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Abstract

What can we learn about the functional organization of cortical microcircuits from
large-scale recordings of neural activity? To obtain an explicit and interpretable
model of time-dependent functional connections between neurons and to establish
the dynamics of the cortical information flow, we develop ‘dynamic neural relational
inference’ (dNRI). We study both synthetic and real-world neural spiking data and
demonstrate that the developed method is able to uncover the dynamic relations
between neurons more reliably than existing baselines.

1 Introduction
Extraction of latent temporal dynamics in complex networks is important to understand their func-
tional connectivity and to predict their behavior. Recently, various machine learning methods were
used to encode/decode the behavior from recorded activity of large neuronal populations [2, 3].
However, in these mostly ‘static’ brain models the temporal dynamics of the firing activity as well as
interactions between different neurons are often neglected. It is expected, however, that the dynamic
interactions in neural networks might be the key to understanding the brain computations. Addressing
this, several methods have been proposed to uncover low-dimensional latent representations of neural
network activity and its dynamics, including dimensionality reduction-based techniques such as
principal components analysis [1] and tensor components analysis [14], pattern extraction techniques
based on matrix factorization such as ConvNMF [11] and SeqNMF [7], and autoencoder models such
as LFADS [9]. However, temporal correlations between individual neurons in the network are often
only modeled implicitly, hindering reconstruction of functional connectivity of the neural circuits.

In contrast to these implicit techniques, here, we develop an extension to Neural Relational Infer-
ence [6], which we call ‘dynamic Neural Relational Inference’ (dNRI). Specifically, we develop a
new model to extract rapid dynamic changes of network activity in the form of a time-dependent
adjacency matrix. We aim at extracting rapid (tens of milliseconds) correlations between recorded
neurons that capture their functional relations across the network.

Moreover, our method enables the tracking of the temporal evolution of this functional connectivity
over the span of a trial. This means it can provide an interpretable approach to uncover hidden
dynamical structure of brain information flows and to reconstruct the underlying functional brain
circuitry. We demonstrate the applicability of our method on both synthetic spiking data and data
recorded from the cortex of live and behaving mice.

2 Dynamic Neural Relational Inference (dNRI)
We are interested in recovering the dynamic flow of information between neurons, i.e., we want to
estimate whether spiking of one neuron either excites or suppresses spiking of another neuron at
various points in time. To address this task, we assume spiking information for a set of neurons to
be available. We represent neural spiking information via matrices x ∈ {0, 1}N×T , where N is the
number of neurons recorded for T time bins and each entry represents the absence or presence of
a spike for a particular neuron i at a given time bin t. The goal is to predict binary variables z(t)ij
(hereafter called ‘edges’) for every pair (i, j) of neurons for every timestep t which indicate whether
the spiking activity of neuron i influences that of neuron j. With the assumption that neurons i and j
are connected, setting z

(t)
ij = 1 indicates that this connection is currently ‘active’ at time t.
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Figure 1: Our dNRI model: an encoder which processes neural spiking data to produce edge probabilities for
every time step and a decoder which uses samples from this distribution to reconstruct the original spiking data.

To model this problem, we follow the recently introduced NRI formulation [6] and learn a variational
auto-encoder (VAE) whose observed variables represent neural spiking patterns x and whose latent
variables z represent connections between neurons. See Fig. 1 for a depiction of the full model. Unlike
Kipf et al. [6], who focus on predicting static connectivity graphs, we model dynamic connections
that vary across time. Additionally, they optimize the evidence lower bound (ELBO), but we instead
use the β-VAE formulation described by Higgins et al. [4]. More formally, we optimize the following
variational objective

L(φ, θ) = Eqφ(z|x) [log pθ(x|z)]− βKL[qφ(z|x)||p(z)]. (1)

This objective consists of three major components, which we will describe subsequently.

Encoder. The encoder qφ takes an entire neural spike train x as input and produces qφ(z|x), which
is an approximate posterior probability distribution for each connection variable. The encoder hence
estimates the probability of a neuron i being connected to neuron j at time t. We use long-short-term-
memory (LSTM) unit-based deep nets parameterized by φ as our encoder. qφ is then used to sample
likely interaction patterns which are used by the decoder. Because the latent variables z are discrete,
the process of sampling from their distribution is non-differentiable. Consequently, we follow prior
work and sample instead from the concrete distribution [8, 5], which approximates discrete sampling
in a differentiable manner and enables to backpropagate gradients from the decoder reconstruction all
the way to the encoder parameters φ.

Decoder. The decoder pθ(x|z) models the probability of reconstructing the input spike train given a
sampled set of edges from the approximate posterior. For this we also use an LSTM unit-based deep
net and refer to its parameters via θ. A separate recurrent neural net (RNN) is used to model each
neuron. To represent the influence of the predicted edges, these RNNs take as input a masked version
of the predicted spiking probability for every neuron from the current time step, where the mask for
each neuron is derived from the sampled edges.

Prior. The choice of the prior p(z) is used to encourage sparsity of the modeled edges. Because we
want edge predictions to be independent of each other, we use an independent Bernoulli prior p(z) =∏T
t=1

∏
i6=j p(z

(t)
i,j ) for each latent variable. Setting the probability of no edge (i.e., pθ(z

(t)
i,j = 0))

larger than 0.5 reduces prediction of spurious edges. On synthetic data, we found that using a value
of 0.8 worked well for our experiments. For the real data, however, we found that using a strong
no-edge probability prevented the model from picking up the relatively sparse connections, so we
used a uniform prior for the experiments on real-world spiking data reported below.

To train the parameters θ and φ of the decoder and encoder, we proceed as follows: for each spike
train in the current minibatch, the encoder first predicts the approximate posterior qφ(z|x) for each
latent variable. We then sample from this distribution as discussed previously. Given these samples ẑ,
we then predict spiking activity using the decoder pθ(x|ẑ). For training, we use ground-truth spikes
as the decoder input; during testing, predictions for each time step are fed as input into the next step.

3 Experiments
We demonstrate the efficacy of dNRI using two types of data: the first are three synthetic datasets
consisting of 12 simulated neurons with baseline spiking rates each sampled from the interval
[0.1, 0.3]. Additional spikes are generated as follows: time is divided into four phases, with each
phase containing 10 randomly sampled neuron pairs (i, j) which indicate that whenever neuron i
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Figure 2: Average predicted edges for each
phase for test data with 0.8 edge probability.
From left to right, the plots are for the ground-
truth, dNRI, GLM, TCA, and seqNMF.

Table 1: Metrics computed on synthetic data

Edge Method Edge F1 Reconstr. Error
Prob. Train Val Test Train Val Test

1 TCA 32.2 33.2 32.5 0.431 0.402 0.416
seqNMF 23.8 26.8 23.7 0.013 0.019 0.013

GLM 43.2 43.6 42.7 0.749 0.722 0.736
Static (d)NRI 43.7 43.7 43.7 0.988 0.948 0.989
Ours (dNRI) 82.5 81.5 80.0 0.977 0.930 0.970

0.8 TCA 30.8 33.1 33.7 0.479 0.449 0.465
seqNMF 21.1 25.3 22.2 0.010 0.011 0.010

GLM 44.0 44.3 41.3 0.790 0.764 0.778
Static (d)NRI 43.7 43.7 43.7 1.052 0.982 1.034
Ours (dNRI) 89.1 88.2 84.4 0.970 0.948 0.997

0.6 TCA 29.7 32.8 32.7 0.522 0.493 0.510
seqNMF 17.4 22.2 20.1 0.008 0.008 0.008

GLM 44.4 44.3 42.4 0.824 0.799 0.813
Static (d)NRI 38.0 38.0 38.0 0.967 0.926 0.972
Ours (dNRI) 89.7 87.6 84.9 0.918 0.901 0.931

spikes at time t, neuron j will spike at time t+ 1 with probability 1, 0.8 or 0.6 (hereafter referred to
as ‘edge probability’). The second type of data consists of spiking activity of 24 neurons which are
binned at 20 ms and recorded from a primary somatosensory cortex of a mouse actively navigating
in a tactile virtual reality while motorized walls were moved towards and away from the animal
snout [13, 12]. We compare the proposed approach on the synthetic data to four baselines using the
following metrics: their ability to find the underlying edges (measured via F1) and on the normalized
reconstruction error of neural spiking, computed as ‖x̂− x‖F /‖x‖F where x is the original spiking
data, x̂ is the predicted reconstruction and ‖ · ‖F denotes the Frobenius-norm. Each dataset is
separated into train, validation, and test splits, with dNRI models being trained on the train split and
hyperparameters being tuned using performance on the validation split. Test set results are presented.

We use the following baselines: Tensor Component Analysis (TCA) [14] is a PCA extension that
factorizes the data into time, trial, and neuron components. We first convolve input data with a
Gaussian filter. After running TCA, we take the outer product of neuron factors with themselves
to find neurons that spike close to each other. Predicted edges are then obtained by multiplying
this result by the time and trial components to get predictions at each time step. SeqNMF [7] is
an extension of non-negative matrix factorization that produces a matrix factor representing neural
activity for some fixed length of time and a vector factor representing time. To predict edges from
learned factors, we take the outer products of all columns of the neuron factor, which produces
edge matrices whose values are large for neurons that spike in sequence. We multiply these by their
corresponding time factors to get predictions per time step, and sum the contributions from each
factor to obtain final edges. Static (d)NRI employs a static graph dNRI model where the outputs
of the encoder edge LSTM are averaged across time before computing the final edge probabilities.
These probabilities are then used for all time bins. GLM consists of a Bernoulli generalized linear
model [10] per neuron, using all neuron spiking history as covariates. Note that not all baselines were
originally developed for this task, yet we think they are applicable.

Synthetic Data Results. The computed metrics for all of the synthetic datasets for all models are
reported in Tab. 1. None of the baselines are able to recover the dynamic connections reliably. In
contrast, dNRI is able to recover these interactions to a high degree of accuracy. Also note the benefits
of dynamically estimating adjacency as opposed to a static interaction. Moreover, this performance is
maintained when the edge spiking probability becomes smaller. Many of the baselines outperform
dNRI at reconstructing the original spiking activity, but this is a consequence of the difference in
training objectives or inference procedures. Fig. 2 visualizes the edge predictions made by dNRI.

Mouse Cortical Recording Data Results. In analysis of the real-world data, we focus on a choice
period between 400ms from the start of the trial, when the animal starts to sense the approaching
wall, and 950ms, when the animal is making a decision to change the run direction to avoid the
approaching wall. We present the results on this data in Fig. 3 focusing on several frames that
correspond to the last stage of sensory information processing when the animal has almost made a
choice and is preparing for motor action. Neurons are ordered with respect to their cortical depth and
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Figure 3: dNRI results for mouse cortex data recorded during animal choice period.

assigned to specific cortical layers. While the overall population spiking activity is relatively dense,
significant correlations revealed by dNRI are sparse. This is expected, as we are focusing only on
rapid correlations to reveal putative monosynaptic connections. Correlations are also transient, with a
typical lifetime on the order of 90ms. In Fig. 3, we highlight several neuron pairs to exemplify the
power of our representation: dNRI results infer transient information flow from L2/3 to L5B neurons
(red curve) as well as communications within deep L5A and L5B (blue and green curves), as they are
strongest outputs of the somatosensory barrel columns. Similar to the analysis of synthetic data trials,
neither SeqNMF, GLM, nor TCA are able to capture fast transient features revealed by dNRI.
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Figure 4: Static cross-correlation plot for neuron pair
highlighted in red in Fig. 3.

Fig. 4 displays the cross-correlations between
the neuron pair whose predicted edges are high-
lighted in red in Fig. 3. The use of cross-
correlations is a standard method of analysis
used to discover putative monosynaptic connec-
tions between neurons. The results in Fig. 4 in-
dicates the presence of such a connection; how-
ever, this sort of analysis does not provide any
information regarding when this connection is
being actively used in the network. As displayed
in Fig. 3, the dNRI model was not only able to
successfully detect the presence of this connec-
tion, but it also predicts when this connection
is active. In other words, dNRI allows for addi-
tional analyses of neural spiking data that are not
possible when using a static analysis technique.

4 Conclusions
We develop a method to explicitly extract time-dependent functional relations from large-scale neural
spiking data recordings of cortical networks. Using simulated data of spiking activity where ground
truth is available, and real data, we demonstrate that the proposed approach is able to recover the
implanted interactions more accurately than baselines which model relations implicitly.
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