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Abstract. Deep Neural Networks (DNNs) have been successfully applied in
many fields. Considering performance, flexibility, and energy efficiency, Field
Programmable Gate Array (FPGA) based accelerator for DNNs is a promising
solution. The existing frameworks however lack the possibility of reusability and
friendliness to design a new network with minimum efforts. Modern high-level
synthesis (HLS) tools greatly reduce the turnaround time of designing and imple-
menting complex FPGA-based accelerators. This paper presents a framework for
hardware accelerator for DNNs using high level specification. A novel architec-
ture is introduced that maximizes data reuse and external memory bandwidth.
This framework allows to generate a scalable HLS code for a given pre-trained
model that can be mapped to different FPGA platforms. Various HLS compiler
optimizations have been applied to the code to produce efficient implementation
and high resource utilization. The framework achieves a peak performance of 23
frames per second for SqueezeNet on Xilinx Alveo u250 board.
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1 Introduction

Deep Neural Networks (DNNs) have made a profound impact on applications such
as image classification [1, 2] and speech recognition [3, 4]. However, they demand
extensive computations and impose extreme timing constraints because of their deep
topological structures, complicated cross-layer connections, and massive amounts of
data to process. As aresult, it becomes challenging to achieve high performance and good
energy efficiency when mapping DNNs onto generic computing systems. To mitigate
this problem, many hardware (HW) accelerators for DNN inference have been explored.
Among these designs, Field-Programmable Gate Array (FPGA) based accelerators have
gained great popularity due to their reconfigurability, massive fine-grained parallelism,
and performance per watt advantage.

The extreme scale integration of modern system on-chip (SoC) and burgeoning
design complexity of emerging applications has made it imperative to design at a higher
level of abstraction in order to achieve high productivity. To manage this issue, high-
level synthesis (HLS) tools have emerged to allow application developers to describe
the hardware accelerator using common software (SW) programming languages, such
as C/C++, by automatically generating RTL from behavioral descriptions [5, 7].
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A typical DNN architecture has multiple layers that extract features from the input
data. Convolution is the most computationally expensive function which requires mil-
lions of floating-point operations (FLOPs) in these networks. Thus, it needs a good
accelerator architecture which should balance maximum memory access and computa-
tion and software linkage to DNN frameworks. Currently, many open-source software
frameworks have been released for DNN research but most of them suffer from scala-
bility problems. Existing FPGA-based convolutional neural network (CNN) accelerator
designs primarily focus on optimizing the computational resources without considering
the impact of the external memory transfers or optimizing the external memory transfers
through data reuse [5], or on optimizing only the convolution layers [8].

To address the above-mentioned problems, we present a systematic methodology
for maximizing the throughput of an FPGA-based accelerator for an entire DNN model
consisting of convolution, pooling and certain layers executed in software. In this paper,
we describe a framework, which starts from a trained network (Caffe/TensorFlow) and
generates a deployable accelerator for image classification. The entire compilation pro-
cedure is end-to-end and automated, which makes it possible for DNN researchers and
users to use FPGA as a powerful device to perform model inference. In this paper, we
introduce this novel architecture and provide the following contributions:

1. A configurable streaming framework for DNN accelerators that exploits operator
level, loop level, input channel and output channel parallelism.

2. Automatically generated verification network in C++ that allows users to test the
correctness of the design. The framework can be exploited either as individual kernels
or as a set of layers scheduled on the hardware.

3. Theframework allows to use certain layers as HW and certain layers as SW, providing
the designer with a choice of possible configurations.

2 Related Work

The analysis of a good accelerator design in the context of DNNs should be based on
three factors: (i) Number of frames per second (FPS) achieved at run-time; (ii) Flexibility
of the design to handle many classes of DNNs; and (iii) Minimum loss of accuracy for
classification of an image with dataset with hundreds of classes. We only focus on the
related work that have demonstrated at least two of these requirements.

Shawahna et al. [9] present an extensive comparison of accelerator designs for
FPGAs; but they do not consider first and third factor in their comparison. Guan et al.
[8] present an extensive framework showing VGG-19, ResNet-152 and LSTM-LM; but
they do not report latency or FPS obtained after deployment. Qiu et al. [10] report the
comparison of latency for VGG16-SVD network for FPGA, CPU and GPU. The latency
reported is 224.60 ms and total operations is 30.76 giga operations (GOPs), hence the
overall performance is 136.97 GOPs/second (GOPS). The FPS reported is 4.45 for 16-bit
quantized weights and 5.88 for 8-bit. While this work demonstrates the best possible
frame rate for a large network, it still does not report the accuracy of the network after
quantizing the weights. Also, the authors modified VGG-16 to VGG16-SVD, hence
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the actual 30.76 GOPs parameter have been downsized. Zhang et al. [11] also report
158.8 ms for VGG16-SVD network. This is a significant improvement as compared to
previous results, but the authors also do not report the FPS. Suda et al. [12] also present
the latency of VGG-16 as 651.2 ms. This work reports all three factors and can be used
for comparison.

Using the fixed-point data types requires that trained weights must be quantized
as reported by Song H. et al. [13]. This work however shows that with appropriate
quantization of the weights, acceleration can be achieved at the expense of accuracy.
Xilinx ml-suite [14] reports the best possible performance of 4127 images/sec on int8
data type with GoogleNet.

Other optimizations that can be applied include: (1) Algorithmic optimizations for
convolution operations, for example, the core of computation engine can be designed
using a Wallace tree [6] or a systolic array. Our work focuses on balanced tree for multiply
and accumulate (MAC) int16 operations. (2) Dataflow optimizations for maximum
memory bandwidth. The dataflow model requires that there is a non-stop dataflow from
memory-in to memory-out with maximum data transfer in each cycle. The work in [6]
introduces a roof-line model for analysis of the design for memory throughput. Authors
in [15] show how efficiently streaming can be applied in the design.

3 Proposed Design

3.1 Architecture Design

Here we describe the proposed design that exploits the concurrency features intrinsic in
convolution function. Figure 1 shows each unit and function in the proposed architecture.
The design works on 128 input channels, 64 output channels and kernel size, wy;,,, either
3 or 1. The complete module as shown in Fig. 1 is instantiated four times, allowing to
compute 256 output channels concurrently. The weight file obtained after quantization
is stored as int16 and each weight is multiplied by 64. The value of 64 is chosen based
on that no layer in SW shows underflow or overflow. No change is made to the input
image. Multiplication is carried out in int 16 but results are maintained as int for bias
addition and finally divided by 64 to scale down the values to int16. Next, we describe
the HW and SW units that are used to implement the network.

Funtion_0: The first layer of each network is different, for example, the kernel size
can vary from 1 to 11, the number of input channels is usually 1 or 3 and the input
dimension can be arbitrary high as 448. Hence this layer can be executed in the SW or
HW framework, depending on its complexity. The first layer requires significant amount
of MAC operations; hence it is better to design a new kernel customized for parameters.

HW_Interface_1: The proposed architecture has been built on the dataflow model
(recognized by #pragma HLS Dataflow), which allows to concurrently access non-
overlapping data stored in different memory banks. Hence input data and weight data for
a layer have been placed in two DDR memory banks and concurrently accessed using
AXI4 interface as shown in Fig. 1.
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HW_Unit_1: The first two functions in the design are accessing data from each DDR
bank and convert it to 128 input streams and 128 weight streams. The weight streamer
saves the data in on-chip buffer (wgt_buff{128][64][9]) and then streams are created in a
different loop structure. The aim of using the wgz_buff is to initialize the streams to zero
if the number of input channels is less than 128. Since the size of the input data is larger
than the weight data, more cycles can be spend checking the number of channels and
creating a second loop structure in the stream_weight() function. Each of the streams is
mapped to FIFO which can be mapped to either LUTs or BRAMs present on the chip.

First layer of each network has different configurations, hence this layer is executed in
SW or in HW ( Function_0)

DDR Memory 1
Single AXI port

DDR Memory 2

Parallel load (HW_Interface_1) Single AXI port

Input Streamer
128 AXI streams out

Weight Streamer
128 AXI streams out

l Parallel load(HW_Unit_1)

128 line Input Cache Pad zeros in weight cache if input 128 line Weight

channel < 128 Cache
Input Register file Parallel load Weight Register file
.

128 Mult and Adder Trees ...
128 AXI streams out
HW_Unit 2

Computation units Computation units

One streaming functions to add
128 streams
HW_Unit 3

Adder Computation units

v

Output_function completes 128 input channels and 64 output channels
tmp_buff[64*55*55] is set to zero when all input channels are completed(HW_Unit_4)

v

Fused Pooling layer same as above with single axi stream(HW _unit_5)

v

Dataflow_call(HW_unit_6)

v

‘ Scheduler: Tiling the channels (HW _unit_7) ‘

v

‘ Network FSM (HW_unit_8)

Fig. 1. Dataflow representation for convolution and pooling layer.
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HW_Unit_2: This unit contains 128 identical convolutional functions, each with a
different stream interface. This is because streams are static in high level synthesis
flow. Hence 256 streams (one input and one weight) from HW_function_1 reach to 128
concurrent computation units.

There are primarily three objectives to be achieved in this unit. The line buffer
receives the data from a stream which should not be stalled as shown in Algorithm 1.
This is achieved by overlapping the computation and stream access (as multiplication
and loading are parallel). The loading of wgt_mac_0 for computation; streaming out the
data; and loading new line in the line buffer is done by pipelining. The kernel weights
should not be loaded again and again for the output channel. This is achieved by looping
for 64 or less output channels.

Algorithm 1. Convolution
1) Input: Two axi streams for each convo() function
2) Given: osize, stride, padding, wsize, ochan, ichan .
3) Output: one output stream

4) for yy = 0 to osize:

5) for ochan_no = 0 to ochan:

6) load wgt_mac register

7) for xx = 0 to osize:

8) if wsize == 1:

9) call convo_1d()

10) else:

11) load wgt_mac_0 from line buffer
12) stream convo_out_1 0 << call convo_2d()
13) if ochan _no ==

14) load line buffer next line

15) call rotate line buffer

Once the line buffer is loaded, instead of completing an input channel frame, first
line of 64 output channels is computed and then the line buffer is updated. If there are
more than 128 input channels, a temporary buffer is used to store the data and this data
is accessed again for computing all the input channels.

The third objective in the computation algorithm is to achieve a pipelined MAC
tree for sum of product operation. The HLS tool can produce a balanced tree if integer
operations are performed, hence objective is achieved in the synthesis process. The delay
of the tree is given as worst delay of an operator. Though the latency of the tree may be
high, the initiation interval is one, which means next input can be taken after one cycle.

HW_Unit_3: This unit contains one streaming function to add data coming from 128
computation units and produces one output stream.

HW _Interface_2: The two DDR memories discussed in HW_Interface_1 were used
for getting input data. Similarly, remaining two DDR memories are used for storing
output and network parameters data. Temporary buffer can also be utilized if enough
BRAMs are present in the chip and one DDR bank can be eliminated. Since this design
computes 64 output channels and 128 input channels, this means if 1024 input channels
are present, then intermediate tile data of size 64*i;,.*ii,. has to be stored in a DDR
bank (temp_buff). This DDR bank should be accessed when adding the values to the
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next tile computed. All the parameters of the network such as weight offset and bias
offset are precomputed and copied to DDR 4.

HW _Unit_4: This unitreceives one stream from HW_Unit_3 and contains one function
toread/write data from two DDR banks or temporary buffer (para_buff). The bias is added
at this stage and data is stored back in one of the DDR banks or para_buff. Algorithm 2
demonstrates this process. This unit also checks whether pooling is required, if yes then
stream data goes to a pooling function else the polling unit is bypassed.

Algorithm 2. DDR Access

1) Input: One axi stream. Given: osize, ochan,

bias buffer, bb, ichan_en, aa, out offset.
2) Output: Data written to DDR banks

declare out buff for burst use
3) for yy = 0 to osize:

4) for ochan no = 0 to ochan:

5) for xx = 0 to osize:

6) datatype inh sum = 0;

7) datatype inh suml = 0;

8) datatype inh dp 0;

9) stream_adder_out 0 >> dp 0;
10) if bb > 0 :

11) suml = dp_0 + para;

12) else:

13) suml = dp_0;

14) para buff[xx] = suml;

15) sum = suml + bias[ochan + aa*ochan_ fac] ;
16) if sum > 0 :

17) out buff[xx] = sum >> 64;
18) else:

19) out_buff[xx] = 0;

20) if bb == ichan_index-1:

21) if (pool_on ==1):

22) Stream out_pool fused << out buff[xx];
23) else:

24) write_ddr3 with_burst();
25) write_ddr4_with_zero();
26) para_buff with_zero();
27) else:

28) write ddrd4with data();

Algorithm 2 works in conjunction with Algorithm 3. It takes bias buffer which is
pre-loaded, bb variable which is dependent on the number of input channels (bb > 0 if
ichan > 128), aa variable which is dependent on the number of output channels (aa > 0
if Ochan > 64), and ichan_en variable that defines the number of iteration for all the input
channels. The streams bring the data in, which is then summed up with temporary data
from previous iteration, bias is added, relu activation is applied, last iteration is checked,
data is written to DDR3 bank and para_buff is initialized to zero again.

HW_Unit_5: This unit contains three functions to complete pooling in a fused manner.
First function receives one stream from previous unit and caches it in a small memory.
Second function does the pooling operation and third function stores the data in the
DDR. If a convolution unit with stride of 2 is required, this unit is enabled as well.
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HW_Unit_6: This unit defines one function that calls all the above units in a dataflow
model. Total of (128 x 4) 512 input streams, (128 x 4) 512 weight streams, 4 adder
streams, 4 output streams, 12 pooling streams, are defined in this function. This function
connects all the streams with one input function and one output function, 512 convolution
functions 4 adder functions, 4 pooling functions. All the units are instantiated in this
function.

HW_Unit_7: This unit, calls the HW_unit_6 in a sequential way for completing one
layer. Since the architecture works on input and output of tile size 128 x 256, the sched-
uler calls HW_unit_6. Suppose the output channels are less than 256, then ocpan_index=1,
if Ochan > 256, then ochan_index= Ochan/256 (Algorithm 3).

If ichan < 128, then ichan_index=1. else it is shifted by 7. The call function (line 8)
takes weight offset (aa * ichan * outchan * Wsize * Wsize + bb * 128 * Wiz * Wyize +
wgt_offset) and output offset (aa * out cpan * Osize * Osize + OULyffser) as arguments.

Algorithm 3. Scheduler (layer_128ic_2560c())
1) Input: DDR pointers.
2) Given: Ogize, stride, padding, Wsize, Ochan, out_offset, wgt offset.
Output: one output streams
3) Delare ochan_indexr outchan/ ichan_index

4) if Ochan <= 256:

5) Ochan_index = 1;

6) Out_chan = Ochan/

7) else:

8) ochan_index = Ochan >> 8;
9) Outchan = 256;

10) if icnan <= 128:

11) ichan_index =1;

12) else:

13) ichan index = ichan >> 7;
14) if (ochan <= 256):

15) ochan_fac = ochan >> 2;
16) else:

17) ochan fac = 64;

18) for aa = 0 tO Ochan index:
19) for bb = 0 to ichan index:
20) call hw_unit 6

HW_Unit_8: All the layers are completely scheduled by an FSM designed in HW.
A python script generates this FSM along with weight offset, bias offset and output
offset for each layer. The generated HW creates FIFO channels for each parameter in
HW_unit_7. Such an FSM helps with DDR bank swapping and no host intervention is
required (Algorithm 4).

Vivado HLS schedule reports the initiation interval for each function, which deter-
mines how well the dataflow is pipelined. The initiation intervals for each function
reported are convo (1 cycle), addstreams (1 cycle), stream_in (1 cycles), stream_out (1
cycle), stream_weight (1 cycles) and pooling (1 cycle).
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Algorithm 4. Layer Scheduler

1)
2)
3)
4)
5)
6)
7)
8)
9)

Input: Input data, complete weights,

Given: externally generated FSM with weight and output offsets
Output: data for last layer

Restart FSM,

Load bias in bias buffer,

Call HW unit 6

If last state is reached, go to 10

Swap the DDR pointers

Go to 6 for next layer,

10) For next image wait for signal to toggle and go to 4

From a given trained Caffe-based network, weight and network parameters are
extracted to generate the complete network scheduler. A python program has been writ-
ten to generate all the linear weights and output offset. The weights are then quantized
using scripts and standard deviation process. This process is discussed in Algorithm 5.

Algorithm 5. Network Scheduler

1)
2)

3)
4)
5)
6)
7)
8)
9)

Input: Input data, complete weights,
Given: extracted weight file, paramters and network from
caffe model/tensorflow
Perform offline quantization to generate new weight file.
Output: image class
Load new image
Multiply each weight each 64 and store in DDR banks as intl6.
Call layer scheduler, Copy the output for last layer
Call the tensorflow function for last layer or output the results
Go to 5 for a new image

Table 1 shows that 29% FF, 78% LUT, 52% DSP, 54% BRAM and 44% URAM are
utilized in the design. The entire design is set to synthesize at 200 MHz, but the functions
report a frequency of 300 MHz. There is still possibility that more computation can be
done, however maintaining the LUTs resources utilization at this level becomes difficult.

3.2 Verification Setup and Executable Setup

Firstly, the implemented DNN is verified in Caffe/TensorFlow and tested for ten images
from a trained data set (trained.caffemodel) and a DNN architecture file (deploy.prototxt).
The complete network is then rebuild in C++ using a python script from the parameters
extracted from deploy.prototxt file. The SW emulation of written HLS code is tested in
this C++ network. Each layer testing can also be done using the C++ layer data. In this
work, the reported results are on Vivado SDx with all layers in HW.
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Table 1. Resource consumption of each function in Vivado HLS.

FFs LUTs DSPs | BRAMs URAM
Stream_in x1 14555 38191 128 0 0
Stream_wgt 13682 38191 38 0 512
Mac tree/Convo_0 609/1571 |105/1971 |9/11 0/5 0
x512
Stream_adder 0 x4 1610 5465 1
Stream_out x4 346 917
Stream_out_pool_fused | 1231 2741 0 16
x4
Layer_128ic_64oc 896837 1249546 | 5845 2648 512
Kernel_7_layer (first 107284 91492 648 280 0
layer)
CNN (top) 1018689 | 1350874 | 6501 2945 704
(29%) (78%) (52%) | (54%) (55%)
Total on Alveo u250 3456000 | 1728000 | 12288 |5376(18 Kb) | 1280

4 Results

The design has been implemented with Xilinx SDx 2019.1 on Xilinx Alveo u250 board.
We present the results of SqueezeNet tested on Alveo u250. Table 3 shows the FPGA
execution time for all layers executed in HW. The total number of MAC operations in
SqueezeNet is 861.34 M [16] and the total convolution operations comprising of MACs
result in 861.34 * 2=1722.68 M. The total comparators are 9.67 M and the additions
in other layers are 226 K. This yields to total operations as 1732.546 MFLOPs. For
calculating the GFLOPS, we first calculate the total number of operations in network
and then divide this by the execution time 1732.546/0.043 = 40.291 GFLOPS.

Four processing units use 5845 DSP, out of which 5333 can be active at any time
with kernel size 3 is running. Int16 takes one DSP slice hence the peak performance
achieved is 5333 x 200 x 10° = 1066.6 GFLOPS. Similarly, when kernel size 1, peak
performance is 128 x 4 x 200 x 10° = 102 GFLOPS. The layer 1 has kernel size 7
and is designed separately for achieving better performance. The same dataflow model
architecture has been used with a configuration of three input channels and 24 output
channels. Similarly, when kernel size 7 is running, peak performance is 648 x 200 x
10% = 129 GFLOPS.

The verification results from the execution on Vivado SDx [17] shows top-1 accuracy
for the SqueezeNet reported in Caffe framework as 57.5%. Our framework shows an
additional loss of 1.2% due to the quantization process applied and int16 used as the
base data type.
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Table 3. Comparison of HW and SW based on SqueezeNet

Platform | Type Latency (sec) | FPS

Caffe CPU | Intel 0.1701 5
i7-6700 K

FPGA Alveo u250 0.043 23

Conclusion

In this work we have successfully tested SqueezeNet in our framework with a frequency
of 200 MHz. We have achieved a frame rate of 23 frames/second. The accelerator and
the verification setup have been generated using python scripts which allow user the
configurability and scalability of input and output channels with kernel size of 3 or 1.
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