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Capacity Upper Bounds for the Relay Channel via
Reverse Hypercontractivity

Jingbo Liu", Member, IEEE, and Ayfer Ozgiir, Senior Member, IEEE

Abstract— We revisit the primitive relay channel, introduced
by Cover in 1987. Recent work derived upper bounds on the
capacity of this channel that are tighter than the -classical
cutset bound using the concentration of measure. In this paper,
we recover, generalize, and improve upon some of these upper
bounds with simpler proofs using reverse hypercontractivity.
To our knowledge, this is the first application of reverse hypercon-
tractivity in proving first-order converses in network information
theory.

Index Terms— Shannon theory, relay channel, reverse hyper-
contractivity, Markov semigroups, converses, concentration of
measure.

I. INTRODUCTION

HE primitive relay channel, introduced by Cover in
1987 [1], models the communication scenario where a
source-destination pair is assisted by a single relay which
is connected to the destination with an independent channel
of some finite capacity.! See Figure 1. The primitive relay
channel can be regarded as the simplest network model that
intertwines channel coding with source coding. As noted by
Kim [2], “on the one hand, it is the simplest channel coding
problem (from the source transmitter’s point of view) with a
source coding constraint; on the other hand, it is the simplest
source coding problem (from the relay’s point of view) for
a channel code”. As such, even-though its capacity remains
unknown, it has served as a good testbed for developing new
relay coding schemes as well as new converse techniques over
the last three decades [2]-[13].
The classical upper bound on the capacity of this channel
is the so-called cutset bound developed by Cover and EIl
Gamal in 1979 [14]. This result bounds the capacity of the
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'The term “primitive” first appears in [2].

channel by its minimal cut capacity, in a flavor similar to the
famous max-flow min-cut theorem for graphical networks [15].
Recently, Wu, Ozgur and Xie in [8] and Wu and Ozgur in [9]
proved new upper bounds on the capacity of the primitive relay
channel. In particular, [9] considered the canonical Gaussian
case and developed the first upper bounds for Gaussian relay
networks that are tighter than the cutset bound. The paper [8]
focused on discrete primitive relay channels and developed
upper bounds that improved on the earlier bounds for discrete
channels by Xue [7] and Zhang [3]. The bounds in [8] and
[9], as well as the earlier bounds in [3], [7] that improve
on the cutset bound for this channel model, are built upon
distinct and non-trivial uses of concentration of measure in
discrete or Gaussian spaces [16], [17]. For general introduction
to concentration of measure, sometimes also known as the
blowing-up lemma, see [18] or [19].

In this paper, we reprove and generalize these bounds using
a new converse technique introduced by Liu, van Handel
and Verdu in [20] (extended version [21]) relying on the
reverse hypercontractivity of Markov semigroups. In a uni-
fied way (by using different Markov semigroups adapted to
various channel models), we prove capacity upper bounds
for Gaussian channels and channels with bounded density
(including all discrete memoryless channels) which end up
being slightly sharper than the corresponding bounds in [9]
and [8]. We remark that reverse hypercontractivity has gained
some recent interest within the information theory community.
For example [22]-[25] studied the equivalent formulations of
the reverse hypercontractivity and [26] computed the reverse
hypercontractivity region for the erasure channel. The line of
work [20], [23], [27]-[29] integrated reverse hypercontractiv-
ity with the functional representations of information measures
to prove second-order (a.k.a. strong) converses for multiuser
information theoretic problems. However, to the best of our
knowledge, the current paper provides the first application of
reverse hypercontractivity to proving first-order converses for
multi-user problems.

The simplicity of the new proof via reverse hypercon-
tractivity mainly comes from the saving in the extra ten-
sorization argument. Measure concentration based proofs for
the relay channel often use a so-called “lifting” (a.k.a.
tensorization) argument to invoke the blowing up lemma,
which entails an often complicated construction of “typical”
sets. With reverse hypercontractivity this step is eliminated
since reverse hypercontractivity itself tensorizes. We note that
reverse hypercontractivity of a reversible semigroup is known
to be equivalent to the modified log-Sobolev inequality [30],
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which in turn implies sub-Gaussian concentration in rather
general settings via the Herbst argument (see e.g. the discrete
[31, Lemma 3.16] and Gaussian [31, Theorem 3.25]) cases.
However, in our proofs reverse hypercontractivity is directly
integrated to the information theoretic converse without going
through concentration of measure.

We also note that in more recent work [11], Wu, Barnes
and Ozgur develop a tighter upper bound on the capacity
of the Gaussian primitive relay channel which significantly
improves on [9], and in particular, is strong enough to resolve
an open problem posed by Cover in [1] regarding the capacity
of the primitive relay channel. (An extension of their proof
to the binary symmetric primitive relay channel is given in
[32].) Those bounds build on a rearrangement inequality on
the sphere. Note that Cover’s problem concerns the regime
of high relay rates. The bounds in the present paper are not
sufficiently tight in that regime to resolve Cover’s problem, and
hence are strictly looser than the bound in [11] at least in that
regime. It would be interesting to see if these stronger results
can be recovered with simpler proofs based on the reverse
hypercontractivity approach we develop in the current paper;
see Section VI for more discussion.

The paper is organized as follows. Section II reviews the
precise formulation of the primary relay channel problem. In
Section III we state the reverse hypercontractivity results for
the Ornstein-Uhlenbeck and the semi-simple semigroup we
use in this paper. The main results are presented in Section IV
and proved in Section V.

II. PROBLEM FORMULATION

Consider a primitive memoryless relay channel, Pyzx,
as depicted in Fig. 1. The source’s input is X € X, the
channel output at the relay is Z € €2, and the channel output
at the destination is Y € (2. Let us assume that Py|x =
lex and PY,Z|X = PY|XPZ\X The symmetry condition
Py|x = Pgzx is imposed for notional simplicity and for
ease of comparison with existing results in the literature, but
our method can be easily extended to asymmetric cases (see
Remark 3 ahead). The channel is memoryless meaning that
Pyn znxn = I} Py, 7,x,- The relay Z can communicate
to the destination Y via an error-free digital link of rate Cj
nats/ channel use.

For this channel, a code of rate R and blocklength n,
denoted by

(C(n,R)a fu(z"), gn(y", f(2"))), or simply, (C(n,R)7 JnsGn),s

consists of the following:

1) A codebook at the source X: Ci, gy = {z"(m) €
xnome {1,2,...,[e"F]1};
2) An encoding function at the relay Z:
fo: Q" = {1,2,..., [e"9)}; (1)

3) A decoding function at the destination Y: g, : Q" X
{1,2,...,[e"} = {1,2,..., [e"F]}.
The average probability of error of the code is defined as

P = Pr(g,(Y", fo(Z7)) # M), (@)
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Fig. 1. Primitive relay channel.

where the message M is assumed to be uniformly drawn from
the message set {1,2,...,[e"f]}. A rate R is said to be
achievable if there exists a sequence of codes

{(C(n,R); fnv gn)}fzozl

such that the average probability of error Pe(”) — 0asn — oo.
The capacity of the primitive relay channel is the supremum
of all achievable rates, denoted by C(Cy).

The following proposition summarizes an intermediate step
in the derivation of the cutset bound [14]. It follows imme-
diately from (3) and (4) that C'(Cp) < supp, I(X;Y Z) and
C(Cy) < supp, I(X;Y) 4 Co, which are the cut set bounds
corresponding to two cut sets of the network.

Proposition 1: Consider a symmetric primitive memoryless
relay channel where Py|x = Pz x. Suppose that there
exist encoding and decoding schemes with error probability
€ = Pe(n) and blocklength n (see definition in (2)). Let X"
denote the random codeword transmitted by the source, Z"
and Y the relay’s and the destination’s observations over the
n channel uses and I = f,,(Z") the index transmitted by the
relay. Let @) be equiprobable on {1,...,n} and independent
of (X™, Y™, Z™). Then

R <I(Xq;Yq, Zq) + ple) (3)
1 1
R<I(Xq;Yg) + EH(IIY”) - EH(IIX") +ule)  (4)

where p(e) — 0 as € — 0.
For completeness we include the short proof here:
Proof: Using the Fano inequality and the chain rules,
we have

R< I(XIY™) 4 le) 5)
< %I(X”; 27 Y™) + ule) ©)

1 n
sggywmmm+Md ™
= 1(Xq; Zq, YqlQ) + u(e) ®)

where in (7) we used the fact that the channel is memoryless;
and

RS LIX™LY™) 4 (o) ©

= SI(X"Y™) 4 SH(IY™) = —H(IIX") + u(e) (10)

n

! 1 n 1 n
< - ;I(Xién) +—HI[Y") = ~H(I|X") + p(e).
(11)
1 1
= 1(Xqi YolQ) + —H(I[Y") = —H(I|X") + p(e).
(12)
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The proof is completed since the Markov chain @ — Xg —
Yo implies that I(Xg;Yo|Q) < I(Xg;Yg); similarly
1(Xq; Zq,YqlQ) < I(Xq; Zq, Yq) L

Note that this is an n-letter upper bound on the capacity
of the channel. However if we can establish bounds on
LH(I|Y™) for any value of L H(I|X™) := h satisfying the
conditions in the proposition, we can use the proposition to
establish an explicit computable upper bound on the capacity
of the symmetric primitive relay channel. This is the approach
of [8], [9], [11], which we also adopt in this paper.

III. PRELIMINARIES

In this section, we introduce some more notation and
provide a brief overview of reverse hypercontractivity, which
will be our main tool for proving upper bounds on the capacity
of the relay channel defined in the previous section.

A. Notation

Given a measurable space Y, let Ho11()) (resp. H (V)
be the set of measurable functions on ) taking values in
[0,1] (resp. [0,00)). Given a probability measure @) on ),
fe€H4(Y), and p € (0,00), let

/fdQ, (13)
1fllriy = ILfllp = [QUP)] P (14)

Then by a limiting argument we have
[ fllzocq) := @M. (15)

Given a channel (i.e. conditional probability) W = Py |x,
we will often write Wyn = &} Py|x—s,. Finally, the
bases in all logarithms, exponentials and information-theoretic
quantities in this paper are natural.

B. Reverse Hypercontractivity

Let T: Hy(Y) — Hi(Y) be a nonnegativity-preserving
map (i.e., nonnegative functions are mapped to nonnegative
functions) and let ) be a fixed reference measure. 1" is said
to be reverse hypercontractive (see for example [33]) if for
some 0 <p<qg<1,

ITfllp = 1 fllgy VS € H ().

Note that if 7" is a conditional expectation operator (i.e., there
exists some conditional probability Py |x such that

(Tf)(x) = Py|x=2(f)

for each € ))), then (16) holds if 0 < p = ¢ < 1, by Jensen’s
inequality. Reverse hypercontractivity characterizes how T’ is
able to increase the small values of the function (i.e. positivity
improving [33]). Markov semigroups provide a rich source of
operators satisfying reverse hypercontractivity (among other
favorable properties).

(16)

A7)
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C. Ornstein-Uhlenbeck Semigroups

For any 2" € R™ and ¢ > 0, define a linear operator T';» ;
by

Ton i f(y") = Nz 4+ /1= e=2tV™)]

(18)

for any f € Hy(R"), where V" ~ N(0™1,). Then
(Tyn t)e>0 is called the Ornstein-Uhlenbeck (OU) semigroup
with stationary measure Pyn|xn_zn = N(2",1,) (see for
example [33]). The OU semigroup is among the first examples
where a reverse hypercontractivity estimate has been worked
out:

Lemma 2 [33]: Forany ¢ <p<1landt >
have

E[f(e™y" + (1 —e”

> 1 g
211 we

ITenefllg = [ fllps VS € Hy(R™)
where the norms are with respect to the stationary measure
N(z™ 1,).

In particular, taking ¢ = 0, we see that for any f €
Hio,1(R™),

19)

EflnTyn o f] > In | £]l1 _o_2e 20)
> = InE[f] (21
>Q+§)mMﬂ Vf € Ho (") (22)

where (21) used the fact that f? > f, (22) follows from
—L% < 4 +1 (note that InE[f] is negative!), and the
expectations are with respect to the stationary measure.

We remark that Lemma 2 is completely dual to the (forward)
hypercontractivity estimate for the OU semigroup (see e.g.
[34]) in the sense that the dependence of the parameters
t>1 ln 4 takes on the same formula (although in the case
of hypercontractwlty, both p and q are greater than 1). How-
ever, this is merely a coincidence for the OU semigroup. The
reverse hypercontractivity is generally weaker (and hence more
common) than hypercontractivity [30], as the next example
illustrates.

D. Simple and Semi-Simple Semigroups

The simplest and the most natural semigroup that can be
defined for any given stationary measure P on a measurable
space ) is the simple semigroup (see e.g. [30]), defined by

Tif =e'f+(1—eP(f), Vt>0,feH (V). (23)

In the i.i.d. case, the tensor product 7°" of any Markov
semigroup operator 7; forms a new Markov semigroup whose
stationary measure is P®". The product inherits the same
reverse hypercontractive inequality as its factors, which is
called tensorization (see e.g. [30]). We call the tensor product
of a simple semigroup a semi-simple semigroup. We will use
the semi-simple semigroup in the case of discrete memoryless
channels and continious channels with bounded density.

By establishing the equivalence between the modified
log-Sobolev inequality and the reverse hypercontractivity, the
recent paper by Mossel et al. [30] established the following
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striking universal reverse hypercontractivity estimate which
does not depend on the stationary measure P. We remark that
the (forward) hypercontractivity is drastically different in that
the bound depends on the smallest probability mass in P (see
e.g. [35]).

Lemma 3 [30]: Let P; be a probability distribution on Y

for each i =1,...,n, and let

Ty =@ e "+ (1 —e P (24)
be a Markov semigroup with stationary measure ®;'_, P. For
anyq<p<1andt21nTp we have

ITefllq = [[fllps Y € Hy (V™) (25)

where the norms are with respect to the stationary measure.
In particular, taking ¢ = 0 and using the same arguments
before, we obtain
1
1—et

(1 + %) E[f], Vfe€Hpn(") @7

EnT,f] > InE[f] (26)

Y

where the expectations are with respect to the stationary
measure.

IV. MAIN RESULTS

We first state our results for the Gaussian case and then for
channels with bounded density.

A. Gaussian Channels

Lemma 4: Let I — Z" — X" — Y™ and Pyn|xn_gn =
Pgu|xn_gn = N(2",1,,). Define h := L H(I|X"). Then

H(I)Y™) < nmm {t + %@_%h} (28)

ln@+h+Vh%J:) g(h+\ﬁﬂ+2@
(29)

n(h+ V2h). (30)

The relaxed bound (30) is the same as [9, Lemma 4.1].2
The inequality in (30) is strict when A > 0.> Thus (29) is a
strict improvement of [9, Lemma 4.1]. When combined with
Proposition 1, this results immediately yield the following
upper bound on the capacity of the Gaussian symmetric
primitive relay channel. We say P > 0 is an average power
constraint if the codewords satisfy

2nR

2nR Z ||x"

2 < nP. 31

2Note that the entropy and rates in [9] are defined in bits, while we use
nats in the current paper.

37To see (30), first use the change of variable ¢ := h++/h2 + 2h. Then (30)
is equivalent to In(1 + ¢) < 7t+2t‘/_ when ¢ > 0. We can then verify
that both sides vanish as ¢ = 0 and thelr derivatives satisfy strict inequality
for t > 0.
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Corollary 5: The capacity of the symmetric Gaussian prim-
itive relay channel with Py|x_, = Pzx—, = N(0,N),
average power constraint P and relay rate Cy > 0 satisfies

1 2P\ 1 P
C(Co) < {5111 <1+W> ;5 (1 + N>+ Co — c—l(co)}
(32

where ¢~1(-) denotes the inverse of the surjective func-
tion ¢: [0,00) — [0,00), h +— 3In(1+h+Vh?+2h) +
5 (h+Vh?+2h).

Proof: Let X™ be an equiprobably selected codeword, and
(@ be the time sharing random variable as in Proposition 1, and
note that

1 n ) 1 n )
_EZE[X =_F ZX <P (33
i=1 i=1
Then Proposition 1 gives
R < I(XQ;YQ, ZQ) + M(G) (34)

1 1
R< I(Xqi¥e) + LHUY™) - Lr(ix) v a0 @)
< I(XQ; YQ) + min{Co, C(h)} —h+ M(G) (36)

where we defined h = 2 H(I|X™), and (36) used the fact
that ZH(I|Y™) < Cj and applied Lemma 4. To finish, note
that the mutual information terms are maximized by choosing
Xg ~ N(0, P), and min{Cy, c¢(h)} — h is maximized at h =
¢~ (Cp) which can be seen from the fact that c¢(h) — h is an
increasing function. [ ]
Using similar lines of argument as in the proof of Lemma 4,
we will be able to obtain bounds for channels with bounded
densities in Section IV-B (by using a different semigroup
adapted to that class of channels). For the same Gaussian
setting as Lemma 4, however, we can capitalize on certain
scaling properties of the Gaussian channel and use slightly
different lines of proof, to show the following sharper bound:

Lemma 6: Let [ — Z" — X" — Y™ where Pyn|xn_gn =
Pza|xn_gn = N(2",1,), and define hy := LH(I|Y") and

hy := LH(I|X™). Then
1
ho —hy < 3 In(1 + 2hs). (37)
Asymptotically, [9, Lemma 4.1] (which is (30)) gives*
hg S \ 2h1, hl < ].; (38)
ho < 2hy, hy> 1. (39)

The bound in (29) has the same asymptotics (38); but with
(39) replaced by ha < hy, hy > 1. In contrast, the bound in
Lemma 6 gives

he SVhi, h <1,
hy S hy, hy>1,

(40)
(4D
so Lemma 6 essentially yields improvements by constant
factors. A numerical comparison is shown in Figure 2.

Combined with Proposition 1, this results yields the follow-
ing upper bound on the capacity of the Gaussian symmetric

*We write c(h) < h, h < 1, if limsupy, o <5 o <1
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ha

h1

Fig. 2. The bound in [9, Lemma 4.1] (see (30)) is plotted in the thin line
and the bound in Lemma 6 is plotted in the thick line, for h1 € (0, 3).

primitive relay channel. The proof is immediate and follows
similar arguments as in the proof of Corollary 7.

Corollary 7: The capacity of the symmetric Gaussian prim-
itive relay channel with Py |x_, = Pzx—, = N(z, N) with
average power constraint P satisfies

(1 2P\ 1 P 1

(42)

B. Channel Distributions With Bounded Densities

In this section, we state our results for discrete memoryless
channels. More generally, our bounds apply to channels with
bounded conditional density, or more precisely when one
can find a reference measure such that the density of the
output distribution of a stationary memoryless channel can be
bounded by a constant independent of the input distribution.

Lemma 8: Fix W = Py |x. Suppose that [ —Z" — X" —Y™
where Pynjxn = Pynjxn = W®", and
d Py|x—s

dQy
for some probability measure (Qy . (In the discrete case, we can
always take o = ) max; Wy(y).) Define h := LH(IIX™).
Then

1
—H({IlY"
H(IIY™)

< oo (43)

[e )

o 1= sup
xr

< cu(h) = min{(a— Dt + ]

t>0
h h h?
=(a—-1) [ln<1+2(a—1)+\/a—1+4(a—1)2>

IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 66, NO. 9, SEPTEMBER 2020

C(Co)

Co

Fig. 3. The bound on capacity using in [9, Lemma 4.1] (see (30)) is plotted
in the thin line. The bound in Corollary 7 is plotted in the thick line. The
cutset bound is plotted in the dotted line. The signal to noise ratio is chosen

as % = 0.5. The range of the relay rate is Co € (0,0.27).

Remark 1: In [8, Lemma 7.1], a weaker bound of

1 1

—HI|Y") <O (\/ﬁlnﬁ) . h—0 (46)

n

was derived using the blowing-up lemma for discrete memo-

ryless channels. Here we got rid of the a logarithmic factor.
Remark 2: Recall that the oco-mutual information for a

given Py |x and P is defined as

dPxy
d(Px x Qy)

see e.g. [36] and the references therein. Under reasonable
regularity conditions (e.g. Px is a fully supported distrib-
ution on a countably infinite set), we have I (X;Y) =
dPy|x—z
dQy
el (X3Y) Note that the particular choice of Px is immaterial
for the calculation of I (X;Y) as long as Px is fully
supported. Also note that in the case of Gaussian channel
without a power constraint, it is not possible to find QQy for
which « defined in (43) is finite.

The above lemma immediately yields the following upper
bound on the capacity of primitive relay channels. The proof
is similar to the proof of Corollary 7.

Corollary 9: Consider a stationary memoryless primitive
relay channel with Py x—, = Pz x—, and suppose that the
condition (43) is satisfied. Let « and ¢, (h) be as defined in
Lemma 8. Then the capacity satisfies

C(Co) <min{I(X;Y,Z), I(X;Y) + Co — ¢, (Co)}

Io(X;Y) :=infln

Y

; (47)

‘ o0

infg, Insup, and hence the optimal « in (43) is

for some random variable X € X and c,!(-) denotes the
inverse function.

V. PROOFS

A. Proof of Lemma 4

Proof: For each integer (relay message) i € Z, let f; €
Hjo,11(R™) be the probability of sending 7 upon observing the
channel output at the relay Z" (in the case of deterministic
relay decoder, f; will be an indicator function). Then

P[I = i| X" = 2"] = W, (f2). (48)
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Hence
1
H(IIX™")=Exnr |In =———1 . 49
(X = B [ s @
But from (22), we see that for any =™ and i,
1
Wn (ln(Tz”,tfi)) > 1_76_215 In Wx”(fz) (50)

To finish the proof, let us define a convolution operator 7; that
does not depend on z":

Tif(y") = E[f(y" + V1 —e 2V

In words, the action of T~ ; can be viewed as consisting of
two steps: first 73, and then dilate (with center ™) by a factor
et. It is easy to see a basic fact: when a function is integrated
against a measure, the integral is invariant if both the function
and the measure contract by the same factor; this observation
proves that

&1V

Wz" ( ( xn tfz)) - x” (ln(thl)) (52)
where we defined a new channel W,n = N (2", e 'L,).
Now define anew Markov chain I — Z™ — X™ — Y™ where
Pynxn = W. We have
—H(I|Y") = Ergn(In Py (I]Y™)] (53)
> Eppn [In(Tifr)(Y™))] (54)
=Erxn [Wxn (In(T; f1))] (35
=Erxn [Wxn (In(Txn ¢ f1))] (56)
1
> T brxe mWxn (f1)] - (5T)
1 T

where
o (54) used the fact that for any 4",

> (Tfi) <Tf2fz> )=1. (59

1€l 1€T

Indeed, upon rearrangements, (54) is reduced to the
nonnegativity of the conditional relative entropy

D(PI|}7" Q[D’/n

where we defined the conditional distribution Q 7y as
Qry-(ily™) = Te fi(y™), for each i, §".

e (56) is from (52).

o (57) is from (50) and (49).

Pyn) >0 (60)

However,
H(IY™) = HI|Y™)
< h(Y"[I) = h(Y"|I) (61)
= I(v/1—e2G™ Y™|I) (62)
<I(V1—e2G" /1 — e 2G" + e 'GMI)  (63)
=nt (64)
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v!here (61) can be seen from EPI; In (62) we defined G™ and
G™ to be independent according to N(0, I,,), and independent
of (I, X™), and put

Y =X"4e G (65)
Y"=Y" 4+ /1 — e 2G", (66)

This constructs a coupling of
I—X"—y"—y» (67)

with the desired marginal distributions. The conclusion then
follows by optimizing t. [ ]

Remark 3: As alluded, we focused on the primitive relay
channel for simplicity, while the argument can easily be
extended to the general (asymmetric) case. Indeed, suppose
that Py |y is the additive Gaussian channel with variance
o2. Then (64) will be modified to H(I|Y™) — H(I|Y™) <
n(t—Ino), and the final bound can be obtained by optimizing
t for which 02 > e~2*. Similar comments applies to other
lemmas: In (74) ahead, we define W,n = N (2", 02e2'1,,)
instead, and obtain

1 1

H(I|IX™) >E |In— +n(no+t+—e 2t -2
(11X 2 8 |In e | 77 =)
(63)

so that the rest of the proof continue and ¢ is optimized over
(0,00). In (87) ahead, suppose that Vyn := Pyn|xn_gn for
each z", then we have

(69)

H(I|X™) > Erxn {ln } +n1nsup‘ Va
x x

_
Vxn (f1)

and the rest of the proof continues.

B. Proof of Lemma 6

Proof: The high-level idea of the proof is roughly as
follows: in the proof of Lemma 4 we established the following
result: H(I|Y™) < == H(I|X™), where Y™ is obtained by
scaling the noise by a factor e~*. Then we bound H(I|Y™)
in terms of H(I|Y™). If, instead, we somehow scale the noise
by a factor of e’ beforehand to cancel this effect, then we can
directly obtain a bound on H (I|Y™).

Analogous to (52), define the conditional distribution

Won = N (2", e*1,,), (70)
then we have the following scaling invariance:
Wor (0T e)) = Wer (1)) D)

where Txt is the semigroup with stationary measure Wm,
and T; is defined by

Tof(y") == E[f(y" + e'/1 — e=2V™)].

(72)
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Then we can use the similar steps as before:

1
H(IIX")=E|ln — 73
R el -
1 n
>E|lno——o | —nt+ (1 —e* (74)
n Wxn(fz)] n 2( e ")
o 1
>(1—eE [Wxn [ In = —nt
z(1=e™) i . (nTXn,th>1 "
+ gu —e72) (75)
[ 1
=(1—eHE |Wxn (111 - >] —nt
( ) o Tifr
+5(1—e) (76)
=(1—-e?)E 1n; —nt
T fr(Ym)
+ g(l e 2t) 77
> (1— e 2)H(I|Y"™) - nt + 3(1 — ). (78)
where
o (74) follows from
Wxn .
E [hl WXigI;] = D(PI|Z”O WXH PI‘Z"O WXn PXn)
xn (f1
(79)
< D(Wxn |[Wxn |Pxr) (80)
=nt — g(l—e_Qt). 81)

Thus

1 1 1 1
—I(I; X™MY™) <inf{t — =+ (= + —HI|Y"))e
LX) < ot foe ok G+ LEQY)e )

1

2 n
=5 (1 + EH(I|Y )) : (82)

C. Proof of Lemma 8
Proof:  As before, define (f;)icz as the relay decoding
probability functions as before. For any ¢t > 0, define the
linear operators
Ton g i= @y (e + (1 — e Y Wa);
Api=@ii(e +a(l —e)Qy).
Note that since o« > 1, A; is not a conditional expectation
operator in the sense that it can send the constant 1 function

to a nonnegative function exceeding 1 somewhere. However,
we can show that the factor of increase is not too big:

(Ae- D" < (e +a(l—e )"
< e((y—l)nt’ Vyn

(83)
(84)

(85)
(86)
The rest of the proof then follows analogously to the Gaussian

case:

H(I|Xn) :E[Xn |:1Il (87)

ol
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[ 1

Z (1 - eit)]E[Xn WXH <1n TX f[ >:| (88)
L ot
[ 1

Z (1 — eit)]E[Xn WXn <ln A—fI>:| (89)
L t
[ 1

p— 7t e —
Z (1 e )]E[Yn _hl e_(o(_l)nth’Y":| (90)

> (]. — e_t)E[Yn [ln PI‘YH (I|Y”) — (Oé - l)nt]

oD
>(1- e_t) [H(I|Y") — (o — 1)nt] 92)
where
o (89) follows since A; dominates T ;.
o In (90), we defined, for each i, y",
Pigr = e IMAfi(y"). (93)

For each y", since ), fi(y™) = 1, we see from (86) and
the linearity of A; that ), p;,» < 1.
e (91) follows since it is equivalent to the non-negativity
of relative entropy, by rearrangements.
|

VI. DISCUSSION

As mentioned in the introduction, recently Wu, Barnes and
Ozgur [11] used the rearrangement inequalities to prove a
tighter upper bound on the capacity of the Gaussian primitive
relay channel which remains bounded away from the cutset
bound also in the high relay rate regime (corresponding
to the case of large Cy or equivalently L H(I|Y™)). (See
[32] for the treatment of the binary symmetric channel.)
Currently, the reverse hypercontractivity argument does not
seem to be powerful enough in that regime. In particular, the
bound

H(IIY™) < T HUIX"),

obtained in (58) is looser than the trivial inequality

H(I|Y™) < H(I|X™) + sup I(I; X"|Y™)

xn

in the high entropy regime. One possibility is that for highly
symmetric measures (e.g. Gaussian), for which a rearrange-
ment inequality that characterizes the extremal sets/functions
exists, the rearrangement approach is inherently stronger than
reverse hypercontractivity. Another possibility is that there
still exists certain semigroup argument that simplifies the
proof [11]. Indeed, we note that there exist semigroups
versions of rearrangement inequalities which are known
to imply (reverse) hypercontractive inequalities (see [37,
P117]). This remains an interesting open direction for future
research.
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