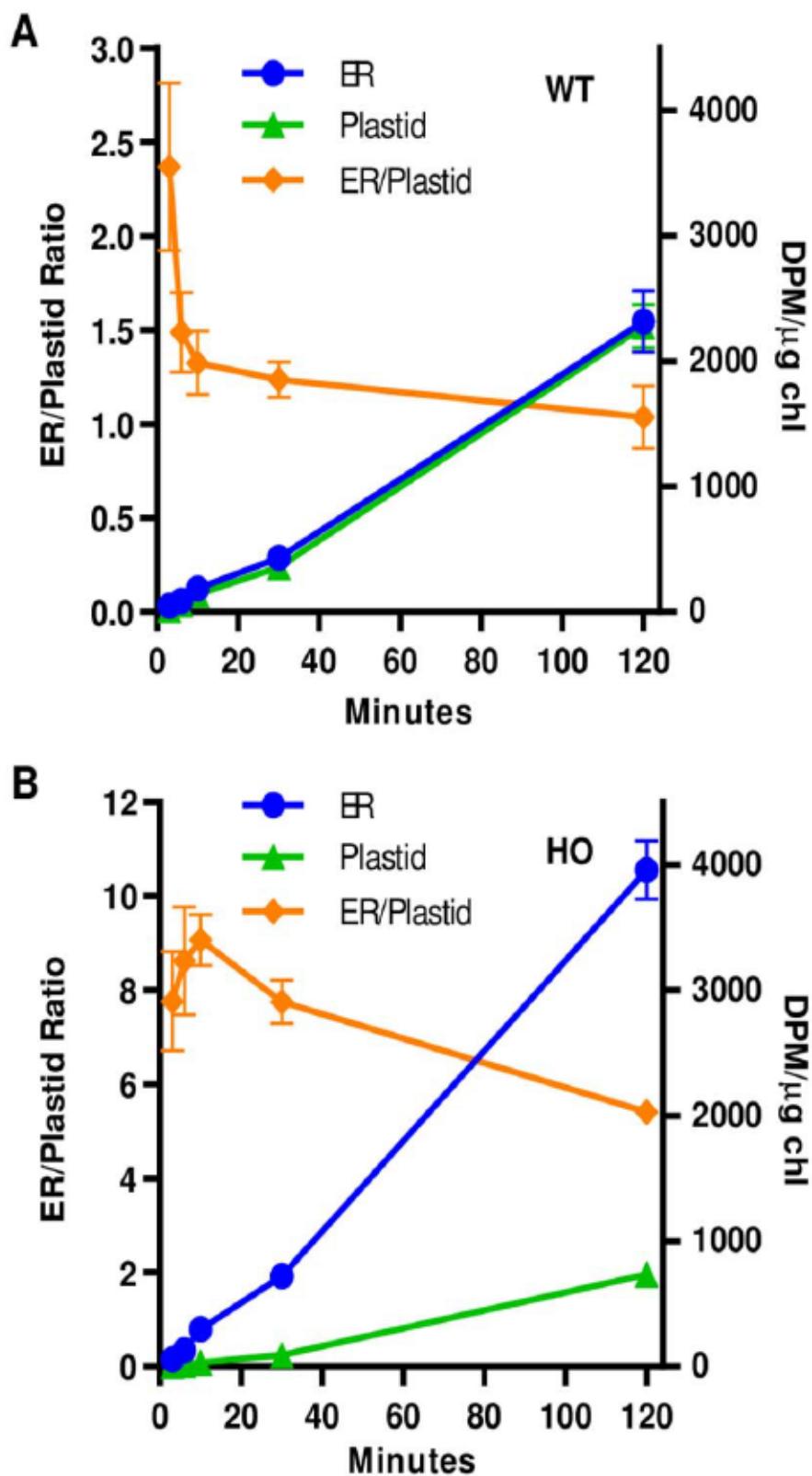
234 TAG accumulation alters the relative flux of nascent fatty acids into the
 235 eukaryotic and prokaryotic pathways of glycerolipid assembly

236

237 To understand how the push and pull engineering approach to produce leaf TAG
 238 (Vanhercke et al., 2014) affects the initial flux of newly synthesized fatty acids into the
 239 endogenous leaf lipid metabolic network (Fig. 1), we performed a continuous
 240 [¹⁴C]acetate metabolic labeling of 3-120 minutes on leaf disks from 66-day-old WT and
 241 HO plants. [¹⁴C]acetate is incorporated into the acetyl-CoA pool utilized for fatty acid

synthesis (Fig. 1), and short time point labeling is instructive for characterizing the initial steps of nascent acyl flux into the lipid metabolic network (Allen et al., 2015). Total incorporation of $[^{14}\text{C}]$ acetate into leaf lipids was linear for both the WT and the HO line over the 120 min time course, and there was no statistical difference in total label between genotypes at any time point (Supplemental Fig. S2). However, linear regression indicated slopes of $50.5 \pm 1.9 \text{ DPM } \mu\text{g chlorophyll}^{-1} \text{ min}^{-1}$ in the WT, and $43.1 \pm 1.3 \text{ DPM } \mu\text{g chlorophyll}^{-1} \text{ min}^{-1}$ in the HO line. The slopes were significantly different with a p -value = 0.0035. The reason for the reduced slope of $[^{14}\text{C}]$ acetate incorporation into lipids of the HO line is not immediately clear, however it could be due to dilution of the exogenous $[^{14}\text{C}]$ acetate by the much larger flux of endogenous carbon into acetyl-

252 CoA and fatty acid production in the HO leaf cells compared to that in the WT.
253 Therefore, we normalized the total accumulation of HO lipids to the WT average total
254 lipid accumulation at each time point (Fig. 5) so that the relative rates of synthesis of
255 individual lipid classes between the genotypes could be compared. The normalization
256 slightly increased the total DPM μg chlorophyll $^{-1}$ in each lipid class, but the pattern of
257 lipid synthesis essential for determining precursor-product relationships was unchanged
258 regardless of whether data was normalized (Fig. 5) or not (Supplemental Fig. S3).


259 In WT leaves most newly synthesized fatty acids accumulate in PC and MGDG
260 across the time course with only minor amounts in TAG (Fig. 5A). At early time points
261 PC is the major labeled lipid (Fig. 5C), and both PC and MGDG accumulate labeled
262 fatty acids at similar initial rates (Table 1) but by 120 min MGDG accumulates more
263 label (Fig. 5A, 5C). These results are consistent with: 1) PC as a first product of nascent
264 fatty acid incorporation into ER lipids (Bates et al., 2007; Tjellström et al., 2012); 2) *de*
265 *novo* synthesis of MGDG through the prokaryotic pathway; and 3) the precursor-product
266 relationship of PC and MGDG over time as acyl groups move through the eukaryotic
267 pathway of galactolipid synthesis (Li-Beisson et al., 2013). All other membrane lipids
268 initially accumulated little radiolabel, but slowly increased over time. This is consistent
269 with the redistribution of nascent fatty acids from PC to other lipids through acyl editing
270 (Bates et al., 2007; Bates, 2016), and the conversion of MGDG to DGDG within the
271 plastid (Kelly and Dormann, 2004; Hurlock et al., 2014; LaBrant et al., 2018).

272 The incorporation of nascent fatty acids into lipids of HO leaves was dramatically
273 different (Fig. 5B, 5D). Similar to the WT, in the HO line PC was the most labeled lipid at
274 the earliest time points (Fig. 5D) and had a similar rate of label accumulation (Table 1).
275 However, the next most labeled lipid was TAG (rather than MGDG of the WT, Fig. 5C)
276 and the initial rate of nascent fatty acid incorporation into TAG was 119-fold higher than
277 in the WT (Table 1). At the 3 min time point there was over twice the amount of nascent
278 fatty acids in PC (39.5 ± 3.9 DPM/ μg chl) than TAG (17.0 ± 4.4 DPM/ μg chl). However,
279 the accumulation of labeled fatty acids in TAG continued to accelerate surpassing PC
280 by 15 min, and by 120 min TAG accumulated 1.7-fold more labeled fatty acids than PC,
281 representing ~48% of total labeled lipids (Fig. 5B, 5D). This result is consistent with the
282 very large mass accumulation of TAG in HO leaves (Fig. 2). Despite the larger mass

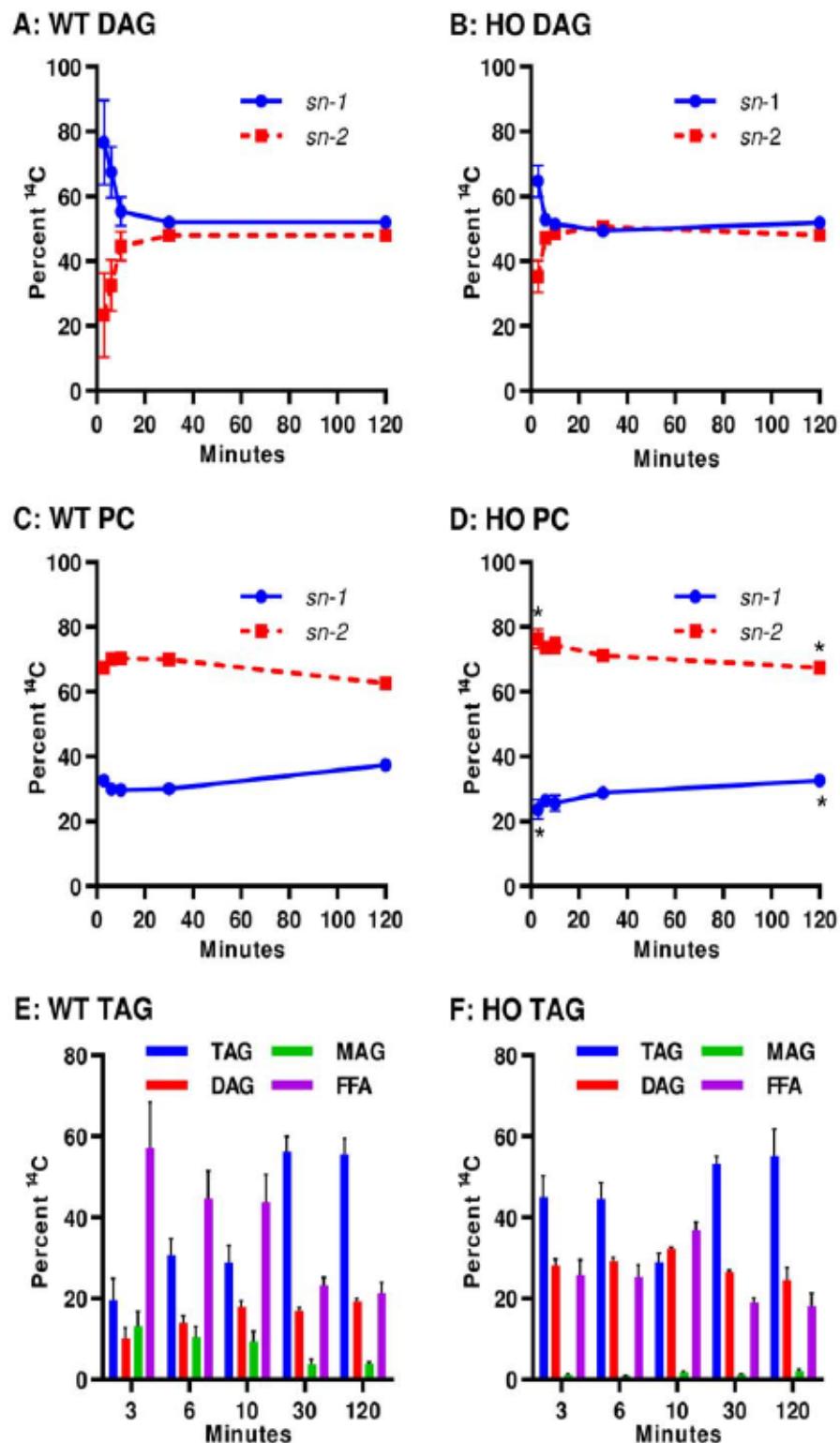
283 accumulation of TAG over time, the more rapid labeling of PC at initial time points
284 suggests a PC-TAG precursor-product relationship for fatty acid flux.

285 PE which is produced in the ER through the eukaryotic pathway similar to PC
286 and TAG, did not have a significant difference in the rate of synthesis with nascent fatty
287 acids in the WT and the HO line (Table 1). However, there was a significant decrease in
288 the rates of nascent fatty acid incorporation into chloroplast lipids MGDG (-4.9 fold),
289 DGDG (-2.5 fold), and PG (-1.9 fold) (Fig. 5, Table 1) in the HO line as compared to the
290 WT. For each of these lipids the initial rates of labeling represents synthesis through the
291 prokaryotic pathway, whereas eukaryotic pathway synthesis occurs over much longer
292 time scales as labeled fatty acids move through PC and ER-derived lipids and
293 eventually return to the chloroplast (Browse et al., 1986). Therefore, the results suggest
294 a shift in fatty acid allocation to the eukaryotic pathway over the prokaryotic pathway for
295 the production of TAG in the transgenic line.

296 In Figure 6 we estimated the relative flux of nascent fatty acids into the
297 eukaryotic and prokaryotic glycerolipid assembly pathways by comparing the
298 accumulation of label in ER localized (PC, PE, TAG) and plastid localized (MGDG,
299 DGDG, PG) lipids. The metabolic labeling of WT leaves showed that nascent fatty acids
300 accumulated into ER lipids at a slightly greater rate than plastid lipids (Fig. 6A). Linear
301 regression of the initial phase of glycerolipid assembly (first 10 min) indicated that flux of
302 newly synthesized fatty acids into glycerolipids was 20.3 ± 4.6 and 17.1 ± 1.5 DPM μg
303 chlorophyll $^{-1}$ min $^{-1}$ for ER and plastid lipids, respectively. The initial ER/plastid ratio at 3
304 min of labeling was ~2.4 but dropped to 1.3 by 10 min. This change is likely reflected by
305 the lipids quantified at these time points. In the eukaryotic pathway nascent fatty acids
306 exported from the plastid are initially directly incorporated into PC, but in the prokaryotic
307 pathway nascent fatty acids are first incorporated into LPA, PA, and DAG prior to
308 MGDG synthesis (Allen et al., 2015). Considering that lipid classes LPA, PA, and DAG
309 occur in both pathways (Fig. 1) they were not included in the analysis. Therefore, the
310 lag in acyl flux through intermediates of the prokaryotic pathway at short time points
311 may explain the ratio favoring the eukaryotic pathway at short time points. The changing
312 ratio of labeled fatty acids in ER/plastid lipids stabilized by 10 min, then slowly
313 decreased over the time course. However, in the HO line the relative initial rate of newly

315 0.6 DPM μ g chlorophyll $^{-1}$ min $^{-1}$, respectively. Thus, the eukaryotic pathway accounted
316 for a 9-fold higher flux of fatty acids into glycerolipids than the prokaryotic pathway of
317 the HO line. Similar to the WT, in the HO line the ER/plastid ratio for labeled fatty acid
318 accumulation stabilized by 10 min and then decreased over the time course (Fig. 6B).
319 The decrease in the ER/plastid ratio over time in both genotypes likely represents the
320 PC-galactolipid precursor-product relationship of the eukaryotic pathway.

321 In Figure 5 and 6, the accumulation of newly synthesized fatty acids in MGDG
322 can be due to both the prokaryotic and eukaryotic pathways. To determine if the
323 reduction in accumulation of labeled MGDG is due to reduced acyl flux through the
324 prokaryotic, eukaryotic, or both pathways we collected MGDG from the 30 and 120 min
325 time points and analyzed the radioactivity in individual molecular species (Supplemental
326 Fig. S4 and S5). The prokaryotic pathway initially produces the 18:1/16:0 molecular
327 species of MGDG which is further desaturated to predominantly 18:3/16:3 (Ohlrogge
328 and Browse, 1995). Eukaryotic MGDG is indicated to be synthesized from a
329 polyunsaturated-containing-DAG ultimately derived from PC, and is further desaturated
330 to predominantly 18:3/18:3 in the plastid (Slack et al., 1977; Ohlrogge and Browse,
331 1995). Therefore, 18/16-carbon-containing molecular species are representative of the
332 prokaryotic pathway, and 18/18-carbon molecular species are representative of the
333 eukaryotic pathway. The accumulation of MGDG through each pathway is summarized
334 in Table 2. The analysis of MGDG molecular species gave four insights into the acyl flux
335 through the prokaryotic and eukaryotic pathways: (1) the HO line had a reduced
336 proportion of prokaryotic MGDG molecular species (and thus increased eukaryotic
337 proportion) as compared to the WT; (2) however with the very large decrease in total
338 ^{14}C -MGDG accumulation (Fig. 5), the total acyl flux into MGDG through the eukaryotic
339 pathway was reduced by over 30% and acyl flux through the prokaryotic pathway was
340 reduced by over 70% (Table 2); (3) both lines had an increase in eukaryotic molecular
341 species from 30 to 120 min of labeling (Table 2) consistent with the role of the
342 eukaryotic pathway for PC turnover to produce plastid galactolipids, and consistent with
343 the decrease in the ER/plastid accumulation ratio of Fig. 6; (4) the profile of prokaryotic
344 and eukaryotic MGDG molecular species in the HO line suggested a reduced rate of
345 plastid desaturation, as compared to the WT (Supplemental Fig. S5). Therefore, an


346 increase in the total flux of newly synthesized acyl groups into ER lipids (mostly TAG,
347 Fig. 5, 6), and a reduction in acyl flux into plastid lipids through both the prokaryotic and
348 eukaryotic pathways (Table 2) contributed to the dramatic redistribution of acyl flux
349 through the lipid metabolic network in the HO tobacco line.

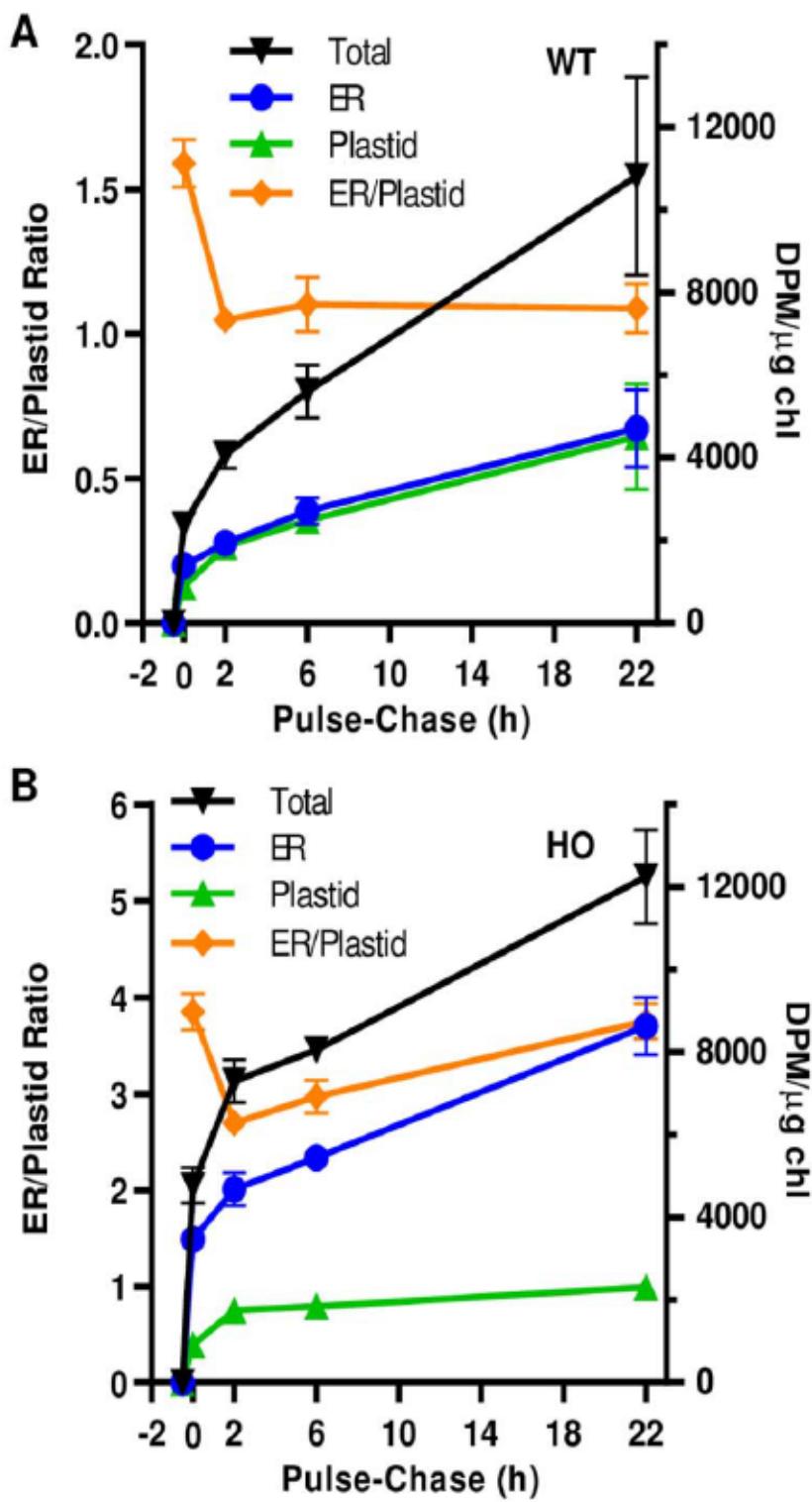
350

351 **Regiochemical analysis indicates limited changes in pathway structure for initial**
352 **steps of ER glycerolipid assembly**

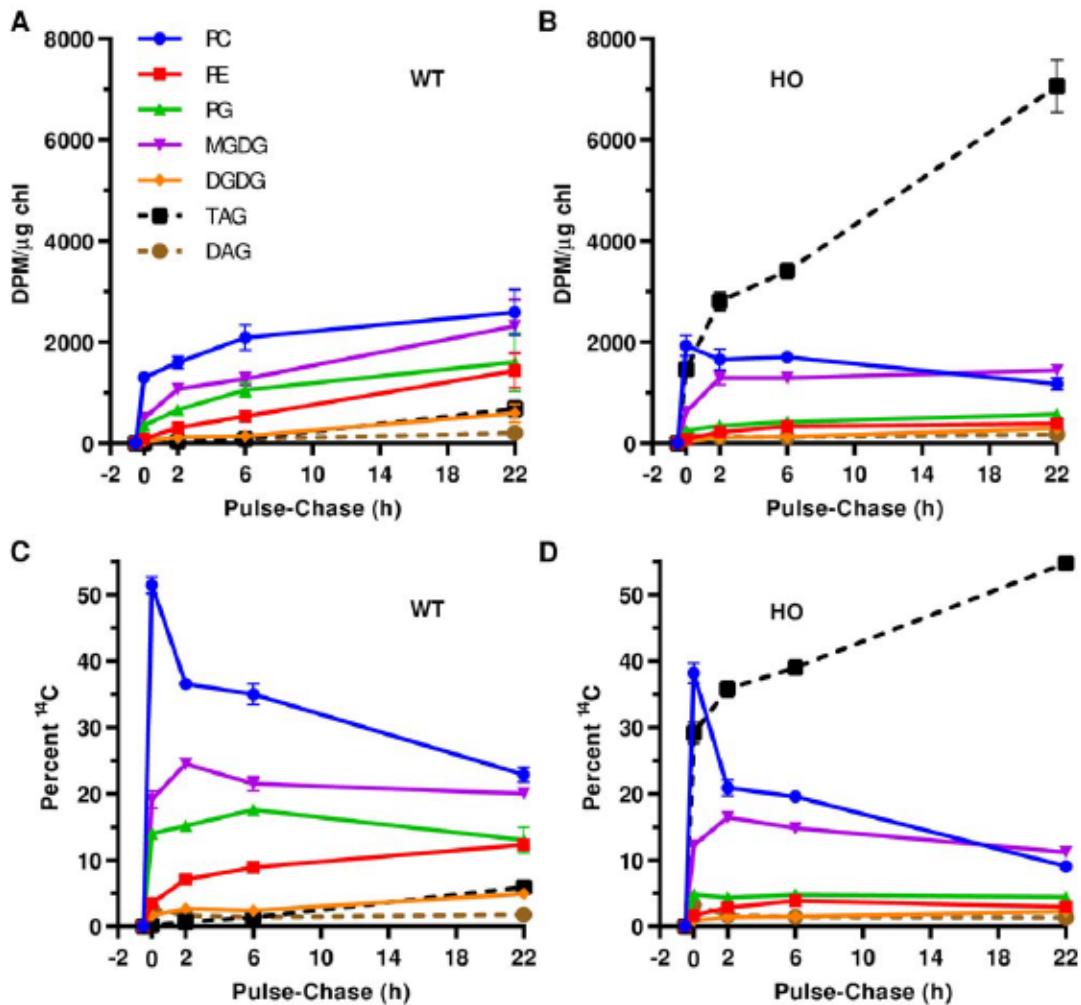
353

354 To better understand which branches of the lipid metabolic network (Fig. 1) are
355 involved in the altered flux of nascent fatty acids into membrane lipids and TAG of the
356 HO line as compared to the WT, we performed regiochemical analysis (Fig. 7) of
357 labeled DAG, PC and TAG across the [¹⁴C]acetate labeling time course from Fig. 5. In
358 both the WT and the HO line newly synthesized fatty acids were initially incorporated
359 more on the *sn*-1 position relative to the *sn*-2 position of the total labeled DAG pool, but
360 this was quickly equilibrated to approximately equal distribution by 10 min (Fig. 7A, B),
361 and there was no statistical difference in stereochemical labeling in DAG between the
362 lines. The higher initial labeling of DAG *sn*-1 position over *sn*-2 has previously been
363 reported in the predominantly eukaryotic *de novo* DAG pools of developing soybean
364 embryos and *Arabidopsis* seeds (Bates et al., 2009; Bates et al., 2012). Rapid
365 equilibrium of labeling across stereochemical positions in tobacco plants may also
366 represent a substantial contribution of prokaryotic DAG which is produced from only
367 nascent fatty acids (Ohlrogge and Browse, 1995), and thus the labeled fatty acids will
368 be evenly distributed across both positions as demonstrated for prokaryotic lipids in
369 rapeseed (*Brassica napus*) leaves (Williams et al., 2000). In contrast to DAG, newly
370 synthesized fatty acids accumulated predominantly in the *sn*-2 position of PC across the
371 time course in both plants (~63-70% WT and 67-76% HO). The slightly more nascent
372 fatty acids at the *sn*-2 position of PC in the HO line was only significant at the 3- and
373 120-min time points (Fig. 7C, D). The PC stereochemical labeling is consistent with
374 previous leaf, seed, and cell culture analyses where a single nascent fatty acid is initially
375 incorporated next to a previously synthesized fatty acid within PC (with preference for
376 *sn*-2 over *sn*-1) through acyl editing as nascent fatty acids leave the plastid (Bates et al.,

378 2016; Karki et al., 2019).


379 Partial TAG lipase digestions of labeled TAG from both plants revealed that most
380 labeled acyl groups were released by the lipase in the free fatty acid fraction (*sn*-1 or
381 *sn*-3) and little remained in the monoacylglycerol fraction (*sn*-2) (Figure 7E, F).
382 Considering the similar labeling of the *sn*-1 and *sn*-2 position of DAG, the low *sn*-2
383 labeling of TAG suggests that most TAG labeling within this short time course
384 represents incorporation of a newly synthesized radiolabeled fatty acid onto the *sn*-3
385 position of an unlabeled DAG molecule, and does not reflect the rapidly produced
386 eukaryotic *de novo* DAG that might be expected from a direct Kennedy pathway of TAG
387 synthesis (Fig. 1A). Together the DAG, PC and TAG regiochemical analysis suggests
388 that even though there are big differences between the WT and the HO line for the
389 quantity of acyl flux into eukaryotic pathway lipids, the initial steps of eukaryotic
390 glycerolipid assembly (or the initial structure of the eukaryotic lipid network) between
391 these genotypes do not vary considerably.

392


393 **Nascent acyl groups initially incorporated into PC are redistributed differently**
394 **between the WT and the HO line.**

395

396 The short time point [¹⁴C]acetate labeling in Fig. 5 demonstrated that a majority
397 of newly synthesized fatty acids are initially incorporated into PC of both genotypes. The
398 redistribution of fatty acids from PC to other lipids over time was assessed through an
399 additional pulse-chase experiment (Fig. 8, Fig. 9). Leaf disks of 73-day-old plants were
400 pulsed with [¹⁴C]acetate for 0.5 hours, rinsed and incubated without the radiolabel for up
401 to 22 hrs. In both plants the total ¹⁴C-labeled lipids increased throughout the pulse and
402 chase periods (Fig. 8). During the pulse, labeled lipids accumulated at the most rapid
403 rates (4800 ± 500 and 9600 ± 900, DPM µg chlorophyll⁻¹ hr⁻¹ in WT and HO,
404 respectively). During the first 2 hrs of the chase period the rate of labeled lipid
405 accumulation was reduced 6-7 fold to 840 ± 210 and 1300 ± 340 DPM µg chl⁻¹ hr⁻¹ in
406 WT and HO leaves respectively, which likely represents continued uptake of
407 [¹⁴C]acetate during the washes. Finally from 2-22 hrs radiolabel accumulated at even
408 slower but constant rates of 330 ± 90 and 250 ± 50 DPM µg chl⁻¹ hr⁻¹, which may

409 represent continued utilization of a pool of [14 C]acetate that was taken up into the leaf
 20

410 tissue during the pulse but utilized at a slower rate, as compared to the bulk of the
 411 [¹⁴C]acetate substrate. Therefore, the experiment should be considered a rapid ¹⁴C
 412 pulse that is followed by labeling with a significantly lower concentration of [¹⁴C]acetate
 413 (15-38 fold lower based on initial and final rates). This distinction is relevant when
 414 comparing the total accumulation of radiolabel in individual lipid classes (Fig. 9A-B) to
 415 the relative radiolabel accumulation between lipid classes in each genotype (Fig. 9C-D).
 416 Similar to the short time point pulse experiment (Fig. 5, Fig. 6), the HO line accumulated
 417 labeled fatty acids predominantly in ER lipids across the time course, whereas labeling
 418 of ER and plastid lipids was similar across the time course in the WT (Fig. 8).

419 In the WT all individual lipid classes accumulated ^{14}C acyl groups during the
420 pulse-chase but at different rates across the time course (Fig. 9A). At the end of the
421 pulse, PC contained the most ^{14}C with over 2.6-fold more ^{14}C than any other lipid, but
422 the rate of labeled fatty acid accumulation in PC continued to slow down across the
423 chase time course. During the chase, the accumulation of ^{14}C fatty acids increased in
424 MGDG relative to PC such that by the end of the time course they contained similar
425 amounts of total labeled fatty acids. The results are consistent with the PC-MGDG
426 precursor-product relationship of the eukaryotic pathway in leaves, and the
427 redistribution of nascent acyl groups from PC to other ER localized lipids through acyl
428 editing (Fig. 1). In HO leaves the [^{14}C]acetate pulse-chase results are distinct. Initially
429 PC contained the most label after the pulse but was surpassed by TAG before the 2 hr
430 time point (Figure 9B, D). By the end of the 22 hr chase period TAG accumulated ≥ 4.9 -
431 fold more ^{14}C fatty acids than any other lipid. Even though the total lipid labeling is
432 increasing over the chase period (Fig. 8B), the amount of labeled fatty acids in PC of
433 the HO line decreases over the whole chase period (Figure 9B). The difference in
434 accumulation of ^{14}C fatty acids in PC between the WT and the HO line suggests that PC
435 turnover and redistribution of acyl groups occurs at a higher rate in the HO line. All other
436 membrane lipids in HO leaves increased slightly during the chase (Fig. 9B), but much
437 less than in WT leaves. In the WT, PC and MGDG had a clear precursor-product
438 relationship of acyl flux that is not directly evident in the HO line of Fig. 9B. To
439 determine if the small increases in HO MGDG ^{14}C acyl accumulation are due to (1) the
440 continued synthesis of ^{14}C fatty acids and their incorporation into the metabolic network
441 during the chase (Figure 8B); or (2) are due to a reduced redistribution of acyl label from
442 PC, we compared the labeled MGDG molecular species distribution at the 0 and 22 hr
443 time points (Supplemental Figure S6, summarized in Table 3). After the 30 min pulse,
444 the proportion of eukaryotic and prokaryotic MGDG molecular species in both the WT
445 and the HO line was similar to that of the 30 min continuous labeling time point (Table
446 2). During the 22 hr chase period in the WT, the eukaryotic MGDG molecular species
447 increased 3-fold as a proportion (Table 3), consistent with the PC-MGDG precursor-
448 product relationship of the eukaryotic pathway. However, during the chase in the HO
449 line, the proportion of eukaryotic MGDG molecular species only increased 1.5-fold

450 (Table 3). Therefore, the reduced accumulation of MGDG in the HO line during the
451 chase (Fig. 9B) is also consistent with a reduced redistribution of acyl groups from PC
452 to MGDG through the eukaryotic pathway MGDG.

453 Pulse-chase experiments are commonly represented as the percent labeling in
454 the different products over time (Figure 9C, D), yet the interpretation is dependent on
455 the relative accumulation of the total lipids (Fig. 8A, B) and each individual lipid (Fig. 9A,
456 B) over the chase period. In both genotypes PC had the largest decrease in proportional
457 labeling, consistent with the conclusions from above that acyl groups are redistributed
458 from PC to other lipids over the time course. However, considering that nascent ¹⁴C acyl
459 groups continue to enter the system over the chase (Fig. 8) and are predominantly
460 incorporated into PC first (Fig. 5, Fig. 9), the actual turnover of PC is greater than the
461 apparent turnover of half of the labeled PC in the WT, and over 76% of the labeled PC
462 in HO leaves. In addition, the proportional labeling of MGDG in both genotypes also
463 decreased from 2-22 hrs of the chase. This represents both the MGDG-DGDG
464 precursor-product relationship of lipid synthesis (Li-Beisson et al., 2013), as well as the
465 continual incorporation of labeled acyl groups into predominantly PC of the WT, and
466 both PC and TAG of the HO line. Hence the apparent 32% decrease in MGDG
467 accumulation in the HO line does not indicate that MGDG is turning over to feed the
468 large increase in TAG accumulation, but it is the result of the labeled acyl group
469 accumulation predominantly in TAG as more fatty acids are synthesized over the time
470 course (Fig. 8). Therefore, the combined HO pulse-chase results indicate that TAG
471 synthesis draws acyl groups predominantly from PC turnover (Fig. 9B, 9D), which may
472 compete with eukaryotic pathway MGDG synthesis for acyl groups (Table 3), but there
473 does not appear to be evidence of galactolipid turnover providing substrates for TAG
474 biosynthesis.

475

476

477 **Discussion**

478

479 Biotechnology may help to meet societal needs by engineering metabolism to
480 enhance the production of biological resources for food or industry. Plant lipids can be
481 one part of this solution through increased oil yields per area of land for biofuel
482 production. The current state of vegetative oil engineering involves the expression of
483 only a few genes including: transcription factors to increase fatty acid synthesis, DGAT
484 to convert DAG to TAG, and oleosin to prevent TAG breakdown in a push-pull-protect
485 strategy (Vanhercke et al., 2014; Xu and Shanklin, 2016; Vanhercke et al., 2017).
486 However, TAG biosynthesis requires many additional enzymatic steps that directly
487 overlap with essential membrane lipid production (Fig. 1, (Bates and Browse, 2012)),
488 and quantitative analysis of the oil end product does little to explain the metabolic path
489 fatty acids take to accumulate in TAG. It is also unclear how an introduced DGAT fits
490 into the leaf lipid metabolic network designed to accumulate ER and chloroplast
491 membrane lipids, or which substrate pools are used in TAG biosynthesis (Fig. 1). For
492 biofuel production, newly synthesized 18:1 could be directly incorporated into TAG with
493 a minimal number of enzymatic steps using the Kennedy pathway (Fig. 1A), however
494 this would not account for the presence of 18:2 and 18:3 measured in TAG. To
495 understand the path of acyl flux through the lipid metabolic network in WT tobacco
496 leaves, and how the engineered changes in HO affect acyl flux, we analyzed the
497 mechanisms of acyl flux in WT and HO leaves.

498

499 **A Kennedy pathway of TAG assembly is not present in HO leaves**

500

501 TAG composed of oleate is a desirable quality for biofuel production (Durrett et
502 al., 2008). The least number of steps to incorporate oleate into TAG is directly through
503 the Kennedy pathway reactions: glycerol-3-phosphate acyltransferase (GPAT) and
504 lysophosphatidic acid acyltransferase (LPAT) to produce PA, dephosphorylation by
505 phosphatidic acid phosphatase (PAP) to produce DAG, and acylation of DAG by to
506 produce TAG. (Fig. 1A (Bates, 2016)). The large increase in 16:0 and 18:1 in HO TAG
507 suggests that a Kennedy pathway utilizing newly synthesized fatty acids could produce

508 at least some of the TAG in the HO line (Fig. 2, 3). The only Kennedy pathway
509 acyltransferase that was directly engineered into tobacco was AtDGAT1 (Vanhercke et
510 al., 2014). Therefore, TAG fatty acid composition is also dependent on the acyl
511 selectivity and substrate pools of the endogenous tobacco GPAT and LPAT. *In vitro*
512 assays did not produce TAG with microsomes from either the WT or the HO line (Fig.
513 4). This result may suggest that the four reactions of the Kennedy pathway in the HO
514 line are not associated together in the isolated microsomes for efficient shuttling of
515 substrates within the *in vitro* reactions. To further understand the path of acyl flux in WT
516 and HO leaves we utilized an *in vivo* labeling approach.

517 Multiple lines of evidence from the *in vivo* labeling results suggest a traditional
518 Kennedy pathway is not the major pathway of TAG synthesis in HO leaves. First, even
519 though fatty acids accumulate in HO TAG to levels that are 12-times that of PC (Fig.
520 2A), nascent fatty acids are incorporated into PC faster than into TAG (Fig. 5D).
521 Second, during the pulse-chase, fatty acids are redistributed predominantly from PC
522 into TAG (Fig. 9). Third, regiochemical analysis of *de novo* synthesized DAG indicated
523 an equal partitioning of labeled acyl chains at both *sn*-1 and *sn*-2 whereas TAG
524 contained nascent fatty acids only at *sn*-3 (Fig. 7). The regiochemical data indicates that
525 *de novo* DAG produced by Kennedy pathway GPAT/LPAT reactions (Fig. 1A) is not
526 directly used for TAG biosynthesis. In combination with the *in vitro* assay, the results
527 suggest that overexpressed AtDGAT1 does not produce a Kennedy pathway that
528 channels newly synthesized fatty acids directly into TAG.

529 The results in this study are most consistent with Fig. 1 option C which indicates
530 that a second pool of DAG (other than Kennedy pathway *de novo* DAG) is used for TAG
531 synthesis. It is not immediately clear how the second DAG pool is produced, it could be
532 derived from *de novo* DAG, or PC, or a combination of the two. The pulse-chase results
533 indicate that galactolipids, including MGDG, are not used for TAG production (Fig. 9).
534 Thus, the reported mechanisms that turn over chloroplast lipids to produce DAG for leaf
535 TAG under stress conditions (Vanhercke et al., 2019), are unlikely to be actively
536 contributing to TAG accumulation in HO tobacco leaves. Metabolic labeling with
537 [¹⁴C]glycerol in developing oil seed tissues has suggested that a PC-derived DAG pool
538 is utilized for TAG synthesis (Bates et al., 2009; Bates and Browse, 2011; Yang et al.,

539 2017). The current [¹⁴C]acetate acyl labeling cannot directly confirm a PC-derived DAG
540 pool, but the acyl labeling results are consistent with the previous studies. It is also
541 possible that immediately synthesized *de novo* DAG may feed into a larger and more
542 slow turnover DAG pool such as in oil bodies where AtDGAT1 may co-localize with
543 oleosin proteins. DAG can phase partition into oil bodies (Slack et al., 1980; Kuerschner
544 et al., 2008). Thus, if the rapidly labeled *de novo* DAG mixes with a larger unlabeled
545 pool in the oil body it would slow the apparent flux of the *sn*-1/2 labeled *de novo* DAG
546 into TAG relative to the *sn*-3 TAG labeling of the total mixed DAG pool.

547

548 **Both WT and HO leaf acyl fluxes are dominated by phosphatidylcholine acyl
549 editing**

550

551 In both WT and HO leaves, most newly synthesized fatty acids are immediately
552 incorporated into PC (Fig. 5). The difference in stereochemical incorporation of newly
553 synthesized fatty acid in DAG and PC (Fig. 7) indicates there is no DAG-PC precursor-
554 product relationship at the earliest labeling time points. PC labeling as a percent of ER
555 lipid labeling (Fig. 6) at 3 min indicates that PC is $94.9 \pm 1.5\%$ of the total labeled ER
556 lipids in the WT, and $70 \pm 4\%$ in the HO line. The simplest interpretation of this result is
557 a shift in acyl flux away from PC acyl editing in the HO line for direct incorporation of
558 nascent fatty acids into the *sn*-3 position of TAG (Fig. 7). However, the production of
559 TAG at heightened levels requires three acyl chains, of which a substantial percentage
560 are PUFAs. Acyl editing is a constant exchange of acyl groups in PC with the acyl-CoA
561 pool to accommodate desaturation. Thus, if the rate of acyl editing was increased in the
562 HO line, a proportion of the labeled fatty acids initially incorporated into PC at time zero
563 would be redistributed back to the acyl-CoA pool for use by AtDGAT1 to produce TAG
564 within 3 minutes. This concept is supported with linear regression data used to
565 determine labeling rates in Table 1. Extrapolating back to time zero the x-intercepts of
566 PC are 0.91 for WT, and 0.93 for HO. For TAG the x-intercepts are 2.5 for WT, and 2.4
567 for HO. The similar labeling lag times between the WT and the HO line suggest a
568 common path of nascent fatty acid incorporation into ER lipids, though at a higher rate
569 (1.7-fold) for the HO line (Fig. 6). Thus, the rate of acyl editing in the HO line was

570 enhanced by the same amount (i.e. 1.7-fold) to accommodate the increased rate of fatty
571 acid export from the plastid, and PC is the first product of nascent fatty acid
572 incorporation into glycerolipids of the eukaryotic pathway.

573 The stereochemical distribution of labeled fatty acids in PC indicates that the
574 initial incorporation of nascent fatty acids into PC can occur at both positions but with an
575 approximately 2-fold preference for *sn*-2 (Fig. 7). The slightly higher PC *sn*-2 labeling in
576 the HO line suggests that the increase in PC acyl editing favors *sn*-2 over *sn*-1
577 positions. Therefore, acyl flux around the PC acyl editing cycle (Figure 1, option B) is
578 the dominate acyl flux reaction in both WT and HO tobacco, similar to what has been
579 demonstrated in leaves of pea, Arabidopsis, and rapeseed (Williams et al., 2000; Bates
580 et al., 2007; Karki et al., 2019), and developing seeds of soybean, camelina, and
581 Arabidopsis (Bates et al., 2009; Bates and Browse, 2011; Yang et al., 2017). Both PC
582 acyl chains are the major extra-plastidic sites for fatty acid desaturation (Sperling and
583 Heinz, 1993; Sperling et al., 1993), therefore 18:1 flux through PC acyl editing at both
584 *sn*-1 and *sn*-2 likely contributes to a PUFA containing acyl-CoA pool that leads to the
585 incorporation of PUFA in TAG of HO leaves. The decrease in the PC desaturation index
586 (Fig. 3C) is also consistent with an increased rate of acyl flux through PC, because
587 membrane lipid desaturation is dependent on both the rate of desaturation and the rate
588 of acyl flux through the membrane lipid. Increases in the fatty acid synthesis rate have
589 been demonstrated to increase 18:1 and decrease PUFA content of membrane lipids
590 (Maatta et al., 2012; Mei et al., 2015; Botella et al., 2016). Considering that the
591 engineering of a very large pull of acyl chains into TAG in the HO line only increases PC
592 acyl editing instead of drawing acyl chains away from it, PC acyl editing may be
593 considered a key part of fatty acid export from the plastid into the eukaryotic pathway.

594 Interestingly, both the [¹⁴C]acetate continuous pulse and the pulse-chase
595 experiments produced similar initial labeling in lipids for the WT and the HO line (Fig. 6,
596 Fig. 8), but the pulse-chase experiment showed a more dramatic labeling in the
597 immediate chase period in the HO line relative to the WT (Fig. 8). Such a description of
598 initial labeling is consistent with hypothesized transport of acyl chains out of the
599 chloroplast and directly into PC that subverts the large bulk acyl-CoA pool as has been
600 previously documented through bulk pool kinetic measurements with time course

601 labeling experiments (Tjellström et al., 2012; Allen, 2016) and isotopically labeled
602 mutant analysis (Bates et al., 2009; Karki et al., 2019), and is likely part of the acyl
603 editing mechanism where rapid labeling in PC from [¹⁴C]acetate was initially observed
604 (Bates et al., 2007; Bates et al., 2009). During the pulse-chase experiment, it may be
605 that the bulk acyl-CoA pool in the HO line is larger and becomes more labeled over the
606 duration of the pulse by enhanced flux through the acyl editing cycle, and therefore can
607 make a greater contribution to total lipid labeling during the initial phase of chase.

608

609 **Reduced prokaryotic pathway and altered redistribution of acyl chains from PC to**
610 **other lipids in the HO line**

611

612 Engineering the accumulation of TAG in the HO line reduced the steady-state
613 accumulation of chloroplast localized galactolipids by approximately 24% (Fig. 2). Total
614 MGDG content in the HO line was reduced ~19%, and the proportion of prokaryotic
615 pathway produced MGDG was reduced ~40% (Supplemental Fig. S1). DGDG is
616 produced mostly by eukaryotic pathway derived substrates, and total DGDG levels were
617 reduced by ~32% in the HO line as compared to the WT. Therefore, the mass
618 accumulation of galactolipids indicates that TAG accumulation in the HO line negatively
619 affects galactolipid production through both the prokaryotic and eukaryotic pathways.

620 The reductions in galactolipid levels in the HO line could be due to reduced
621 synthesis, increased turnover, or both which cannot be determined from the
622 quantification of steady-state lipid levels; but are reflected in time course-based acyl flux
623 experiments. At short time points [¹⁴C]acetate labeling of nascent fatty acid flux into
624 MGDG represents predominantly prokaryotic MGDG, which is reduced almost 5-fold in
625 the HO line (Fig. 5, Tables 1-2). Therefore, the reduction in prokaryotic MGDG
626 accumulation is primarily due to reduced synthesis. It's also possible that homeostatic
627 turnover of galactolipids was reduced to allow higher accumulation of MGDG than
628 would be expected from the low rates of synthesis. To track the PC-MGDG precursor-
629 product relationship of eukaryotic MGDG synthesis, we used pulse-chase analyses with
630 longer time points. The [¹⁴C]acetate pulse-chase labeling indicated that the
631 redistribution of acyl groups from PC in the HO line was predominantly into TAG with

632 reduced flux into eukaryotic MGDG synthesis as well as other lipids when compared to
633 the WT (Figure 9, Table 3). As there was no reduction in total ^{14}C -MGDG accumulation
634 during the chase period in the HO line, the reduced eukaryotic MGDG accumulation
635 was due to reduced redistribution of acyl groups from PC to MGDG through the
636 eukaryotic pathway. Thus there is no evidence to suggest enhanced galactolipid
637 turnover in the HO line.

638 There are likely multiple alterations in enzymatic activity that led to the
639 redistribution of acyl flux through the lipid metabolic network in the HO line. From the
640 acyl flux analysis, we can propose several related hypotheses for future studies. First,
641 the massive increase in fatty acid accumulation in TAG of the HO line combined with
642 the reduced prokaryotic pathway are likely both related to an increase in acyl-ACP
643 thioesterase activity, which removes the substrate for the prokaryotic pathway and
644 initiates fatty acid export from the chloroplast (Bates et al., 2013; Li-Beisson et al.,
645 2013). The gene expression of both thioesterases FATA and FATB were up regulated in
646 the HO line (Vanhercke et al., 2017). The reduced prokaryotic pathway flux (Fig 5, 9,
647 Tables 2-3), combined with the reduced rates of MGDG desaturation in the HO line
648 (Supplemental Figs. S5-S6) also suggest a possible general down regulation of
649 prokaryotic pathway enzymatic activity.

650 Second, within the eukaryotic pathway 1/3 of the fatty acids in TAG are
651 incorporated into TAG directly from the acyl-CoA pool by the acyltransferase activity of
652 the overexpressed AtDGAT1. In the WT the exchange of fatty acids from PC into the
653 acyl-CoA pool would be mostly used for *de novo* glycerolipid synthesis that would
654 produce the molecular species of PC used for eukaryotic galactolipid synthesis (Karki et
655 al., 2019). Therefore, the increased flux around the PC acyl editing cycle combined with
656 enhanced DGAT activity in the HO line would draw acyl flux away from PC and into *sn*-3
657 TAG, and reduce the amount of fatty acids available for *de novo* PC and galactolipid
658 synthesis.

659 Third, the reduction in eukaryotic galactolipid synthesis of the HO line may also
660 be due to reduced turnover of PC to produce the PC-derived substrate for galactolipid
661 synthesis, or the commandeering of that PC-derived substrate for TAG biosynthesis.
662 The identity of the eukaryotic pathway substrate that is transferred from the ER to the

663 plastid is not clear, and leading candidates include PC, and PC-derived PA and/or DAG
664 (Hurlock et al., 2014; LaBrant et al., 2018; Karki et al., 2019). If PC-derived DAG is the
665 substrate that is transferred from the ER to the chloroplast for galactolipid synthesis,
666 then the overexpressed AtDGAT1 may compete for the PC-derived DAG substrate in
667 the ER and reduce its transfer to the chloroplast for eukaryotic galactolipid synthesis.
668 However, if PA is the PC-derived species that is transferred to the chloroplast, then it
669 would not be a substrate for AtDGAT1 activity unless PA phosphatase activity was also
670 upregulated to convert PA to DAG. Our previous transcriptomics in the HO line
671 indicated increased expression of two phospholipase D isoforms which could produce
672 PA from PC, however an increase in PA phosphatase expression was not detected
673 (Vanhercke et al., 2017). In Arabidopsis the *TRIGALACTOSYLDIACYLGLYCEROL 1*
674 mutant (*tgd1*) or overexpression of (*PDAT1*) increases WT leaf TAG content from
675 <0.1% of dry weight to ~0.5% and ~1% of dry weight, respectively. Mutation of PA
676 phosphatase activity in the *PHOSPHATIDIC ACID HYDROLASE 1* and 2 double mutant
677 (*pah1 pah2*) reduces this TAG accumulation in both the *tgd1* and *AtPDAT1*
678 overexpression backgrounds suggesting that PA phosphatase activity may be involved
679 in leaf TAG production (Fan et al., 2014). However, the *pah1 pah2* mutant has
680 increased synthesis and double the accumulation of leaf PC and PE content (Eastmond
681 et al., 2010). In WT Arabidopsis leaves PC and PE accumulate 5- to 10-fold more fatty
682 acids than TAG (Fan et al., 2014), therefore the effect of the *pah1 pah2* double mutation
683 on leaf TAG accumulation in the *tgd1* and *AtPDAT1* overexpression lines may be due to
684 a shift in fatty acid allocation from TAG to ER membrane lipids, rather than a reduction
685 in TAG biosynthetic capacity. Therefore, the previous results in Arabidopsis and our
686 transcriptomics have not fully elucidated the role of PA phosphatases in leaf TAG
687 production. In addition, our analysis of acyl fluxes alone could not confirm if the DAG
688 pool for TAG synthesis was derived from PC or not. Therefore, further [¹⁴C]glycerol
689 labeling experiments to confirm if HO leaf TAG is derived from PC, combined with
690 analysis of changes in PC lipase and PAP enzymatic activities would be beneficial to
691 determining both the altered pathway fluxes in the HO line, as well as identifying the
692 PC-derived substrate that is used for eukaryotic galactolipid synthesis.

693

694 The tobacco leaf acyl flux analysis suggests strategies to reduce PUFA
695 accumulation in leaf oil

696

697 To reduce the PUFA content of oilseed crops, research has focused on reducing
698 seed specific FATTY ACID DESATURASE 2 and 3 (FAD2 and FAD3) activity through
699 mutations of isoforms mostly expressed in seeds but not vegetative tissue (Pham et al.,
700 2010), or through seed specific RNA interference (Wood et al., 2018; Islam et al., 2019).
701 The purpose of the seed specific reduction in desaturase activity is to increase the
702 oleate content of the seed oil, but not effect leaf membrane lipid compositions in
703 vegetative tissue. ER membrane based FAD2 activity is required for proper leaf
704 membrane function, especially at low temperatures (Miquel et al., 1993). Due to the
705 importance of leaf desaturases for vegetative growth, a similar reduction of desaturase
706 activity would likely be counterproductive in a vegetative oil crop. The analysis of acyl
707 fluxes in WT and HO tobacco leaves presented here indicate that fatty acid flux through
708 the PC acyl editing cycle is the dominate reaction in the WT, and is enhanced at least
709 1.7-fold in the HO line. Because PC is the site for ER localized fatty acid desaturation
710 this movement of acyl groups through PC contributes to accumulation of PUFA in HO
711 leaf TAG. Therefore, an alternative strategy may be to alter acyl flux away from PC. In
712 *Arabidopsis* The LYSOPHOSPHATIDYLCHOLINE ACYLTRANSFERASEs (LPCAT1,
713 LPCAT2) are responsible for the direct incorporation of nascent fatty acids into PC
714 through acyl editing in both leaves (Karki et al., 2019) and seeds (Bates et al., 2012).
715 The *lpcat1 lpcat2* double mutant alters acyl flux such that nascent fatty acids are first
716 esterified into glycerol lipids through the GPAT and LPAT reactions of the Kennedy
717 pathway, rather than PC acyl editing (Bates et al., 2012; Karki et al., 2019). In seeds,
718 this leads to an increase in the seed oil monounsaturated/polyunsaturated fatty acid
719 ratio from 0.72 to 0.84. When reduced exchange of DAG in and out of PC of the
720 PHOSPHATIDYLCHOLINE: DIACYLGLYCEROL CHOLINEPHOSPHOTRANSFERASE
721 mutant *rod1* is combined with the *lpcat1 lpcat2* double mutant, the ratio is further
722 increased to 3.95 in the *lpcat1 lpcat2 rod1* triple mutant (Bates et al., 2012). From our
723 current analysis it was unclear if leaf TAG was produced from PC-derived DAG, but if
724 PC-derived DAG also contributes to leaf TAG a similar approach reducing acyl editing

725 and PC-derived DAG production may be valuable to alter acyl flux around PC to
726 increase the oleate content of leaf TAG while maintaining the PUFA content of
727 membranes. Therefore, the acyl flux analysis presented here has improved our
728 understanding of how leaf lipid metabolism responds to an increased push and pull of
729 fatty acids into TAG, as well as provided new hypotheses on how to further enhance
730 vegetative oil engineering.

731

732 In summary the analysis of acyl fluxes in WT and HO tobacco leaves indicate: (1)
733 The push and pull leaf oil production in the HO line reduces acyl flux into the prokaryotic
734 and enhances flux into the eukaryotic glycerolipid assembly pathways. (2) Fatty acids
735 entering the eukaryotic pathway are first incorporated into PC through acyl editing in
736 both the WT and the HO tobacco plants. (3) The high flux of nascent acyl groups
737 directly into PC acyl editing, and the initial labeled TAG regiochemical analysis both
738 indicate that a direct Kennedy pathway of TAG biosynthesis with nascent fatty acids is
739 not occurring in HO leaves. (4) In HO leaves acyl groups are redistributed from PC
740 mostly into TAG, rather than eukaryotic MGDG production as in the WT. (5) The
741 enhanced flux of fatty acids into TAG combined with the reduced flux of fatty acids into
742 both the prokaryotic and eukaryotic pathways of galactolipid synthesis reduced the
743 steady-state accumulation of MGDG and DGDG. (6) The pulse-chase did not indicate
744 TAG synthesis from galactolipid turnover. (7) Characterization of the high rates of PC
745 acyl editing in the HO line suggests that limiting PC acyl editing may be a future
746 engineering strategy to increase the monounsaturated fatty acid content of leaf derived
747 biofuels.

748

749

750 **METHODS**

751

752 *Plant growth*

753

754 For lipid mass analysis and metabolic labeling experiments, WT and HO tobacco
755 (*Nicotiana tabacum*) plants were grown in Percival E-41HO growth chambers set at
756 16/8 hours light/dark, 26/22°C, and fluorescent white light intensity at pot level across
757 the chamber was 300-400 $\mu\text{mol photons m}^{-2} \text{ s}^{-1}$. Pots were watered three times a week,
758 with one watering replaced by Peters 20/20/20 NPK fertilizer at 0.97 g/L once a week.
759 For microsomal assays, tobacco plants were grown in the glasshouse during summer
760 condition at 24°C/18°C for 16 hr/8 hr light/dark.

761

762 *Chemicals and supplies*

763

764 Unless specified all chemicals were purchased from Fisher Scientific
765 (www.fishersci.com), and solvents were at least HPLC grade. [^{14}C]acetate sodium salt
766 50 mCi/mmol (American Radiolabeled Chemicals, Inc. St. Louis, MO). Glass TLC
767 plates: Analtech HL 250 μm , 20 x 20 cm. Liquid scintillation fluid: EcoScint Original
768 (National Diagnostics, Atlanta, GA). Lipase from *Rhizomucor miehei* and Phospholipase
769 A2 lipase from *Apis mellifera* (Sigma-Aldrich, St. Louis, MO).

770

771 *Microsomal assays*

772

773 Leaves were harvested from 66-day-old tobacco plants, and the microsomal
774 proteins were prepared as described (Zhou et al., 2013). Protein content of the
775 microsomal preparations was measured with BCA reagents (Pierce Chemical
776 Company) with BSA as a standard. The enzyme assay was essentially done as
777 described (Guan et al., 2014). Microsomal proteins (100 μg) were incubated at 30°C
778 with gentle shaking in 0.1 M Tris buffer pH 7.2 containing 4 mM MgCl_2 , 10 mg/ml BSA,
779 12.5 nmol of [^{14}C]glycerol-3-phosphate (8000 dpm/nmol) and 25 nmol 18:1-CoA in a
780 final assay volume of 100 μL for 15 or 60 min. The assays were terminated by addition

781 of 250 μ L of methanol/chloroform/acetic acid (50:50:1) (v/v/v), followed by extraction of
782 the lipids into a chloroform phase. The total lipids were separated on silica TLC plates
783 by developing with chloroform/methanol/acetic acid/water, 90:15:10:3 (v/v/v/v) to half-
784 way of the plate to separate the polar lipids. After air drying for a few minutes, the plates
785 were redeveloped with hexane/diethyl ether/acetic acid, 70:30:1 (v/v/v) to separate the
786 neutral lipids. Radioactive labels of 1000 dpm were spotted three times on each plate as
787 reference, before exposing to a phosphor image screen for overnight. The radioactivity
788 of each band was quantified with Fujifilm FLA-5000 Phosphor Imager.

789

790 *Continuous pulse and pulse-chase [^{14}C]acetate metabolic labeling*

791

792 The continuous pulse metabolic labeling of WT and HO leaf disks was done for
793 3, 6, 10, 30, 120 minutes in triplicate, within 20 mM MES pH 5.5, 0.1X MS salts, 0.01%
794 Tween 20, and 1 mM [^{14}C]acetate. Procedure: 10 mm diameter leaf disks were
795 collected from multiple plants (two WT and three HO) randomized across all horizontal
796 leaves. For each time point replicate, 12 disks were collected directly into 10 mL
797 incubation media (without [^{14}C]acetate) in 100 mL beakers and placed in a 26°C water
798 bath under \sim 330 μmol photons m^{-2} s^{-1} white light with gentle shaking for 10 min to
799 equilibrate temperature. To start the labeling time course the media was removed and
800 replaced with 5 mL of incubation media with [^{14}C]acetate. At each time point the media
801 was removed and the 12 leaf disks were placed into 85°C 2.5 ml isopropanol, 0.01%
802 (w/v) butylated hydroxytoluene for 10 min to quench metabolism. Each replicate time
803 course for each plant line used three 5 ml aliquots of 1 mM [^{14}C]acetate labeling media.
804 The remaining [^{14}C]acetate media after the 6 min time point was used for the 120 min
805 labeling, and the remaining media from the 10 min time point was used for the 30 min
806 labeling. The remaining [^{14}C]acetate media from the 3 and 10/30 labeling time points
807 were mixed and used for the pulse-chase [^{14}C]acetate labeling.

808 For each of the triplicate pulse-chase labeling time courses, 24 leaf disks were
809 collected as described above and pulsed with [^{14}C]acetate labeling media independently
810 for 30 min. The ^{14}C media was removed and the disks were washed three times (10 ml
811 each) in media without [^{14}C]acetate and a final 10 mL media was added for chase

812 incubations. At each chase time point of 0, 2, 6, and 22 hours six leaf disks were
813 collected from each time course incubation and quenched as described above.

814

815 *Lipid extraction and lipid class TLC separations*

816

817 Lipids were extracted from isopropanol quenched tissue following a previous
818 method (Hara and Radin, 1978). After drying total extracts under N₂, lipids of each
819 extract were dissolved in 0.5 ml toluene and aliquots were used for various analytical
820 procedures. Total ¹⁴C extracts were quantified by liquid scintillation counting on a
821 Beckman Coulter LS 6500 liquid scintillation counter. Neutral lipids were separated on
822 silica TLC plates in hexane/diethyl ether/acetic acid, 70:30:1 (v/v/v). Polar lipids were
823 resolved with toluene/acetone/water (30/91/7, v/v/v) on silica TLC plates pre-treated
824 with 0.15 M ammonium sulfate and baked at 120°C for 3 hours prior to loading lipids.
825 Lipid classes were identified based on co-migration with standards. Relative
826 radioactivity of lipids separated by TLC was measured by phosphor imaging on a GE
827 Typhoon FLA7000, and ImageQuant analysis software.

828

829 *Leaf lipid mass analysis*

830

831 Leaf lipids extracted from 86-day-old plants were separated by TLC as described
832 above, and stained with 0.05% primulin in acetone/water 80:20 (v/v) and visualized
833 under UV light. Scrapped bands were transmethylated along with a 17:0 TAG internal
834 standard of fatty acid methyl esters (FAMEs) in 2.5% (v/v) sulfuric acid in methanol at
835 80°C for 1 hr. FAMEs were collected into hexane by adding hexane and 0.88% (w/v)
836 NaCl to force a phase separation. FAMEs were separated and quantified by gas
837 chromatography with flame ionization detection on a Restek Stabilwax column: 30 m,
838 0.25 ID, 0.25 µm film thickness.

839

840 *Regiochemical analysis of DAG, PC, and TAG*

841

842 Total lipids extracted as described above from the WT and the HO line were co-
843 loaded with 30 µg PC and 30 µg DAG. For the WT, 30 µg TAG was also co-loaded.
844 Polar lipid and neutral lipid TLC and primulin staining was performed as described
845 above. PC bands were scrapped off and eluted with chloroform/methanol/acetic acid
846 (5:5:1, v/v/v). Partial digestion of PC was performed with bee venom (*Apis mellifera*)
847 phospholipase PLA₂ (Sigma) (Bates et al., 2007). The digested products were
848 separated by TLC in chloroform/methanol/acetic acid/water 50:30:8:4 (v/v/v/v).
849 Regiochemical analysis of neutral lipids were performed as described (Cahoon et al.,
850 2006). DAG and TAG were digested with 0.2 ml of the *Rhizomucor meihei* lipase
851 (Sigma) for 30 and 60 min respectively. Digested products were separated by TLC in
852 hexane/diethyl ether/acetic acid (35:70:1, v/v/v). Lipid standards were stained with
853 iodine vapor and marked with ¹⁴C. Identification of unknowns was based on co-
854 migration with standards. Radioactivity was quantified by using phosphor imaging as
855 described above.

856

857 *Analysis of [¹⁴C]acetate labeled MGDG molecular species*

858

859 MGDG was isolated by normal phase HPLC on an Agilent 1260 Infinity II
860 (quaternary pump, autosampler, column thermostat, DAD set to 210 nm, fraction
861 collector, running OpenLAB CDS Version C.01.09). The method is an adaption of
862 (Kotapati and Bates, 2018), with modifications as follows: injection volume 5-15 µL in
863 toluene; flow rate 1 ml/min; mobile phases (A: 2-Propanol, B: hexanes, C: Methanol,
864 D:25 mM triethylamine + 25 mM Formic acid (pH 4.1)). Linear gradients between steps
865 from: 0 min 19.3%A/80%B/0.5%C/0.20%D; 3 min 73.6%A/25%B/1%C/0.4%D; 6 min
866 87.5%A/10%B/1.5%C/1%D; 15 min 65%A/0%B/25%C/10%D; held for 3 min; 20 min
867 100%A; held for 3 min; 24 min is the starting composition, and equilibration between
868 samples is 10 min. MGDG was collected between 5.3 and 6.2 min. MGDG molecular
869 species were separated by HPLC on a Thermo Scientific Accucore C18 column (150
870 mm x 3mm; 2.6 µ particle size), according to (Yamauchi et al., 1982) except that the
871 flow rate was 0.35 ml/min for 35 minutes. Vial sampler was maintained at 20°C and the
872 column compartment at 35°C. Samples were injected in 8-15 µL methanol and

873 contained 5000-20000 CPM. To measure radioactivity the column eluent flowed into a
874 LabLogic β -Ram 6 flow liquid scintillation detector, flow cell volume set at 300 μ L,
875 eluant:scintillation cocktail (LabLogic FloLogic-U) ratio was 1:3, with a residence time of
876 12.9 s. Laura 6.0.1.40 software was used to acquire and process the ^{14}C data. To
877 confirm the identity of labeled molecular species, each fraction was collected, converted
878 to FAME as above, and separated by argentation TLC as in (Bates et al., 2009).

879

880 *Data analysis*

881 All calculations from raw data were done in Microsoft Excel. Graphing and
882 statistical analysis done with GraphPad Prism version 7.05.

883

884 **Accession Numbers**

885 AtWRI1, AT3G54320; AtDGAT1, AT2G19450; SiOLEOSIN; EU999158; AtFAD2,
886 AT3G12120; AtFAD3, AT2G29980; AtLPCAT1, AT1G12640; AtLPCAT2, AT1G63050;
887 AtPAH1, AT3G09560; AtPAH2, AT5G42870; AtPDAT1, AT5G13640; AtROD1,
888 AT3G15820; AtTGD1, AT1G19800.

889

890 **Supplemental Data**

891 **Supplemental Figure S1.** Stereochemical fatty acid composition of MGDG and DGDG
892 from WT and HO leaves.

893 **Supplemental Figure S2.** Total incorporation of ^{14}C acetate into WT and HO leaves.

894 **Supplemental Figure S3.** Initial incorporation of nascent ^{14}C acetate labeled fattyacids
895 into lipids, non-normalized.

896 **Supplemental Figure S4.** Example of ^{14}C -MGDG molecular species analysis.

897 **Supplemental Figure S5.** Labeled MGDG molecular species from 30 and 120 minute
898 continuous ^{14}C acetate labeling.

899 **Supplemental Figure S6.** Labeled MGDG molecular species from 0 and 22 hours
900 pulse-chase ^{14}C acetate labeling.

901

902 **ACKNOWLEDGEMENTS**

903 We thank Bei Dong for technical support.

904
905
906
907

908 **TABLES**

909

	PC	PE	PG	MGDG	DGDG	DAG	TAG
WT	18.59 ± 2.97	1.53 ± 0.17	0.31 ± 0.004	16.49 ± 1.79	0.28 ± 0.0001	2.08 ± 0.35	0.14 ± 0.01
HO	17.2 ± 1.7	1.04 ± 0.13	*0.16 ± 0.02	*3.36 ± 0.59	*0.11 ± 0.01	1.57 ± 0.37	*16.68 ± 2.83
p-value	0.7234	0.1444	0.0263	0.0199	0.0075	0.4212	0.0281
F.C.			-1.9	-4.9	-2.5		119.1

910

911 **Table 1. Initial rates of nascent fatty acid incorporation into individual lipid
912 classes.**

913 Rates in DPM $\mu\text{chlorophyll}^{-1} \text{ min}^{-1}$ are the slope best fit ± SE from the linear regression
914 of the first 10 minutes of [^{14}C]acetate labeling from Fig. 5. The p-values indicate if the
915 slopes are significantly different (p-value < 0.05), those that are significant are marked
916 with an asterisk. The fold change (F.C.) for lipids with significantly different rates are
917 indicated.

918

Samples:	WT 30 min	HO 30 min	HO % of WT DPM	WT 120 min	HO 120 min	HO % of WT DPM
Ave. total DPM/ $\mu\text{g chl}$	335.2	86.7		2066.4	646.6	
Eukaryotic proportion DPM/ $\mu\text{g chl}$	9.6%	20.9%		11.4%	25%	
Prokaryotic proportion DPM/ $\mu\text{g chl}$	90.4%	79.1%		88.6%	75%	
	32.2	18.1	56.3%	234.5	161.7	69%
	303.0	68.2	22.6%	1831.9	484.6	26.5%

919

920 **Table 2. Acyl flux into eukaryotic and prokaryotic molecular species of MGDG**

921 The average total MGDG DPM/ $\mu\text{g chl}$ at 30 and 120 min is from Fig. 5. The proportion
922 of eukaryotic and prokaryotic molecular species are from Supplemental Figure S5. The
923 DPM/ $\mu\text{g chl}$ of eukaryotic and prokaryotic MGDG molecular species are calculated from

924 the total label and the relative proportion of each. The "HO % of WT DPM" is the
925 amount of HO eukaryotic or prokaryotic MGDG as compared to the WT at each time
926 point.

927

928

929

930

Samples:	WT 0 hr	WT 22 hr	0-22 hr F.C.	HO 0 hr	HO 22 hr	0-22 hr F.C.
Eukaryotic proportion	12.8%	38.6%	3.0	20.4%	31.5%	1.5
Prokaryotic proportion	87.2%	61.4%	0.7	79.5%	68.5%	0.86

931

932 **Table 3. Change in MGDG eukaryotic and prokaryotic molecular species over the**
933 **[¹⁴C]acetate pulse-chase.** The proportion of eukaryotic and prokaryotic molecular
934 species are from Supplemental Figure S6. F.C., fold-change.

935

936 Figure Legends

937

938 **Figure 1. Model of leaf lipid pathways and hypotheses for acyl flux into TAG.**

939 Plastid localized fatty acid synthesis (F.A.S.) and chloroplast localized prokaryotic
940 pathway are in the green box. All other reactions represent extra-plastidial metabolism.
941 Filled arrowheads represent flux of the glycerol backbone, open arrowheads represent
942 acyl transfer reactions. Dashed lines and boxes represent uncertainty in acyl flux in HO
943 tobacco lines, and large blue letters represent 3 hypotheses for altered acyl flux in HO
944 tobacco lines: A, the use of *de novo* DAG by AtDGAT1 for a Kennedy pathway TAG
945 synthesis; B, uncertain quantitative flux through acyl editing that affects incorporation of
946 PC-modified fatty acids in TAG; C, the use of a membrane lipid derived DAG by
947 AtDGAT1 for TAG synthesis. Abbreviations: DAG, diacylglycerol; DGDG,
948 digalactosyldiacylglycerol; G3P, glycerol-3-phosphate; LPA, lysophosphatidic acid;
949 MGDG; monogalactosyldiacylglycerol; PA, phosphatidic acid; PC, phosphatidylcholine;
950 PE, phosphatidylethanolamine; PG, phosphatidylglycerol; TAG, triacylglycerol.

951

952 **Figure 2. Accumulation of lipids in WT and HO leaves.**

953 The abundance of polar membrane lipids and neutral lipids in leaves of 86-day-old
954 plants. A, mass abundance of each lipid. B, ratio of mass abundance of lipid to PC. WT,
955 blue. HO, red. Data is average \pm SEM for 3-4 replicates. Significant differences in the
956 HO line from the WT (Student's *t*-test, *p*-value < 0.05) are marked with an asterisk.
957 Abbreviations: DAG, diacylglycerol; DGDG, digalactosyldiacylglycerol; MGDG;
958 monogalactosyldiacylglycerol; PC, phosphatidylcholine; PE, phosphatidylethanolamine;
959 PG, phosphatidylglycerol; PI, phosphatidylinositol; PS, phosphatidylserine; TAG,
960 triacylglycerol.

961

962 **Figure 3. Fatty acid composition of WT and HO leaf lipids.**

963 Weight percent fatty acid composition of lipid classes isolated from leaves of 86-day-old
964 plants. A, total leaf extract. B, TAG. C, PC. D, MGDG. Abbreviations as in text. WT,
965 blue. HO, red. Data is average \pm SEM for 3-4 replicates. Significant differences in the
966 HO line from the WT (Student's *t*-test, *p*-value < 0.05) are marked with an asterisk.
967 Abbreviations: PC, phosphatidylcholine; MGDG, monogalactosyldiacylglycerol; TAG,
968 fatty acids, # carbons: # double bonds, d#, delta double bond position.

969

970 **Figure 4. In vitro assay of the Kennedy pathway in leaf microsomes.**

971 Assay conditions: 100 ug of leaf microsomal protein, 12.5 nmole [¹⁴C]G3P + 25 nmole
972 of 18:1-CoA, incubated for 15 or 60 min. For each line and assay length, data is the
973 average and SEM of 3 replicates. Abbreviations: DAG, diacylglycerol; LPA,
974 lysophosphatidic acid; PA, phosphatidic acid; MAG, monoacylglycerol; TAG,
975 triacylglycerol.

976

977 **Figure 5. Initial incorporation of nascent [¹⁴C]acetate labeled fatty acids into
978 lipids.**

979 A-B, major labeled lipids from continuous [¹⁴C]acetate labeling for 3-120 min in leaf
980 disks of 66-day-old plants of the WT and the HO line. C-D, an expanded view of the 0-
981 35 min portion of A & B. All data points are average and SEM of 3 biological replicates.
982 Abbreviations: DAG, diacylglycerol; DGDG, digalactosyldiacylglycerol; MGDG;

983 monogalactosyldiacylglycerol; PC, phosphatidylcholine; PE, phosphatidylethanolamine;
984 PG, phosphatidylglycerol; TAG, triacylglycerol; DPM, disintegrations per minute; chl,
985 chlorophyll.

986

987

988 **Figure 6. Relative incorporation of nascent fatty acids into the eukaryotic and**
989 **prokaryotic pathways of WT and HO leaves.** A, the WT. B, the HO line. The
990 endoplasmic reticulum (ER) localized lipids (PC, PE, TAG) and the plastid localized
991 lipids (PG, MDGD, DGDG) from Fig. 5 were added together, and the ratio of the two.
992 DAG was not included because it can be localized to multiple compartments. All data
993 points are average and SEM of 3 biological replicates. Abbreviations: DPM,
994 disintegrations per minute; chl, chlorophyll.

995

996 **Figure 7. Regiochemical analysis of initial incorporation of nascent [¹⁴C]acetate**
997 **labeled fatty acids into DAG, PC, and TAG.** A-B, TAG lipase digestion of DAG from
998 the WT and the HO line. C-D, phospholipase A₂ digestion of PC from the WT and the
999 HO lines. E-F, TAG lipase digestion of TAG from the WT and the HO line. All data
1000 points are average and SEM of 3 biological replicates. In A-D, statistical significance of
1001 the HO line from the WT (Student's *t*-test, *p*-value < 0.05) is marked with an asterisk at
1002 each data point. Abbreviations: DAG, diacylglycerol; FFA, free fatty acid; MAG,
1003 monoacylglycerol; PC, phosphatidylcholine; TAG, triacylglycerol.

1004

1005 **Figure 8. Pulse-Chase [¹⁴C]acetate accumulation in lipids of the WT and the HO**
1006 **line.** In all panels the pulse starts at -0.5 hours, and the chase starts at 0 hours. The
1007 leaves of 73-day-old plants were used for both plants. A-B, the WT and the HO line
1008 demonstrating the total ¹⁴C incorporated into the lipid extract; the endoplasmic reticulum
1009 (ER) localized lipids (PC, PE, TAG) and the plastid localized lipids (PG, MDGD, DGDG)
1010 were added together, and the ratio of the two. DAG was not included because it can be
1011 localized to multiple compartments. All data points are average and SEM of 3 biological
1012 replicates. Abbreviations: DPM, disintegrations per minute; chl, chlorophyll.

1013

1014

1015 **Figure 9. Pulse-Chase [¹⁴C]acetate labeling of acyl flux through the lipid metabolic**
1016 **network.** In all panels the pulse starts at -0.5 hours, and the chase starts at 0 hours.
1017 The leaves of 73-day-old plants were used for both plants. A-B, accumulation of
1018 individual radiolabeled lipids as DPM/µg chlorophyll from the total labeled samples in
1019 Fig. 8. C-D, the labeled lipids in A-B, represented as a percentage of the sum. All data
1020 points are average and SEM of 3 biological replicates. Abbreviations: DAG,
1021 diacylglycerol; DGDG, digalactosyldiacylglycerol; MGDG; monogalactosyldiacylglycerol;
1022 PC, phosphatidylcholine; PE, phosphatidylethanolamine; PG, phosphatidylglycerol;
1023 TAG, triacylglycerol; DPM, disintegrations per minute; chl, chlorophyll.

1024

1025

1026

1027

Parsed Citations

Allen DK (2016) Assessing compartmentalized flux in lipid metabolism with isotopes. *Biochimica et Biophysica Acta (BBA) - Molecular and Cell Biology of Lipids* 1861: 1226-1242

Pubmed: [Author and Title](#)

Google Scholar: [Author Only Title Only Author and Title](#)

Allen DK (2016) Quantifying plant phenotypes with isotopic labeling & metabolic flux analysis. *Current opinion in biotechnology* 37: 45-52

Pubmed: [Author and Title](#)

Google Scholar: [Author Only Title Only Author and Title](#)

Allen DK, Bates PD, Tjellström H (2015) Tracking the metabolic pulse of plant lipid production with isotopic labeling and flux analyses: Past, present and future. *Progress in Lipid Research* 58: 97-120

Pubmed: [Author and Title](#)

Google Scholar: [Author Only Title Only Author and Title](#)

Arisz SA, Heo J-Y, Koevoets IT, Zhao T, van Egmond P, Meyer J, Zeng W, Niu X, Wang B, Mitchell-Olds T, Schranz ME, Testerink C (2018) Diacylglycerol acyltransferase 1 contributes to freezing tolerance. *Plant Physiology* 177: 1410-1424

Pubmed: [Author and Title](#)

Google Scholar: [Author Only Title Only Author and Title](#)

Bafor M, Smith MA, Jonsson L, Stobart K, Stymne S (1991) Ricinoleic acid biosynthesis and triacylglycerol assembly in microsomal preparations from developing castor-bean (*Ricinus communis*) endosperm. *Biochemical Journal* 280: 507-514

Pubmed: [Author and Title](#)

Google Scholar: [Author Only Title Only Author and Title](#)

Barron EJ, Stumpf PK (1962) Fat metabolism in higher plants. XIX. The biosynthesis of triglycerides by avocado-mesocarp enzymes. *Biochim Biophys Acta* 60: 329-337

Pubmed: [Author and Title](#)

Google Scholar: [Author Only Title Only Author and Title](#)

Bates PD (2016) Understanding the control of acyl flux through the lipid metabolic network of plant oil biosynthesis. *Biochimica et Biophysica Acta (BBA) - Molecular and Cell Biology of Lipids* 1861: 1214-1225

Pubmed: [Author and Title](#)

Google Scholar: [Author Only Title Only Author and Title](#)

Bates PD, Browse J (2011) The pathway of triacylglycerol synthesis through phosphatidylcholine in *Arabidopsis* produces a bottleneck for the accumulation of unusual fatty acids in transgenic seeds. *Plant Journal* 68: 387-399

Pubmed: [Author and Title](#)

Google Scholar: [Author Only Title Only Author and Title](#)

Bates PD, Browse J (2012) The significance of different diacylglycerol synthesis pathways on plant oil composition and bioengineering. *Front Plant Sci* 3: 147

Pubmed: [Author and Title](#)

Google Scholar: [Author Only Title Only Author and Title](#)

Bates PD, Durrett TP, Ohlrogge JB, Pollard M (2009) Analysis of Acyl Fluxes through Multiple Pathways of Triacylglycerol Synthesis in Developing Soybean Embryos. *Plant Physiology* 150: 55-72

Pubmed: [Author and Title](#)

Google Scholar: [Author Only Title Only Author and Title](#)

Bates PD, Fatihi A, Snapp AR, Carlsson AS, Browse J, Lu C (2012) Acyl editing and headgroup exchange are the major mechanisms that direct polyunsaturated fatty acid flux into triacylglycerols. *Plant Physiology* 160: 1530-1539

Pubmed: [Author and Title](#)

Google Scholar: [Author Only Title Only Author and Title](#)

Bates PD, Ohlrogge JB, Pollard M (2007) Incorporation of Newly Synthesized Fatty Acids into Cytosolic Glycerolipids in Pea Leaves Occurs via Acyl Editing. *Journal of Biological Chemistry* 282: 31206-31216

Pubmed: [Author and Title](#)

Google Scholar: [Author Only Title Only Author and Title](#)

Bates PD, Stymne S, Ohlrogge J (2013) Biochemical pathways in seed oil synthesis. *Current Opinion in Plant Biology* 16: 358-364

Pubmed: [Author and Title](#)

Google Scholar: [Author Only Title Only Author and Title](#)

Botella C, Sautron E, Boudiere L, Michaud M, Dubots E, Yamaryo-Botté Y, Albrieux C, Marechal E, Block MA, Jouhet J (2016) ALA10, a Phospholipid Flippase, Controls FAD2/FAD3 Desaturation of Phosphatidylcholine in the ER and Affects Chloroplast Lipid Composition in *Arabidopsis thaliana*. *Plant Physiology* 170: 1300-1314

Pubmed: [Author and Title](#)

Google Scholar: [Author Only Title Only Author and Title](#)

Browse J, Warwick N, Somerville CR, Slack CR (1986) Fluxes through the prokaryotic and eukaryotic pathways of lipid-synthesis in the 16:3 plant *Arabidopsis-thaliana*. *Biochemical Journal* 235: 25-31

Pubmed: [Author and Title](#)

Google Scholar: [Author Only Title Only Author and Title](#)

Cahoon EB, Dietrich CR, Meyer K, Damude HG, Dyer JM, Kinney AJ (2006) Conjugated fatty acids accumulate to high levels in phospholipids of metabolically engineered soybean and *Arabidopsis* seeds. *Phytochemistry* 67: 1166-1176

Pubmed: [Author and Title](#)

Google Scholar: [Author Only Title Only Author and Title](#)

Carlsson AS, Yilmaz JL, Green AG, Stymne S, Hofvander P (2011) Replacing fossil oil with fresh oil - with what and for what? *Eur J Lipid Sci Technol* 113: 812-831

Pubmed: [Author and Title](#)

Google Scholar: [Author Only Title Only Author and Title](#)

Cernac A, Benning C (2004) WRINKLED1 encodes an AP2/EREB domain protein involved in the control of storage compound biosynthesis in *Arabidopsis*. *Plant J* 40: 575 - 585

Pubmed: [Author and Title](#)

Google Scholar: [Author Only Title Only Author and Title](#)

Durrett TP, Benning C, Ohlrogge J (2008) Plant triacylglycerols as feedstocks for the production of biofuels. *The Plant Journal* 54: 593-607

Pubmed: [Author and Title](#)

Google Scholar: [Author Only Title Only Author and Title](#)

Eastmond PJ, Quettier A-L, Kroon JTM, Craddock C, Adams N, Slabas AR (2010) PHOSPHATIDIC ACID PHOSPHOHYDROLASE1 and 2 Regulate Phospholipid Synthesis at the Endoplasmic Reticulum in *Arabidopsis*. *The Plant Cell Online* 22: 2796-2811

Pubmed: [Author and Title](#)

Google Scholar: [Author Only Title Only Author and Title](#)

Fan J, Yan C, Roston R, Shanklin J, Xu C (2014) *Arabidopsis* Lipins, PDAT1 Acyltransferase, and SDP1 Triacylglycerol Lipase Synergistically Direct Fatty Acids toward beta-Oxidation, Thereby Maintaining Membrane Lipid Homeostasis. *Plant Cell* 26: 4119-4134

Pubmed: [Author and Title](#)

Google Scholar: [Author Only Title Only Author and Title](#)

Fernie AR, Stitt M (2012) On the discordance of metabolomics with proteomics and transcriptomics: coping with increasing complexity in logic, chemistry, and network interactions scientific correspondence. *Plant Physiology* 158: 1139-1145

Pubmed: [Author and Title](#)

Google Scholar: [Author Only Title Only Author and Title](#)

Focks N, Benning C (1998) wrinkled1: A novel, low-seed-oil mutant of *Arabidopsis* with a deficiency in the seed-specific regulation of carbohydrate metabolism. *Plant Physiology* 118: 91-101

Pubmed: [Author and Title](#)

Google Scholar: [Author Only Title Only Author and Title](#)

Frentzen M, Heinz E, McKeon TA, Stumpf PK (1983) Specificities and Selectivities of Glycerol-3-Phosphate Acyltransferase and Monoacylglycerol-3-Phosphate Acyltransferase from Pea and Spinach Chloroplasts. *European Journal of Biochemistry* 129: 629-636

Pubmed: [Author and Title](#)

Google Scholar: [Author Only Title Only Author and Title](#)

Guan R, Lager I, Li X, Stymne S, Zhu L-H (2014) Bottlenecks in erucic acid accumulation in genetically engineered ultrahigh erucic acid *Crambe abyssinica*. *Plant Biotechnology Journal* 12: 193-203

Pubmed: [Author and Title](#)

Google Scholar: [Author Only Title Only Author and Title](#)

Hajduch M, Hearne LB, Miernyk JA, Casteel JE, Joshi T, Agrawal GK, Song Z, Zhou M, Xu D, Thelen JJ (2010) Systems analysis of seed filling in *Arabidopsis*: using general linear modeling to assess concordance of transcript and protein expression. *Plant physiology* 152: 2078-2087

Pubmed: [Author and Title](#)

Google Scholar: [Author Only Title Only Author and Title](#)

Hara A, Radin NS (1978) Lipid extraction of tissues with a low-toxicity solvent. *Analytical Biochemistry* 90: 420-426

Pubmed: [Author and Title](#)

Google Scholar: [Author Only Title Only Author and Title](#)

Holzl G, Dormann P (2019) Chloroplast Lipids and Their Biosynthesis. *Annu Rev Plant Biol* 70: 51-81

Pubmed: [Author and Title](#)

Google Scholar: [Author Only Title Only Author and Title](#)

Hurlock AK, Roston RL, Wang K, Benning C (2014) Lipid Trafficking in Plant Cells. *Traffic* 15: 915-932

Pubmed: [Author and Title](#)

Google Scholar: [Author Only Title Only Author and Title](#)

Islam N, Bates PD, Maria John KM, Krishnan HB, Z JZ, Luthria DL, Natarajan SS (2019) Quantitative Proteomic Analysis of Low Linolenic Acid Transgenic Soybean Reveals Perturbations of Fatty Acid Metabolic Pathways. *Proteomics* 19: e1800379

Pubmed: [Author and Title](#)

Google Scholar: [Author Only Title Only Author and Title](#)

Karki N, Johnson BS, Bates PD (2019) Metabolically distinct pools of phosphatidylcholine are involved in trafficking of fatty acids out of and into the chloroplast for membrane production. *The Plant Cell*: 31: 2768-2788

Pubmed: [Author and Title](#)

Google Scholar: [Author Only Title Only Author and Title](#)

Katavic V, Reed DW, Taylor DC, Giblin EM, Barton DL, Zou JT, Mackenzie SL, Covello PS, Kunst L (1995) Alteration of seed fatty-acid composition by an ethyl methanesulfonate-induced mutation in *Arabidopsis-thaliana* affecting diacylglycerol acyltransferase activity. *Plant Physiology* 108: 399-409

Pubmed: [Author and Title](#)

Google Scholar: [Author Only Title Only Author and Title](#)

Kelly AA, Dormann P (2004) Green light for galactolipid trafficking. *Curr Opin Plant Biol* 7: 262-269

Pubmed: [Author and Title](#)

Google Scholar: [Author Only Title Only Author and Title](#)

Kotapati HK, Bates PD (2018) A normal phase high performance liquid chromatography method for the separation of hydroxy and non-hydroxy neutral lipid classes compatible with ultraviolet and in-line liquid scintillation detection of radioisotopes. *Journal of Chromatography B* 1102-1103: 52-59

Pubmed: [Author and Title](#)

Google Scholar: [Author Only Title Only Author and Title](#)

Kuerschner L, Moessinger C, Thiele C (2008) Imaging of lipid biosynthesis: how a neutral lipid enters lipid droplets. *Traffic* 9: 338-352

Pubmed: [Author and Title](#)

Google Scholar: [Author Only Title Only Author and Title](#)

LaBrant E, Barnes AC, Roston RL (2018) Lipid transport required to make lipids of photosynthetic membranes. *Photosynthesis Research* 138: 345-360

Pubmed: [Author and Title](#)

Google Scholar: [Author Only Title Only Author and Title](#)

Li-Beisson Y, Shorrosh B, Beisson F, Andersson MX, Arondel V, Bates PD, Baud S, Bird D, DeBono A, Durrett TP, Franke RB, Graham IA, Katayama K, Kelly AA, Larson T, Markham JE, Miquel M, Molina I, Nishida I, Rowland O, Samuels L, Schmid KM, Wada H, Welti R, Xu C, Zallot R, Ohlrogge J (2013) Acyl-Lipid Metabolism. *the Arabidopsis Book* 11: e0161

Pubmed: [Author and Title](#)

Google Scholar: [Author Only Title Only Author and Title](#)

Li-Beisson Y, Shorrosh B, Beisson F, Andersson MX, Arondel V, Bates PD, Baud S, Bird D, Debono A, Durrett TP, Franke RB, Graham IA, Katayama K, Kelly AA, Larson T, Markham JE, Miquel M, Molina I, Nishida I, Rowland O, Samuels L, Schmid KM, Wada H, Welti R, Xu C, Zallot R, Ohlrogge J (2013) Acyl-lipid metabolism. *Arabidopsis Book* 11: e0161

Pubmed: [Author and Title](#)

Google Scholar: [Author Only Title Only Author and Title](#)

Lu CF, Napier JA, Clemente TE, Cahoon EB (2011) New frontiers in oilseed biotechnology: meeting the global demand for vegetable oils for food, feed, biofuel, and industrial applications. *Current Opinion in Biotechnology* 22: 252-259

Pubmed: [Author and Title](#)

Google Scholar: [Author Only Title Only Author and Title](#)

Ma W, Kong Q, Arondel V, Kilaru A, Bates PD, Thrower NA, Benning C, Ohlrogge JB (2013) WRINKLED1, A Ubiquitous Regulator in Oil Accumulating Tissues from *Arabidopsis* Embryos to Oil Palm Mesocarp. *PLoS ONE* 8: e68887

Pubmed: [Author and Title](#)

Google Scholar: [Author Only Title Only Author and Title](#)

Maatta S, Scheu B, Roth MR, Tamura P, Li M, Williams TD, Wang X, Welti R (2012) Levels of *Arabidopsis thaliana* leaf phosphatidic acids, phosphatidylserines, and most trienoate-containing polar lipid molecular species increase during the dark period of the diurnal cycle. *Frontiers in Plant Science* 3: 49

Pubmed: [Author and Title](#)

Google Scholar: [Author Only Title Only Author and Title](#)

Maréchal E, Bastien O (2014) Modeling of regulatory loops controlling galactolipid biosynthesis in the inner envelope membrane of chloroplasts. *Journal of Theoretical Biology* 361: 1-13

Pubmed: [Author and Title](#)

Google Scholar: [Author Only Title Only Author and Title](#)

Mei C, Michaud M, Cussac M, Albrieux C, Gros V, Maréchal E, Block MA, Jouhet J, Rébeillé F (2015) Levels of polyunsaturated fatty acids correlate with growth rate in plant cell cultures. *Scientific reports* 5: 15207

Pubmed: [Author and Title](#)

Google Scholar: [Author Only Title Only Author and Title](#)

Miquel M, James D, Dooner H, Browse J (1993) *Arabidopsis* requires polyunsaturated lipids for low-temperature survival. *Proceedings of the National Academy of Sciences* 90: 6208-6212

Pubmed: [Author and Title](#)

Google Scholar: [Author Only Title Only Author and Title](#)

Moellering ER, Muthan B, Benning C (2010) Freezing Tolerance in Plants Requires Lipid Remodeling at the Outer Chloroplast

Membrane. Science 330: 226-228

Pubmed: [Author and Title](#)

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Mongrand S, Bessoule JJ, Cabantous F, Cassagne C (1998) The C-16 : 3/C-18 : 3 fatty acid balance in photosynthetic tissues from 468 plant species. *Phytochemistry* 49: 1049-1064

Pubmed: [Author and Title](#)

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Narayanan S, Tamura PJ, Roth MR, Prasad PW, Welti R (2016) Wheat leaf lipids during heat stress: I. High day and night temperatures result in major lipid alterations. *Plant, Cell & Environment* 39: 787-803

Pubmed: [Author and Title](#)

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Ohlrogge J, Browse J (1995) Lipid Biosynthesis. *Plant Cell* 7: 957-970

Pubmed: [Author and Title](#)

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Pham A-T, Lee J-D, Shannon JG, Bilyeu KD (2010) Mutant alleles of FAD2-1A and FAD2-1B combine to produce soybeans with the high oleic acid seed oil trait. *BMC Plant Biology* 10: 195

Pubmed: [Author and Title](#)

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Rahman MM, Divi UK, Liu Q, Zhou X, Surinder S, Aruna K (2016) Oil-rich nonseed tissues for enhancing plant oil production. *CAB Reviews* 11: 1-11

Pubmed: [Author and Title](#)

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Roughan PG, Slack CR (1982) Cellular-organization of glycerolipid metabolism. *Annual Review of Plant Physiology and Plant Molecular Biology* 33: 97-132

Pubmed: [Author and Title](#)

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Sakaki T, Saito K, Kawaguchi A, Kondo N, Yamada M (1990) Conversion of Monogalactosyldiacylglycerols to Triacylglycerols in Ozone-Fumigated Spinach Leaves. *Plant Physiology* 94: 766-772

Pubmed: [Author and Title](#)

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Schwender J, König C, Klapperstück M, Heinzel N, Munz E, Hebbelmann I, Hay JO, Denolf P, De Bodt S, Redestig H, Caestecker E, Jakob PM, Borisjuk L, Rolletschek H (2014) Transcript abundance on its own cannot be used to infer fluxes in central metabolism. *Frontiers in Plant Science* 5: 668

Pubmed: [Author and Title](#)

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Slack CR, Bertaud WS, Shaw BD, Holland R, Browse J, Wright H (1980) Some studies on the composition and surface properties of oil bodies from the seed cotyledons of safflower (*Carthamus tinctorius*) and linseed (*Linum usitatissimum*). *Biochemical Journal* 190: 551-561

Pubmed: [Author and Title](#)

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Slack CR, Roughan PG, Balasingham N (1977) Labeling studies in vivo on metabolism of acyl and glycerol moieties of glycerolipids in developing maize leaf. *Biochemical Journal* 162: 289-296

Pubmed: [Author and Title](#)

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Sperling P, Heinz E (1993) Isomeric sn-1-octadecenyl and sn-2-octadecenyl analogs of lysophosphatidylcholine as substrates for acylation and desaturation by plant microsomal-membranes. *European Journal of Biochemistry* 213: 965-971

Pubmed: [Author and Title](#)

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Sperling P, Linscheid M, Stocker S, Muhlbach HP, Heinz E (1993) In-vivo desaturation of cis-delta-9-monounsaturated to cis-delta-9,12-diunsaturated alkenylether glycerolipids. *Journal of Biological Chemistry* 268: 26935-26940

Pubmed: [Author and Title](#)

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Stymne S, Stobart AK (1984) THE BIOSYNTHESIS OF TRIACYLGLYCEROLS IN MICROSMAL PREPARATIONS OF DEVELOPING COTYLEDONS OF SUNFLOWER (*HELIANTHUS-ANNUUS* L.). *Biochemical Journal* 220: 481-488

Pubmed: [Author and Title](#)

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Tjellström H, Yang Z, Allen DK, Ohlrogge JB (2012) Rapid Kinetic Labeling of *Arabidopsis* Cell Suspension Cultures: Implications for Models of Lipid Export from Plastids. *Plant Physiology* 158: 601-611

Pubmed: [Author and Title](#)

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Vanhercke T, Divi UK, El Tahchy A, Liu Q, Mitchell M, Taylor MC, Eastmond PJ, Bryant F, Mechanicos A, Blundell C, Zhi Y, Belide S, Shrestha P, Zhou XR, Ral JP, White RG, Green A, Singh SP, Petrie JR (2017) Step changes in leaf oil accumulation via iterative metabolic engineering. *Metab Eng* 39: 237-246

Pubmed: [Author and Title](#)

Google Scholar: [Author Only Title Only Author and Title](#)

Vanhercke T, Dyer JM, Mullen RT, Kilaru A, Rahman MM, Petrie JR, Green AG, Yurchenko O, Singh SP (2019) Metabolic engineering for enhanced oil in biomass. *Progress in Lipid Research* 74: 103-129

Pubmed: [Author and Title](#)

Google Scholar: [Author Only Title Only Author and Title](#)

Vanhercke T, El Tahchy A, Liu Q, Zhou X-R, Shrestha P, Divi UK, Ral J-P, Mansour MP, Nichols PD, James CN, Horn PJ, Chapman KD, Beaudoin F, Ruiz-López N, Larkin PJ, de Feyter RC, Singh SP, Petrie JR (2014) Metabolic engineering of biomass for high energy density: oilseed-like triacylglycerol yields from plant leaves. *Plant Biotechnology Journal* 12: 231-239

Pubmed: [Author and Title](#)

Google Scholar: [Author Only Title Only Author and Title](#)

Vogel C, Marcotte EM (2012) Insights into the regulation of protein abundance from proteomic and transcriptomic analyses. *Nature reviews genetics* 13: 227

Pubmed: [Author and Title](#)

Google Scholar: [Author Only Title Only Author and Title](#)

Wang L, Shen W, Kazachkov M, Chen G, Chen Q, Carlsson AS, Stymne S, Weselake RJ, Zou J (2012) Metabolic Interactions between the Lands Cycle and the Kennedy Pathway of Glycerolipid Synthesis in *Arabidopsis* Developing Seeds. *The Plant Cell Online* 24: 4652-4669

Pubmed: [Author and Title](#)

Google Scholar: [Author Only Title Only Author and Title](#)

Williams JP, Imperial V, Khan MU, Hodson JN (2000) The role of phosphatidylcholine in fatty acid exchange and desaturation in *Brassica napus* L. leaves. *Biochemical Journal* 349: 127-133

Pubmed: [Author and Title](#)

Google Scholar: [Author Only Title Only Author and Title](#)

Wood CC, Okada S, Taylor MC, Menon A, Mathew A, Cullerne D, Stephen SJ, Allen RS, Zhou XR, Liu Q (2018) Seed-specific RNAi in safflower generates a superhigh oleic oil with extended oxidative stability. *Plant biotechnology journal* 16: 1788-1796

Pubmed: [Author and Title](#)

Google Scholar: [Author Only Title Only Author and Title](#)

Xu C, Shanklin J (2016) Triacylglycerol Metabolism, Function, and Accumulation in Plant Vegetative Tissues. *Annual Review of Plant Biology* 67: 179-206

Pubmed: [Author and Title](#)

Google Scholar: [Author Only Title Only Author and Title](#)

Yamauchi R, Kojima M, Isogai M, Kato K, Ueno Y (1982) Separation and Purification of Molecular Species of Galactolipids by High Performance Liquid Chromatography. *Agricultural and Biological Chemistry* 46: 2847-2849

Pubmed: [Author and Title](#)

Google Scholar: [Author Only Title Only Author and Title](#)

Yang W, Wang G, Li J, Bates PD, Wang X, Allen DK (2017) Phospholipase Dzeta Enhances Diacylglycerol Flux into Triacylglycerol. *Plant Physiol* 174: 110-123

Pubmed: [Author and Title](#)

Google Scholar: [Author Only Title Only Author and Title](#)

Zhou XR, Shrestha P, Yin F, Petrie JR, Singh SP (2013) AtDGAT2 is a functional acyl-CoA:diacylglycerol acyltransferase and displays different acyl-CoA substrate preferences than AtDGAT1. *FEBS Lett* 587: 2371-2376

Pubmed: [Author and Title](#)

Google Scholar: [Author Only Title Only Author and Title](#)

Zou JT, Wei YD, Jako C, Kumar A, Selvaraj G, Taylor DC (1999) The *Arabidopsis thaliana* TAG1 mutant has a mutation in a diacylglycerol acyltransferase gene. *Plant Journal* 19: 645-653

Pubmed: [Author and Title](#)

Google Scholar: [Author Only Title Only Author and Title](#)