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ABSTRACT
We describe the design, deployment and operation of a computer
system built to efficiently run deep learning frameworks. The sys-
tem consists of 16 IBM POWER9 servers with 4 NVIDIA V100 GPUs
each, interconnected with Mellanox EDR InfiniBand fabric, and a
DDN all-flash storage array. The system is tailored towards effi-
cient execution of the IBM Watson Machine Learning enterprise
software stack that combines popular open-source deep learning
frameworks. We build a custom management software stack to
enable an efficient use of the system by a diverse community of
users and provide guides and recipes for running deep learning
workloads at scale utilizing all available GPUs. We demonstrate
scaling of a PyTorch and TensorFlow based deep neural networks
to produce state-of-the-art performance results.

CCS CONCEPTS
•Computer systems organization→ Special purpose systems;
• Computing methodologies → Machine learning; • Social
and professional topics → System management.
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1 INTRODUCTION
In 2017, National Center for Supercomputing Applications (NCSA)
was funded by the National Science Foundation’s (NSF) Major Re-
search Instrumentation (MRI) program to develop and deploy a
computational "instrument" for supporting deep learning (DL) ap-
plications at scale1. The main motivation for building such an sys-
tem was an apparent lack of sufficient computational resources on
the University campus designated to support a growing number of
researchers applying DL methodology in their work. We surveyed
the campus research community and identified over 30 faculty
actively applying DL who struggled to find adequate computing
resources to train deep neural networks (DNNs). A typical mode of
operation was to use a student-managed workstation outfitted with
one or two consumer-grade NVIDIA GPUs running a sub-optimal
software stack. These resources were inadequate as even simple
networks of any practical use required days or weeks of time to
train.
1https://www.nsf.gov/awardsearch/showAward?AWD_ID=1725729
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The newly designed system, called the Hardware Accelerated
Learning (HAL) cluster2, encompassed the latest hardware and
software components to provide a highly optimized resource that
supports multiple users and scales training of many DL models to
64 GPUs across 16 compute nodes. It became operational in March
2019 and has become a major enabling technology for numerous
research groups on campus.

In this paper, we describe the design, deployment, and operation
of HAL and provide benchmarks to demonstrate system scalability
and usability. We also describe the software components developed
by the team to manage and monitor the system.

2 SYSTEM REQUIREMENTS
In 2016, we conducted a user survey to understand the landscape
of computing requirements for DL. A majority of users on cam-
pus used TensorFlow3 (over 70%) and Caffe4 (over 20%) as the DL
framework of choice. Also, the datasets used for model training
typically ranged from several gigabytes to hundreds of gigabytes in
size. The community was concerned that it was beyond an individ-
ual researcher’s ability to acquire and maintain a system consisting
of more than just a few GPU workstations, and such resources
would still not be sufficient to scale their workloads. Many foresaw
a need for a system to run DL workloads with 32 or more GPUs
and datasets in a terabyte range, yet almost none of those surveyed
knew what it would take to scale their models to such a size and
how to run distributed DL workloads. Therefore, we considered
performance, scalability and usability aspects when designing the
system.

2.1 Performance Requirements
Many modern DL frameworks have been optimized to make use of
the latest NVIDIA GPUs. At the time of planning for the system,
P100 GPUs5 were state-of-the-art, and V100 GPUs6 were just an-
nounced by NVIDIA. V100 GPUs promised to significantly increase
DL training performance due to the specially designed tensor cores.
Therefore, they were deemed the most desirable feature to have in
the newly designed system. Also, scaling DL frameworks to multi-
ple GPUs would require a high-performance interconnect within a
node as well as across multiple nodes. The NVIDIA DGX-1 system7

utilized NVLink8 interconnects to deliver cross-GPU bandwidth
well in excess of standard Gen. 3 PCIe x16 interfaces. Therefore,
having NVLink-interconnected GPUs was deemed to be the next
most important requirement. The CPU performance was also im-
portant; the limiting factor was not the number of CPU cores, but
rather the system memory bandwidth to sustain these cores.

Many DL workloads have storage needs for training sets on the
order of terabytes. The most important requirement for distributed
DL is to be able to feed all computational units with the data so
the storage system does not become a single point of contention.
Thus, the system must have storage and node interconnects that

2https://wiki.ncsa.illinois.edu/display/ISL20/HAL+cluster
3https://www.tensorflow.org
4https://caffe.berkeleyvision.org
5https://www.nvidia.com/en-us/data-center/tesla-p100
6https://www.nvidia.com/en-us/data-center/v100
7https://www.nvidia.com/en-us/data-center/dgx-1
8https://www.nvidia.com/en-us/data-center/nvlink

can support simultaneous data processing by all GPUs without
degrading performance of individual GPUs.

2.2 Usability Requirements
Supporting a DL user community requires not only enabling a
diverse set of relevant tools and frameworks, but also enabling
diverse usage modalities. Traditional HPC systems use the concept
of job submission and resource scheduling to execute the user
application on the system. Users typically access the system via
ssh and interact with it through the command line interface. On
the other hand, many DL communities heavily utilize interactive
applications, using tools such as Jupyter Notebook through web-
based interfaces. These tools work well in a cloud environment
where computational resources are unlimited; however, their use
on a fixed-size shared hardware is non-trivial. Therefore, it was
deemed necessary to provide both types of system access while
maintaining an efficient resource allocation and sharing.

Frameworks, such as TensorFlow, are frequently updated and
the user community is eager to start using new features the moment
they are introduced. On the other hand, applications developed with
a particular version of Python or 3rd party libraries still need to
run. This requirement can be satisfied by using a modular approach
to provide execution environments via modules, containers, and
isolation of Python environments within the user space.

Other user requirements included the having the ability to easily
transfer data to and from the system, having access to pre-loaded
"standard" datasets (such as ImageNet), and being able to allocate
an arbitrary number of nodes for exclusive, prolonged use.

3 HAL SYSTEM DESIGN
Based on the performance and usability requirements, we con-
ducted a survey of technology trends. We considered both x86 and
POWER9 architectures, built a prototype x86 node outfitted with
NVIDIA V100 GPUs, and acquired an IBM POWER9 AC922 server
[2] with NVLink 2.0 interconnected V100 GPUs. We ran various
DL benchmarks, such as those provided for TensorFlow, and com-
pared our results with those reported in the literature for other
systems. We developed tools to benchmark storage options and
worked with vendors to evaluate several storage offerings. Based
on these evaluation and prototyping efforts, we selected an IBM
POWER9 based solution with NVIDIA GPUs as the compute core,
Mellanox EDR InfiniBand interconnect, and DDN storage system.
Details of this design are provided below.

3.1 Hardware Architecture
The overall hardware architecture is shown in Figure 1. The sys-
tem is composed of one login node, two management nodes, two
storage nodes, one test/development node, and 16 compute nodes.
The nodes are interconnected with EDR InfiniBand network for
storage and inter-node communication and a Gigabit Ethernet for
management and access. Two DDN flash arrays serve as a parallel
file system for the cluster.

The main management node is an IBM LC921 server9 with two
IBM POWER9 CPUs. This node is connected to all internal net-
works and performs administrative functions including remote
9https://www.ibm.com/us-en/marketplace/power-system-lc921-and-lc922
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Figure 1: The overall hardware architecture of HAL system.

management via BMC, OS image storage, and deployment; it also
runs databases for metrics and job accounting. The main OS resides
on a pair of SSDs in RAID1 configuration, while OS images and
metrics are stored on another RAID1 array. The second manage-
ment node is an x86 server used to run auxiliary services that are
currently incompatible with the IBM POWER9 architecture, such
as Puppet10 and the Open OnDemand11 web interface, which will
be described later.

The login node is also an IBM LC921 server. This node serves as
the main interface between users and the computing resources on
the system. The Slurm scheduler12 runs on this node and allows
users to submit jobs for execution. To simplify the development
process for users, the software environment on this node is kept in
sync with compute nodes.

One of the storage nodes (Internal Data node in Figure 1) is an
IBM LC922 server with a 12-drive RAID60 array. This node was
initially designed to be a stop-gap solution for cluster-wide shared
storage while we conducted an evaluation for a permanent storage
solution. Another storage node (Data Transfer Node in Figure 1) is
an x86 server that holds 36 hardware drives. At present, these nodes
are connected to the rest of the cluster via NFS and are dedicated
for miscellaneous internal use.

For compute nodes, we selected IBM AC922 8335-GTH servers
[2]. Each of these servers contains two 20-core IBM POWER9 CPUs,
256 GB of DDR4 RAM, and four NVIDIA V100 GPUs with 16 GB of
HBM2 RAM each and NVLink 2.0 interconnect. These servers were
chosen because of their unique expansion bus which provides PCIe
4.0 connectivity and allows the CPUs to utilize the NVLink fabric. A
dual-port Mellanox ConnectX-5 InfiniBand EDR 100Gb/s adapter13
is used to provide high-performance communication. These In-
finiBand adapters also support GPUDirect14, which allows direct
communication between GPUs themselves and between GPUs and

10https://puppet.com
11https://osc.github.io/ood-documentation/master
12https://slurm.schedmd.com
13https://www.ibm.com/support/knowledgecenter/POWER9/p9hcd/fcec64.htm
14https://developer.nvidia.com/gpudirect

the network adapter. Without going through CPUs, performances
is improved for multi-GPU and multi-node workloads.

Two DDN GS400NVE Flash Arrays serve as the primary storage
solution for the entire cluster. These storage nodes provide 224 TB
of usable capacity of NVMe SSD-based storage which are capable
of a peak cluster-aggregate bandwidth of over 90GB/s. These nodes
use IBM’s Spectrum Scale15 file system.

Total power consumption, as measured during the all-system
distributed DL training, is around 25 kW.

Storage Selection & Tuning. The hardware to back the shared
storage component of HAL was a critical choice to ensure that
the highly optimized compute hardware could be fed with data at
a sufficient rate. Many DL workloads display small random read
I/O patterns as they train across a data set. An all-flash file system
design was prime candidate to satisfy these workloads in the early
part of the decision-making process, with the goal being to greatly
reduce or eliminate the storage sub-system as a bottleneck during
training runs at scale.

We considered solutions from multiple vendors and received
performance numbers from each vendor on three benchmarks with
their proposed solution. Those benchmarks were IOR16, mdtest17,
and a custom benchmark we developed based on MPI-coordinated
FIO that mimicked the behavior of several DL training workloads,
DIOT18. For the IOR and mdtest sections of the benchmarks, ven-
dors provided us with the numbers that reflected the best case
performance of their solutions. After reviewing the benchmark
results, a key distinction emerged between the NFS-based and Spec-
trum Scale-based solutions. There was a much higher standard
deviation between the performance of different ranks with the NFS-
based solutions vs the Spectrum Scale solutions. This indicated that
there was noticeable variability between the I/O performance each
thread was receiving from the file system during the benchmark
runs.

Figures 2 and 3 show results obtained using our own benchmark,
DIOT. The benchmark mimics I/O patterns of several DL workloads
and measures bandwidth and IOPs of the storage system. Figures 2
and 3 show aggregate bandwidth and IOPs for four storage systems
to show relative performance of each. Here, "NVME single node"
refers to a PCIe NVME drive installed in one of the HAL nodes,
"NFS sum" refers to the performance obtained for the IBM LC922
storage server mounted on the cluster over NFS protocol, and "DDN
4 nodes sum" refers to results obtained with the DDN solution using
4 client nodes. For reference, we also run DIOT benchmark on our
campus cluster system19 that uses a much larger, HDD-based DDN
storage system. These results show the NVME-based DDN system
performance and consistency across many DL workloads.

After narrowing the solution candidates based on the bench-
mark results, we also considered Cost per Usable TB to maximize
the amount of space we could provide users with. In the end, we
procured two DDN GS400NVE units, each with 21 7.68TB Samsung
PM1725b NVME SSDs. Combined, the two units connect into the

15https://www.ibm.com/us-en/marketplace/scale-out-file-and-object-storage
16https://github.com/hpc/ior
17https://sourceforge.net/projects/mdtest
18https://github.com/xldrx/diot
19https://campuscluster.illinois.edu/
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Figure 2: Bandwidth test with DIOT bench-
mark suite

Figure 3: IOPS test with DIOT benchmark
suite

storage fabric with 8 EDR cables, providing 800Gb/s of network
bandwidth to the storage.

Tuning the storage subsystem required a balance between lever-
aging ample bandwidth and IOPs potential of the hardware. Due to
the advanced sub-block allocation capability of Spectrum Scale, we
did not have to worry about file space efficiency loss if we wanted to
choose a larger block size. However, in the end we chose a smaller
block size of 1MB due to the file sizes we were seeing across the user
workloads. On the embedded storage servers, adjustments were
made to nsdbuffspace and the nsdMaxWorkerThreads,

workerThreads, and nsdMinWorkerThreads parameters were in-
creased as well as the file system’s log size. Other Spectrum Scale ad-
justments included increasing the maxFilesToCache and
maxStatCache parameters across the cluster to improve metadata
performance.

On the underlying hardware itself, we conducted tests in coordi-
nation with DDN to tune the RAID devices by setting appropriate
chunk and stripe sizes. VRC and SGC values were also tuned to
align I/O between the file system and the supporting hardware’s
Stripe Group Size to maximize performance.

Over the life of the file system, in addition to detailed bandwidth,
iops, and metadata statistics, measurements of the time it takes to
list home directories and stat a file on the file system have been
captured at 60 second intervals to instrument the responsiveness
user’s feel on the system. The mean time to list all home directories
has been 7ms with a standard deviation of just 17.8% and the mean
time to stat a file on the file system being 2ms with a standard
deviation of just 18.6%.

3.2 Software Stack
CentOS 7.7 LE ALT for POWER9 (ppc64le – powerpc 64-bit lit-
tle endian)20 is used as the OS on our IBM AC922 servers and
all supporting nodes. IBM Watson Machine Learning Community
Edition (WMLCE-1.7.0) [10] is an enterprise software distribution
that combines popular open-source deep learning frameworks and
efficient AI development tools optimized for the IBM POWER9
architecture. It includes Caffe, Tensorflow and Pytorch21. We
support both python 2.7 and 3.6/3.7 versions of WMLCE via Environ-
ment Modules Lmod22. Other software components include NVIDIA
CUDA 10.2 tools23, PGI compiler24, the IBM Advance toolchain for
Linux on Power25 set of open source compilers, runtime libraries,
and development tools, Jupyter Notebook and Jupyter Lab26,
Tensorboard27 and H2O28.

Our users come from a variety of fields with varying degrees of
technical expertise. Many have little to no experience with com-
mand line utilities common on HPC systems, so we have strove to
develop simplified interfaces and utilities as well as tutorials and
guides. These utilities developed in house include Slurm Wrapper
Suite, Open OnDemand portal, and monitoring services.

3.2.1 Slurm Wrapper Suite. The SlurmWrapper Suite (SWSuite) is
designed to simplify the use of the Slurm resource allocation and job
submission utility. SWSuite automatically generates appropriate
resource allocation parameters for Slurm, minimizing the required
input from the users and ensuring consistency and homogeneity
of resource utilization. There are three main programs in SWSuite:
swrun, swbatch, and swqueue.

To submit a job, a user requests a virtual partition defined by
SWSuite. Several such partitions are provided, namely gpux1, gpux2,

20https://wiki.centos.org/SpecialInterestGroup/AltArch/ppc64le
21https://pytorch.org
22https://lmod.readthedocs.io
23https://developer.nvidia.com/cuda-zone
24https://www.pgroup.com
25https://developer.ibm.com/linuxonpower/advance-toolchain
26https://jupyter.org
27https://www.tensorflow.org/tensorboard
28https://www.h2o.ai/products/h2o
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... for using 1, 2 or more GPUs and cpun1, cpun2, ... for running
CPU only tasks. Based on the selected partition, SWSuite computes
the remaining Slurm run-time parameters. The code snippet be-
low shows srun parameters versus swrun parameters needed to
accomplish the same task.

Similarly, the batch submission script itself can use these par-
titions to simplify the specification of job parameters. swrun and
swbatch are designed to enhance the user experience of Slurm
rather than replace its original functionality.

The swqueue utility provides a visual snapshot of the current job
status on the system within the command line terminal, as shown
in Figure 4. It parses the output of squeue in order to generate this
visualization.

3.2.2 HAL OnDemand. Our HAL OnDemand portal is based on the
Open OnDemand project [6], which is an NSF-funded open-source
HPC portal developed at the Ohio Supercomputer Center. The goal
of Open OnDemand is to provide an easy way for system administra-
tors to provide web-based access to their HPC resources, including
a plugin-free web experience, easy file management, command-line
shell access, job management, graphical desktop environments, and
desktop applications.

One of the advantages of using HAL OnDemand is that only a mod-
ern web browser is needed on the user’s side to fully utilize HAL’s
resources without the need for a traditional terminal access. HAL
OnDemand provides the graphical user interface that allows new
users not familiar with command-line shell, which is still available
within the web browser, to edit and submit computational tasks,
as shown in Figure 5. Moreover, HAL OnDemand provides an easy
to use solution for starting interactive applications, as shown in
Figure 6. Currently supported HAL interactive applications include
Jupyter Notebook, Jupyter Lab, Tensorboard and H2O. We also
provide a Singularity container option for Jupyter Notebook
that implements a different version of TensorFlow. Centrally man-
aged LDAP directory based user authentication is integrated with
HAL OnDemand portal, providing user login.

Figure 4: Output of the swqueue command

Figure 5: HAL OnDemand job composer

Figure 6: HAL OnDemand interactive sessions

3.2.3 Monitoring Stack. Onmodern HPC systems, a graphical mon-
itoring interface is often implemented to help both users and ad-
ministrators understand the utilization of the system. We employ
a Telegraf29-InfluxDB30-Grafana31 stack for our monitoring so-
lution. On every node in the cluster, a Telegraf agent collects
metrics about the system and sends them to the central InfluxDB
server on the management node, which then stores the metrics into
a time-series database. The Grafana server is set up on a virtual
machine outside of the cluster, so it can stay up during downtimes
and allow users to check the availability of the system.

In addition to the built-in Telegraf plug-ins, we developed a col-
lection of custom scripts to add metrics that are specific to our sys-
tem. This includes a script to communicate with IBM’s ibm-crassd
telemetry service to collect metrics from the BMC controllers on
the compute nodes and inject them into Telegraf, providing hard-
ware measurements such as temperature and power consumption;
and a script to read job data from Slurm’s accounting database and
provide current and historical information for jobs and resource
allocations. Figures 7, 8, and 9 show examples of the status data
users and administrators can have access to. Also, the main dash-
board shown in Figure 7 is conveniently accessible through a web

29https://github.com/influxdata/telegraf
30https://www.influxdata.com
31https://grafana.com

45

https://github.com/influxdata/telegraf
https://www.influxdata.com
https://grafana.com


PEARC ’20, July 26–30, 2020, Portland, OR, USA Kindratenko, et al.

browser on a mobile phone, enabling users to get a quick view of
the system status and their job status.

Figure 7: Main dashboard showing overall system status and
job information

3.2.4 HAL System on Mobile Platforms. Through Open OnDemand
and Grafana Dashboard, the HAL system can be accessed from
a mobile device. Figure 10 shows examples of Open OnDemand
and Grafana Dashboard interfaces. Compared to Open OnDemand,
Grafana Dashboard has better compatibility with mobile plat-
forms. As shown in Figure 11, HAL users can use their mobile web
browser to check HAL system overall status and the administrator
can monitor the system in real time with a hand-held device.

Figure 8: Dashboard showing utilization of individual nodes

Figure 9: Dashboard for administrators to monitor thermal
load and power usage

Figure 10: HAL OnDemand Service on iOS. (a) Activate Job
Status. (b) H2O-AI Interactive Session.

Figure 11: Grafana Dashboard on iOS. (a) Overall System Sta-
tus Dashboard. (b) System Network Status Dashboard.

4 IMAGENET DISTRIBUTED
MIXED-PRECISION TRAINING
BENCHMARK

4.1 Implementation Details
To demonstrate the performance and scalability of our system, we
conducted ImageNet32 training by scaling ResNet-50 [5] across
multiple GPUs and multiple compute nodes. We performed this
benchmark with both TensorFlow [1] and PyTorch [9]. We used
official implementations of ResNet-50 for both frameworks. The
optimizer utilized standard momentum withm of 0.9 and a weight
decay λ of 0.0001. All models were trained for 90 epochs regardless
of batch sizes. We performed the learning rate scaling and gradual
32http://www.image-net.org
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warmup mentioned in [3] to tackle training instability at early
stages for large batch size. Most of our training setup was consistent
with [3] and [13].

We scaled ResNet-50 from 4 GPUs on the same compute node to
64 GPUs across 16 compute nodes, doubling the number of GPUs
for each run. We used a per-GPU batch size of 256 images, which
is the largest batch size we can fit on our 16GB V100 GPUs with
mixed-precision training. Therefore, our global batch size ranges
from 1024 images to 16384 images. For both frameworks, we used
the NVIDIA Collective Communication Library (NCCL)33 as our
communication backend.

For the TensorFlow implementation, we used the official
tf_cnn_benchmarks repository with Horovod [11] handling dis-
tributed training. For compatibility with our TensorFlow version,
we used the cnn_tf_v1.14_compatible branch of the source code,
which is available on GitHub34.

For PyTorch, we utilized Automatic Mixed Precision (Amp) and
Distributed Data Parallel (DDP) from NVIDIA Apex35 for mixed-
precision and distributed training. An optimization level of "O2"
was used for mixed-precision training to benefit from FP16 training
while keeping a few parameters to be FP32. Source code of our
benchmark is available on GitHub36.

4.2 Analysis of Results
Training Time and Throughput. Figure 12 shows the amount
of time taken to reach 90 epochs of training. The number of GPUs
ranges from 4 GPUs to 64 GPUs. ImageNet training with ResNet-50
using 4 GPUs takes 10 hrs, 21 mins, 19 secs with TensorFlow and
11 hr 21 min 48 sec with PyTorch. With 64 GPUs across 16 compute
nodes, we can train ResNet-50 in 41 mins, 43 secs with TensorFlow
and 56 min, 18 sec with PyTorch, while maintaining comparable
top-1 and top-5 accuracy.

Figure 13 shows the global throughput (images/sec) with respect
to the number of GPUs. While throughput is effectively the inverse
of training time, it more effectively shows that we were able to
achieve near linear performance scaling in both frameworks.

Figure 12: ImageNet ResNet-50 Training Time vs. Number
of GPUs with a fixed 90 epochs training schedule.

Top1, Top5 Accuracy. We achieve distributed training speed-
up without the loss of accuracy. All experiments reached a top-1
33https://github.com/NVIDIA/nccl
34https://github.com/tensorflow/benchmarks/tree/master/scripts/tf_cnn_
benchmarks
35https://github.com/NVIDIA/apex
36https://github.com/richardkxu/distributed-pytorch

Figure 13: ImageNet ResNet-50 Training Throughput vs.
Number of GPUs with a fixed 90 epochs training schedule.

validation accuracy of 76% with the exception of the 64 GPU case
in the PyTorch benchmark, which reached 73%. This slight loss
of accuracy is not surprising, as the maximum batch size in [3]
was 8192, after which they experienced accuracy degradation. We
included the 64 GPU case with global batch size 16384 anyway to
show system-wide scalability.

Figures 14 and 15 show the top-1 and top-5 validation accuracy
during the TensorFlow benchmark. We do notice that with larger
global batch size, the training is more unstable at early stages (epoch
1-30). However, the small and large batch size training curves match
closely after 30 epochs and they all peak at comparable accuracy
near the end of training.

Figure 14: ImageNet ResNet-50 Top-1 Validation Accuracy.

Figure 15: ImageNet ResNet-50 Top-5 Validation Accuracy.

I/O Bandwidth. Figure 16 shows the I/O Bandwidth (GB/s) and
IOPS of our file system throughout our full system ImageNet with
PyTorch training using 64 GPUs. Between 10th and 60th epoch, the
average bandwidth is 3.84 GB/s and the average IOPS is 42.95K.
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Figure 16: ImageNet ResNet-50 Full System Training I/O
Bandwidth with 64 GPUs.

5 DISCUSSION AND LESSONS LEARNED
Since the initial deployment of the system in Spring 2019, we have
issued over 300 user accounts, supporting over 70 faculty research
groups from over 20 departments. The system provides computing
cycles that otherwise would be cost-prohibitive for many research
groups to acquire elsewhere. For example, the cost of a single V100
GPU node on AWS (p3.2xlarge instance) is $3.06/hour37. Using this
cost as a reference, HAL provides over $141,000.00 in value every
month.

Numerous papers have been published based on the work carried
out on HAL. They range from visual scene analysis [8] to graph
structured prediction energy networks [4] to gravitational wave
denoising of binary black hole mergers [12]. The system also has
been used by students for classwork and independent study projects.
Undergraduate students working at NCSA on various research
projects have been using the system since its introduction.

We have learned that storage selection plays a key role in making
the HAL system usable. The high IOPS of our storage ensures good
performance for all users running on the system, preventing de-
manding workloads from slowing the work of others or negatively
impacting the interactive gateways of the system.

Another lesson learned is the need for flexibility with supporting
various user requirements. WMLCE provides a set of specific versions
of DL tools which cannot be easily upgraded. Therefore, we support
containers via Singularity. The system admin team can build
container images based on user requirements. We also support
"fakeroot" feature to give the users administrative rights inside the
container to enable them install 3rd party software. A “fakeroot”
user cannot access or modify files and directories for which they
do not already have access rights on the host filesystem [7].

Using HAL for executing complex multi-node DL training tasks
is non-trivial even for advanced users. Therefore, we provide regular
training sessions for new users covering topics ranging from how
to get started using HAL to how to run distributed DL frameworks.
We started with an intensive two-day training workshop in Spring
201938 and continue with short weekly training sessions in Fall
201939 and Spring 202040. Training materials presented at these
events are openly available. We also provide user support through
Jira ticketing system, Slack channel, and walk-in consultations.
37https://aws.amazon.com/ec2/instance-types/p3
38http://www.ncsa.illinois.edu/enabling/data/deep_learning/news/powerai2019
39http://www.ncsa.illinois.edu/enabling/data/deep_learning/news/hal_fall19
40http://www.ncsa.illinois.edu/enabling/data/deep_learning/news/hal_spring20

To stimulate interest in ML/DL, we organize hackathons where
students can work on various problems that require building and
training DNN models. Two such hackathons have been organized
in Fall 201941,42 and one in Spring 202043.
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