
Node-Aware Stencil Communication for
Heterogeneous Supercomputers

Carl Pearson, Mert Hidayetoğlu, Mohammad Almasri, Omer Anjum, I-Hsin Chung∗,
Jinjun Xiong∗, and Wen-Mei W. Hwu

Electrical and Computer Engineering Department, University of Illinois at Urbana-Champaign, Urbana, IL 61801
∗ IBM T. J. Watson Research, Yorktown Heights, NY 10563

Abstract—High-performance distributed computing systems
increasingly feature nodes that have multiple CPU sockets and
multiple GPUs. The communication bandwidth between these
components is non-uniform. Furthermore, these systems can
expose different communication capabilities between these com-
ponents. For communication-heavy applications, optimally using
these capabilities is challenging and essential for performance.
Bespoke codes with optimized communication may be non-
portable across run-time/software/hardware configurations, and
existing stencil frameworks neglect optimized communication.
This work presents node-aware approaches for automatic data
placement and communication implementation for 3D stencil
codes on multi-GPU nodes with non-homogeneous communica-
tion performance and capabilities. Benchmarking results in the
Summit system show that choices in placement can result in a
20% improvement in single-node exchange, and communication
specialization can yield a further 6x improvement in exchange
time in a single node, and a 16% improvement at 1536 GPUs.

Index Terms—stencil, CUDA, GPU, heterogeneous, MPI, com-
munication, topology, node

I. INTRODUCTION

Stencil computation is a fundamental formulation for solv-

ing differential equations using finite difference, finite volume,

and finite element methods, which are used widely in high

performance computing (HPC) applications such as simu-

lating fluid dynamics, magnetohydrodynamics (MHD), space

weather predictions, seismic wave propagation, and others.

Along with a discrete grid space, a “stencil” determines the

neighboring grid points required to update any grid point in

space. Stencils across applications vary in their type and order.

Two types of order-1 (which means one immediate neighbor

in each direction is used for calculating a grid point value)

3D stencils are shown in Fig. 1(a) and (b). Stencil in Fig. 1(a)

requires one neighbour point along the axis in all directions,

while in Fig. 1 (b), stencil also requires the neighbor points

along the diagonals in different planes.

Modeling phenomena with high spatial and/or temporal

resolution leads to enormous stencil grids. Current large-scale

CPU simulations use up to 1010 grid points and 105 CPUs [1],

[2], and are still orders of magnitude too small to capture

phenomena of interest in available time and energy budgets.

This has led to interest in using GPUs for stencil applications.

GPUs excel when there is limited data exchange, structured

data reuse, and massive parallelism. Stencils exhibit all of

these properties [3]. Once the stencil data is initialized on

the GPU, it remains there without further exchange with the

z-a
xis

x-axis

y-
ax

is

Fig. 1: An illustration of 3D stencils (a) Neighbor grid points required
for updating the center (green) point are only along axis (b) Grid
points required are along the axis and diagonals in each plane.

host. The data-reuse between neighboring nodes is (relatively)

easy to leverage through shared memory and register queues

in GPU kernels, and the grid points can be updated in parallel.

For large-scale stencil applications, the domain data may be

much larger than a single GPU’s memory. We survey various

prior GPU and non-GPU stencil codes since 2015, and see

a range of 1-8 quantities, a typical stencil radius of 3, and

subdomains per GPU of 5123, with a total domain size of

around 1010 at most [3]–[6]. This motivates our selection of

domain size in a multi-GPU environment for our experiments.

Distributed stencil algorithms are usually implemented in

terms of separate subdomains, which require halo exchange

to update the grid points at the boundaries of the subdo-

mains. Fig. 2 shows an example stencil 2D domain, being

decomposed into four subdomains. Each subdomain has a

halo of width r, wide enough to cover all neighbors at

the boundary of the subdomain. Before the boundary grid

points can be updated, current data from the neighbor needs

to be transferred to each subdomain’s halo. Halo exchange

requires communication between GPUs within and/or across

the compute nodes. The number of neighbors with which a

GPU is required to communicate halos depends on the shape

and type of the stencil, the pattern used to divide the compute

domain among GPUs and nodes for parallel execution, and

the type of boundary conditions. In this work, we consider

periodic boundary conditions but the techniques are easily

applicable to other types of boundary conditions.

For example, the 3D stencil in Fig. 1(a) would require halos

to be exchanged along all the six faces of the compute sub-

domain, and hence six neighboring GPUs would be involved

in the halo communication, one for each face. The stencil in

796

2020 IEEE International Parallel and Distributed Processing Symposium Workshops (IPDPSW)

978-1-7281-7445-7/20/$31.00 ©2020 IEEE
DOI 10.1109/IPDPSW50202.2020.00136

Authorized licensed use limited to: University of Illinois. Downloaded on September 02,2020 at 21:44:47 UTC from IEEE Xplore. Restrictions apply.

Fig. 2: An example of a 2D domain, decomposed into four equal
subdomains, with three labeled halo transfers � � � that show
transfer of data from the interior of a region to the halo of a
neighboring region. There are more transfers than the ones shown.

Fig. 1 (b) has grid points not only along axis but also along

the diagonals. It would require communication not only with

six neighbors along the faces but also twelve neighbors along

the edges of the compute subdomain.

Emerging distributed HPC clusters feature nodes of multi-

socket CPU and multiple GPUs, with CUDA and MPI libraries

to exploit the hardware. These libraries are relatively low-level,

featuring fine-grained control of the underlying platform and

many options for communication and data allocation. Thus,

implementing efficient data placement and communication

strategies for large-scale stencil computations on such clusters

is a challenging task. The choice of hardware features and

library support are key to attain the best possible perfor-

mance. For example, GPUDirect can be used to directly

exchange data between GPUs rather that staging through the

CPU. Furthermore, CUDA-Aware MPI helps send messages in

pipelined manner and transparently uses GPUDirect whenever

is possible. Thus, significant development and tuning efforts

are required for a knowledgeable developer to select the best

data placement and communication strategies to achieve the

best possible performance.

In this paper, we propose a set of techniques to handle

these challenges for stencil applications, and implement those

techniques in a CUDA/C++ library. This library automatically

discovers system topology and the supported hardware and

system capabilities. Based on that information, it chooses

optimal data placement and communication strategy for 3D

stencil halo exchange. Specifically, this work contributes

• a structured three-phase solution to optimize GPU-GPU

stencil communication on heterogeneous clusters

• capability-based communication optimization based on

subdomain communication requirements and GPU com-

munication capabilities

• runtime node-aware data placement for stencil subdo-

mains using node-level topology information

• high intra-node communication performance regardless of

ranks per node

Additionally, we incorporate well-understood stencil com-

munication techniques:

• Hierarchical inter-node and intra-node domain partition-

ing to minimize communication

• Support for overlapping stencil computation and commu-

nication

The library supports flexible performance across any com-

bination of ranks and GPUs utilized in a single node, as well

as across nodes, and can be generalized for stencils of any

type and radius.

This paper is organized as follows: Section II presents some

background information on CUDA and MPI communication.

Section III explains the methodology of our communication

library. Section IV presents an experimental evaluation. Sec-

tion V includes a discussion of related work. Section VII

presents a discussion of future work, and concludes.

II. BACKGROUND

In this section, we give a brief background on MPI and

CUDA APIs for different modes of communication in a multi-

node and multi-GPU environment. This background is useful

for understanding how asynchronous MPI and CUDA calls are

performed to overlap communication and execution.

A. CUDA

Two kinds of GPU communication are used in this work:

GPU/CPU and GPU/GPU. For GPU/GPU communications,

we use cudaMemcpyPeerAsync. Peer access refers to the

ability of a GPU to directly access memory on another GPU

without involving the CPU, and must be explicitly enabled

by the application. For GPU/CPU communications, we use

cudaMemcpyAsync in conjunction with pinned memory

on the host. This allows overlapping of multiple CPU-GPU

communications as well as the highest bandwidth between the

CPU and the GPU.

These asynchronous CUDA operations are coordinated

through streams and events. A stream is a sequence of op-

eration that are executed in issue-order on the GPUs, and

events can be used to synchronize streams. We use multiple

CUDA streams to allow transfers to happen in parallel and

asynchronously.

B. MPI

We use MPI non-blocking MPI_Isend and MPI_Irecv
routines to exchange data between multiple MPI ranks. Non-

blocking routines enable a rank to have multiple pending

unrelated messages simultaneously.

C. CUDA and MPI

CUDA and MPI can be composed in a straightforward

way: for example, using CUDA to copy data from a source

GPU to a CPU, using MPI to copy that data to another

node, and using CUDA to copy that data to the destination

GPU. However, CUDA-Aware MPI allows GPU buffers to be

directly passed to MPI calls, instead of copying them to the

CPU first. There are two potential benefits to use CUDA-

Aware MPI. First, data may not need to be staged in the

CPU, improving latency and throughput. Secondly, underlying

acceleration technologies such as GPUDirect can be utilized.

We complete our evaluation with CUDA-aware MPI enabled

and disabled.

797

Authorized licensed use limited to: University of Illinois. Downloaded on September 02,2020 at 21:44:47 UTC from IEEE Xplore. Restrictions apply.

Another option is to make use of the cudaIpc* family of

functions. These functions allow events and device memory

pointers to be shared between processes, something is usually

disallowed by the virtual memory system. They work by turn-

ing an event or a device pointer into an opaque object that can

be shared by some inter-process-communication mechanism

(MPI in this work), and then converted back into a valid event

or pointer in the destination address space. This means that two

processes can directly copy data between device buffers, or

two processes can use a shared event to synchronize streams.

CudaIPC* is used in the COLOCATEDMEMCPY exchange

strategy in Section III.

III. METHOD

Before the stencil application begins, information about the

system and stencil domain is used to optimize communication.

This work addresses the challenge of communication schedul-

ing with a three-phase setup process:

• Partitioning: decomposing the stencil domain into subdo-

mains while minimizing required data exchange.

• Placement: placing the stencil data according to the

communication performance promised by the underlying

platform.

• Specialization: choosing the communication strategy that

best realizes the promised performance.

After setup is complete, halos can be exchanged on demand

by re-using the decisions made during setup.

A. Setup: Partitioning

Decompose the domain into one subdomain per GPU that
minimizes surface-to-volume ratio. The intuition is to

Fig. 3: Four example partitions of the same 2D domain: 2×2, 4×1,
3×3, and 9×1. The subdomain volume is shown as Vs, and the total
data volume as Vd. The stencil radius is r. Communication volume
is minimized when subdomain surface-to-volume ratio is minimized.

produce subdomains with a small surface-to-volume ratio: this

allows largest amount of stencil computation (the volume)

for the minimal amount of data exchange (the surface). For

example, Fig. 3 shows four potential partitions of the same

2D domain: 2×2, 4×1, 3×3, and 9×1, and summarizes the

total communication volume for each subdomain (Vs) and the

total (Vd). The total communication is minimized when the

subdomains have a minimal surface-to-volume ratio for a given

number of partitions (4 and 9 in this example).

Fig. 4: Example of decomposing a 4×2×24 domain among 12 nodes
with 4 GPUs. The domain is repeatedly partitioned among the longest
dimension by the prime factors of the number of nodes. Then, the
same process is applied for the number of GPUs per rank. The final
result is a subdomain with a 3D index in the rank space and a 3D
index in the GPU space. � shows in the initial domain. � shows the
partition of y by 3, the first prime factor of 12. � shows the partition
of y by 2, the second prime factor of 12. � shows the partition of
x by 2, the final prime factor of 12. �, �, and � repeat the process
for 4 GPUs.

Since off-node bandwidth is lower than inter-GPU band-

width, (Section IV), we adopt a hierarchical partition, first

to minimize communication between nodes, and then again

within nodes to minimize communication between GPUs. This

may not ultimately minimize inter-GPU communication, but

it does minimize the slower inter-node communication. The

same recursive inertial bisection [7] is used for both, where

the target number of partitions is number of nodes, and then

the number of GPUs per node.

We sort the prime factors of the target partition count largest

to smallest, and recursively divide the domain orthogonally

to its longest axis by the next prime factor. This provides

the largest number of opportunities to divide, ensuring the

best opportunity to make the resulting regions as cubical as

possible.

Fig. 4 shows an example decomposition of a 4×24×2

domain among 12 nodes of 4 GPUs. The large aspect ratio

is chosen to highlight the qualities of the decomposition

approach. The prime factors of 12 are 3, 2, and 2. The first

splits (�) is along the long y dimension by 3, then again

along the long y dimension by 2 (�), and finally along the x
dimension by 2 (�), yielding a final index space of [2,6,1].

Each resulting subdomain is assigned an index in the resulting

3D space. Index [1,2,0] annotated, which is in x position

1, y position 2, and z position 0.

Each of those resulting subdomains is further decomposed

with the same approach according to the number of GPUs

on each node. � highlights a single node-level subdomain,

but the same decomposition process is applied to all the other

node-level subdomains. In this example, � splits the long y
dimension by two, then the x dimension by two (�) to generate

the subdomains for the four GPUs, which results in one

approximately-cubical subdomain per GPU. Each subdomain

has a system-level 3D index in the node space (which node-

level partition its in), and a 3D index in the GPU space (which

GPU-level partition it represents); the combination of node

and GPU index is unique. Subdomains exchange halos with

798

Authorized licensed use limited to: University of Illinois. Downloaded on September 02,2020 at 21:44:47 UTC from IEEE Xplore. Restrictions apply.

all neighbors in this combined index space.

B. Setup: Data Placement

The second phase is to assign each subdomain to a
GPU to maximize use of the available communication
bandwidth. The shape and adjacency of subdomains controls

the amount of data exchanged between them, so not all

subdomains on a node exchange the same amount of data.

Fig. 5 shows an example four subdomains, each of size

M ×N ×P . Subdomain [0,0,0] transfer the M ×N -sized

face with [0,1,0], but an M×P -sized face with [1,0,0].

Fig. 5: Example of placing subdomains onto GPUs in a node. The
communication volume between subdomains is determined by their
index and shape. Those pairwise volumes are represented in a flow
matrix w. Likewise, each GPU has a theoretical communication
bandwidth to each other GPU. The reciprocal bandwidth is used as
a distance matrix d. w and d are used in a quadratic assignment
problem to place subdomains optimally on GPUs.

Subdomain placement is modeled as a quadratic assign-

ment problem (QAP) The quadratic assignment problem is

concerned with assigning a set of n facilities to n locations,

according to the flow between the facilities and the distance
between the locations, with the goal of placing facilities with

high flow close to one another. This is analogous to placing

subdomains with high exchange volume on GPUs that have

high communication bandwidth. The assignment is a bijection

f between facilities and locations. With real-valued square

matrix w representing the flow between facility i, j d the

distance between location i, j, and QAP minimizes the cost

function ∑

i,j<n

wi,jdf(i),f(j)

the sum of the flow-distance products under f .

We model the flow matrix as the required exchange volume

between subdomains, and the distance matrix as the element-

wise reciprocal of a matrix which captures the bandwidth of

GPUs i and j in di,j . Fig. 5 The CUDA driver provides the

Nvidia Management Library libnvidia-ml, which can be

used to infer the connection and bandwidth between GPUs on

a system The quadratic assignment problem is NP-hard. In this

work, we simply check all possible subdomain-GPU mappings

on each node. Since the number of GPUs in a node is typically

small, the cost of exhaustively searching all combinations is

acceptable.

C. Setup: Capability Specialization

In Section III-B, subdomains were assigned to GPUs to

best match the theoretical bandwidth. Prior work has shown

that the achievable GPU-GPU transfer bandwidth depends on

the communication method [8], not just the node topology.

In this section, we describe the final phase, where GPU-GPU

exchange is implemented in terms of these communication

methods.

In general, the exchange operation consists of taking the

(possibly) non-contiguous halo region from the interior of the

source subdomain, packing it into a contiguous buffer, sending

that buffer to the destination GPU, and unpacking that buffer

into the appropriate exterior of the destination subdomain.

Fig. 6 shows an example of a pack operation on a 3D region.

In this example, we consider an XYZ storage order, yielding a

non-continguous storage for the 3D region shown. The result

of the pack operation is to copy that data into a contiguous

buffer.

Fig. 6: Example of packing for a 3D region. In general, the linear
storage order of the subdomain in memory causes the elements of
the 3D region to be strided. The pack operation places only those
elements in a dense buffer with some predetermined order.

In order to support high-performance exchanges in a variety

of scenarios, we consider five GPU-GPU transfer methods.

All methods are asynchronous, allowing them to be freely

overlapped, even within a single process.

KERNEL (Fig. 7a): This method applies when a subdomain

has a self-exchange. This occurs when the entire decomposi-

tion dimension has extent 1 in any direction, and there are

periodic boundary conditions: the decomposition is only 1
subdomain wide, so the subdomain is on both the positive

and negative boundary of that dimension. This method uses a

CUDA kernel launched on the GPU to do an exchange within

GPU memory. One kernel is launched per direction vector that

needs to be exchanged. Since there is no packing or unpacking,

this method is the lowest-overhead exchange. Each GPU uses

its own stream to allow operations to overlap with other types

of exchanges.

PEERMEMCPY (Fig. 7a): This method applies when two

subdomains are in the same process, and the corresponding

GPUs have peer access (Section II). A CUDA kernel on the

source GPU (�) packs the non-contiguous 3D region into a

buffer on the device. � uses cudaMemcpyPeerAsync to

copy packed data to a buffer on the destination device. � uses

a kernel on the destination GPU to unpack the buffer into the

799

Authorized licensed use limited to: University of Illinois. Downloaded on September 02,2020 at 21:44:47 UTC from IEEE Xplore. Restrictions apply.

(a) The KERNEL (left) and PEERMEMCPY (right) exchange method on a
subdomain. For KERNEL: � represents a kernel transferring a halo from the
interior to the exterior. For PEERMEMCPY: � pack the non-contiguous 3D
region into a buffer on the source GPU. � cudaMemcpyPeerAsync to
copy packed data to a buffer on the destination GPU. � unpack the buffer
into the halo of the destination subdomain.

(b) During application initalization, the source and destination subdomains
use the cudaIpc* interface to bypass MPI during following exchanges. �,
�, � show a cudaIpcMemHandle_t being sent through MPI from the
destination to the source subdomain, to provide the source subdomain with
a pointer that can be the target of a cudaMemcpy during future exchanges,
without invoking MPI to send data between ranks. Then, in each exchange,
the halo region is packed into a buffer on the source GPU (�). The source
domain uses cudaMemcpyPeerAsync � to send data directly between the
source and destination GPU, without MPI. � marks unpacking the buffer into
the halo region on the destination device.

Fig. 7: Summary of Kernel, PeerMemcpy, and ColocatedMemcpy
exchange methods.

exterior of the destination subdomain. Each GPU pair uses its

own stream.

COLOCATEDMEMCPY (Fig. 7b): When multiple MPI ranks

are co-located on a node, the virtual memory barrier between

processes prevents straightforward data transfer between ranks.

In general, when passing data between subdomains on differ-

ent ranks, we would default to either the CUDAAwareMPI or

Staged methods. However, when two ranks are on the same

node, MPI can be bypassed entirely during each exchange

through the cudaIpc* set of runtime APIs. Once, during the

setup phase, the destination uses cudaIpcGetMemHandle
to create an opaque handle (�), which it passes through

MPI to the source domain (�). The source domain can use

cudaIpcOpemMemHandle to convert this handle into a

device pointer that is valid in its address space (�). Then,

during the exchange, the usual process of packing (�), cud-

(a) First, the halo region is packed into a buffer on the source device
(�). Then, MPI_Isend is used with CUDA-aware MPI to transfer the
buffer to the destination GPU (�). Finally, the buffer is unpacked into
the 3D region on the destination (�).

(b) The halo region is packed into a buffer on the source device (�).
That buffer is copied to pinned memory on the host (�). MPI is used
to transfer the buffer between ranks (�). The buffer is transferred (�)
to the destination device and unpacked (�).

Fig. 8: Summary of CUDAAwareMPI and Staged exchange methods.

aMemcpyAsync (�), and unpacking (�) is used to send data

between ranks, without using MPI at all.

CUDAAWAREMPI (Fig. 8a): CUDA-Aware MPI allows

CUDA device pointers to be passed to the MPI_Send/Recv
family of functions (instead of only pointers to system mem-

ory). Therefore, as long as the MPI system is “CUDA-Aware”,

this regime can be used to pass data between any two GPUs.

Data is packed with a kernel (�) into a flat buffer, transferred

(�) to the destination device with MPI_Send/Recv, where it

is unpacked (�). This method is only supported when CUDA-

Aware MPI is supported on the execution platform.

STAGED (Fig. 8b): Any system with both CUDA and MPI

will support this method. First, the region is packed (�) into

a flat buffer on the source GPU. Then, that buffer is copied

(�) to a pinned buffer on the host with cudaMemcpyAsync.

MPI_Send/Recv is used to transfer the buffer to the des-

tination (�), where it is copied back ot the device (�), and

finally, unpacked into the subdomain with a kernel (�).

Every subdomain in a rank queries the placement informa-

tion (Section III-B) to determine where all of its neighboring

subdomains are, in terms of node index, GPU index, as well as

owning rank and CUDA device ID. With that information, peer

access between needed devices is enabled, if available. Then,

for each subdomain exchange, the first applicable method from

this section is selected. On our test platform, CUDA-Aware

MPI is always slower than staged, so it is never selected.

800

Authorized licensed use limited to: University of Illinois. Downloaded on September 02,2020 at 21:44:47 UTC from IEEE Xplore. Restrictions apply.

Fig. 9: An example timeline of overlapped exchange operations for a 5123 subdomain with four SP quantities on a single rank controlling
GPU 0 and GPU 2. Some data exchanges are contained within the rank, and some go to other ranks.

D. Async and Overlap

To achieve good communication performance, it is crucial to

overlap as many unrelated communication operations as possi-

ble. As described in Section II, both CUDA and MPI provide

asynchronous transfer operations: the cudaMemcpy*Async
and MPI_Isend/Irecv families respectively. When a sub-

domain exchange is only a sequence of CUDA operations

(as in the kernel, PeerMemcpy, and ColocatedMemcpy), the

asynchronous operations can be added to a stream, and all

executed whenever resources are available. When the subdo-

main exchange involves both CUDA and MPI operations, we

prevent serialization by implementing Sender and Reciever

objects as state machines.

After starting the pure-CUDA asynchronous exchanges, we

loop over all the state machines and check if each sequential

phase of their operation is done, and they are ready to proceed

to the next step. If so, they are moved to the next state. For

example, the staged Sender would have two states, one where

it is packing into the device buffer and copying to the host

(both operations in a CUDA stream), and then a following

state where it is using MPI_Isend to transfer the buffer to the

receiver. Once all stateful senders and receivers are complete,

we block on the truly asynchronous operations, and then the

exchange is considered complete.

Fig. 9 shows how operations are effectively overlapped. It

was recorded during a one-node exchange of 5123 subdomain

per GPU with four single-precision (SP) quantities between

two MPI ranks, each of which controlled two GPUs.

IV. RESULTS

A. Experimental Setup

The techniques described in this paper are implemented

in a CUDA/C++ header-only library located at https://github.

com/cwpearson/stencil. The repository also includes source

for the binaries and scripts used to generate the presented

performance.

Evaluation was carried out on the Summit [9] system at Oak

Ridge National Laboratory and Fig. 10 and Table I summarizes

the node.

Fig. 10: Summit node architecture and bandwidths between CPUs,
GPUs, and network interface card. GPUs in the same triad have more
bandwidth between them, affecting optimal data placement.

The experiments compare exchange performance with and

without CUDA-aware MPI. For the “remote” case, STAGED

communication occurs without CUDA-aware MPI, and CUD-

AAWAREMPI communication occurs with.

Exchange time without associated stencil computation is

reported. In each rank, MPI_Barrier is called, MPI_Wtime
is used to record the start time, then the exchange process is

executed, MPI_Wtime is used to record an end time. The

maximum wall time across all ranks is the reported time.

B. Data Placement Performance

Thanks to the domain partitioning optimization, each GPU’s

subdomain shape usually has an aspect ratio close to one.

When subdomains have small aspect ratios, all exchanges

between domains are similar, and data placement has no per-

formance effect. However, for a small number of subdomains

or very high-aspect-ratio domains, the resulting subdomains

can also have a high aspect ratio.

Fig. 11 shows an example of a compute domain

of 1440×1452×700, which produces 6 subdomains of

720×484×700. On a six subdomain node, the largest possible

ratio of dimensions for subdomains under most conditions

is 3/2. This example is chosen to closely match this worst-

case scenario. Under the node-aware placement, high-volume

halo exchanges between subdomains occur on high-bandwidth

links, and low-volume occurs on low-bandwidth links (see

801

Authorized licensed use limited to: University of Illinois. Downloaded on September 02,2020 at 21:44:47 UTC from IEEE Xplore. Restrictions apply.

CPU OS Kernel GPUs CUDA Driver MPI nvcc cc
22-core POWER9 RHEL 7.6 4.14.0-115.8.1.el7a.ppc64le V100-SXM2-16GB 418.67 Spectrum 10.3.0.1 10.1.168 g++ 4.8.5

TABLE I: Summit hardware summary

Fig. 11: Example of data placement exchanges for 6 subdomains of
720×484×700. For brevity, not all exchanges are shown, and z-axis is
omitted. Required exchanges and corresponding sizes are determined
by subdomain position. On the left, subdomain exchange volume is
well-matched to GPU interconnect bandwidth. On the right, the same
subdomains are poorly placed, resulting in high-volume exchanges on
low-bandwidth links. Consult Fig. 10 for GPU bandwidth.

Fig. 10 for bandwidth between GPUs). In a trivial placement,

where the subdomain id is linearized and assigned to GPUs,

some of the resulting high-volume exchanges occur on the

low-bandwidth SMP link across sockets. In this scenario,

node-aware data placement results in a 20% speedup thanks

to better utilization of hardware links.

C. Communication Specialization Performance

Fig. 12a shows the performance effect of communication

specialization on a single node, with a fixed amount of data

per GPU, and four SP quantities. Experimental configurations

are described with a string like “Xn/Xr/Xg/NNNN/ca”, where

Xn refers to X nodes, Xr refers to X ranks per node, Xg

refers to X GPUs per node, NNNN refers to the extent

of each dimension of the domain, and ca refers to CUDA-

aware, if used. “+remote” means only the STAGED or CU-

DAAWAREMPI exchange method is enabled. “+colo” means

remote and the COLOCATEDMEMCPY exchange are enabled.

“+peer” means the previous, plus PEERMEMCPY exchange is

enabled “+kernel” means the previous, plus KERNEL exchange

is enabled. Exchange times are the average of 30 exchanges

measured by MPI_Wtime. For multi-node cases, the node

with the longest exchange is used for the presented value.

Within each group of columns, additional communication

capabilities are enabled. When only the STAGED capability is

enabled, performance is at its worst, as all halo exchanges

are implemented through MPI_Isend. As we move from

one rank controlling all the GPUs to one rank controlling

each GPU, the performance improves as more processes are

recruited to participate in simultaneous memcopies underlying

the on-node MPI_Isend.

When the COLOCATEDMEMCPY exchange is enabled, per-

formance improves when more than one rank is on the node,

as exchanges between GPUs owned by those ranks no longer

invoke MPI. Even when compared to CUDA-Aware MPI, the

colocated exchange is faster. This is because it only does the

cudaIpc* exchange of buffers once during the setup phase

(Fig. 7b), while the CUDA-aware MPI has to do it every time.

When peer exchange is enabled, all exchanges within ranks

also no longer require MPI, and performance further improves.

Finally, enabling the kernel exchange seems to have no effect

on performance. This replaces self-exchanges through peer

copy with a single kernel call, but the on-node time is still

dominated by exchanges between GPUs. Ultimately, for a

single node, communication specialization has a large impact

on performance, yielding a 6x speedup over STAGED and a 2x

speedup over CUDAAWAREMPI.

Using CUDA-aware MPI provides some benefit, even in the

case of a single rank. Without CUDA-aware MPI, GPU data

is copied to the CPU, and then MPI is used to copy that data

to another buffer, before that data is returned to the GPU.

CUDA-aware MPI allows this entire process to be replaced

with a single GPU-GPU transfer, which is much faster than

baseline MPI’s CPU-CPU copy. In the case of six ranks per

node, it is three times faster, possibly due to better overlapping

of multiple CUDA transfers on node than MPI transfers. Using

our intra-node optimizations on top of CUDA-Aware MPI still

provides an additional 2x speedup, since our COLOCATED

method only does the inter-process communication during the

stencil setup.

Fig. 12b and Fig. 12c show the performance effect of

communication specialization on multiple nodes. Once com-

munication off-node occurs, the on-node only provides small

improvements, probably from replacing MPI calls with CUDA

calls, and allowing the MPI system to only communicate

between nodes. At 256 nodes (1536 GPUs), communication

specialization provides a 1.16× speedup.

D. Weak Scaling

Fig. 12b and Fig. 12c show exchange time scaled out to

multiple nodes, each with 6 ranks and 6 GPUs. Since the

automatic partition and placement attempts to provide good

performance for all domain shapes, we fix the domain shape

to a cube for these experiments. The total grid volume closely

matches 7503 points per GPU, while maintaining an overall

cube shape: it is computed as round(750×nGPUs
1
3)3, where

nGPUs is the number of participating GPUs. Without CUDA-

aware MPI, the exchange time flattens out after 32 nodes, when

most nodes communicate with 26 distinct neighbors. As the

off-node communication dominates the performance, enabling

various on-node optimizations only provide a small benefit by

removing some on-node MPI interactions.

With CUDA-aware MPI, the performance degrades dra-

matically as more nodes are included, and intra-node op-

802

Authorized licensed use limited to: University of Illinois. Downloaded on September 02,2020 at 21:44:47 UTC from IEEE Xplore. Restrictions apply.

(a) (b) (c)

Fig. 12: Exchange time vs. total domain size, scaled with the number of GPUs. Each configuration is labeled with a string of the form
“Xn/Xr/Xg/NNNN/ca”. Xn refers to X nodes. Xr refers to X ranks per node. Xg refers to X gpus per node. NNNN refers to the extent of
each dimension of the domain. ca refers to CUDA-Aware, if enabled. (a) Exchange time on a single node with 1, 2, or 6 ranks. At 6 ranks,
specialization provides a 6x speedup over STAGED only, and a 2× speedup over CUDAAWAREMPI. (b) Exchange times without CUDA-aware
MPI, scaled to 256 nodes and 1536 GPUs. The “+kernel” time is annotated above each group. At 256 nodes, specialization provides a 1.16×
speedup over STAGED. Enabling CUDA-aware MPI degrades performance severely and prevents specialization optimizations from improving
it. (c) Exchange times with CUDA-aware MPI, scaled to 256 nodes and 1536 GPUs.

(a) Halo exchange time for a domain of 13633.

Fig. 13: Exchange time vs number of GPUs, for a fixed total
domain size. Each configuration is labeled with a string of the form
“Xn/Xr/Xg”. Xn refers to X nodes. Xr refers to X ranks per node. Xg
refers to X gpus per node.

timizations cease to have the expected effect. Profiling re-

veals that the MPI implementation uses the default CUDA

stream for most operations, which prevents asynchronous

MPI operations from being overlapped. It also frequently

calls cudaDeviceSynchronize, which prevents unrelated

CUDA operations from happening in parallel with MPI.

E. Strong Scaling

Fig. 13 shows strong scaling of the exchange performance.

The baseline is the largest domain with four SP quantities that

fist into a single node. The domain is distributed among up to

256 nodes (1536 GPUs) with 6 GPUs and 6 ranks per node.

The configurations are annotated the same way as the weak

scaling (Section IV-D).

As the stencil is distributed from 1-128 nodes, we see a

drop in total exchange time. This is because each node only

exchanges locally with its neighbors, and the communication

volume decreases as more nodes are included. For a small

number of nodes, the impact of the on-node capability opti-

mizations are more substantial, as the exchange time is not yet

dominated totally by MPI. Once we reach 32 nodes, capability

specialization stops improving performance. The amount of

data transferred becomes small enough that the additional

bandwidth offered by optimizations does not impact the overall

exchange time. At 256 nodes, we cease to see strong scaling

as the subdomains become very small. We do not evaluate a

similar scenario with CUDA-aware MPI, as it did not provide

performance improvement in weak scaling.

V. RELATED

To our knowledge, none of the prior work addresses all

the related challenges for an efficient communication across

GPUs in large clusters. It involves automatic discovery of

the cluster topology and hardware capabilities on a node, to

partition the domain, placing the partitions optimally across

GPUs and the use of right combination of CUDA and MPI

libraries to efficiently exploit the hardware. In this work, we

address all those challenges and further abstracts away the

implementation details for the ease of programmability. We

focus our discussion of related work on multi-GPU stencil

codes, node-aware GPU communication techniques, work that

provides some degree of automatic stencil code generation

for distributed memory (since it must therefore also handle

communication automatically).

A. Stencil Communication
[10] suggest a 1D grid decomposition to avoid communi-

cation in dimensions where data in halo regions is not stored

in contiguous locations. However, this limits scaling for large

domains as overall communication volume is not minimized.

Moreover, stencils with only axis-aligned grid points are

mentioned which further limits the application range.
[11] presents an efficient overlap between communication

and execution as a fundamental key to efficient execution.

However, this neglects how to achieve efficient communication

in the first place. They use the equivalent of our STAGED

communication method.
[3] presents a two-node multi-GPU 1D decomposition of

a stencil grid. They use the PEERMEMCPY exchange method

for on-node exchanges, and a collective multi-GPU pack for

off-node. Their implementation is hard-coded for the target

system and a single MPI rank per node.
[12] uses a similar prime-factor based 3D partitioning

strategy in their stencil code.

803

Authorized licensed use limited to: University of Illinois. Downloaded on September 02,2020 at 21:44:47 UTC from IEEE Xplore. Restrictions apply.

B. Node-Aware GPU Communication

[13]–[15] is a group of related works focusing on node-

aware topology for GPU-GPU communication. Like this work,

they compare a GPU communication matrix with a topology

matrix, for deciding which MPI ranks should be placed on

which GPUs. Our work differs in five main ways. First, they

restrict their consideration to one GPU per MPI process, so

do not consider optimizing the communication case within a

process or a GPU. Second, they do not consider the effect of

their work on multi-node executions. Third, we characterize

the placement as a quadratic assignment problem instead of

a graph embedding, though they are interchangeable in many

cases. Fourth, we recognize that GPU-GPU communication

defined at the algorithm level, not the MPI level, and so our

placement algorithm operates on stencil subdomains instead

of MPI ranks. Fifth, due to our domain-specific approach,

we are able to do subdomain placement without requiring an

initial profiling pass. [13] uses a 2D stencil microbenchmark

to evaluate the effect of node-aware placement on message

latency and bandwidth, and observe no effect. Our work shows

an effect for real stencil exchanges in practice.

Several works [16], [17] provide multi-GPU collective com-

munication patterns. Thanks to the semantics of the collectives,

these works are able to implement patterns that take advan-

tage of typical node topologies without adaptions to specific

platform characteristics.

C. DSLs, Frameworks, and Code Generation

[18] is a DSL framework which decomposes the grid in

3D and supports stencils with grid points also along diagonals.

To hide the communications latency the framework supports

overlap with the execution. This framework also implicitly

copies halos with non-unit stride through cudaAllocHost
to avoid multiple calls to cudaMemcpy. This is the same as

the packing we describe, except without a following explicit

transfer step to the host. [19] presents another DSL framework

which supports 3D decomposition of the compute domain.

They implement the equivalent of our STAGED exchange

method. In [20] once the domain is partitioned, sub-domains

are mapped to GPUs using blocking and circular configuration.

Blocking configurations first assign partitions to dual GPUs

on the same graphic card, while circular configuration assigns

partitions in an alternating fashion between the graphics cards.

This strategy touches on node-ware configurations, but does

not consider multi-GPU nodes or many node topologies. [21]

presents a framework for executing stencil codes on GPU

clusters with subdomains that are larger than GPU memory.

Their temporal blocking mechanism causes inter-node com-

munication to be implemented like our STAGED method. [22]

present a stencil application in high-level OpenCL program-

ming framework. It only considers a single node, and data is

exchanged between GPUs by first being staged through the

CPU. [23], [24] introduce a software framework for large-

scale stencils on GPUs with an emphasis on overlapping

communication with execution. [25] is a compiler which

generates stencil code for CPU-GPU clusters. It seems to

leverage the same communication techniques used in [11].

VI. FUTURE WORK

Currently, the communication methods require some amount

of GPU kernel execution to pack and unpack data. Espe-

cially on single-node exchanges, these operations can keep

the GPU occupied for a substantial part of the exchange

process as shown in Fig. 9. [18] implements GPU-to-CPU

packing through zero-copy memory. This may be faster than

our implementation in some circumstances.

There are also approaches for avoiding packing and unpack-

ing. The CUDA cudaMemcpy3D* and cudaMalloc3D*
routines to transfer and allocate 3D regions. Alteratively, halos

could be stored separately from the compute domain, andthe

library could provide a “smart pointer” to GPU kernels that

redirects each dereference to the right memory allocation.

This would create a performance penalty in the kernel, but

improve exchange time. Alternatively, devices with peer access

can implicitly access data remote inside GPU kernels, or the

allocation could be managed with unified memory. We could

use a single GPU kernel to transfer data between such devices,

or avoid copying data between same-rank GPUs in the first

place, improving overlap of computation and communication.

Figure 9 shows that the CPU time initiating transfers can

be substantial, especially if there are more GPUs. Consoli-

dating operations could improve overlap. Second, the current

implementation of the data placement algorithm is naive. [13]

suggests that a similar algorithm should have a negligible

impact on execution time when properly implemented.

[13] uses an empirical measurement of latency, bandwidth,

and distance between GPUs to inform the MPI rank placement.

We could investigate if empirical measurements provide better

results. Furthermore, we could extend this to include the

achieved bandwidth between GPUs for all specializations on-

node.

[3] packs all GPU halos on a single node into a single buffer

before exchanging with other nodes, to reduce the number of

messages and increase the message size. Fewer, larger MPI

messages tend to achieve better performance, but our messages

may already be few enough and large enough.

At an application level, [22] allows the user to trade off

halo exchange size with iterations between exchanges. Fewer,

larger exchanges cause fewer synchronization points, but also

grow super-linearly in required data size.

The general problem of task-placement and communication

optimization is considered by a variety of large-scale libraries

and frameworks including Zoltan [26] and Legion [27]. These

frameworks allow uses to run a variety of code to control

partitioning and placement. We will investigate integrating

these techniques into an existing system to evaluate on a wider

variety of scenarios.

VII. CONCLUSION

We present and evaluate a set of techniques for optimizing

3D stencil communication on heterogeneous supercomputers.

804

Authorized licensed use limited to: University of Illinois. Downloaded on September 02,2020 at 21:44:47 UTC from IEEE Xplore. Restrictions apply.

First, a hierarchical partitioning technique is used to minimize

required data exchange between nodes, and then between

GPUs. Second, node topology is used to inform data placement

regardless of MPI ranks per node and GPUs per rank, with up

to a 20% reduction in exchange time. Third, node GPU transfer

capabilities are used to optimize data exchange between GPUs

on a node, yielding a further 6x speedup of single-node

exchange over a naive transfer staged through the CPU, or

a 1.16x improvement in a 1536 GPU exchange on 256 nodes.

Prior works have tended to focus on single-GPU nodes, or ne-

glected the intra-node communication optimization. Important

open questions derived from this work include CUDA-aware

MPI performance, and system-level data placement among

nodes.

ACKNOWLEDGMENTS

This work is supported by IBM-ILLINOIS Center for

Cognitive Computing Systems Research (C3SR) - a research

collaboration as part of the IBM AI Horizon Network. This

work utilizes resources supported by the National Science

Foundation’s Major Research Instrumentation program, grant

#1725729, as well as the University of Illinois at Urbana-

Champaign. This work was supported in part by the Center

for Research on Intelligent Storage and Processing-in-memory

(CRISP), one of six centers of JUMP, a Semiconductor Re-

search Corporation program co-sponsored by DARPA. This

work was supported in part by the Center for Applications

Driving Architectures (ADA), one of six centers of JUMP, a

Semiconductor Research Corporation program co-sponsored

by DARPA. The authors would especially like to thank Dawei

Mu and Rakesh Nagi for supporting initial experiments and

providing valuable insight.

REFERENCES

[1] H. Hotta, M. Rempel, and T. Yokoyama, “High-resolution calculations of
the solar global convection with the reduced speed of sound technique.
I. the structure of the convection and the magnetic field without the
rotation,” The Astrophysical Journal, vol. 786, no. 1, p. 24, 2014.

[2] A. Beresnyak, “Spectra of strong magnetohydrodynamic turbulence from
high-resolution simulations,” The Astrophysical Journal Letters, vol.
784, no. 2, p. L20, 2014.

[3] O. Anjum, G. de Gonzalo Simon, M. Hidayetoglu, and W.-M. Hwu, “An
efficient GPU implementation technique for higher-order 3D stencils,”
in 2019 IEEE 21st International Conference on High Performance
Computing and Communications(HPCC). IEEE, 2019, pp. 552–561.

[4] J. Skála, F. Baruffa, J. Büchner, and M. Rampp, “The 3D MHD code
GOEMHD3 for astrophysical plasmas with large Reynolds numbers-
code description, verification, and computational performance,” Astron-
omy & Astrophysics, vol. 580, p. A48, 2015.

[5] J. Pekkilä, M. S. Väisälä, M. J. Käpylä, P. J. Käpylä, and O. Anjum,
“Methods for compressible fluid simulation on GPUs using high-order
finite differences,” Computer Physics Communications, vol. 217, pp. 11–
22, 2017.

[6] P. Chen, M. Wahib, S. Takizawa, R. Takano, and S. Matsuoka, “A
versatile software systolic execution model for GPU memory-bound
kernels,” in Proceedings of the International Conference for High
Performance Computing, Networking, Storage and Analysis, 2019, pp.
1–81.

[7] R. D. Williams, “Performance of dynamic load balancing algorithms for
unstructured mesh calculations,” Concurrency: Practice and experience,
vol. 3, no. 5, pp. 457–481, 1991.

[8] C. Pearson, A. Dakkak, S. Hashash, C. Li, I.-H. Chung, J. Xiong,
and W.-M. Hwu, “Evaluating characteristics of CUDA communication
primitives on high-bandwidth interconnects,” in Proceedings of the 2019
ACM/SPEC International Conference on Performance Engineering,
2019, pp. 209–218.

[9] Summit documentation. [Online]. Available: https://docs.olcf.ornl.gov/
systems/summit user guide.html

[10] D. Jacobsen, J. Thibault, and I. Senocak, “An MPI-CUDA implementa-
tion for massively parallel incompressible flow computations on multi-
GPU clusters,” in 48th AIAA Aerospace Sciences Meeting Including the
New Horizons Forum and Aerospace Exposition, 2010, p. 522.

[11] M. Sourouri, J. Langguth, F. Spiga, S. B. Baden, and X. Cai, “CPU+GPU
programming of stencil computations for resource-efficient use of GPU
clusters,” in 2015 IEEE 18th International Conference on Computational
Science and Engineering. IEEE, 2015, pp. 17–26.

[12] HPCG benchmark. [Online]. Available: https://www.hpcg-benchmark.
org/

[13] I. Faraji, S. H. Mirsadeghi, and A. Afsahi, “Exploiting heterogeneity
of communication channels for efficient gpu selection on multi-GPU
nodes,” Parallel Computing, vol. 68, pp. 3–16, 2017.

[14] S. H. Mirsadeghi, “Improving communication performance through
topology and congestion awareness in HPC systems,” Ph.D. dissertation,
PhD thesis, Queen’s University, Ontario, 2017.

[15] I. Faraji, “Improving communication performance in GPU-accelerated
HPC clusters,” Ph.D. dissertation, 2018.

[16] Nvidia collective communications library. [Online]. Available: https:
//github.com/NVIDIA/nccl

[17] gloo. [Online]. Available: hhttps://github.com/facebookincubator/gloo
[18] N. Maruyama, T. Nomura, K. Sato, and S. Matsuoka, “Physis: an

implicitly parallel programming model for stencil computations on
large-scale GPU-accelerated supercomputers,” in Proceedings of 2011
International Conference for High Performance Computing, Networking,
Storage and Analysis, 2011, pp. 1–12.

[19] Y. Zhang and F. Mueller, “Auto-generation and auto-tuning of 3D stencil
codes on GPU clusters,” in Proceedings of the Tenth International
Symposium on Code Generation and Optimization, 2012, pp. 155–164.

[20] T. Lutz, C. Fensch, and M. Cole, “Partans: An autotuning framework
for stencil computation on multi-GPU systems,” ACM Transactions on
Architecture and Code Optimization (TACO), vol. 9, no. 4, pp. 1–24,
2013.

[21] T. Endo and G. Jin, “Software technologies coping with memory
hierarchy of GPGPU clusters for stencil computations,” in 2014 IEEE
International Conference on Cluster Computing (CLUSTER), Sep. 2014,
pp. 132–139.

[22] M. Steuwer, M. Haidl, S. Breuer, and S. Gorlatch, “High-level program-
ming of stencil computations on multi-GPU systems using the SkelCL
library,” Parallel Processing Letters, vol. 24, no. 03, p. 1441005, 2014.

[23] T. Shimokawabe, T. Aoki, and N. Onodera, “High-productivity frame-
work for large-scale GPU/CPU stencil applications,” Procedia Computer
Science, vol. 80, pp. 1646–1657, 2016.

[24] T. Shimokawabe, T. Endo, N. Onodera, and T. Aoki, “A stencil frame-
work to realize large-scale computations beyond device memory capacity
on GPU supercomputers,” in 2017 IEEE International Conference on
Cluster Computing (CLUSTER). IEEE, 2017, pp. 525–529.

[25] M. Sourouri, S. B. Baden, and X. Cai, “Panda: A compiler framework
for concurrent CPU-GPU execution of 3D stencil computations on
GPU-accelerated supercomputers,” International Journal of Parallel
Programming, vol. 45, no. 3, pp. 711–729, 2017.

[26] K. D. Devine, E. G. Boman, and G. Karypis, “Partitioning and load bal-
ancing for emerging parallel applications and architectures,” in Frontiers
of Scientific Computing, M. Heroux, A. Raghavan, and H. Simon, Eds.
Philadelphia: SIAM, 2006.

[27] S. Treichler, M. Bauer, and A. Aiken, “Language support for dynamic,
hierarchical data partitioning,” ACM SIGPLAN Notices, vol. 48, no. 10,
pp. 495–514, 2013.

805

Authorized licensed use limited to: University of Illinois. Downloaded on September 02,2020 at 21:44:47 UTC from IEEE Xplore. Restrictions apply.

