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Abstract: Sample efficiency and scalability to a large number of agents are two
important goals for multi-agent reinforcement learning systems. Recent works
got us closer to those goals, addressing non-stationarity of the environment from
a single agent’s perspective by utilizing a deep net critic which depends on all
observations and actions. The critic input concatenates agent observations and
actions in a user-specified order. However, since deep nets aren’t permutation
invariant, a permuted input changes the critic output despite the environment re-
maining identical. To avoid this inefficiency, we propose a ‘permutation invariant
critic’ (PIC), which yields identical output irrespective of the agent permutation.
This consistent representation enables our model to scale to 30 times more agents
and to achieve improvements of test episode reward between 15% to 50% on the
challenging multi-agent particle environment (MPE).

Keywords: Multi-agent Reinforcement Learning, Graph Neural Network, Per-
mutation Invariance

1 Introduction

Single-agent deep reinforcement learning has achieved impressive performance in many domains,
including playing Go [1, 2] and Atari games [3, 4]. However, many real world problems, such
as traffic congestion reduction [5, 6], antenna tilt control [7], and dynamic resource allocation [8]
are more naturally modeled as multi-agent systems. Unfortunately, directly deploying single-agent
reinforcement learning to each agent in a multi-agent system does not result in satisfying perfor-
mance [9, 10].

Particularly, in multi-agent reinforcement learning [8, 10–19], estimating the value function is
challenging, because the environment is non-stationary from the perspective of an individual
agent [10, 11]. To alleviate the issue, recently, multi-agent deep deterministic policy gradient (MAD-
DPG) [10] proposed a centralized critic whose input is the concatenation of all agents’ observations
and actions. Similar to MADDPG, Foerster et al. [11, 12], Kim et al. [17], Jiang and Lu [14], Das
et al. [15], Iqbal and Sha [13], Yang et al. [20] also deploy centralized critics to handle a non-
stationary environment.

However, concatenating all agents’ observations and actions assigns an implicit order, i.e., the place-
ment of an agent’s observations and actions will make a difference in the predicted outcome. Con-
sider the case of two homogeneous agents and let us denote the action and observation of the two
agents with ‘A’ and ‘B.’ There exists two equally valid permutations (AB) and (BA) which represent
the environment. Using a permuted input in classical deep nets will result in a different output.
Consequently, referring to the same underlying state of the environment with two different vec-
tor representations makes learning of the critic sample-inefficient: the deep net needs to learn that
both representations are identical. Due to an increase in the number of possible permutations, this
representational inconsistency worsens as the number of agents grows.

To address this concern, we propose the ‘permutation invariant critic’ (PIC). Due to the permuta-
tion invariance property of PICs, the same environment state will result in the same critic output,
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Figure 1: Consider an environment with four homogeneous cooperative agents. Different permutations of the
agents’ observations and actions refer to the same underlying environment state. However, MLP critics result
in 4! different outputs for the same environment state. In contrast, permutation invariant critics yield the same
output value for all 4! equivalent permutations.

irrespective of the agent ordering (as shown in Fig. 1). In addition, to tackle environments with
homogeneous and heterogeneous agents (e.g., agents which have different action space, observation
space, or play different roles in a task), we augment PICs with attributes. This enables the proposed
PIC to model the relation between heterogeneous agents.

For rigorous results we follow the strict evaluation protocol proposed by Henderson et al.
[21] and Colas et al. [22] when performing experiments in multi-agent particle environments
(MPEs) [10, 23]. We found that permutation invariant critics result in 15% to 50% higher aver-
age test episode rewards than the MADDPG baseline [10]. Furthermore, we scaled the MPE to 200
agents. Our permutation invariant critic successfully learns the desired policy in environments with
a large number of agents, while the baseline MADDPG [10] fails to develop any useful strategies.

In summary, our main contributions are as follows: a) We develop a permutation invariant critic
(PIC) for multi-agent reinforcement learning algorithms. Compared with classic MLP critics, the
PIC achieves better sample efficiency and scalability. b) To deal with heterogeneous agents we study
adding attributes. c) We speedup the multi-agent particle environment (MPE) [10, 23] by a factor of
30. This permits to scale the number of agents to 200, 30 times more than those used in the original
MPE environment (6 agents). Code is available at https://github.com/IouJenLiu/PIC.

2 Related Work

We briefly review graph neural nets, which are the building block of PICs, and multi-agent deep
reinforcement learning algorithms with centralized critics.

Graph Neural Networks. Graph neural networks are deep nets which operate on graph structured
data [24]. Input to the network are hence a set of node vectors and connectivity information about
the nodes. More notably, these graph networks are permutation equivariant, i.e., the ordering of the
nodes in a vector representation does not change the underlying graph [25]. Many variants of graph
networks exists, for example, Graph Convolutional Nets (GCN) [26], the Message Passing Net-
work [27], and others [25, 28]. The relation and difference between these approaches are reviewed
in [29]. The effectiveness of graph nets has been shown on tasks such as link prediction [30, 31],
node classification [32, 26], language and vision [33, 34], graph classification [35–38], etc. Graph
nets also excel on point sets, e.g., [25, 28]. Most relevant to our multi-agent reinforcement learning
setting, graph networks have been shown to be effective in modeling and reasoning about physical
systems [39] and multi-agent sports dynamics [40, 41, 35]. Different from these works, here, we
study the effectiveness of graph nets for multi-agent reinforcement learning.

Multi-agent Reinforcement Learning. To deal with non-stationary environments form the per-
spective of a single agent, MADDPG [10] uses a centralized critic that operates on all agents’ obser-
vations and actions. Similar to MADDPG, Foerster et al. [12] use a centralized critic. In addition,
to handle the credit assignment problem [8, 42, 43], a counterfactual baseline has been proposed
to marginalize one agent’s action and keep the other agents’ actions fixed. In “Monotonic Value
Function Factorisation” (QMIX) [44] each agent maintains its own value function which conditions
only on the agent’s local observation. The overall value function is estimated via a non-linear com-
bination of an individual agent’s value function. Iqbal and Sha [13] propose an attention mechanism

2

https://github.com/IouJenLiu/PIC


which enables the centralized critic to select relevant information for each agent. However, as dis-
cussed in Sec. 1, the output of centralized critics parameterized by classic deep nets differs if the
same environment state is encoded with a permuted vector. This makes learning inefficient.

“Graph convolutional RL” (DGN) [45] is concurrent work on arXiv which uses a nearest-neighbor
graph net as the Q-function of a deep Q-network (DQN) [3, 4]. However, the nearest-neighbor
graph net only has access to local information of an environment. Consequently, the Q-function
in DGN is not a fully centralized critic. Therefore, it suffers from the non-stationary environment
issue [10, 11]. In addition, due to the DQN formulation, DGN can only be used in environments
with discrete action spaces. Note, DGN considers homogeneous cooperative agents and leaves
environments with heterogeneous cooperative agents to future work. In contrast, our permutation
invariant critic is fully centralized and can be scaled to a large number of agents. Thanks to different
node attributes, our approach can handle environments with heterogeneous cooperative agents. In
addition, our approach is designed for continuous state and action spaces.

3 Preliminaries

3.1 Deep Deterministic Policy Gradient

In classic single-agent reinforcement learning, an agent interacts with the environment and collects
rewards over time. Formally, at each timestep t ∈ {1, . . . ,H}, with H the horizon, the agent finds
itself in state st ∈ S and selects an action at ∈ A according to a deterministic policy µ. Hereby, S
is the state space, and A is the action space. Upon executing an action, the agent runs into the next
state st+1 ∈ S and obtains a scalar reward rt ∈ R. Given a trajectory {st, at, rt}Ht=1 of length H
collected by following a policy, we obtain the discounted return R =

∑H
t=1 γ

trt, where γ ∈ (0, 1]
is the discount factor. The goal of reinforcement learning is to find a policy which maximizes the
return R.

Deep deterministic policy gradient (DDPG) [46] is a widely used deep reinforcement learning al-
gorithm for continuous control. In DDPG, a deterministic policy µ(st|θµ), which is parameterized
by θµ, maps a state st to an action at. A critic Q(st, at|θQ), which is parameterized by θQ, is de-
ployed to estimate the return of taking action at at state st. The parameters θµ of the actor policy
are updated iteratively so that the action at = µ(st|θµ) maximizes the critic Q(st, at|θQ), i.e.,

max
θµ

J(θµ) with J(θµ) := Est∼D[Q(st, at|θQ)|at=µ(st|θµ)]. (1)

Here st is drawn from the replay buffer D which stores experience tuples (st, at, rt, st+1), i.e.,
D = {(st, at, rt, st+1)}t. Using the chain rule, the gradient is
∇θµJ(θµ) = Est∼D[∇θµQ(st, at|θQ)|at=µ(st|θµ)] = Est∼D[∇θµµ(st|θµ)∇atQ(st, at|θQ)|at=µ(st|θµ)].

To optimize w.r.t. θQ, similar to deep Q-learning [3, 4], we minimize the loss
L(θQ) = E(st,at,rt,st+1)∼D[(Q(st, at|θQ)− yt)2]. (2)

The experience tuple (st, at, rt, st+1) is drawn from the replay buffer D and the target value yt is
defined as

yt = rt + γQ−(st+1, at+1|θQ
−
)|at+1=µ(st+1), (3)

where Q− is a recent Q-network parameterized by a past θQ
−

.

3.2 Multi-agent Markov Decision Process

To extend single-agent reinforcement learning to the multi-agent setting, we first define the multi-
agent Markov decision process (MDP). We consider partially observable multi-agent MDPs [47].
An N -agent partially observable multi-agent MDP is defined by a transition function T , a set of
reward functions {R1, . . . ,RN}, a state space S , a set of observation spaces {O1 . . . ,ON}, and
a set of action spaces {A1, . . . ,AN}. Action space Ai, observation space Oi and reward function
Ri correspond to agent i ∈ {1, . . . , N}. The transition function T maps the current state and the
actions taken by all the agents to a next state, i.e., T : S × A1 × . . . × AN → S . Each agent
receives reward Ri : S × A1 . . . × AN → R and observation oi that is related to the state, i.e.,
oi : S → Oi. The goal of agent i is to maximize the expected return

∑H
t=0 γ

trti . Note that, the goal
of N cooperative agents is to maximize the collective expected return

∑H
t=0 γ

t(
∑N
j=1 r

t
j).
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3.3 Multi-agent Deep Deterministic Policy Gradient

In this paper, we study multi-agent reinforcement learning using the decentralized execution and
centralized training framework [16, 10]. Multi-agent deep deterministic policy gradient (MAD-
DPG) [10] is a well-established algorithm for this framework. Consider N agents with policies
{µ1, . . . , µN}, which are parameterized by {θµ1 , . . . , θ

µ
N}. The centralized critics {Q1, . . . , QN}

associated with theN agents are parameterized by {θQ1 , . . . , θ
Q
N}. Following DDPG, the parameters

θµi for policy µi are updated iteratively so that the associated critic Qi is optimized via

max
θµi

J(θµi ) with J(θµi ) := E(xt,at)∼D[Qi(x
t, at1, . . . , a

t
N |θ

Q
i )|ati=µj(oti|θµi )], (4)

where xt and at are the concatenation of all agents’ observation and action at timestep t, i.e.,
xt = (ot1, . . . , o

t
N ) and at = (at1, . . . , a

t
N ). Note, oti is the observation received by agent i at time

step t. Using the chain rule, the gradient is derived as follows:

∇θµi J(θ
µ
i ) = E(xt,at)∼D[∇θµi µi(o

t
i|θ

µ
i ))∇atiQi(x

t, at1, . . . , a
t
N |θ

Q
i )|ati=µi(oti|θµi )]. (5)

Following DDPG, the centralized critic parameters θQi are optimized by minimizing the loss

L(θQi ) = E(xt,at,rt,xt+1)∼D[(Qi(x
t,at|θQi )− y

t
i)

2], (6)

where rt is the concatenation of rewards received by all agents at timestep t, i.e., rt = (rt1, . . . , r
t
N ).

The target value yti is defined as follows

yti = ri + γQ−i (x
t+1, at+1

1 , . . . , at+1
N |θ

Q−

i )|at+1
j =µj(o

t+1
i ), j=1,...,N , (7)

where Q−i is a Q-network parameterized by a past θQ
−

i .

4 Permutation Invariant Critic (PIC) and Environment Improvements

We first describe the proposed permutation invariant critic (PIC), then show improvements for MPE.

4.1 Permutation Invariant Critic (PIC)

Consider training N homogeneous cooperative agents using a centralized critic Q [8, 10–19]. As
discussed in Sec. 3, the input to the centralized criticQ is the concatenation of all agents observations
and actions. Let xt ∈ RN×Ko denote the concatenation of all agents’ observations at timestep t,
where Ko is the dimension of each observation oti. Similarly, we represent the concatenation of all
agents’ actions at timestep t via at ∈ RN×Ka , where Ka is the dimension of each agent’s action ati.
Note that concatenating observations and actions implicitly imposes an agent ordering. Any agent
ordering seems plausible. Importantly, shuffling the agents observations and actions doesn’t change
the state of the environment. One would therefore expect the centralized critic Q to return the same
output if the input is concatenated in a different order. Formally, this property is called permutation
invariance, i.e., we strive for a critic such that

Q(Mix
t,Mia

t|θQ) = Q(Mjx
t,Mja

t|θQ) ∀Mi,Mj ∈ P ,

whereMi andMj are two permutation matrices from the set of all possible permutation matrices P .

To achieve permutation invariance, we propose to use a graph convolutional neural net (GCN) as
the centralized critic. In the remainder of the section, we describe the GCN model in detail and
discuss how to deploy the permutation invariant critic to environments with homogeneous and het-
erogeneous agents.

Permutation Invariant Critic. We model an N -agent environment as a graph. Each node rep-
resents an agent, and the edges capture the relations between agents. To compute the scalar out-
put of the critic we use L graph convolution layers {f (1)GCN, . . . , f

(L)
GCN}. A graph convolution layer

takes node representations and the graph’s adjacency matrix as input and computes a new repre-
sentation for each node. More specifically, f (l)GCN maps the input h(l−1) ∈ RN×K

(l)
in to the output
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h(l) ∈ RN×K
(l)
out , where K(l)

in and K(l)
out are the input and output node representation’s dimension for

layer l. Formally,

h(l) = f
(l)
GCN(h

(l−1)) := σ

(
1

N
Aadjh

(l−1)W
(l)
other + diag(1)Nh(l−1)W

(l)
self

)
, (8)

where Aadj is the graph’s adjacency matrix, W (l)
self,W

(l)
other ∈ RK

(l)
in ×K

(l)
out are the layer’s trainable

weight matrices, σ is an element-wise non-linear activation function, and diag(1)N is an identity
matrix of size N ×N .

Note that in Equation 8, each agent’s representation, i.e., each row of h(l), is multiplied with the
same set of weights Wother and Wself. Due to this weight sharing scheme, a permutation matrix M
applied at the input is equivalent to applying it at the output, i.e.,

f
(l)
GCN(Mh) =Mf

(l)
GCN(h). (9)

Another advantage of the weight sharing scheme is that the number of trainable parameters of PIC
does not increase with the number of agents.

Subsequently, a pooling layer is applied to the L-th graph convolutional layer’s representation h(L).
Pooling is performed over the agents’ representation, i.e., over the rows of h(L). We refer to the
output of the pooling layer as v ∈ RK

(L)
out . Either average pooling or max pooling is suitable. Average

pooling, subsequently denoted favg, averages the node representations, i.e., v = 1
N

∑N
i=1 h

(L)
i . Max

pooling, subsequently referred to as fmax, takes the maximum value across the rows for each of the
columns, i.e., vj = maxi h

(L)
i,j ∀j ∈ {1, . . . ,K

(L)
out }. Both max pooling and average pooling satisfy

the permutation invariance property as summation and element-wise maximization are commutative
operations. Therefore, an L-layer graph convolutional net is obtained via fmax ◦ f (L)GCN ◦ . . . ◦ f

(1)
GCN.

Homogeneous setting. If agents in an environment are homogeneous, we first concatenate the
observations xt and actions at into a matrix zt, i.e., zt := [xt,at] ∈ RN×(Ko+Ka). Setting
K

(1)
in = Ko +Ka and h(0) = zt, we construct a permutation invariant critic QPIC as follows:

QPIC(z
t) := fv ◦ fmax ◦ f (L)GCN ◦ . . . ◦ f

(1)
GCN(z

t). (10)
Hereby fv maps the output of the graph nets to a real number, which is the estimated scalar critic
value for the environment observation xt and action at. We model fv with a standard fully connected
layer which maintains permutation invariance. To ensure that the permutation invariant critic is fully
centralized, i.e., to ensure that we consider all agents’ actions and observations, we use an adjacency
matrix corresponding to a complete graph, i.e.,Aadj is a matrix of all ones with zeros on the diagonal.
As later mentioned in Sec. 5 we also study other settings but found a complete graph to yield best
results.

Heterogeneous setting. Consider N cooperative agents, which are divided into multiple groups.
In this heterogeneous setting, agents in different groups have different characteristics, e.g., size and
speed, or play different roles in the task. In a heterogeneous setting, a permutation invariant critic
is not directly applicable, because the relation between two heterogeneous agents differs from the
relation between two homogeneous agents. For instance, the interaction between two fast-moving
agents differs from the interaction between a fast-moving and a slow-moving agent. However, in the
aforementioned critic QPIC, relations between all agents are modeled equivalently.

To address this concern, for the heterogeneous setting, we propose to add node attributes to the
PIC. With node attributes, the PIC can distinguish agents from different groups. Specifically, for
group j, we construct a group attribute gj ∈ RKg , where Kg denotes the dimension of the group
attribute. Let zti ∈ R(Ka+Ko) denote the input representation of agent i, i.e., the i-th row of zt. We
obtain the augmented representation ẑti via ẑti := [zti , gG(i)], where G(i) denotes the group index
of agent i. We perform the augmentation for each agent to obtain the augmented representation
ẑt ∈ RN×(Ka+Ko+Kg). Using Equation 10 and setting K(1)

in = Ka + Ko + Kg and h(0) = ẑt,
results in a PIC that can handle environments with heterogeneous agents.

4.2 Improved MPE Environment

The multiple particle environment (MPE) [10, 23] is a multi-agent environment which contains a
variety of tasks and provides a challenging open source platform for our community to evaluate new
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MLP Critic MLP Critic
+ Data Augaumentation

Ours
Permutation Invariant

Critic

# of agents final absolute final absolute final absolute

Cooperative
Navigation

N=3 -362.73 -362.71 -361.76 -361.55 -355.99 -355.74
N=6 -3943.2 -3933.3 -4025.4 -4016.2 -3383.2 -3381.8
N=15 -6489.7 -6394.3 -6280.0 -6222.4 -1999.1 -1977.6
N=30 -20722 -20583 -21205 -20840 -11363 -11294

N=100 -128100 -128086 -128024 -128013 -71495 -71074
N=200 -502349 -502348 -509963 -507457 -436215 -433846

Prey
&

Predator

N=3 38.52 40.91 43.78 44.99 65.16 67.69
N=6 26.15 30.34 -24.84 -17.49 176.70 184.22
N=15 3982.80 4416.23 4198.41 4401.64 10139 10239
N=30 -377.19 -386.49 -93.86 -75.59 6662.1 6745.6

N=100 19894 21114 28741 29347 99391 100812

Cooperative
Push

N=3 -171.26 -170.20 -171.96 -171.74 -155.17 -155.10
N=6 -561.73 -542.29 -672.80 -672.27 -401.79 -395.70
N=15 -2538.3 -2536.0 -2645.2 -2610.1 -2231.1 -2225.7
N=30 -3499.7 -3465.9 -3761.5 -3688.3 -3117.1 -3094.3

Heterogeneous
Navigation

N=4 -100.74 -100.35 -98.96 -98.67 -83.84 -83.54
N=8 -398.31 -397.66 -683.24 -684.39 -398.31 -397.66
N=16 -3410.0 -3405.9 -3479.0 -3470.8 -1825.8 -1820.4
N=30 -12944 -12934 -12812 -12809 -6293 -6270

N=100 -121563 -121472 -130028 -129436 -94324 -93996
Table 1: Average rewards of our approach and two MADDPG baselines. ‘final’ represents final metric [22],
which is the average reward over the last 10,000 evaluation episodes, i.e., 1000 episodes for each of the last ten
policies during training. ‘absolute’ represents absolute metric [22], which is the best policy’s average reward
over 1,000 evaluation episodes.

algorithms. However, the MPE targets only settings with a small number of agents. Specifically,
we found it challenging to train more than 30 agents as it takes more than 100 hours. To scale the
MPE to more agents, we improve the implementation of the MPE. More specifically, we develop
vectorized versions for many of the computations, such as computing the force between agents,
computing the collision between agents, etc. Moreover, for tasks with global rewards, instead of
computing rewards for each agent, we only compute the reward once and send it to all agents. With
this improved MPE, we can train up to 200 agents within one day.

5 Experiments
In this section, we first introduce tasks in the multiple particle environment (MPE) [10, 23]. We then
present the details of the experimental setup, evaluation protocol, and our results.

Environment. We evaluate the proposed approach on an improved version of MPE [10, 23]. We
consider the following four tasks:

• Cooperative navigation: N agents move cooperatively to cover L landmarks in the envi-
ronment. The reward encourages the agents to get close to landmarks.
• Prey and predator: N slower predators work together to chase M fast-moving preys. The

predators get positive reward when colliding with preys. Preys are environment controlled.
• Cooperative push: N agents work together to push a large ball to a landmark. The agents

get rewarded when the large ball approaches the landmark.
• Heterogeneous navigation: N/2 small and fast agents and N/2 big and slow agents work

cooperatively to cover N landmarks. The reward encourages the agents to get close to
landmarks. If a small agent collides with a big agent, a large negative reward is received.

Note cooperative navigation, prey and predator and cooperative push are environments with homo-
geneous agents. In each task, the reward is global for cooperative agents, i.e., cooperative agents
always receive the same reward in each timestep.

Experimental Setup. We use MADDPG [10] with a classic MLP critic as the baseline. We im-
plement MADDPG and the proposed approach in Pytorch [48]. To ensure the correctness of our
implementation, we compare it with the official MADDPG code [49] on MPE. Our implementation
reproduces the results of the official code. Please see Tab. A1 in the supplementary for the results.
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Figure 2: Comparison of average episode reward.
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Figure 3: Comparison of average Q loss (Equation 6).

Following MADDPG [10], the actor policy is parameterized by a two-layer MLP with 128 hidden
units per layer, and ReLU activation function. The MLP critic of the MADDPG baseline has the
same architecture as the actor. Our permutation invariant critic (PIC) is a two-layer graph convolu-
tion net (GCN) with 128 hidden units per layer and a max pooling at the top. The activation function
for GCN is also a ReLU. Following MADDPG, the Adam optimizer is used. The learning rates
for the actor, MLP critic, and our permutation invariant critic are 0.01. The learning rate is linearly
decreased to zero at the end of training. Agents are trained for 60, 000 episodes in all tasks (episode
length is either 25 or 50 steps). The size of the replay buffer is one million, the batch size is 1024,
and the discounted factor γ = 0.95. In an eight-agent environment, the MLP critic and the PIC have
around 44k and 40k trainable parameters respectively. In an 100-agent environment, the MLP critic
has 413k trainable parameters while the PIC has only 46k parameters.

Evaluation Protocol. To ensure a fair and rigorous evaluation, we follow the strict evaluation pro-
tocols suggested by Colas et al. [22] and Henderson et al. [21]. For each experiment, we report
final metrics and absolute metrics. The final metric [22] is the average reward over the last 10, 000
evaluation episodes, i.e., 1, 000 episodes for each of the last ten policies during training. The ab-
solute metric [22] is the best policy’s average reward over 1, 000 evaluation episodes. To analyze
the significance of the reported improvement over the baseline, we perform a two-sample t-test and
boostrapped estimation of the 95% confidence interval for the mean reward difference obtained by
the baseline and our approach. We use the Scipy [50] implementation for the t-test, and the Face-
book Boostrapped implementation with 10, 000 boostrap samples for confidence interval estimation.
All experiments are repeated for five runs with different random seeds.

Results. We compare the proposed permutation invariant critic (PIC) with an MLP critic and an
MLP critic with data augmentation. Data augmentation shuffles the order of agents’ observations
and actions when training the MLP critic, which is considered to be a simple way to alleviate the
ordering issue. The results are summarized in Tab. 1, where N denotes the number of agents, ‘final’
and ‘absolute’ are the final metric and absolute metric respectively. We observe that data augmenta-
tion does not boost the performance of an MLP critic much. In some cases, it even deteriorates the
results. In contrast, as shown in Tab. 1, a permutation invariant critic outperforms the MLP critic
and the MLP critic with data augmentation by about 15%− 50% in all tasks.

The training curves are given in Fig. 2 and Fig. 3. As shown in Fig. 3, the loss (Equation 6) of
the permutation invariant critic is lower than that of MLP critics. Please see the supplementary
material for more training curves. Fig. 4 (top) shows the ratio of the MLP critic’s average loss to
the permutation invariant critic’s loss on cooperative navigation environments. We observed that the
ratio grows when the number of agents increases. This implies that a permutation invariant approach
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t-test Boostrap C.I.

t-stat. (p-value) mean (C.I.)

N=3 abs. 1.42 (1.9e-1) 5.81 (-1.47, 13.09)
final 1.41 (1.9e-1) 5.76 (-1.65, 13.18)

N=6 abs. 9.46 (3.2e-5) 634.4 (487.9, 757.1)
final 9.34 (4.1e-5) 642.2 (496.1, 762.3)

N=15 abs. 21.04 (2.5e-5) 4244 (3819, 4575)
final 20.6 (2.8e-5) 4280 (3854, 4616)

N=30 abs. 3.17 (2.2e-2) 9546 (6719, 12639)
final 3.10 (2.1e-2) 9841 (6692, 13201)

N=100 abs. 17.8 (2.9e-3) 56939 (51842, 62764)
final 17.3 (3.0e-3) 56529 (51153, 62343)

N=200 abs. 2.72 (4.9e-2) 73611 (25930, 116198)
final 2.66 (4.8e-2) 73747 (26557, 116457)

Table 2: T-test and boostrap confidence interval of mean difference
between MLP critic and our permutation invariant critic on coopera-
tive navigation.
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Figure 4: Top: Average critic loss ratio
(MLP / Ours). Bottom: Training time
comparison.

gives much more accurate value estimation than the MLP critic particularly when the number of
agents is large.

To confirm that the performance gain of our permutation invariant critic is significant, we report the
2-sample t-test results and the 95% boostrapped confidence interval on the mean difference of our
approach and the baseline MADDPG with MLP critic. For the 2-sample t-test, the t-statistic and
the p-value are reported. The difference is considered significant when the p-value is smaller than
0.05. Tab. 2 summarizes the analysis on cooperative navigation environments. As shown in Tab. 2,
the p-value is much smaller than 0.05 which suggests the improvement is significant. In addition,
positive confidence interval and means suggest that our approach achieves higher rewards than the
baseline. Please see the supplementary material for additional analysis.

In addition to fully connected graphs we also tested K-nearest neighbor graphs, i.e., each node
is connected only to its K nearest neighbors. The distance between two nodes is the physical
distance between the corresponding agents in the environment. We found that using fully con-
nected graphs achieves better results than using K-nearest neighbor graphs. We report absolute
rewards for (K = 2, K = 6, fully connected graph): the results on cooperative navigation
(N = 15), prey and predator (N = 15), cooperative push (N = 15), and heterogeneous navi-
gation (N = 16) are (−2162,−2059,−1977), (3014, 3163, 10239), (−2370,−2270,−2225), and
(−2635,−2552,−1820) respectively.

Fig. 4 (bottom) compares training time of MADDPG on the original MPE and our improved MPE.
MADDPG is trained for 60, 000 episodes with a PIC. As shown in Fig. 4 (bottom), training 30
agents in the original MPE environment takes more than 100 hours. In contrast, with the improved
MPE environment, we can train 30 agents within five hours, and scale to 200 agents within a day of
training.

6 Conclusion
We propose and study permutation invariant critics to estimate a consistent value for all permuta-
tions of the agents’ order in multi-agent reinforcement learning. Empirically, we demonstrate that
a permutation invariant critic outperforms classical deep nets on a variety of multi-agent environ-
ments, both homogeneous and heterogeneous. Permutation invariant critics lead to better sample
complexity and permit to scale learning to environments with a large number of agents. We think
that the permutation invariance property is important for deep multi-agent reinforcement learning.
Going forward we will study other designs to scale to an even larger number of agents.
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#1725729, UIUC, Samsung, 3M, Cisco Systems Inc. (Gift Award CG 1377144), Adobe, and a
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Supplementary material: PIC: Permutation Invariant Critic for
Multi-agent Deep Reinforcement Learning

A MADDPG Baseline

We implement the MADDPG baseline in Pytorch. To ensure we implement MADDPG correctly,
we compare the performance of our implementation with MADDPG’s official code on the MPE. As
shown in Tab. A1, our implementation reproduces the results of MADDPG in all environments.

B Environment Details and Group Embedding

In this section, we first provide details of observation and action space in each environment we
considered in our experiments. Subsequently, we discuss a PIC’s group embedding.

In all the four environments, the action dimension is five. One dimension is no-op. The other four
dimensions represent the left, right, forward, and backward force applied to the particle agent. An
agent’s observation always contains its location and velocity. Depending on the environment the
observation may contain relative location and velocity of neighboring agents and landmarks. In our
experiments, the number of visible neighbors in an agent’s observation is equal to or less than ten
because we empirically found a larger number of visible neighbors to not boost the performance of
MADDPG but rather slow the training speed. Note, the number of visible neighbors in an agent’s
observation is different from the K-nearest neighbor graph discussed in Sec. 5. The K in the K-
nearest neighbor graph refers to the number of agent observations and actions which are used as
input to the centralized critic, while the number of visible neighbors in an agent’s observation is a
characteristic of an environment.

The details of the observation representation for each environment are as follows:

• Cooperative navigation: An agent observes its location and velocity, and the relative loca-
tion of the nearest k landmarks and agents. k is 2, 5, 5, 5, 5, 5 for an environment with 3,
6, 15, 30, 100, 200 agents. As a result, the observation dimension is 14, 26, 26, 26, 26, 26
for an environment with 3, 6, 15, 30, 100, 200 agents.
• Prey and predator: A predator observes its location and velocity, the relative location of the

nearest l landmarks and fellow predators, the relative location and velocity of the k nearest
preys. (k, l) is (2, 1), (3, 2), (5, 5), (5, 5) (5, 5) for an environment with 3, 6, 15, 30, 100
agents. As a result, the observation dimension is 16, 28, 34, 34, 34 for an environment with
3, 6, 15, 30, 100 agents.
• Cooperative push: An agent observes its location and velocity, the relative location of the

target landmark and the large ball, and the relative location of the k nearest agents. k is 2, 5,
10, 10 for an environment with 3, 6, 15, 30 agents. As a result, the observation dimension
is 12, 18, 28, 28 for an environment with 3, 6, 15, 30 agents.
• Heterogeneous navigation: An agent observes its location and velocity, and the relative

location of the nearest k landmarks and agents. k is 2, 5, 5, 5, 5 for an environment with 3,
6, 15, 30, 100 agents. Consequently, the observation dimension is 14, 26, 26, 26, 26 for an
environment with 3, 6, 15, 30, 100 agents.

In the heterogeneous environment Heterogeneous navigation, the number of groups is two, i.e., two
groups of agents that have different characteristics. For the PIC, the group embedding for each group
is a two-dimensional vector, i.e., gj ∈ R2 for each group j ∈ {1, 2} in the environment. We train

Table A1: Comparison of the official MADDPG code [49] and our MADDPG implementation on MPE.

Cooperative
Navigation Prey and Predator Push

good adversary good adversary good
MADDPG official code -379.57 2.91 5.48 -7.05 -1.67

Our implementation -367.75 5.97 14.79 -6.54 -1.81
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Table A2: Ours (PIC) vs. MLP critic in the cooperative
navigation environment.

t-test Boostrap C.I.

t-stat. (p-value) mean (C.I.)

N=3 abs. 1.42 (1.9e-1) 5.81 (-1.47, 13.09)
final 1.41 (1.9e-1) 5.76 (-1.65, 13.18)

N=6 abs. 9.46 (3.2e-5) 634.4 (487.9, 757.1)
final 9.34 (4.1e-5) 642.2 (496.1, 762.3)

N=15 abs. 21.04 (2.5e-5) 4244 (3819, 4575)
final 20.6 (2.8e-5) 4280 (3854, 4616)

N=30 abs. 3.17 (2.2e-2) 9546 (6719, 12639)
final 3.10 (2.1e-2) 9841 (6692, 13201)

N=100 abs. 17.8 (2.9e-3) 56939 (51842, 62764)
final 17.3 (3.0e-3) 56529 (51153, 62343)

N=200 abs. 2.72 (4.9e-2) 73611 (25930, 116198)
final 2.66 (4.8e-2) 73747 (26557, 116457)

Table A3: Ours (PIC) vs. MLP critic in the prey and
predator environment.

t-test Boostrap C.I.

t-stat. (p-value) mean (C.I.)

N=3 abs. 6.61 (1.6e-4) 22.7 (15.2, 29.7)
final 5.38 (8.0e-4) 21.3 (13.6, 29.6)

N=6 abs. 3.14 (3.4e-2) 201 (88.2, 316)
final 3.11 (3.5e-2) 201 (86.4, 318)

N=15 abs. 20.34 (1.7e-6) 5838 (5468, 6248)
final 20.29 (5.7e-7) 5941 (5609, 6303)

N=30 abs. 5.91 (4.0e-3) 6821 (5176, 9006)
final 5.82 (4.3e-3) 6755 (5106, 8925)

N=100 abs. 6.92 (7.3e-2) 92753 (82974, 102532)
final 7.44 (7.1e-2) 89980 (80796, 99163)

Table A4: Ours (PIC) vs. MLP critic in the cooperative
push environment.

t-test Boostrap C.I.

t-stat. (p-value) mean (C.I.)

N=3 abs. 4.03 (1.4e-2) 16.6 (10.3, 24.4)
final 4.04 (1.4e-2) 16.7 (10.4, 24.6)

N=6 abs. 66.4 (1.0e-10) 276.5 (269, 287)
final 67.2 (1.3e-11) 271.0 (263, 281)

N=15 abs. 4.90 (6.3e-3) 384 (250, 507)
final 5.12 (5.2e-3) 414 (280, 546)

N=30 abs. 4.41 (7.1e-3) 593 (400, 778.316)
final 4.64 (5.4e-3) 644 (419, 844)

Table A5: Ours (PIC) vs. MLP critic in the heteroge-
neous navigation environment.

t-test Boostrap C.I.

t-stat. (p-value) mean (C.I.)

N=3 abs. 7.07 (1.7e-3) 15.1 (11.8, 18.4)
final 6.76 (2.2e-3) 15.1 (11.6, 18.6)

N=6 abs. 19.7 (2.1e-5) 285 (259, 317)
final 19.6 (2.2e-5) 286 (260, 318)

N=15 abs. 62.2 (3.0e-9) 1650 (1619, 1678)
final 61.9 (6.5e-9) 1653 (1619, 1684)

N=30 abs. 74.1 (3.7e-9) 6538 (6380, 6725)
final 76.0 (2.6e-9) 6518 (6362, 6695)

N=100 abs. 5.82 (1.9e-2) 36327 (27272, 50292)
final 5.65 (1.8e-2) 36618 (26339, 51579)
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Figure A1: Average episode reward comparison. Our permutation invariant critic (PIC) outperforms the MLP
critic in all environment settings.

the embedding along with the network parameters. The group embedding is randomly initialized
from a normal distribution N (0, diag(1)2).

C T-test and Training Curves

The two-sample t-test and the 95% confidence interval of the mean difference of the MLP critic and
the PIC are summarized in Tab. A2, Tab. A3, Tab. A4, and Tab. A5. p-values smaller than 0.05 and
positive confidence intervals indicated that PIC’s improvement over the MLP critic is significant.
The training curves for MADDPG with MLP critic and our PIC are shown in Fig. A1 and Fig. A2.
The PIC outperforms the MLP critic in all the environment settings.
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Figure A2: Average episode reward comparison. Our permutation invariant critic (PIC) outperforms the MLP
critic in all environment settings.
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