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Abstract—The optimal transport problem studies how to
transport one measure to another in the most cost-effective way
and has wide range of applications from economics to machine
learning. In this paper, we introduce and study an informa-
tion constrained variation of this problem. Our study yields
a strengthening and generalization of Talagrand’s celebrated
transportation cost inequality. Following Marton’s approach, we
show that the new transportation cost inequality can be used to
recover old and new concentration of measure results. Finally, we
provide an application of this inequality to network information
theory. We show that it can be used to recover a recent solution
to a long-standing open problem posed by Cover regarding the
capacity of the relay channel.

I. INTRODUCTION

The optimal transport (OT) theory, pioneered by Monge [1]
and Kantorovich [2], studies how to distribute supply to meet
demand in the most cost-effective way. It has many known
connections with, and applications to areas such as geome-
try, quantum mechanics, fluid dynamics, optics, mathematical
statistics, and meteorology. More recently, it has received
renewed interest due to its increasingly many applications in
imaging sciences, computer vision and machine learning.

A. Optimal Transport Problem

The basic OT problem in Kantorovich’s probabilistic for-
mulation can be described as follows. Let Z and ) be
two measurable spaces, P(Z) and P()) be the sets of all
probability measures on Z and ) respectively, and P(Z x ))
be the set of all joint probability measures on Z x ). Let
c: Zx)Y — R, be a non-negative measurable function, which
is called the cost function. Given two probability measures
Pz € P(Z) and Py € P(Y), the set of couplings of Py
and Py, denoted by II(Pz, Py ), refers to the set of all joint
probability measures P € P(Z x )) such that their marginal
measures are Pz and Py. The OT problem is to find the
coupling P in II(Pz, Py) that minimizes the expected cost:

pen?ﬁi,m) Ep[c(Z,Y)]. (1

A special case of particular interest is when Z = )Y =R

and ¢(z,y) = |z — y|P, in which case the quantity

A : _vient/p
WoPrPy) 2 inf (B2 YPR @)
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defines a distance between two probability measures Pz and
Py and is called the p-th order Wasserstein distance. Various
transportation cost inequalities have been developed that upper
bound the Wasserstein distance between two measures Pz and
Py-. For example, the celebrated Talagrand’s transportation
inequality [3] states that

W3 (Pz, Py) < 2D(Pz||Py) 3)
when Py is standard Gaussian AV(0,1) and Pz < Py.

B. Information Constrained Optimal Transport

In this paper, we introduce and study a variation of the
OT problem which we call the information constrained OT
problem. Here, we want to find the coupling P in II( Py, Py )
that minimizes the expected cost while ensuring that the
mutual information Ip(Z;Y’) between Z and Y under the
coupling P does not exceed some pre-specified value R:

Pen(Pz,Pg)l:pr(Z;Y)gREP[C(Z’Y)]' @)
It is worth mentioning that an equivalent formulation to
problem (4) has received significant recent interest in the
machine learning literature, where one seeks to minimize the
cost-information Lagrangian:
PEH%II}’;Py) {Eplc(Z,Y)] + M p(Z;Y)}. (5)
The problem (5) generally appears under the name entropy
regularized OT or Sinkhorn distances in the machine learning
literature. This interest in (5) has been mainly motivated by
computational considerations; in many cases computing the
regularized OT in (5) from data turns out to be easier than
computing the OT in (1), which motivates the use of (5) instead
of (1) as a distance [4]. For certain inference tasks, (5) also
appears to be a more suitable distance than (1) leading to
superior empirical performance [5]. In contrast, in this paper
we are interested in understanding the solution of the problem
(4) as well as its fundamental connections to concentration of
measure and network information theory.

C. Summary of Results

In the information constrained OT setup, one can similarly
define the Wasserstein distance between two measures Pz and
Py subject to the information constraint R:

W,(Pz,Py;R)2  inf  {Ep[|Z-Y|"}'". (6)

PEH(PZ7Py).
Ip(Z;Y)<R
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Note that when R = oo, (6) reduces to the unconstrained
Wasserstein distance in (2). The main result of this paper,
proved in Section II, is an upper bound on W5 (P, Py; R) for
any R € R, when Py is standard Gaussian and Py < Py:

1
WZ(Pz,Py; R) <E[Z%]4+1— 2\/2€2h(z) (1 —e2R),
e
(N

This new transportation inequality sharpens and generalizes
Talagrand’s inequality in (3). Indeed, by setting R to be co in
(7), one can obtain a sharpened bound on the unconstrained
Wasserstein distance:

1
W3 (Pz, Py) SE[Z°]+1=2\/o—e?D. ()

me
It is easy to check that the R.H.S. of (8) is smaller than or
equal to that of Talagrand’s inequality in (3) for any Pz, and
therefore (8) is uniformly tighter than (3). Moreover, the new
inequality (7) captures the trade-off between information and
transportation cost, which goes beyond the scope of (3). This
trade-off turns out to be tight when Py is Gaussian.

Since the pioneering work of Marton [6], [7], it has been
known that Talagrand’s transportation inequality (3) captures
essentially the same geometric phenomenon as the Gaussian
isoperimetric inequality, both of which can be used to derive
concentration of measure in Gaussian space. What are the
geometric implications of the new transportation inequalities in
(7) and (8)? In Section III, we show that the strengthening (8)
of Talagrand’s inequality can be used to prove concentration
of measure on the sphere, which can be shown to imply
concentration of measure in Gaussian space. In other words,
(8) captures a stronger isoperimetric phenomenon than (3),
the one on the sphere rather than that in Gaussian space.
Furthermore, we show in Section III that the information
constrained transportation inequality in (7) captures a new
isoperimetric phenomenon on the sphere that has not been
known before the recent work [8], co-authored by a subset
of the authors. Different from the standard isoperimetric
inequality on the sphere where one is interested in the extremal
set that minimizes the measure of its neighborhood, this
new isoperimetric result deals with the set that has minimal
intersection measure with the neighborhood of a randomly
chosen point on the sphere.

Finally, in Section IV we demonstrate an application of
the new transportation inequality (7) to network information
theory. We use it to recover the solution of a problem posed by
Cover, “The Capacity of the Relay Channel”, in Open Prob-
lems in Communication and Computation, Springer-Verlag,
1987, in the canonical Gaussian case. This problem was
recently solved in the Gaussian case in [8], [9]. The proof
in [8], [9] relied on intricate geometric arguments based on
typical sets, while (7) allows us to recover the same result
almost immediately.

II. NEW TRANSPORTATION INEQUALITIES

Before stating and proving our new transportation inequal-
ities, let us first formalize the definition of the Wasserstein

distance and Talagrand’s transportation inequality; see also
[10]. Let (€2, d) be a Polish metric space. Given p > 1, let
P, () denote the space of all Borel probability measures v
on Q such that the moment bound E ., [dP(w,wy)] < oo
holds for some (and hence all) wy € Q.

Definition 2.1 (Wasserstein Distance): The p-th order
Wasserstein distance between Pz, Py € P,(Q) is defined as

W,(Pz, Py) & ABpd(Z, )P

inf

PEI(Pyz, Py

If p=2,Q =R with d(z,y) = |z—y|, and Py is atomless,
then the optimal coupling that achieves the infimum in (9) is
given by the deterministic mapping Z = F, ' o Fy (Y') where
Fy is the cdf of Py, ie. Fy(y) = Py (Y <y) and FZ_1 is the
quantile function of Py, i.e. F,'(a) = inf{z € R: Fz(2) >
a}. For convenience, in this paper we denote the mapping
F, o Fy by g, and call it the increasing rearrangement
function. Building on this optimal coupling and tensorization
[10], one can prove the following result for the case when
Q =R" and d(2",y™) = ||z — y™||2, known as Talagrand’s
transportation inequality.

Proposition 2.1 (Talagrand, 96): For two probability mea-
sures Pzn < Py on R™ with Py = N(0, I,),

W3 (Pzn, Pyn) < 2D(Pgn||Pyn),

(10)

where the inequality is tight if and only if Pz~ is a shifted
version of Py, i.e. Pzn = N (u, I,,) for some p € R™.

A. Sharpening Talagrand’s Transportation Inequality

Talagrand’s transportation inequality can be sharpened to
the following; see also [11], [12] for related results.
Theorem 2.1: For Py» = N(0,1,,) and Pzn < Pyn,

1
W3 (Pgn, Pyn) < E[|1Z7|2] 4+ n = 20y [ —en), (1)
™

where the inequality is tight when Py~ is isotropic Gaussian,
i.e. Pzn = N(u,0?%I,) for some p € R™ and o > 0.

Note that compared to Talagrand’s transportation inequality,
which is tight only when Pz» = N (u, I,,), the upper bound
of the Wasserstein distance in Thm. 2.1 is tight for a wider
class of Pzn, i.e. when Py is isotropic Gaussian. If fact, it
can been shown that this transportation inequality is in general
stronger than Talagrand’s, i.e. R.H.S. of (11) < R.H.S. of (10),
for any Pz» < Py~ where the inequality holds with equality
iff h(Z") = 5 In2me.

B. Extension to Information Constrained OT

The transportation inequality in Thm. 2.1 can be extended
to the information constrained case.

Definition 2.2 (Information Constrained Wasserstein Dis-
tance): The p-th order Wasserstein distance between Pz, Py €
P,(€2) subject to information constraint R is defined as
W,(Pyz, Py; R) 2 inf EpldP(Z,Y)]}V/7P.
»(Pz, Py; ) PeH(Pz,Py):Ip(Z;Y)gR{ pld”( o

For the case when @ = R™ and d(z"™, y™) = ||2" —y"||2, we
can prove the following bound on the information constrained
Wasserstein distance.
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Theorem 2.2: For Py» = N(0,1,) and Pzn < Pyn,
W3(Pgn, Py; R)

1
< B2+ n—2my [T et (12 ). a2

The above theorem characterizes a trade-off between the
Wasserstein distance and the information constraint, as de-
picted in Fig. 1. This includes Thm. 2.1 as an extreme case
by letting R — oo. The other extreme case is when R = 0,
where now Z" and Y™ are forced to be independent, and
therefore the information constrained Wasserstein distance
simply reduces to E[||Z"|]?] + n

W2(Pzn, Pyn; R)

[l 2] +n ¢

1 2m
il 7 1 p2h(zn) (1 -
<R, 212" +n—2n Zre" ( e ))

/

1
EllZ"12 9 J2h(Zm)
I1Z"1* +n —2n e’ q

Fig. 1.

Wasserstein distance-information constraint tradeoff.

Inequality (12) can be shown to be tight when Pzn is
isotropic Gaussian; i.e., when Pzn = N(u,aQIn) for some
u and o2, the inequality in (12) is achieved with equality.
Therefore, the trade-off characterized in Thm. 2.2 is indeed
fundamental when Pz~ is isotropic Gaussian.

C. Proof of Our Transportation Inequalities

We now prove the transportation inequalities stated in Thms.
2.1-2.2. Since Thm. 2.2 includes Thm. 2.1 as special case, it
suffices to prove Thm. 2.2. Due to page limit, here we focus
on proving the n = 1 case, i.e. inequality (7); the general n-
dimensional case (12) can be obtained via tensorization [10].

To show (7), it suffices to construct a coupling P of Py
and Py such that the information constraint Ip(Z;Y) < R is
satisfied and simultaneously Ep[(Z — Y')?] is bounded by the
R.H.S. of (7). For this, let Y = v/1 — e 2RY; + e~ RY,, where
Y1,Ys ~ N(0,1) are two independent standard Gaussian
random variables, and let Z be defined by Z = ¢g(Y;) =
F;' o Fy,(Y1). It is easy to verify that the joint distribution
P of (Z,Y) defined by the above is indeed a coupling of Py
and Py . To see that the this coupling satisfies the information
constraint, note that

Ip(Z;Y) = hY) — h(V1 — e 2RY] + e 1Y, 2)
= h(Y) = h(e™"Y2|Z) (13)
=h(Y) — h(e™Y2) (14)
=R

where (13) holds because g is a one-to-one mapping and
thus Y7 is determined given Z, and (14) follows from the
independence between Y> and Z.

Moreover, with the construction Z = g(Y;) we have

E[Y1Z] = E[Y1g(V1)]

:/g’(yl)\/%exp <2yl> din 15)
=E[g'(11)]

-] o
B

Lemz(z)

2me

where (15) follows from integration by part, (16) holds be-
cause fy, (y1) = g Fz(9(y1)) = fz(9(y1))g'(y1) and (17)
follows from Jensen’s inequality. Therefore, Ep[(Z —Y)?] can
be upper bounded by

Ep[(Z - YY)} =E[Z%|+ 1 - 2Ep[Y Z]
=E[ZY+1-2y1— e—2RE[le]
<E[Z%]+1-2V1—e2 e2h<Z
= R.H.S. of (7).

This completes the proof of Thm. 2.2 in the n =1 case.

III. GEOMETRY: CONCENTRATION AND ISOPERIMETRY

Transportation cost inequalities of the form (3) are known
to imply concentration of measure, an inherently geometric
phenomenon tightly coupled with isoperimetric inequalites.
This section discusses the geometric implications of Theorems
2.1-2.2. ! For this, we begin with the geometry of Talagrand’s
transportation inequality.

A. Concentration and Isoperimetry in Gaussian Space
Consider a high-dimensional® Euclidean space R™. For any
A €R"™ and t > 0, let A; denote the ¢t-blowup set of A:
Ay ={2m eR™: € A},

lz™ — a™|| <t for some a™
The following concentration of measure result is generally
known as the blowing-up lemma in Gaussian space [10].

Proposition 3.1: Let Py= be the standard Gaussian measure
on R™. For any A € R™ with Pym(A) > e~ ™,

Pym(A) = 1asm — o0

when t > /2m(a + ¢€) for some € > 0.

Roughly, the above result states that under the product
Gaussian measure, slightly blowing up any set with a small
but exponentially significant probability suffices to increase its
probability to nearly 1; hence the name blowing-up lemma.

'Due to space constraints, we limit the presentation to formal statements
of the results and informal discussions of their connections, delegating proofs
to the long version of the paper.

2Here we use m instead of n to denote the dimension, since in this section
m scales to infinity while in the previous sections the dimension n is fixed.
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This lemma can be thought of as a consequence of the
isoperimetric inequality in Gaussian space, which says that
among all sets with the same Gaussian measure, a halfspace
minimizes the measure of its ¢-blowup. Therefore, if we start
with two sets A and H, where Pym (A) = Pym(H) and H is
a halfspace, then Pym(A;) > Pym(H;) and hence it suffices
to check that Pym(H;) — 1, which follows from a simple
calculation.

An alternative approach to proving the above blowing-up
lemma, pioneered by Marton [6], [7], is through Talagrand’s
transportation inequality. A formal proof via this approach can
be found in [10]. To get a feel for the connection between
these two seemingly disjoint results, recall that Talagrand’s
inequality in (3) asserts that there exists a joint distribution
P of (Z,Y) such that Ep[(Z — Y)?] < 2D(Pz|Py), for
Py = N(0,1) and P; < Py. Therefore, if we generate
(Z™,Y™) iid. according to P, then by the law of large
numbers Z™ and Y™ are within distance +/2mD(Pz||Py)
with high probability (w.h.p.), i.e.

1
—[|2™ =Y™3 = Epl(Z - Y)’] < 2D(Pz|| Py).  (13)

Roughly speaking, this allows us to control the distance
between the typical set of Z™, call it A, and Y™, and therefore
how much A needs to be blown-up to have probability
approaching 1 under the measure of Y.

B. Concentration and Isoperimetry on the Sphere

We now show that transportation inequality (8) also has
interesting geometric consequences. In particular, it implies
the following concentration result on the sphere: Let Y™ be
uniformly distributed on the unit sphere S™~1 C R™. A
spherical cap with angle # is defined as a ball on S™! in
the angle Z(z™,y™) = arccos((z™, y™)), i.e.,

Cap(zy",0) £ {z" € S™ 1+ L(2,2™) < 6} .

We will say that an arbitrary set A C S™~! has an effective
angle 6 if Pym(A) = Pym(C), where C' = Cap(z(",0) for
some arbitrary zJ' € S™~1.

Proposition 3.2: Let A C S™~! be an arbitrary set with
effective angle 6. Then for any w > 7/2 — 0,

Pym(A,) — 1asm— oo, (19)

where A, is the w-neighborhood of A defined as

Ay, 2 {z™ e S™ ! min Z(z™,2™) < w}.

ZmEA

This results follows from the strengthening of Talagrand’s
inequality in (8). The bound in (8) allows to control the
Wasserstein distance in terms of two separate parameters of the
distribution Pz, namely its second moment and its entropy. In
the argument described around (18), this allows us to control
both the measure of the typical set of Pz and the radius of the
sphere on which this set concentrates as m — oo, leading to
the blowing-up lemma on the sphere, which can be shown to in
turn imply Prop. 3.1. It is easy to see that when A is a spherical
cap with angle 6, its blowup Az g is a cap (slightly bigger

than a halfsphere) whose probability approaches 1 in high
dimensions. Therefore, when A is a spherical cap of angle
0, w = /2 — 0 + ¢ is precisely the blowup angle needed
for A, to approach probability 1. Prop. 3.2 asserts that the
same blowup angle is sufficient for any other set A of the
same measure, therefore effectively identifying the spherical
cap as the extremal set for minimizing the measure of the
neighborhood.

C. A New Measure Concentration Result on the Sphere

Perhaps even more interestingly, the transportation inequal-
ity (7) for information constrained OT leads to a new con-
centration of measure result on the sphere, which recovers
Prop. 3.2 as a special case. This new result was recently proved
in [8], [13] by using Riesz’ rearrangement inequality [14] and
can be stated as follows:

Proposition 3.3: Let A C S™~! be an arbitrary set with
effective angle 6 and let Y™ be uniformly distributed on S~ 1.
For any w € (7/2 — 0,7/2], let

V= PYm (CaP(ZSna 9) N Cap(ygl,w)),

where z{',yy* are perpendicular to each other, i.e.
Z(2f",y§") = /2. Then for any € > 0, we have

Pym({y™: Pym(ANCap(y™,w)) > e ™ -V}) = 1. (20)

Note that an equivalent way to state the blowing-up lemma
in Prop. 3.2 is the following: Let A C S™~! be an arbitrary
set with effective angle 6. Then for any w > 7/2 — 6

Py ({y™ : Pyw (AN Cap(y™,w)) > 0}) — 1.

This is true because Pym (AN Cap(y™,w)) > 0 iff y™ € A,,.
Prop. 3.3 extends Prop. 3.2 by providing a lower bound on
the intersection measure of AN Cap(y™,w), for w > 7/2—6.
When A itself is a cap, (20) is straightforward and follows
from the fact that Y w.h.p. concentrates around the equator
at angle 7 /2 from the pole of A, and therefore the intersection
of the two spherical caps is given by V' w.h.p. Interestingly,
Prop. 3.3 asserts that this intersection measure is w.h.p. lower
bounded by V for an arbitrary A with the same measure. In
other words, the spherical cap not only minimizes the measure
of its neighborhood as captured by Prop. 3.2, but roughly
speaking, also minimizes its intersection measure with the
neighborhood of a randomly chosen point on the sphere.

IV. AN APPLICATION TO
NETWORK INFORMATION THEORY

We next show that the new information constrained trans-
portation inequality has an immediate application in network
information theory, and in particular, can be used to recover
the recent solution of a problem posed by Cover in 1987 [15]
regarding the capacity of the relay channel.

To describe Cover’s problem, consider a Gaussian primitive
relay channel given by Z = X + W; and ¥ = X + Wy,
where X denotes the source signal constrained to average
power P, Z and Y denote the received signals of the relay
and the destination respectively, and W7 ~ A(0,N) and
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Wy ~ N(0,1) are Gaussian noises that are independent of
each other and X. The relay channel is “primitive” in the sense
that the relay is connected to the destination with an isolated
bit pipe of capacity Cy. Let C(Cp) denote the capacity of
this channel as a function of Cy. What is the critical value of
Cy such that C(Cy) first equals C(c0)? This is a problem
posed by Cover in Open Problems in Communication and
Computation, Springer-Verlag, 1987 [15], which he calls “The
Capacity of the Relay Channel”.

This question was answered in a recent work [8], [9], which
shows that C'(Cp) can not equal to C(oo) unless Cy = oo,
regardless of the SNR of the Gaussian channels. This result
follows as a corollary to a new upper bound developed in
[8], [9] on the capacity of this channel, which builds on a
strong data processing inequality (SDPI) for a certain Markov
chain. The proof of this SDPI in [8], [9] is geometric and
heavily relies on the new measure concentration result stated
in Prop. 3.3. We next show that the transportation inequality
we develop in the current paper can be used to directly
establish this SDPI without going through Prop. 3.3, thereby
significantly simplifying the proof in [8], [9]. We now state the
SDPI and briefly illustrate how it leads to a new upper bound
on the relay channel. We then prove it by using a conditional
version of our transportation inequality (12).

A. A Strong Data Processing Inequality

Consider a long Markov chain

Y - X" —-Z" - U,, (21)
with Z" X" 4+ WP and Y™ = X" + W3, where
E[|X"?] = nP, W ~ N(0,NL,), W3 ~ N(0,1,), and
X" Wi, W3 are mutually independent. For this long Markov
chain, the following SDPI was established in [8], [9] and is
the key step in resolving Cover’s problem.

Proposition 4.1: For the Markov chain described in (21), if
I(Z™;U,|Y™) < nCy, then I(X™;U,|Y™) is upper bounded
by:

n P(N+1-2e7C YN =e20)) 4 N (1= e2¢"(1 - e720))

max min — In
C’€[0,Co) R>0 (P+1)Ne2R

Prop. 4.1 allows us to derive a new upper bound on the
relay channel. In particular, if we use U,, to denote the relay’s
transmission over the bit pipe, then it is easy to see that Y™ —
X" — Z™ — U, for the relay channel satisfies the conditions
of the Markov chain described in (21), and I(Z™;U,|Y™) <
nCy. Therefore, by Fano’s inequality and Prop. 4.1 we can
bound C(Cp) by

C(Co) < I(X™Up,Y™) + ne
=I1(X"Y")+ (X" Up|Y™) + ne

P(N +1-2e"%/N(1 = 2F)) + N(1 — e727(1 — ¢21))
Ne—2R

<

.n
max min —In
C7€[0.Co] R>0

+ ne.

This bound turns out to be tight enough for resolving Cover’s
problem.

B. Proof via Transportation Inequality

To prove Prop. 4.1, we need the following lemma, which is
a conditional version of our transportation inequality (12). The
proof of this lemma is based on (12) and Jensen’s inequality,
and is omitted in the current paper.

Lemma 4.1: For the Markov chain (21), if 1(Z";U,|X™)
nC’ for some C’ > 0, then for any R > 0 there exists a
random vector Z" such that:

1) Pxn zny, = Pxn znu,;

2) E[Z"-Y" > n(P+ /N - e 2R)e=");

3) I(Z™ Y X", U,) <nR.

We now use Lemma 4.1 to prove Prop. 4.1. With Z"
coupled with Y™ X" Z" U, so as to satisfy the properties
in Lemma 4.1, we have

I(X™ U, Y™

= [(Z™U,|Y™) + (X" U, Y™, Z) — (27 U, [Y™, X™)
= I(Z";Un[Y"™) + h(U, Y™, Z7) — h(U, Y™, X™)

< I(Z™ U [Y™) + h(Un | Z%) = h(U, | X™)

= I(Z™U,|Y™) — I(Z™, U, | X™) (22)
= W(Z™Y™) = W(Z" Y™, U,) — I(Z7 U, | X™) (23)

where (22) follows from 1) of Lemma 4.1, i.e. Pxn zn y, =
Pxn zn y, . Let the third term in (23) be

(Z",U,|X™) = nC".
Then we have C’ € [0, C] because
I(Z™ U, X™) < I(Z™U,Y™) < nCy.

(24)

We now bound the first two terms in (23) respectively.
To bound the first term in (23), note that for any R > 0,

E[Z"-Y"] yn)

L —
E[[[Y 2]
2

WZP Y™ = h <Z” -

Zn E[Zn ) Yn} n

=h (Z B[V >
2me E[Z" - Y™
— B[V
o 220 (E[nznn“‘] - A )

h12weP(N+1‘Qefc/VGRT:i?j§l+N(1—6*20%1—6—2R»

gln

IN

Yn

|-

n
2
n

IN

(25)

where in the last step we have used 2) of Lemma 4.1.
To bound the second term in (23), we have for any R > 0,

R(Z™Y™ Uy,) > h(Z"Y™, U, X™)
=h(Z™|Up, X™) — 1(Z" Y™ |Up, X™)
=h(Z™X™) - 1(Z™ U, | X"™) — I(Z™;Y"|U,, X™)

> gln27reN —nC' —nR

(26)

n In 27 Nel=2(C'+R)
2

where the second inequality follows from 3) of Lemma 4.1.
Combining (23)—(26), we have proved Prop. 4.1.
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