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The standard petrography test method for measuring air voids in concrete (ASTM C457) requires a meticulous
and long examination of sample phase composition under a stereomicroscope. The high expertise and specialized
equipment discourage this test for routine concrete quality control. Though the task can be alleviated with the
aid of color-based image segmentation, additional surface color treatment is required. Recently, deep learning
algorithms using convolutional neural networks (CNN) have achieved unprecedented segmentation performance
on image testing benchmarks. In this study, we investigated the feasibility of using CNN to conduct concrete

segmentation without the use of color treatment. The CNN demonstrated a strong potential to process a wide
range of concretes, including those not involved in model training. The experimental results showed that CNN
outperforms the color-based segmentation by a considerable margin, and has comparable accuracy to human
experts. Furthermore, the segmentation time is reduced to mere seconds.

1. Introduction

Concrete is a complex composite material that plays an essential
role in modern construction. During production, the material pro-
portioning and mixing protocol affect its structural, serviceability, and
durability performance. As such, concrete quality is largely contingent
on the property and distribution of the different phase compositions,
mainly aggregates, cement paste, and air voids. Petrographic analysis is
a common approach for evaluating concrete quality and predicting its
long-term performance. While petrographic analysis is a collective term
for a series of tests, it generally involves the examination of different
phases on a polished concrete section via various imaging methods like
optical microscopy [1], flatbed scanning [2,3], scanning electron mi-
croscope (SEM) [4], and energy dispersive X-ray analysis (SEM- EDX)
[5]. This kind of analyses has been broadly applied on concrete for
crack characterization under various damaging mechanisms such as fire
exposure [6,7] and alkali-silica reaction (ASR) [8-10], air void analysis
for evaluating freeze-thaw performance [2,11], and phase quantifica-
tion for aggregate [12-14], paste [15,16] and other components
[5,17-19].
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In practice, manually conducted petrographic inspections often re-
quire massive time involvement, as well as high labor costs. A well-
known example is the hardened concrete air void analysis, as specified
by the ASTM C457 in the US [11] or EN 480-11 in Europe [20]. Al-
though the testing standard is well established, the tedious testing
procedures potentially discouraged the acceptance of this test by
practitioners. Furthermore, the repeated visual judgment required for
the operator over hours during the inspection causes certain concerns
about operator subjectivity [21-23].

Pertinent studies in recent decades have attempted to reduce the
manual involvement by fulfilling a color-based image segmentation
with image analysis techniques. As a common approach, the RapidAir
457 testing instrument [24] and several other studies [25-27] applied
black ink and white powder to create a binary surface to highlight air
voids. Subsequent advancements differentiated the paste and aggregate
using phenolphthalein dye [2,3,28]. In either case, the scan of the
sample surface can be segmented based on the created color contrast,
making an automatic C457 measurement possible [3] or other ad-
vanced analysis [29,30] possible using simple program script.

However, the color-aided petrographic analysis still has a number of
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limitations due to the following reasons. First, the surface treatment
costs extra time and requires high workmanship. Second, due to the
subtle variation of color treatment on different samples, the color
threshold needs to be readjusted each time. Third, improper color
dyeing can reduce segmentation accuracy. These limitations have long
been recognized in concrete studies, and some efforts are seen to im-
prove the segmentation accuracy using additional graphic features. In a
study by Werner and Lange, for example, a convolution kernel algo-
rithm extracting the texture contrast was used to differentiate the ag-
gregate and cement paste in SEM images [31].

Recently, scientific research is rapidly reshaped by artificial in-
telligence. Recent developments in the fields of computer vision and
machine learning have achieved significant breakthroughs regarding
image segmentation, in which the semantic segmentation (i.e., pixel-
leveled classification for an image) is particularly relevant to the ob-
jective of petrographic analysis. As a machine learning subset, the rise
of deep learning-based semantic segmentation has substantially im-
proved the precision and processing speed of machine visual under-
standing, attracting attention from various fields, like autonomous
driving [32], satellite sensing [33], and medical imaging [34]. Garcia-
Garcia et al. reviewed the major deep learning techniques for semantic
segmentation [35], among which convolutional neural networks (CNN)
is well-recognized for visual imagery with its dominant superiority in
accuracy and efficiency. As compared with the color-based methods,
this approach implements more sophisticated computational strategies
for determining different objects in an image autonomously.

Despite the fruitful outcomes of infusing deep learning in many
fields, its potential for concrete petrographic analysis has not been well
validated. Aiming at advancing the use of deep learning techniques in
concrete research, we investigate the efficacy of using CNN for the
concrete image segmentation task. With the practical need of an ex-
peditious petrographic analysis in mind, the ultimate objectives of this
study are set out to (i) propose a practical guideline of applying CNN in
petrographic analysis and (ii) assess its performance for segmenting
concrete samples without the color treatment. As for the implementa-
tion, the CNN model was developed based on a well-established algo-
rithm, ResNet-101 [36], and trained with a group of concrete image-
label pairs. The segmentation performance was evaluated based on both
the training images and a set of new testing images. The CNN seg-
mentations were statistically compared against human recognition, as
well as the color-based segmentation. Furthermore, the sensitivity of
the ASTM C457 air void parameters to the different segmentation
methods was investigated.

In this paper, the Background section first details technical issues
about the dyeing treatment for color-based segmentation as observed in
previous research. Then, the basics of CNN and its state-of-art for se-
mantic segmentation are briefly reviewed. The Methodology section
covers the experimental procedure of sample preparation, details of the
CNN model selection, training, testing, and also the accuracy assess-
ment. The test results and important findings regarding the segmenta-
tion performance of CNN are then addressed.

2. Background
2.1. Technical limitations of the color method

Taking advantage of the color reaction of phenolphthalein with the
high alkalinity in cement paste (pH > 9), the aggregate and paste
phases can be differentiated to facilitate the petrographic analysis [3].
This method, however, cannot be used for carbonated concrete that has
a lower pH value, which is common for samples cored from old con-
struction. Even for new concrete samples, it is difficult to achieve the
desired color contrast, as carbonation initiates once the fresh sample
section is exposed to the environment [2,3]. In practice, it is common to
encounter problems when using color to segment aggregate and paste
phases, as exemplified in Fig. 1. In Fig. 1a, the periphery of coarse
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aggregate is contaminated by the pink color; this issue is more observed
on light-color aggregates. Fig. 1b shows the uneven coloration of ce-
ment paste. Under a higher magnification as shown in Fig. 1c, some fine
aggregates are colored to pink, which is related to the semi-transparent
nature of sand grains (primarily quartz) [30,31]. Based on our ob-
servation, the color dye may infiltrate into the substrate through the
interfacial transitional zone (ITZ) around sands, leaving the pinkish
visual effect. As such, the color treatment could actually constitute a
hindrance to the analysis in certain samples. Despite the obvious
challenges, the above problems can be fundamentally avoided if the
segmentation can be done directly on the uncolored samples.

2.2. Accurate visual understanding using CNN

Due to the huge success of deep learning models in visual recogni-
tion applications, deep learning-based semantic segmentation has
emerged as a mainstream research topic in the field of computer vision
in recent years. Unlike the color-based segmentation, this new approach
relies on a substantial number of high-level features to isolate different
regions in an image. Obtained from the nonlinear combinations of low-
level features (color, shape, pattern, texture, etc.) that are easy to detect
from an image, the high-level features can serve as efficient object
descriptors in the program, though they themselves are usually abstract
and object-specific, such as a mathematic matrix depicting the facial
characteristics of dogs. The state-of-art deep learning technique to
fulfill this functionality is CNN, as it can find more discriminative fea-
tures with less computation [35,37].

CNN is essentially an artificial neural network infused with the
concept of convolution kernel—a type of image filtering algorithm
commonly used in image processing. An illustration of using CNN for
semantic segmentation is given in Fig. 2. In terms of the general
structure of CNN, its first layer contains a large number of sublayers
with convolutional kernels, which extract hundreds of low-level feature
maps from the input image. As the network goes deeper, the subsequent
layers in CNN gradually synthesize the low-level features to perceive
complex high-level features for a more discriminative decision function.
The implementation of CNN for image segmentation can be generally
divided into model training and testing. The CNN training typically
requires feeding the model with a group of images with their labels.
With the iterations, the algorithm updates the model parameters for
proposing an optimized segmentation strategy. The above step can be
understood as a “learning” process. Afterward, the CNN model can be
tested with new images, where a better model is expected to yield more
accurate segmentation in this “predicting” process.

2.3. Review of the major advancements in deep learning

Back in 2012, an important work was published by Krizhevsky et al.
[38], where the power of deep neural networks was demonstrated with
its unprecedented performance in ImageNet Large Scale Visual Re-
cognition Challenge (ILSVRC) competition. In 2014, Simonyan and
Zisserman published a fundamental work investigating the effect of the
depth of CNN on its accuracy in large-scale image recognition [39].
After comparing different strategies of building CNN, they found that
the most effective approach is increasing the CNN layer depth (by that
time, up to 19) while using very small convolutional kernels (3 x 3) in
the convolutional layer. This structure configuration, named as VGG by
the authors, simultaneously reduces the model parameters involved in
the computation and increases the non-linearity of the high-level fea-
tures.

One of the earliest breakthroughs of using CNN for semantic seg-
mentation was achieved by R. Girshick et al. [37]. The authors pro-
posed a simple and scalable detection algorithm R-CNN, where R stands
for region proposals. Specifically, R-CNN first generates category-in-
dependent region proposals to highlight locations of interest in the
image; then, the feature of each region is computed using a bottom-up
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Fig. 1. Typical issues of improper phenolphthalein treatment: (a) color contamination of the coarse aggregate; (b) inhomogeneous color dye of cement paste; (c)

color contamination of fine aggregate.

CNN structure; and lastly, the features are examined by a classification
algorithm such that the regions belonging to different objects can be
segmented. In 2014, R-CNN achieved a mean average performance of
53.3% on the canonical VOC evaluation dataset for classification eva-
luation-a 30% improvement than the previous best. To overcome the
need for a large amount of labeled training data in CNN, Pinheiro and
Collobert proposed a CNN model that accepts weakly labeled training
data (image-level annotation) in 2015 [40]. To correlate with the

image-level annotation, the output of this algorithm is an image-level
score evaluated based on the pixel-level scores, by using an aggregation
algorithm in the last step of the model computation. Although the
proposed CNN model is not as accurate as those using fully labeled data,
this paper provides innovative insights for reducing the computation
cost and bridging semantic segmentation with image classification
problems.

Built over the successes of classification neural networks, a fully

Forward/prediction

Backward/learning

Conv. layers

Low-level features

Conv. layers
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High-level features
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Fig. 2. A simplified CNN structure for semantic segmentation, with an example of dog identification. [Note, this is a conceptual illustration not reflecting the

technical details.]
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convolution network (FCN) was proposed by Long et al. in 2015 [41].
This structure first realized an end-to-end and pixel-to-pixel semantic
segmentation, where the end-to-end means that the intermediate pro-
cedures are not involved with human interference, such as parameter
tuning, and pixel-to-pixel means the segmented image can be directly
output from the model. To realize these functions, the authors used
fully convolutional layers to replace the fully connected layers in sev-
eral state-of-art CNNs including VGG originally designed for classifi-
cation problems. The core thoughts of this algorithm are 1) it takes
advantage of the powerful feature extractor from the existing CNNs,
and then 2) the fully connected layers can, as a reversed manner, de-
convolute the high-level features back to an image segmented at pixel-
level. It turns out that this idea is extremely successful. The FCN
achieved a mIoU (mean of intersection over union, an accuracy mea-
sure) of 62.7%, which is a 20% relative improvement than other CNNs
with reduced computational demand.

Since CNNs was originally designed for object classification, the
emphasis on the invariance of spatial transformations inherently lim-
ited the spatial precision for semantic segmentation. To overcome this
issue, Chen et al. introduced the idea of conditional random field (CRF),
a probabilistic graphical model, into FCN and named this new approach
as DeepLab [42]. With the additional implementation of the whole al-
gorithm for sparse feature extraction [43], the author achieved highly
refined object boundaries in the segmented image and reduced com-
putational cost. In the continued development of DeepLab, Chen et al.
further proposed average-pooling and max-pooling mechanisms to sti-
mulate CNN focusing on more discriminative features [44]. With those
improvements, the mIoU scored by DeepLab reached above 70%.

Whereas the greater CNN depth is expected to bring great benefits to
segmentation work, the implementation is bottlenecked by a problem
known as vanishing gradients. As the CNN layer number increases, the
model training becomes a daunting task because the algorithm will
eventually stop from convergence, i.e. “learning nothing”. With the
hypothesis that introducing skip connections to the successive CNN
layers can alleviate this problem, He et al. reformulated the classic CNN
layers with a residual learning framework and named it ResNet [36]. In
short, this solution ensures that a CNN layer not only receives inputs
from its previous layer but also even former layers, such that it should
always “learn something”. Using this philosophy, the authors success-
fully modified a VGG structure to reach a maximum layer depth of 152
(ResNet-152), 8 times deeper than the original. With respect to the
performance, ResNet beat all previous CNNs and won 1st place in
ILSVRC competition in 2015 with 96.4% accuracy, as well as a series of
other major machine vision competitions in recent years. Taking ad-
vantage of the latest deep learning techniques, ResNet was adopted as
the backbone of the CNN model investigated in this study, as detailed in
the next section.

3. Methodology

The work done in this study can be divided into four parts, as il-
lustrated in Fig. 3. Section 3.1 details the first part, which involves
obtaining a group of high-resolution scans from different concrete
samples, as well as the corresponding label images via the color-based
analysis. Section 3.2 provides the technical information involved with
CNN model selection and model training. Section 3.3 covers the CNN
testing (i.e., segmenting new concrete scans). Section 3.4 details the
strategy used for accuracy assessment.

3.1. Material and sample preparation

Eight types of concrete mixtures with various proportioning and
material constituents were involved in this study, as summarized in
Table 1. The first four mixtures each had two images for training and
one for testing, and the other four each had only one for testing. All the
samples investigated in this study were obtained in the form of
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hardened concrete. The labels of the training images were prepared
using the color-based segmentation (see Fig. 3). The testing images can
be divided into two groups as familiar and unfamiliar. In comparison,
the unfamiliar images had different material constituents from the
images involved in training, and they are used to test CNN's ability to
segment new concrete scans in practice. Sample nomenclature indicates
the sample name, type, and number (if applied), such as “Lime_train_1".

The sample surface preparation generally followed a protocol pre-
viously reported by Song et al. unless otherwise specified [3]. After saw
cutting each sample into a 60 X 60 mm flat specimen, the cross-section
was progressively polished down to 1800 mesh (9 um). The specimen
was then air-dried in a desiccator until the visual effect brought by the
surface moisture was removed. The air voids on the polishing section
were then filled using an orange chalk powder (of controlled particle
size around 1.6 pm), with the excess powder stricken off with a razor.
Once these treatments were done, a digital image of the polished sur-
face was collected using a flatbed scanner. Each of the scans was
50 x 50 mm, with a 5.3-um pixel resolution.

Labels for the training images were obtained using an established
colored-based method [3,28]. This required additional steps to process
the training samples. First, the existing powder in the air voids was
removed using compressive air. Then, a phenolphthalein solution (5 wt
% in 200 proof ethanol) was sprayed on the surface to dye the paste to
pink. To minimize the potential negative influence from the color-based
method, any sample showing major flaws were rejected and re-
processed from the polishing step. After drying, the air voids were filled
again with the same chalk powder. Lastly, a second image for each
training sample with the color treatment was scanned, where the
scanning region was cautiously aligned to the first scan. In subsequent
image processing, each pair of scans was further aligned in ImageJ to
ensure a pixel-level agreement. The label images were segregated using
MultiSpec. For aggregates and air voids, objects respectively smaller
than 10,000 and 100 pm? likely to be noise were ignored [3].

3.2. CNN selection and model training

This work adopted a CNN framework compiled by Huang et al. [45]
that incorporates several latest advancements. The prototype of this
framework is publicly available on GitHub [46]. Built on a state-of-art
CNN DeepLabv3 [47] and with ResNet-101 [36] as the backbone, this
framework has been tested in several studies with exceptional perfor-
mance on prevailing benchmarks [48,49][51][52]. The algorithm im-
plementation is conducted with PyTorch, an open-source machine
learning library in Python.

The CNN model was trained for 20,000 iterations to ensure suffi-
cient optimization, and the training was accomplished with four gra-
phics processing units (GPU). In each iteration, a batch of eight
800 x 800 pixel sections and their labels were randomly cropped from
the training dataset (see Table 1). A jitter (i.e., a random combination of
flipping, rotation, and scaling modification) was performed on the
cropped sections to enrich the data variety. Thus, a total of 160,000
sections were used for training. After each iteration, the CNN model
parameters were updated using a stochastic gradient descent (SGD)
optimizer. Additionally, a loss factor indicating the discrepancy be-
tween the model prediction and the label was updated to trace the
model performance. The loss factor considers both the cross-entropy
and Lovasz-Softmax [50]. The entire work took about 72 h, for finishing
the 20,000 training iterations.

3.3. CNN model testing

After training, the trained CNN model was used to process the
testing images (see Table 1). Note that all these images were not pro-
cessed using the color treatment. Timewise, segmenting a new concrete
scan using the trained model was accomplished in a few seconds.
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Fig. 3. The framework of the major works conducted in this study. ResNet-101 is adopted as the backbone algorithm for the CNN model.

Table 1
Concrete samples investigated in this study.

Mix Name  Type Total scan  Remarks on material constituent
1 Lime Train 2 Whitish limestone aggregate with
Test (familiar) 1 a high sand ratio

2 Pebble  Train 2 High color variation in pebble
Test (familiar) 1 aggregate

3 Slag Train 2 Grayish limestone aggregate with
Test (familiar) 1 slag in paste

4 Trap Train 2 Traprock aggregate with silica
Test (familiar) 1 fume in paste

5 Flyash  Test (unfamiliar) 1 Larger limestone aggregate with

fly ash in paste

6 Brown  Test (unfamiliar) 1 Brownish aggregate and paste

7 Cobble  Test (unfamiliar) 1 Cobble aggregate of various colors

8 Light Test (unfamiliar) 1 Lightweight aggregate with a high

void content

3.4. Accuracy assessment

The accuracy of the segmented image was statistically evaluated
based on manual recognition. For each assessment, an orthogonal grid
system was assigned to pinpoint 100 X 100 points across the entire
concrete scan, and the same grid was replicated on the segmentation.
To get the most reliable ground truth data of the sample, the 10,000
points were manually annotated with the three phases—in a similar

fashion to the manual point-counting method as specified in the ASTM
C457. Then, the ground truth annotation was compared with the seg-
mentation to obtain a confusion matrix from the 10,000 points. Thus,
the IoU of each the three phases and mIoU of the whole segmentation
were calculated for indicating the segmentation accuracy.

Furthermore, the ASTM C457 parameters based on the different
segmentations of each sample were computed using the point-counting
method. This comparison was implemented to clarify the implication of
the IoU accuracy to the air void parameters used in practical testing.
This study focuses on the results of air content, paste content, and
spacing factor.

4. Results and discussion
4.1. Basic outputs of the CNN model

The segmentation performance was traced with iterations using
both the segmentation result and loss factor. Taking Lime_train_1 as an
example, Fig. 4 displays its segmentations at three 50, 100, and 20,000
iterations, with the aggregate shown in purple, paste in green, and air
void in yellow. In Fig. 4b and c, the CNN model at the early iterations
respectively learned identifying the air voids and further isolating a
small portion of the paste. The quality of the ultimate segmentation is
self-explanatory in Fig. 4d. Remarkably, the CNN model is not see-
mingly misled by the color variation of the aggregates.
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Fig. 4. CNN segmentation for Lime_train_1: (a) the 50 x 50 mm uncolored scan, and segmented images at (b) 50, (c) 100, and (d) 20,000 iterations.
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Fig. 5. The loss and accuracy of the CNN model training. This loss factor considered both the cross-entropy and Lovész-Softmax with equal weight. The accuracy here

indicates the mIoU averaged from all training images.

The magnitude of loss correlates with the discrepancy between the
training target (label) and training result (prediction), with 0 for a
perfect match. It is often used as an indirect inference to the segmen-
tation accuracy [42,44,49]. The loss recorded during training is

displayed in Fig. 5, where a continuous decrease is seen. The rate of loss
reduction becomes quite small after 1500 iterations, as the subsequent
improvement mainly happened on refining the phase boundary. As a
comparison, the segmentation accuracy of the CNN segmentations on
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Fig. 6. A comparison on the 5 X 5 mm upper left corner of Lime_train_1: (a) the original sample surface, (b) same surface with the color treatment, (c) segmentation
obtained with color-based analysis, and (d) CNN segmentation. The cross markers on (a) indicate the grid points used for the accuracy assessment.

the training dataset is additionally plotted in Fig. 5. A good reverse-
correlation is observed between loss and accuracy. Note that the loss is
calculated based on the discrepancy from the label images obtained
from the color method, while the accuracy uses the ground truth data
from human judgment as of the reference.

4.2. CNN vs. color-based segmentation for training dataset

As the label images are obtained using the color method, a concern
raised is that the CNN model can be affected by the flaws in the label
images, so it is important to clarify its actual influence on CNN seg-
mentation with accuracy assessment. Still taking “Lime_train_1” as an
example, the 5 X 5 mm upper left corner of its label image and CNN
segmentation at 20,000 iterations are compared in Fig. 6. Fig. 6a shows
the original scan, overlaid with cross markers highlighting the grid
system used for the accuracy assessment. Fig. 6¢ displays the label
image interpreted from Fig. 6b. In this color segmentation, some ag-
gregates are mistakenly recognized as paste or bridged together. The
high sand ratio of “Lime” concrete further leaves a greater challenge for
the segmentation. However, these issues are not observed from the CNN

segmentation in Fig. 6d, which is obtained directly from the uncolored
scan. Despite the fact that some object boundary looks fuzzy in Fig. 6a,
CNN yields a more precise description of the different phases. The
above observations also hold for the other training images.

The accuracy statistics of Lime_train_1 are given in Table 2. The IoU
accuracy results were calculated based on the confusion matrix of the
10,000 grid points, as detailed in Section 3.4. A significant improve-
ment can be seen in the CNN segmentation, where the mIoU raises from
0.872 to 0.929. As for the improvement in the individual phases, the
greatest improvement happens to the differentiation between aggregate
and paste. Interestingly, it seems that the CNN segmentation was able to
capture the valid features of different phases. This may be explained by
the fact that some flaws in the labels can be canceled out by the re-
currence of similar yet correctly segmented features during training.

The accuracy assessment result of each training image is summar-
ized in Table 3, with the mIoU results further compared in Fig. 7. Due to
the variations in material nature, the “Slag” and “Trap” samples show
higher IOU accuracy than the other samples. As for the IoU for the
individual phases, the accuracy of paste is lowest for most cases. The
mloU of the CNN segmentation is consistently higher than the color
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Table 2
Confusion matrix and IoU accuracy of Lime_train_1.
Confusion matrix Color-based CNN
Segmentation Accuracy Segmentation Accuracy
Agg. Paste Void IoU mloU Agg. Paste Void IoU mloU
Ground truth Agg. 5697 227 5 0.900 0.872 5673 251 23 0.948 0.929
Paste 369 2611 46 0.800 36 2964 15 0.901
Void 34 8 1003 0.915 3 254 1010 0.939

segmentation across the samples, where the averaged mloU improved
from 0.898 to 0.934. The higher accuracy of the CNN segmentation is
also reflected in the ASTM C457 parameters inspected—air content A,
paste content P, and spacing factor L. As compared with the IoU results,
the C457 parameters show a smaller difference from the ground truth
values. From a practical viewpoint, the C457 results from both the
segmentation can provide a reasonable indication of the freeze-thaw
performance. This can be attributed to that the IoU approach is more
rigorous for highlighting the difference, while the C457 test is less af-
fected by the precise phase detection on a pixel level.

4.3. Retraining for accuracy improvement

From the training results shown above, it is noticed that a few labels
have lower accuracy, which may affect the training quality. Given the
higher accuracy of the segmented images by CNN, a possible way to fix
this issue is replacing the low-quality labels with the segmented images
by CNN and run another round of model training. This idea was im-
plemented on Lime_train_ 1, Lime_train 2, Pebble_train_ 1, and
Slag_train_1. The rationale for keeping the other labels is allowing CNN
to learn critical features from the color-based segmentation, which may
not be fully reflected from the CNN segmentation that has been ob-
tained. The new accuracy results obtained from the retraining of 20,000
iterations are given in Table 4. In comparison (see Fig. 7), a moderate

further improvement is achieved by the new model, with the averaged
mloU increased by 0.01 from the original CNN model.

4.4. CNN segmentation for testing dataset

Different from the training images discussed above, the results on
the testing images reflect a more realistic segmentation performance, as
these images are not involved in training. For the two subgroups of the
testing images investigated (see Table 1), the familiar portion contains
the same concrete types as for training images, while the unfamiliar
portion only has new concrete types, which are more challenging to
analyze. Fig. 8 displays the testing images segmented by the retrained
CNN model at 20,000 iterations. For each segmentation, the inset sec-
tion shows a 5 X 5 mm local magnification of its upper left corner.
Macroscopically, the CNN segmentation gives a proper phase descrip-
tion for the original testing scans, including the unfamiliar samples. The
appearance of aggregates and cement paste varies widely across the
samples and even within the same scan, whereas the CNN segmentation
is not much affected.

The CNN segmentation works even with challenging samples. Even
semi-transparent quartz sand and blurry phase transitions are well
isolated in the CNN segmentation. As seen from Slag_test in Fig. 8c,
Brown_test in Fig. 8f, and Cobble_test in Fig. 8g, CNN can reasonably
separate phases even with almost the same color. Note Light test in

Table 3
Segmentation accuracy for all training images.
Sample Type ToU mloU ASTM C457
Agg. Paste Void A [%] P [%] L [um]
Lime_train 1 Ground truth 1.000 1.000 1.000 1.000 10.4 30.1 0.136
Color-based 0.900 0.800 0.915 0.872 10.5 28.5 0.127
CNN 0.948 0.901 0.939 0.929 10.5 32.4 0.146
Lime_train 2 Ground truth 1.000 1.000 1.000 1.000 11.4 321 0.119
Color-based 0.869 0.740 0.887 0.832 10.6 27.9 0.124
CNN 0.924 0.884 0.916 0.908 11.8 35.4 0.131
Pebble_train_1 Ground truth 1.000 1.000 1.000 1.000 10.5 29.8 0.089
Color-based 0.940 0.865 0.812 0.872 10.2 31.1 0.092
CNN 0.942 0.882 0.904 0.909 10.2 30.9 0.093
Pebble_train_2 Ground truth 1.000 1.000 1.000 1.000 6.7 33.1 0.266
Color-based 0.937 0.910 0.936 0.927 5.1 38.2 0.203
CNN 0.946 0.911 0.933 0.930 6.6 35.0 0.269
Slag_train_1 Ground truth 1.000 1.000 1.000 1.000 111 29.1 0.095
Color-based 0.934 0.852 0.936 0.907 11.1 26.3 0.085
CNN 0.954 0.901 0.958 0.938 111 27.3 0.089
Slag_train_2 Ground truth 1.000 1.000 1.000 1.000 8.0 29.5 0.150
Color-based 0.932 0.860 0.937 0.910 8.1 32.2 0.164
CNN 0.971 0.938 0.970 0.960 7.9 30.3 0.154
Trap_train_1 Ground truth 1.000 1.000 1.000 1.000 9.5 33.7 0.220
Color-based 0.947 0.903 0.932 0.928 8.9 34.2 0.246
CNN 0.962 0.929 0.947 0.946 9.7 34.1 0.222
Trap_train_2 Ground truth 1.000 1.000 1.000 1.000 8.2 37.0 0.092
Color-based 0.933 0.907 0.973 0.938 8.2 39.0 0.094
CNN 0.965 0.952 0.935 0.951 8.0 38.3 0.092
Average Color-based 0.924 0.855 0.916 0.898 - - -
CNN 0.952 0.912 0.938 0.934 - - -




Y. Song, et al.

Cement and Concrete Research 135 (2020) 106118

Segmentation type
098 || N Color-based
0.96 Hteeeer. 'CNN

{00007 CNN (retrained)

0.94 -

0.92

mloU Accuracy
(@]
(o]
T

TN B W
o B8 B BN R
o IR 8 BR R
o I8 BN RN R
0.8 ML o T o
. . A A

(//be <//77@ Q, é b/ Q, b é/

\/’G/ \f/’e/- 6’\ b e
27 Lo Uy

Fig. 7. A comparison on mIoU accuracy for the samples in the training dataset with different types of segmentation. [Note, the results of “CNN (retain)” are detailed

in Section 4.3.]

Table 4

Segmentation accuracy for all training images after retraining.
Sample Type ToU mloU ASTM C457

Agg. Paste Void A [%] P [%] L [um]

Lime_train_1 CNN (retrain) 0.958 0.916 0.943 0.939 10.3 31.9 0.143
Lime_train_2 CNN (retrain) 0.941 0.903 0.933 0.926 11.5 34.6 0.128
Pebble_train_1 CNN (retrain) 0.947 0.891 0.911 0.916 10.2 30.9 0.093
Pebble_train_2 CNN (retrain) 0.951 0.920 0.924 0.932 6.4 34.6 0.265
Slag_train_1 CNN (retrain) 0.976 0.947 0.962 0.962 11.0 29.7 0.097
Slag_train_2 CNN (retrain) 0.977 0.949 0.971 0.966 7.9 29.9 0.152
Trap_train_1 CNN (retrain) 0.966 0.934 0.951 0.950 9.6 34.0 0.222
Trap_train_2 CNN (retrain) 0.971 0.960 0.945 0.959 7.9 37.7 0.091
Average CNN (retrain) 0.961 0.928 0.942 0.944 - - -

Fig. 8g contains lightweight aggregates. Based on our previous experi-
ence, conducting color-based segmentation is infeasible for this kind of
sample, due to its high absorption of color dye during surface treatment
[3]. However, this issue can be avoided by handling the uncolored
samples directly using CNN.

The accuracy statistics for the testing images are summarized in
Table 5. Compared with the training images (Table 4), the averaged
mIoU of the testing images is slightly diminished from 0.944 to 0.934.
Due to the higher confidence level for CNN to segment familiar testing
images, the averaged mIoU of the familiar samples is higher than that of
the unfamiliar samples by 0.011. Interestingly, Flyash_test (Fig. 8e) that
has the lowest mIoU, 0.894, does not exhibit the worst visual contrast.
In its segmentation, it can be found that some coarse aggregates are
merged with the nearby fine aggregates. This should be a representa-
tiveness issue of the CNN model, which can be fixed by further en-
riching concrete types of training dataset. Consistent with the training
images, the C457 results given by the CNN segmentation for the testing
images are close to the ground truth values. Even for Flyash_test, its
C457 results measured based on the CNN segmentation are rather
reasonable.

4.5. Potential of deep learning in broader petrographic applications

This study demonstrates that machine visual understanding can be a
powerful tool for concrete petrographic analysis. The use of CNN makes
it possible to segment concrete scans without color enhancement. CNN

has been shown to distinguish the different phases in the uncolored
concrete scan. In many cases shown in this paper, the CNN segmenta-
tion approaches the quality achieved by human judgment, but at a
small fraction of the required time. CNN segmentations are complete in
seconds, and with a simple program script, ASTM C457 parameters can
be computed immediately.

Broadly, the accurate visual understanding of the material compo-
sition opens new possibilities for predicting various concrete perfor-
mance conveniently and expeditiously. By applying deep learning
techniques to petrography, the benefits may not only be higher accu-
racy and less time, but also understanding the material property and
behavior from a novel perspective. In future investigations, it would
also be interesting to explore the potential use of deep learning for
other concrete applications, such as structural health monitoring or
non-destructive testing.

5. Conclusion

This study explored the potential of using novel deep learning
techniques for concrete petrographic analysis. The CNN method was
shown to segment concrete images without the use of phenolphthalein
to add color to cement paste. Two groups of concrete scans were pre-
pared, with one for CNN model training and the other for performance
testing. For each scan, a rigorous manual recognition was conducted to
obtain a reliable reference for evaluating the segmentation accuracy
based on the IoU index and C457 parameters. Compared to the color-
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(d)

Fig. 8. CNN segmentation of the testing images: (a) Lime_test, (b) Pebble_test, (c) Slag_test, (d) Trap_test, (e) Flyash_test, (f) Brown_test, (g) Cobble_test, (h) Light_test.
Each of the inset sections magnifies the 5 X 5 mm upper left corner of the original 50 X 50 mm scan.
10
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(h)

Fig. 8. (continued)
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Table 5
Segmentation accuracy for the testing images.
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Sample Type IoU mloU ASTM C457 results
Agg. Paste Void A [%] P [%] L [um]
Lime_test Ground truth 1.000 1.000 1.000 1.000 13.3 29.0 0.053
(Familiar) CNN 0.932 0.883 0.926 0.913 13.0 30.7 0.056
Pebble_test Ground truth 1.000 1.000 1.000 1.000 3.8 34.8 0.250
(Familiar) CNN 0.967 0.941 0.922 0.943 4.0 34.8 0.255
Slag_test Ground truth 1.000 1.000 1.000 1.000 9.2 32.3 0.149
(Familiar) CNN 0.967 0.930 0.932 0.943 9.0 33.1 0.153
Trap_test Ground truth 1.000 1.000 1.000 1.000 7.9 35.9 0.126
(Familiar) CNN 0.970 0.953 0.950 0.958 7.7 36.4 0.125
Flyash_test Ground truth 1.000 1.000 1.000 1.000 8.6 32.6 0.146
(Unfamiliar) CNN 0.911 0.867 0.902 0.894 7.9 35.2 0.155
Brown_test Ground truth 1.000 1.000 1.000 1.000 13.8 28.1 0.100
(Unfamiliar) CNN 0.966 0.929 0.952 0.949 14.0 28.3 0.100
Cobble_test Ground truth 1.000 1.000 1.000 1.000 16.8 28.7 0.045
(Unfamiliar) CNN 0.958 0.921 0.940 0.939 16.3 29.9 0.047
Light _test Ground truth 1.000 1.000 1.000 1.000 17.7 26.2 0.045
(Unfamiliar) CNN 0.945 0.921 0.921 0.929 17.4 27.4 0.047
Average Familiar 0.959 0.927 0.932 0.939 - - -
Unfamiliar 0.945 0.909 0.929 0.928 - - -
Overall 0.952 0.918 0.931 0.934 - - -
based segmentation, the CNN segmentation achieved considerably References
higher accuracy on the training images. The CNN method also exhibited
unprecedented performance on the testing images, which include sev- [1] J. Elsen, Microscopy of historic mortars-a review, Cem. Concr. Res. (2006), https://

eral new concrete types never involved in the model training. For some
samples, CNN was even competitive against human judgment. As
compared with the IoU results, the C457 parameters calculated from
the CNN segmentation were closer to the ground truth results.

The results demonstrate that CNN has strong accuracy and time
advantages over the conventional color-based approach. Taking the
ASTM C457 analysis as an example, the total processing time to output
the final air void parameters from a concrete scan is successfully re-
duced from hours of manual inspection to mere seconds. In short, CNN
can be a powerful tool for concrete petrographic analysis, and the ac-
curate machine visual understanding further opens up many new pos-
sibilities for concrete research.
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