10

11

12

13

14

15

16

17

18

19

20

21

22

Normal phase High Pressure Liquid Chromatography method for combined separation of both

polar and neutral lipid classes with application to lipid metabolic flux

Hari Kiran Kotapati and Philip D. Bates'

Institute of Biological Chemistry, Washington State University, Pullman, WA 99164

'To whom correspondence should be addressed:

Philip Bates

100 Dairy Road, PO Box 646340

Pullman, WA 99164-6340

phil_bates@wsu.edu; Phone: 509-335-0553

ABSTRACT

Three normal phase HPLC methods were produced to separate lipid classes on a PVA-Sil stationary phase
including: 9 polar lipids (method 1); 13 combined polar and neutral lipids (method 2); and a combined
method that further separates the neutral lipids into 2-4 subclasses based on the presence of fatty acids
containing a polar functional group (e.g. hydroxyl) for a total of 20 lipid classes and subclasses separated
in a single run (method 3). Polar lipids separated include: the phosphoglycerolipids PG, PE, PI, PS, PC and
LPC; the galactoglycerolipids MGDG and DGDG; and a sulfoglycerolipid SQDG. Neutral lipids include
TAG, DAG, and MAG classes and sub-class containing 0-3, 0-2, and 0-1 hydroxy fatty acids, respectively.
The hexane/isopropanol/methanol/aqueous system separates polar lipids without the use of chloroform such

that it is suitable for radioactivity analysis by in-line flow scintillation counting. Each method was optimized
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using the natural lipid standards comprised of diverse molecular species that were detected by ELSD. All
molecular species of each lipid class eluted together as single peak detected by ELSD. The methods were
demonstrated to be suitable for resolving lipid extracts from animal, microbial, and plant sources as well as

application to '“C based metabolic tracing of lipid metabolism in leaves and seeds.

Keywords: Phospholipids, Galactolipids, Triglycerides, Hydroxy fatty acids, Radioactivity, Metabolic

flux.

1. INTRODUCTION

Neutral lipids and polar lipids make up the two major categories of glycerolipids. Each category is
further subdivided into many different lipid classes based on common chemical structure, and finally each
lipid class is composed of many individual molecular species based on the fatty acids esterified to the
glycerol backbone. Neutral lipids are mostly hydrophobic and contain few polar functional groups. The
major classes of neutral glycerolipids are triacylglycerol (TAG), which is utilized as a carbon and energy
storage molecule, and diacylglycerol (DAG), monoacylglycerol (MAG), and free fatty acids (FFA) which
are intermediates of glycerolipid metabolism [1-5]. Polar glycerolipid classes are dependent on the polar
head group and number of fatty acids attached to the glycerol backbone which include phospholipids, lyso-
phospholipids, and glycolipids. Polar glycerolipids are the major components of cell membranes,
intermediates of TAG metabolism, and play a key role in molecular signaling, disease, and response to

environmental stress in microorganisms, plants, and animals [1, 2, 6-12].

To understand lipid metabolism and its effect on the growth and health of an organism requires
methods to identify changes in lipid class abundance and composition, and to track carbon flux through the
lipid metabolic reactions. Mass spectrometry based lipidomics has emerged as a sensitive and high

throughput method to identify changes to lipid class molecular species abundance in response to disease or
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environmental changes [13-16]. Lipidomic analyses commonly involve reverse-phase (RP) high
performance liquid chromatography (HPLC) separation of lipid molecular species to simplify the complex
mass spectrum. RP-HPLC separates lipids based on hydrophobicity which leads to lipid class molecular
species separation and overlapping elution of different lipid classes from the HPLC column which are
resolved by either MS/MS or multi-dimensional HPLC-MS approaches within the mass spectrometer [17,
18]. In the recent years, hydrophilic interaction liquid chromatography (HILIC) has emerged as a tool for
separation of polar lipid classes, however due to the high water content neutral lipid classes are not resolved
in HILIC mode [19-22]. In 2018, Rampler et al. reported a novel online two-dimensional HPLC method
where they combined both HILIC and reverse phase modes with MS detection. In this report the polar lipid
classes were separated via HILIC in the first dimension and neutral lipids were separated via reverse phase
in a second dimension, but the neutral lipid classes were not completely resolved relying on MS to
distinguish each lipid class [23]. Due to the high cost and limited availability of mass spectrometry
resources for lipidomics, many other lipid class analytical approaches are commonly employed by academic
researchers and various industries (i.e. food and biofuel industries) such as: thin layer chromatography
(TLC) separation of lipid classes combined with staining or gas chromatography (GC) quantification of
fatty acid methyl esters (FAME) derived from eluted lipid classes; or HPLC combined with an ultra-violet
(UV), evaporative light scattering detector (ELSD), or charged aerosol detector (CAD) detection of
analytes [24-26]. Each of these non-mass selective HPLC detection methods does not distinguish between
different lipid classes eluted at the same time, therefore normal phase HPLC methods are used to elute lipid
class molecular species as a single peak. In addition, normal phase HPLC is key to the purification of

individual lipid classes for further utilization.

Tracking the flux of carbon through lipid metabolism requires the use of isotopically labeled
tracers, either stable (e.g. 1*C) or radioactive (e.g. *C) [27, 28]. The incorporation of stable isotopic labeling
into lipidomic approaches leads to very complex mass spectra. For instance, a TAG molecule such as

triolein can have a labeled mass range from M+1 to M+57. In addition, the increases in mass lead to
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overlapping nominal masses of different lipid molecular species, or lipid classes. For example, there is a
0.009 AMU difference between a saturated fatty acid, and a monounsaturated fatty acid containing two '3C.
Therefore, targeted ultra-high resolution MS is required to resolve of stable isotopic labeling of lipids [27].
To simplify the isotopomer distribution of *C lipid flux analysis most studies focus on utilizing tracers that:
will only label a few lipid classes (e.g. ’N-serine or *N-choline [29]); or limit the isotopomer distribution
by incorporating a labeled full length fatty acid [30, 31]; or when utilizing a general precursor such as
glucose only target specific lipid classes [31, 32], or specific molecular species isotopomers such as just the
M+3 isotopomer for labeled glycerol within glycerolipids [33]. However, each of these approaches limit
the branches of the lipid metabolic network that can be traced. Radioisotopic metabolic tracers have several
benefits over stable isotopes including: enhanced sensitivity, less expensive analytical equipment, ability
to quantitatively measure total uptake and release in a non-targeted manner, and the ability for exploratory
studies that follow the label into unknown or unanticipated metabolites [28, 34]. The use of radioisotopes
to trace lipid metabolism is a common approach to elucidate endogenous metabolic pathways and to
understand metabolic perturbations due to disease or genetic engineering in microorganisms, animals, and
plants [35-42]. To quantify the radioactivity associated with different lipid classes requires complete

resolution of each lipid class, therefore normal phase TLC and HPLC methods are preferred [2, 43].

Our goal was to develop a normal phase HPLC method to simultaneously separate major neutral
and polar lipid classes from plant origin suitable for non-mass selective detection (UV or ELSD), and for
4C based lipid metabolic flux analysis. In addition, to resolve neutral lipid sub-classes composed of
molecular species containing 0-3 polar hydroxylated fatty acids which accumulate in seed oils of many
different plants [44] including the industrially important castor oil crop [45-47], and the emerging industrial
crop Physaria fendleri [48, 49]. Previously, we demonstrated a polyvinyl alcohol modified silica (PVA-
Sil) column to be suitable for separation of hydroxy fatty acid containing neutral lipids with a
hexane/isopropanol/methanol/aqueous based mobile phase [43]. PVA-Sil was also utilized to separate most

major plant phosphoglycerolipids, and glycoglycerolipids with a tertiary gradient system containing
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chloroform [50]. Because chloroform is a potent liquid scintillation quencher we chose to develop a
combined neutral and polar lipid method based on a hexane/isopropanol/methanol/aqueous mobile phase.
Methods for separating only the non-hydroxy-fatty-acid-containing neutral and polar lipids have been
previously reported on silica columns with  isooctane/THF/acetone/dichloromethane [51] and
isooctane/ethyl acetate/acetone/isopropanol [52] based mobile phases and ELSD detection, yet acetone is
not suitable for UV detection of lipids at 210 nm. Here we report three method variations to separate major
plant polar lipids (method 1), neutral and polar lipids (method 2), and hydroxy fatty acid containing neutral
and polar lipids (method 3). We further demonstrate the suitability of these methods to separate major
neutral and polar lipids from microbial, animal, and plant origin, and for quantitative in-line liquid
scintillation counting within *C based lipid flux analysis. The solvents in each method allow the use of
non-radioactive standards to establish retention times by UV or ELSD detection. These methods will also
be useful for fraction collection of microgram - milligram amounts of individual lipid classes, or
quantification by ELSD after establishment of suitable calibration curves for each lipid class on the ELSD

[26, 52].

2. MATERIALS AND METHODS:

Materials: Stationary phase, YMC-Pack PVA-Sil (250 x 4.6 mm, 5 um particle size). All solvents
and chemicals are from Fisher Scientific, unless indicated otherwise. Solvents and water were of HPLC or
Optima grade. Formic acid (ACS reagent, >98%), triethylamine (>99.5% (GC)) (Millipore Sigma). Polar
lipid standards (PG, PE, PI, PS, 95% Soy PC, LPC, SQDG), animal and microbial lipid extracts were
purchased from Avanti Polar Lipids. Total extracts used for the analysis were; Bovine Liver (Avanti
181104P), Bovine Heart (Avanti 171201P), Bovine Brain (Avanti 131101C) and Escherichia coli
(100500P). Non-hydroxy FFA and MAG were prepared from the hydrolysis of canola oil by Rhizomucor
miehei lipase (Millipore Sigma), and the hydroxy neutral lipid standards and hydroxy free fatty acids

(HFFA) were prepared from castor oil and lipase hydrolysis of hydroxy TAGs isolated from castor oil [53].
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HPLC instrumentation: Agilent 1260 Infinity II LC quaternary pump, vial sampler, multi column
thermostat, diode array detector (DAD), analytical fraction collector, evaporative light scattering detector
(ELSD), controlled by OpenLAB CDS Version C.01.09.144 . In line radioactivity detection on a LabLogic
B-Ram 6 with a 500uL adjustable volume liquid flow cell set at 300uL, and data acquisition by Laura
version 6.0.1.40. Depending on the type of application, the eluate from the DAD was directed to either
ELSD, fraction collector, or radio detector. For ELSD nitrogen flow was 1.6 SL/min, nebulizer and

evaporation temperatures were 30°C.

3. RESULTS & DISCUSSION:

Method development for the combined separation of neutral and polar lipids was performed on the
PVA-Sil stationary phase with ELSD detection. The mobile phase for the analysis is comprised of hexanes,
isopropanol, methanol, aqueous formic acid (25 mM) and triethylamine (25 mM) at pH 4.2, and is suitable

for both ELSD and UV detection.

3.1 Method 1: Polar Lipid Class Separation

Polar lipids separation on PVA-Sil appeared to have decent peak shapes when a buffer comprising
of formic acid and triethylamine was used as the aqueous component rather than just water. The positive
affect of triethylamine-formic acid salts on polar lipid peak shapes have also been reported with other
solvent systems [43, 54]. The method for polar lipids separation has nine steps with linear gradient and the
column was equilibrated for ten minutes at the end of each run (Table 1). The gradient program in the
method includes isocratic hold point where the column was flushed with 2-Propanol for 3 minutes to
facilitate the mobile phase transition from aqueous phase to organic phase during column equilibration. All
samples and standards are dissolved in toluene containing 0.05% BHT for injection. The injection volumes

for the individual polar lipid standards were between 5 and 15 pL, and the lipid loaded per injection was
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about 30-50ug. Approximately 100pg of lipid standards mixture containing ~ equal mass amounts
Monogalactosyldiacylglycerol MGDQG), Digalactosyldiacylglycerol (DGDQG),
Sulfoquinovosyldiacylglycerol (SQDG), Phosphatidylglycerol (PG), Phosphatidylethanolamine (PE),
Phosphatidylinositol (PI), Phosphatidylserine (PS), Phosphatidylcholine (PC), lyso phosphatidylcholine
(LPC) was injected in 8 pL (Figure 1). All the lipid classes eluted under 23 min with LPC being the last

lipid class to elute around 22 minutes.

3.2 Method 2: Separation of neutral and polar lipid classes

A previously optimized method for the separation of just neutral lipids utilizing a
hexane/isopropanol/methanol/aqueous system [43] was modified and combined with Method 1 to separate
both neutral and polar lipids in a single run. From the previous method, the mobile phase flow was reduced
to 1 mL/min, and triethylamine/formic acid system was used instead of water/2-propanol to facilitate
separation of polar lipid classes. Polar lipid standards from Figure 1 were combined with the neutral lipids
TAG, DAG (both sn-1/3 and sn-1/2 isomers), FFA and MAG and each was resolved under 40 minutes
(Figure 2). Total run time is 58 min including equilibration for the next analysis (Table 2). The two isomers
of DAG; 1,3-DAG and 1,2-DAG showed complete separation and the former co-eluted with free fatty acids.
Because 1,3-DAG is not biologically relevant form of the diacylglycerols, this co-elution is not relevant to
most biological extracts. Neutral lipid classes eluted under 18 minutes and MGDG was the first polar lipid
class to elute at 19.4 minutes. The baseline on the chromatogram had very minimum noise except for around
the 40-minute mark (Figure 2). Running a blank injection confirmed the baseline noise was caused by the
method gradient (Supplementary Figure S1).

3.3 Method 3: Separation of HFA-containing neutral and polar lipid classes

A method for the separation of mixture of polar lipids and hydroxy fatty acid (HFA) containing
neutral lipids was also developed based off method 2 (Table 3). Here the TAG, DAG and MAG neutral
lipid classes separate into sub-classes based on the number of HFA in each molecule. Figure 3 demonstrates

the separation of a lipid mixture containing 19 lipid classes under 50 min, with a total run time of 72 min
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including equilibration. Besides the 19 lipid classes shown in figure 3, we had also analyzed a mixture of
PC and LPC using this method and determined that LPC elutes after PC at 50.6 minutes during the analysis

for a total of 20 lipid classes separated by method 3 (Supplementary Information Figure S2).

4. METHODS APPLICATIONS
4.1 Application of combined neutral and polar lipid methods to biological lipid extracts

Method 2 for combined neutral and polar lipids was used to analyze various lipid extracts from
microorganisms, plant, and animal tissues. Partially characterized total lipid extracts of Escherichia coli,
bovine heart, bovine liver, and bovine brain were purchased from Avanti Polar Lipids. We were able to
identify the major polar lipid classes listed on the lipid profile of the corresponding extract (Figure 4). The
components listed only as neutral lipids in each purchased extract were also separated and identified. For
example, the bovine liver extract only characterizes neutral lipids as 20% of total, we identified that these

were mostly TAG, FFA and 1,2-DAG (Figure 4B).

Total lipid extracts from Camelina sativa and tobacco leaves (Figure 5) were also analyzed by
method 2. In addition to the identification of the glycerolipids by ELSD, we monitored the leaf lipid extracts
for photosynthetic pigments (chlorophyll a, chlorophyll b and carotenoids [55, 56]) by DAD multiple
wavelength detection (Supplementary Figure S3). The DAD analysis demonstrated that the mass peaks
recorded by ELSD that eluted before the polar lipid classes in leaves are predominantly pigments. We also
analyzed transgenic tobacco plants engineered to accumulate the neutral lipid TAG in leaves [41, 57]. The
major neutral lipid and polar lipid classes were completely separated from the tobacco leaves
(Supplementary Figure S4). Additionally, method 3 that separates neutral lipids (both hydroxy and non-
hydroxy) and polar lipids, was used to analyze the total lipid extract from transgenic Arabidopsis thaliana
seeds engineered to accumulate HFA [58] (Supplementary Figure S5). The HF A-containing and non-HFA-
containing lipid classes of the total seed lipid extract were identified based on the retention time (tr) of the

8
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lipid standards from Figure 3. These latter two examples demonstrate the usefulness of these methods for

analysis of plant lipid bioengineering.

4.2 Application to Radio HPLC analysis

Methods 1, 2 and 3 were used to analyze lipid extracts from in vivo *C based lipid metabolic flux
experiments. Lipid extracts from tobacco leaves labeled with ['*Clacetate for 30 and 120 min [41] were
analyzed for polar lipid resolution by Method 1 (Figure 6). Radioactivity was detected with an in-line liquid
scintillation detector with a flow cell volume of 300 pL and an eluant to scintillation cocktail ratio of 1:2,
yielding a residence time of 6 seconds for scintillation counting. The peak assignments were made based
on the retention times of lipid standards on the ELSD chromatogram (Figure 1). After 30 min of ['*C]acetate
labeling, the major labeled lipids were PC (36%) followed by MGDG (25%), with lesser amounts in PG
(4%), DGDG (0.7%), and others (Figure 6A). The relative proportion of labeled lipids at 30 min of labeling
do not match the steady-state mass proportion in wild-type tobacco leaves of 42% MGDG, 22% DGDG,
13% PC, and 8% PG [41]. However, the tracing of newly synthesized (['*CJacetate labeled) fatty acids flux
into mostly PC here is consistent with the function of the Eukaryotic and Prokaryotic pathways of
glycerolipid assembly in plant leaves [2]. In tobacco leaves PG, and some MGDG are produced within the
chloroplast through the Prokaryotic pathway [2]. However, PC, most MGDG, and almost all DGDG are
produced through the Eukaryotic pathway localized to the endoplasmic reticulum. Within the plant leaf
Eukaryotic pathway nascent fatty acids are first incorporated predominantly into the sn-2 position of PC as
they exit the chloroplast through acyl editing [39, 41, 59]. Subsequently, fatty acids are removed from PC
by acyl editing for Kennedy pathway de novo PC synthesis. Eukaryotic MGDG and DGDG molecular
species are then produced in the chloroplast from DAG derived from de novo synthesized PC [2, 39].
Therefore, the rapid flux of fatty acids into PC here is consistent with PC as an intermediate to production
of the most abundant leaf lipids MGDG and DGDG. In addition, the change in the PC:MGDG labeling

ratio from 1.41 at 30 min of [*C]acetate labeling (Figure 6A) to 0.91 at 120 min of labeling (Figure 6B) is
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consistent with the transfer of labeled fatty acids from PC to MGDG within the Eukaryotic pathway of leaf

glycerolipid biosynthesis.

To test methods 2 and 3 with radio-HPLC for lipid metabolic flux experiments, we have applied
method 2 to analyze the lipid extracts from wild type Arabidopsis seed tissue that was continuously labeled
for 30 minutes with '*C acetate (Supplementary Figure S6). Method 3 was used to analyze the seed extracts
from HFA producing Arabidopsis that were labeled continuously with *C glycerol for 45 minutes
(Supplementary Figure S7). For both labeling experiments, the substantial labeling of PC at these short time
points to levels that are much higher than the steady state mass levels of PC (<5% of seed lipids) are
consistent with PC as a key intermediate for acyl and glycerol backbone flux prior to TAG synthesis in
plant seeds [1, 28, 60]. The results of the tobacco leaf, and both wild-type and transgenic Arabidopsis seed
metabolic labeling experiments are consistent with previous analyses that utilized TLC separation and
phosphor imaging to quantify radioactive lipids produced by these tissues [41, 61, 62], indicating the radio-
HPLC analysis of lipid metabolic flux experiments presented here represents a more high throughput

analytical method than the more traditional analytical procedures for radiolabeled lipid analysis (2, 22).

5. Conclusion:

We developed three normal phase HPLC methods for lipid class separation on PVA-Sil stationary
phase that utilize hexane/isopropanol/methanol/aqueous based mobile phase and is suitable for ELSD, UV,
and in-line liquid scintillation counting detection, or for fraction collection to purify lipids. Method 1
resolves polar glycerolipids while neutral lipids elute together at the beginning of the method. Method 2
allows separation of neutral and polar lipids containing common saturated and unsaturated fatty acids.
Method 3 provides additional separation of the neutral lipids into sub-classes depending on the presence of
1-3 fatty acids containing a polar functional group such as a hydroxyl that are found in neutral lipids of

various plant species. The lipid classes in each of the extracts were completely separated and identified
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based on the retention times of the individual standards. The methods were applied to various total lipid
extracts indicating wide applicability for lipid analysis from animal, plant, and microbial systems, as well

as for use within radiotracer based metabolic flux experiments.
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FIGURE CAPTIONS

Figure 1: ELSD trace of polar lipid mixture on YMC PV A-Sil column. Identities of peaks are as follows:
1. Monogalactosyldiacylglycerol (MGDG), te=6.1 min; 2. Digalactosyldiacylglycerol (DGDG), tz=8.9
min; 3. Sulfoquinovosyldiacylglycerol (SQDG), tg=10.8 min; 4. Phosphatidylglycerol (PG), tg=12.4 min;
5. Phosphatidylethanolamine (PE), tz=13.8 min; 6. Phosphatidylinositol (PI), tz=15.9 min; 7.
Phosphatidylserine (PS), tg=18.0 min; 8. Phosphatidylcholine (PC), tg=19.9 min; 9.

Lysophosphatidylcholine (LPC), tz=22.4 min.

Figure 2: ELSD trace of mixture of polar and non-polar lipid classes on PVA-Sil column. The identities
and retentions of the labeled peaks are as follows: 1. Triacylglycerol (TAG), tr =3.6 min; 2. Free Fatty
Acids +1,3-diacylglycerol (FFA+1,3-DAG), tr=12.7 min; 3. 1,2- Diacylglycerol (1,2-DAG), tr= 14.8 min,;

4. Monoacylglycerol (MAG), tr = 17.8 min; 5. Monogalactosyldiacylglycerol (MGDG), tr = 19.4 min; 6.
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Digalactosyldiacylglycerol (DGDG), tr = 22.5 min; 7. Sulfoquinovosyldiacylglycerol (SQDG), tr = 25.1
min; 8. Phosphatidylglycerol (PG), tr = 27.1 min; 9. Phosphatidylethanolamine (PE), tr = 28.2 min; 10.
Phosphatidylinositol (PI), t=31.2 min; 11. Phosphatidylserine (PS), tr=35.5 min; 12. Phosphatidylcholine

(PC), tr=137.4 min; 13. Lysophosphatidylcholine (LPC), tg =39.9 min.

Figure 3: ELSD trace of mixture of polar and HF A-containing non-polar lipid standards on PVA-Sil
column. The identities and retentions of the labeled peaks are as follows: 1. Triacylglycerol (TAG), tr
=3.6 min; 2. 1-Hydroxy Fatty Acid Triacylglycerol (1-HFA TAG), tg =10.2 min; 3. Free Fatty Acids
+1,3-diacylglycerol (FFA+1,3-DAG), tr = 12.3 min; 4. 1,2- Diacylglycerol (1,2-DAG), tr= 14.6 min; 5.
2-Hydroxy Fatty Acid Tricylglycerol (2-HFA TAG), tt =16.5 min; 6. Hydroxy Free Fatty Acids (HFFA),
tr=21.2 min; 7. 1-Hydroxy Fatty Acid Diacylglycerol (1-HFA DAG), tr = 23.2 min; 8. 3-Hydroxy Fatty
Acid Tricylglycerol (3-HFA TAG) tr = 24.9 min; 9. Monoacylglycerol (MAG), tg =27 min; 10. 2-
Hydroxy Fatty Acid Diacylglycerol (2-HFA DAG), tr=27.3 min; 11. 1-Hydroxy Fatty Acid
Monoacylglycerol (1-HFA MAG), tr =28.6 min; 12. Monogalactosyldiacylglycerol (MGDG), tr = 29.9
min; 13. Digalactosyldiacylglycerol (DGDG), tr = 33.6 min; 14. Sulfoquinovosyldiacylglycerol (SQDG),
tr=36.1 min; 15. Phosphatidylglycerol (PG), tr = 38.2 min; 16. Phosphatidylethanolamine (PE), tr = 39.3
min; 17. Phosphatidylinositol (PI), tr = 42.3 min; 18. Phosphatidylserine (PS), tr = 45.9 min; 19.

Phosphatidylcholine (PC), tr = 49.2 min.

Figure 4: ELSD traces of total lipid extracts from, A. E.coli (Sample injection: 30pg in 2pl toluene); B.
Bovine Liver (Sample injection: 60ug in 3l toluene); C. Bovine Heart (Sample injection: 100ug in 4ul

toluene); D. Bovine Brain (Sample injection: 100ug in 4ul toluene)
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Figure 5: ELSD traces of leaf lipid extracts of A. Camelina sativa; B. Wild type tobacco. Approximately

50ug lipid was injected in 6yl toluene for both analyses

Figure 6: HPLC-Radio traces of Wild type tobacco leaf extracts continuously labeled with '*C acetate for

A. 30 min (A total of ~42000 CPM was injected in 9uL toluene); B.120 min (A total ~54000 CPM was

injected in 6uL toluene).
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