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Abstract

Better machine understanding of pedestrian behaviors
enables faster progress in modeling interactions between
agents such as autonomous vehicles and humans. Pedestrian
trajectories are not only influenced by the pedestrian itself
but also by interaction with surrounding objects. Previous
methods modeled these interactions by using a variety of
aggregation methods that integrate different learned pedes-
trians states. We propose the Social Spatio-Temporal Graph
Convolutional Neural Network (Social-STGCNN), which
substitutes the need of aggregation methods by modeling the
interactions as a graph. Our results show an improvement
over the state of art by 20% on the Final Displacement Error
(FDE) and an improvement on the Average Displacement Er-
ror (ADE) with 8.5 times less parameters and up to 48 times
faster inference speed than previously reported methods. In
addition, our model is data efficient, and exceeds previous
state of the art on the ADE metric with only 20% of the train-
ing data. We propose a kernel function to embed the social in-
teractions between pedestrians within the adjacency matrix.
Through qualitative analysis, we show that our model inher-
ited social behaviors that can be expected between pedestri-
ans trajectories. Code is available at https://github.
com/abduallahmohamed/Social—-STGCNN.

1. Introduction

Predicting pedestrian trajectories is of major importance
for several applications including autonomous driving and
surveillance systems. In autonomous driving, an accurate
prediction of pedestrians trajectories enables the controller
to plan ahead the motion of the vehicle in an adversar-
ial environment. For example, it is a critical component
for collision avoidance systems or emergency braking sys-
tems [2, 18, 16, 22]. In surveillance systems, forecasting
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Figure 1. Pedestrian future trajectories prediction using the Social-
STGCNN model. The social interactions between pedestrians and
their temporal dynamics are represented by a spatio-temporal graph.
‘We predict the future trajectories in a single pass.
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pedestrian trajectories is critical in helping identifying suspi-
cious activities [15, 28, 20].

The trajectory of a pedestrian is challenging to predict,
due to the complex interactions between the pedestrian with
the environment. Objects potentially influencing the trajec-
tory of a pedestrian include physical obstacles such as trees
or roads, and moving objects including vehicles and other
pedestrians. According to [19], 70% of pedestrians tend to
walk in groups. The interactions between pedestrians are
mainly driven by common sense and social conventions. The
complexity of pedestrian trajectory prediction comes from
different social behaviors such as walking in parallel with
others, within a group, collision avoidance and merging from
different directions into a specific point. Another source of
complexity is the randomness of the motion, given that the
target destination and intended path of the pedestrian are
unknown.

The social attributes of pedestrian motions encouraged
researchers in this area to focus on inventing deep methods
to model social interactions between pedestrians. In the
Social-LSTM [1] article, deep learning based model is ap-
plied to predict the pedestrians trajectories by modeling each
pedestrian trajectory via a recurrent deep model. The outputs
of recurrent models are made to interact with each other via
a pooling layer. Several articles [17, 14, 30] followed this
direction. Social-LSTM [1] modeled the pedestrian trajec-
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tories as a bi-variate Gaussian distribution, while some of
others aimed at predicting deterministic trajectories. Another
direction is to use Generative Adversarial Networks (GANs)
for this task, assuming that the distribution of trajectories
is multi-modal. Several articles [6, 23, 13] used GANs to
predict distributions of future trajectories. For these models,
generators are designed using recurrent neural networks, and
again, aggregation methods are relied upon to extract the
social interactions between pedestrians. We argue that a
limitation of earlier articles comes from the use of recurrent
architectures, which are parameter inefficient and expensive
in training [3]. We overcome this limitation through the use
of temporal convolutional architectures.

In addition to the limitation of recurrent architectures,
aggregation layers used in earlier works can also limit their
performance. The aggregation layer takes the hidden states
of the recurrent units as inputs. It is expected to assimilate a
global representation of the scene, since each recurrent unit
models a pedestrian trajectory. However, there are two is-
sues within this type of aggregation. First, the aggregation in
feature states is neither intuitive nor direct in modelling inter-
actions between people, as the physical meaning of feature
states is difficult to interpret. Second, since the aggregation
mechanisms are usually based on heuristics like pooling,
they could fail in modeling interactions between pedestrians
correctly. For example, the pooling operation is known to
be leaky in information [26]. In order to directly capture
the interactions between pedestrians and predict future paths
from these, the recent article social-BiGAT [10] relies on
a graph representation to model social interactions. As the
topology of graphs is a natural way to represent social inter-
actions between pedestrians in a scene, we argue that it is a
more direct, intuitive and efficient way to model pedestrians
interactions than aggregation based methods. We also argue
that social-BiGAT did not make the most of the graph rep-
resentation, since they used it only as a pooling mechanism
for recurrent units states. Social-STGCNN benefits more
from graph representation through modeling the scene with
as spatio-temporal graph and performs on it.

We designed Social-STGCNN to overcome the two afore-
mentioned limitations. First, we model the pedestrians tra-
jectories from the start as a spatio-temporal graph to replace
the aggregation layers. The graph edges model the social
interactions between the pedestrians. We propose a weighted
adjacency matrix in which the kernel function quantitatively
measure the influence between pedestrians. To address is-
sues associated with recurrent units, our model manipulates
over the spatio-temporal graph using a graph Convolutional
Neural Networks (CNN)s and a temporal CNNs. This al-
lows our model to predict the whole sequence in a single
shot. Due to the above design, our model outperforms previ-
ous models in terms of prediction accuracy, parameters size,
inference speed and data efficiency.

2. Related work

The recent interest in autonomous driving has lead to in-
creasing focus on pedestrian trajectory prediction. Recently,
new deep models are making promising progresses on this
task. In this section, we give a brief review of related work.
Human trajectory prediction using deep models Social-
LSTM [1] is one of the earliest deep model focusing on
pedestrian trajectory prediction. Social-LSTM uses a re-
current network to model the motion of each pedestrian,
then they aggregated the recurrent outputs using a pooling
mechanism and predict the trajectory afterwards. Social-
LSTM assumes the pedestrian trajectory follow a bi-variate
Gaussian distribution, in which we follow this assumption
in our model. Later works such as Peek Into The Future
(PIF) [14] and State-Refinement LSTM (SR-LSTM) [30] ex-
tends [1] with visual features and new pooling mechanisms
to improve the prediction precision. It is noticeable that
SR-LSTM [30] weighs the contribution of each pedestrian
to others via a weighting mechanism. It is similar to the idea
in Social-BiGAT [10] which uses an attention mechanism
to weigh the contribution of the recurrent states that repre-
sent the trajectories of pedestrians. Based on the assumption
that pedestrian trajectories follow multi-modal distributions,
Social-GAN [6] extends Social LSTM [1] into a Recurrent
Neural Network (RNN) based generative model. Sophie [23]
used a CNNSs to extract the features from the scene as a whole
then a two way attention mechanism is used per pedestrian.
Later on, Sophie concatenates the attention outputs with
the visual CNN outputs then a Long Short Term Memory
(LSTM) autoencoder based generative model is used to gen-
erate the future trajectories. The work CGNS [13] is similar
to Sophie [23] in terms of the architecture but they used a
Gated Recurrent Units(GRU)s instead of LSTMs. We notice
that most previous works were circulating around two ideas,
model each pedestrian motion using a recurrent net and com-
bine the recurrent nets using a pooling mechanism. Recent
work Social-BiGAT [10] relies on graph attention networks
to model the social interactions between pedestrians. The
LSTM outputs are fed to the graph in Social-BiGAT. One key
difference between our model Social-STGCNN and Social-
BiGAT is that we directly model pedestrian trajectories as a
graph from the beginning, where we give meaningful values
for vertices.

Recent Advancements in Graph CNNs Graph CNNs were
introduced by [8] which extends the concept of CNNs into
graphs. The Convolution operation defined over graphs is
a weighted aggregation of target node attributes with the
attributes of its neighbor nodes. It is similar to CNNs but the
convolution operation is taken over the adjacency matrix of
the graphs. The works [9, 4, 24] extend the graph CNNs to
other applications such as matrix completion and Variational
Auto Encoders. One of the development related to our work
is the ST-GCNN [27]. ST-GCNN is a spatio-temporal Graph
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CNN that was originally designed to solve skeleton-based
action recognition problem. Even though the architecture
itself was designed to work on a classification task, we adapt
it to suit our problem. In our work, ST-GCNNs extract both
spatial and temporal information from the graph creating a
suitable embedding. We then operate on this embedding to
predict the trajectories of pedestrians. Details are shown in
section 4.

Temporal Convolutional Neural Networks (TCNs) Start-
ing from [3], the argue between the usage of Recurrent Neu-
ral Networks (RNN)s versus the usage of temporal CNNs
for sequential data modeling is highlighted. Introduced
by [3], Temporal Convolutional Neural Networks(TCNs)
take a stacked sequential data as input and predict a sequence
as a whole. This could alleviate the problem of error accu-
mulating in sequential predictions made by RNNs. What is
more, TCNs are smaller in size compared to RNNs. We were
inspired by TCNs and designed a temporal CNN model that
extends the capabilities of ST-GCNNs. More details about
this are in the model description section 4.

3. Problem Formulation

Given a set of N pedestrians in a scene with their cor-
responding observed positions tr?,n € {1,..., N} over
a time period 7}, we need to predict the upcoming trajec-
tories ¢r, over a future time horizon 7). For a pedestrian
n, we write the corresponding trajectory to be predicted as
“‘g = {p;1 = (x{"y7) ‘t € {1? s Tp}}’ where (x7',y}')
are random variables describing the probability distribution
of the location of pedestrian n at time ¢, in the 2D space. We
make the assumption that (x}, y;) follows bi-variate Gaus-
sian distribution such that p}* ~ N (u}, o', p}*). Besides,
we denote the predicted trajectory as p;y which follows the
estimated bi-variate distribution N (i}, 67", p*). Our model
is trained to minimize the negative log-likelihood, which
defined as:

TP
== log(P((pyli,67.67) (1)
t=1
in which W includes all the trainable parameters of the
model, 43 is the mean of the distribution,o}" is the variances
and p} is the correlation.

4. The Social-STGCNN Model
4.1. Model Description

The Social-STGCNN model consists of two main parts:
the Spatio-Temporal Graph Convolution Neural Network
(ST-GCNN) and the Time-Extrapolator Convolution Neu-
ral Network (TXP-CNN). The ST-GCNN conducts spatio-
temporal convolution operations on the graph representation
of pedestrian trajectories to extract features. These features

are a compact representation of the observed pedestrian tra-
jectory history. TXP-CNN takes these features as inputs and
predicts the future trajectories of all pedestrians as a whole.
We use the name Time-Extrapolator because TXP-CNNs
are expected to extrapolate future trajectories through con-
volution operation. Figure 2 illustrates the overview of the
model.

Graph Representation of Pedestrian Trajectories We
first introduce the construction of the graph representation
of pedestrian trajectories. We start by constructing a set
of spatial graphs G, representing the relative locations of
pedestrians in a scene at each time step ¢. G is defined as
Gy = (Vi, E;), where V;, = {v! | Vi € {1,...,N}}is the
set of vertices of the graph G;. The observed location (z, %)
is the attribute of v. F; is the set of edges within graph G
which is expressed as B, = {e/ | Vi,j € {1,...,N}}.
e/ = 1if v} and v] are connected, e;” = 0 otherwise. In
order to model how strongly two nodes could influence with
each other, we attach a value at , Wthh is computed by
some kernel function for each e;’. a;’s are organized into
the weighted adjacency matrix At. We introduce ag,,, , as a
kernel function to be used within the adjacency matrix Ay.
@gp ¢ 18 defined in equation 2. We discuss the details of A;
kernel function later in section 6.1.

(@)

R V] S P e P
sim,¢ 0 , Otherwise.
Graph Convolution Neural Network With the graph repre-
sentation of pedestrian trajectories, we introduce the spatial
convolution operation defined on graphs. For convolution
operations defined on 2D grid maps or feature maps, the
convolution operation is shown in equation 3.

kE Kk
R0 9) SUEI RO RTINS
h=1w=1

where k is the kernel size and p(.) is the sampling func-
tion which aggregates the information of neighbors centering
around z [5] and o is an activation function and (/) indicates
layer .

The graph convolution operation is defined as:

; 1
i(l+1) _
v = a(—Q E

vi EB(vi)

p(v' W D) w (D 71

4 RN C))
where & is a normalization term, B(v') = {v7]d(v’,v7) <
D} is the neighbor set of vertices v* and d(v*, v?) denotes
the shortest path connecting v* and v?. Note that Q is the
cardinality of the neighbor set. Interested readers are referred
to [8, 27] for more detailed explanations and reasoning.
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Figure 2. The Social-STGCNN Model. Given T frames, we construct the spatio-temporal graph representing G = (V, A). Then G is
forwarded through the Spatio-Temporal Graph Convolution Neural Networks (ST-GCNN5s) creating a spatio-temporal embedding. Following
this, the TXP-CNNss predicts future trajectories. P is the dimension of pedestrian position, /N is the number of pedestrians, 7" is the number
of time steps and P is the dimensions of the embedding coming from ST-GCNN.

Spatio-Temporal Graph Convolution Neural Network
(ST-GCNNs) ST-GCNNs extends spatial graph convolu-
tion to spatio-temporal graph convolution by defining a
new graph GG whose attributes are the set of the attributes
of G¢. G incorporates the spatio-temporal information of
pedestrian trajectories. It is worth noticing that the topol-
ogy of G1,...,Gr is the same, while different attributes
are assigned to v% when t varies. Thus, we define G
as (V,E), in which V. = {v* | i € {1,...,N}} and
E = {eY | Vi,j € {1,...,N}}. The attributes of ver-
tex v’ in G is the set of v}, V¢ € {0,...,T}. In addition, the
weighted adjacency matrix A corresponding to G is the set
of {Ay,..., Ar}. We denote the embedding resulting from
ST-GCNN as V.

Time-Extrapolator Convolution Neural Network (TXP-
CNN) The functionality of ST-GCNN is to extract spatio-
temporal node embedding from the input graph. However,
our objective is to predict further steps in the future. We
also aim to be a stateless system and here where the TXP-
CNN comes to play. TXP-CNN operates directly on the
temporal dimension of the graph embedding V' and expands
it as a necessity for prediction. Because TXP-CNN depends
on convolution operations on feature space, it is less in pa-
rameters size compared to recurrent units. A property to
note regards TXP-CNN layer that it is not a permutation
invariant as changes in the graph embedding right before
TXP-CNN leads to different results. Other than this, if the
order of pedestrians is permutated starting from the input to
Social-STGCNN then the predictions are invariant.

Overall, there are two main differences between Social-
STGCNN and ST-GCNN [27]. First, Social-STGCNN con-
structs the graph in a totally different way from ST-GCNN
with a novel kernel function. Second, beyond the spatio-
temporal graph convolution layers, we added the flexibility
in manipulating the time dimension using the TXP-CNN.
ST-GCNN was originally designed for classification. By
using TXP-CNN, our model was able to utilize the graph
embedding originating from ST-GCNN to predict the futuree

trajectories.

4.2. Implementing Social-STGCNN

Several steps are necessary to implement the model cor-
rectly. We first normalize the adjacency matrix for the
ease of learning. The adjacency matrix A is a stack of
{44,..., Ar}, we symmetrically normalize each A; using
the following form [8]

A = ATTAN®

where A, = A, + I and A, is the diagonal node degree
matrix of At. We use A and A to denote the stack of At and
A, respectively. The normalization of adjacency is essential
for the graph CNN to work properly, as outlined in [8]. We
denote the vertices values at time step ¢ and network layer [
as Vt(l). Suppose V) is the stack of Vt(l). With the above
definitions, we can now implement the ST-GCNN layers
defined in equation 4 as follows.:

FOVD A) =g(A"2 AN 2V OWD) (5)

where W) is the matrix of trainable parameters at layer /.

After applying the ST-GCNN, we have features that com-
pactly represent the graph. The TXP-CNN receives features
V and treats the time dimension as feature channels. The
TXP-CNN is made up of a series of residual connected
CNNs. Only the first layer in TXP-CNN does not have a
residual connection as it receives V from the ST-GCNNs, in
which they differ in terms of the dimensions of the observed
samples and the samples to be predicted.

5. Datasets and Evaluation Metrics

The model is trained on two human trajectory predic-
tion datasets: ETH [21] and UCY [11]. ETH contains two
scenes named ETH and HOTEL, while UCY contains three
scenes named ZARA1, ZARA?2 and UNIV. The trajectories
in datasets are sampled every 0.4 seconds. Our method of
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training follows the same strategy as Social-LSTM [1]. In
Social-LSTM, the model was trained on a portion of a spe-
cific dataset and tested against the rest and validated versus
the other four datasets. When being evaluated, the model
observes the trajectory of 3.2 seconds which corresponds to
8 frames and predicts the trajectories for the next 4.8 seconds
that are 12 frames.

Two metrics are used to evaluate model performance: the
Average Displacement Error (ADE) [21] defined in equa-
tion 6 and the Final Displacement Error (FDE) [1] defined
in equation 7. Intuitively, ADE measures the average pre-
diction performance along the trajectory, while the FDE
considers only the prediction precision at the end points.
Since Social-STGCNN generates a bi-variate Gaussian dis-
tribution as the prediction, to compare a distribution with a
certain target value, we follow the evaluation method used in
Social-LSTM [1] in which 20 samples are generated based
on the predicted distribution. Then the ADE and FDE are
computed using the closest sample to the ground truth. This
method of evaluation were adapted by several works such as
Social-GAN [6] and many more.

ZN ZT 57 — pitll2
neN te
ADE = d 6
N x T, ©
> Iy — vl
FDE = "=V ~ =T, 7)

6. Experiments and Results Analysis

Model configuration and training setup Social-STGCNN
is composed of a series of ST-GCNN layers followed by
TXP-CNN layers. We use PReLLU[7] as the activation func-
tion o across our model. We set a training batch size of 128
and the model was trained for 250 epochs using Stochastic
Gradient Descent (SGD). The initial learning rate is 0.01,
and changed to 0.002 after 150 epochs. According to our
ablation study in table 6, the best model to use has one ST-
GCNN layer and five TXP-CNN layers. Furthermore, it is
noticeable that when the number of ST-GCNN layers in-
creases, the model performance decreases. Apparently, this
problem of going deep using graph CNN was noticed by
the work in [12], in which they proposed a method to solve
it. Unfortunately, their solution does not extend to temporal
graphs.

6.1. Ablation Study of Kernel Function

In this section, our objective is to find a suitable kernel
function to construct the weighted adjacency matrix. The
weighted adjacency matrix A; is a representation of the
graph edges attributes. The kernel function maps attributes
at v and v; to a value a;’ attached to e,”. In the implemen-
tation of Social-STGCNN , A; weights the vertices contribu-

|1 3 | 5 | 7

11 047/0.78 | 0.47/0.84 | 0.44/0.75 | 0.48/0.87
31 059/1.02 | 0.52/0.92 | 0.54/0.93 | 0.54/0.92
51 062/1.07 | 0.57/0.98 | 0.59/1.02 | 0.59/0.98
711 0.75/1.28 | 0.75/1.27 | 0.62/1.07 | 0.75/1.28

Table 1. Ablation study of the Social-STGCNN model. The first
row corresponds to the number of TXP-CNN layers. The first
column from the left corresponds to the number of ST-GCNN
layers. We show the effect of different configurations of Social-
STGCNN on the ADE/FDE metric. The best setting is to use one
layer for ST-GCNN and five layers for TXP-CNN.

tions to each other in the convolution operations. The kernel
function can thus be considered as a prior knowledge about
the social relations between pedestrians. A straightforward
idea in designing the kernel function is to use the distance
measured by the Lo norm defined in equation 8 between
pedestrians to model their impacts to each other. However,
this is against the intuition that the pedestrians tend to be
influenced more by closer ones. To overcome this, we use
similarity measure between the pedestrians. One of the pro-
posals is to use the inverse of Ly norm as defined in equation
10. The € term is added in denominator to ensure numerical
stability. Another candidate function is the Gaussian Radial
Basis Function [25], shown in equation 9. We compare the
performance of these kernel functions through experiments.
The case that all the values in adjacency matrix between
different nodes are set to one is used as a baseline.

According to results listed in table 6.1, the best perfor-
mance comes from a?’, , defined in function 2. The differ-
ence between functions 10 and 2 exists in the case where
[v; = v{[l2 = 0. In function 2, we set az},, , = 0 when
[vi — v]|l2 = 0 because it is assumed that the two pedes-
trians can be viewed as the same person when they stay
together. Without it, the model will have an ambiguity in the
relationship between pedestrians. For this, we use agmt in
the definition of the adjacency matrix in all of our experi-
ments.

af, = Ilvi =i ®)
i exp(=lv —v/ll2) ©
exp,t —
ag
. 1
St = (10)

lvf = ofll2 + ¢

6.2. Quantitative Analysis

The performance of Social-STGCNN is compared with
other models on ADE/FDE metrics in table 2. Overall,
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| ETH HOTEL UNIV ZARA1 ZARA2 AVG
Linear * [1] 1.33/2.94 1 0.39/0.72 | 0.82/1.59 | 0.62/1.21 | 0.77/1.48 | 0.79/1.59
SR-LSTM-2 * [30] [[ 0.63/1.25 | 0.37/0.74 | 0.51/1.10 | 041/0.90 | 0.32/0.70 | 0.45/0.94
S-LSTM [1] 1.09/235 [ 0.79/1.76 [ 0.67/1.40 [ 0.47/1.00 | 0.56/1.17 | 0.72/1.54
S-GAN-P [6] 0.87/1.62 [ 0.67/1.37 [ 0.76/1.52 [ 0.35/0.68 [ 0.42/0.84 [ 0.61/1.21
SoPhie [23] 0.70/1.43 [ 0.76/1.67 [ 0.54/1.24 [ 0.30/0.63 [ 0.38/0.78 | 0.54/1.15
CGNS [13] 0.62/1.40 [ 0.70/0.93 [ 0.48/1.22 [ 0.32/0.59 [ 0.35/0.71 [ 0.49/0.97
PIF [14] 0.73/1.65 [ 0.30/0.59 [ 0.60/1.27 [ 0.38/0.81 [ 0.31/0.68 | 0.46/1.00
STSGN [29] 0.75/1.63 [ 0.63/1.01 [ 0.48/1.08 [ 0.30/0.65 [ 0.26/0.57 [ 0.48/0.99
GAT [10] 0.68/1.29 [ 0.68/1.40 [ 0.57/1.29 [ 0.29/0.60 [ 0.37/0.75 [ 0.52/1.07
Social-BiGAT [10] || 0.69/1.29 | 0.49/1.01 | 0.55/1.32 | 0.30/0.62 | 0.36/0.75 | 0.48/1.00

Social-STGCNN || 0.64/1.11 | 0.49/0.85 |

0.44/0.79 \ 0.34/0.53 | 0.30/0.48 | 0.44/0.75

Table 2. ADE / FDE metrics for several methods compared to Social-STGCNN are shown. The models with * mark are non-probabilistic.
The rest of models used the best amongst 20 samples for evaluation. All models takes as an input 8 frames and predicts the next 12 frames.
‘We notice that Social-STGCNN have the best average error on both ADE and FDE metrics. The lower the better.

Ours Kernel 2 Ours Kernel 1

S-GAN

o k\ \ \
\ \ \
\\ \ \\
N \ N
AN N R
NN W\ N
NN \ \
LN A [N
v VY v

R
a

\\\C;\— Ground truth
—-—- Observed
HEl Prediction

Figure 3. Qualitative analysis of Social-STGCNN . We compare models trained with different kernel functions (Kernel 1: equation 8 and
Kernel 2: equation 2) versus previous models. Social-GAN [6] is taken as a baseline for the comparison. Illustration scenes are from the
ETH [21] and UCY [11] datasets. We used the pre-trained Social-GAN model provided by [6]. A variety of scenarios are shown: two
individuals walking in parallel (1)(2), two persons meeting from the same direction (3), two persons meeting from different directions (4)
and one individual meeting another group of pedestrians from an angle (5). For each case, the dashed line is the true trajectory that the
pedestrians are taking and the color density is the predicted trajectory distribution.

Social-STGCNN outperforms all previous methods on the
two metrics. The previous state of art on the FDE metric
is SR-LSTM [30] with an error of 0.94. Our model has an
error of 0.75 on the FDE metric which is about 20% less
than the state of the art. The results in qualitative analysis
explains how Social-STGCNN encourages social behaviors
that enhanced the FDE metric. For the ADE metric, Social-
STGCNN is slightly better than the state-of-art SR-LSTM by
2%. Also, it is better than the previous generative methods
with an improvement ranging in between 63% compared to
S-LSTM [1] and 4% compared to PIF [14]. Interestingly, our
model without the vision signal that contains scene context
outperforms methods that utilized it such as SR-LSTM, PIF
and Sophie.

Inference speed and model size S-GAN-P [6] previously

had the smallest model size with 46.3k parameters. The
size of Social-STGCNN is 7.6K parameters only which is
about one sixth of the number of parameters in S-GAN-P.
In terms of inference speed, S-GAN-P was previously the
fastest method with an inference time of 0.0968 seconds per
inference step. The inference time of our model is 0.002
seconds per inference step which is about 48 x faster than
S-GAN-P. Table 6 lists out the speed comparisons between
our model and publicly available models which we could
bench-mark against. We achieved these results because we
overcame the two limitations of previous methods which
used recurrent architecture and aggregation mechanisms via
the design of our model.

Data Efficiency In this section, we evaluate if the efficiency
in model size leads to a better efficiency in learning from
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Figure 4. The first column is the ground truth, while the other columns illustrate samples from our model. The first two rows show two
different scenarios where pedestrians merge into a direction or meet from opposite directions. The second and third columns show changes

in speed or direction in samples from our model. The last column shows undesired behaviors. The last row show

|| Parameters count | Inference time

S-LSTM [1] 264K (35x) 1.1789 (589x)
SR-LSTM-2 [30] || 64.9K (8.5x) 0.1578 (78.9%)
S-GAN-P [6] 46.3K (6.1x) 0.0968 (48.4x)
PIF [14] 360.3K (47%) 0.1145 (57.3x)
Social- STGCNN || 7.6K | 0.0020

Table 3. Parameters size and inference time of different models
compared to ours. The lower the better. Models were bench-marked
using Nvidia GTX1080Ti GPU. The inference time is the average
of several single inference steps. We notice that Social-STGCNN
has the least parameters size compared and the least inference time
compared to others. The text in blue show how many times our
model is faster than others.

Kernel function | ADE /FDE

af 0.48/0.84
a 0.50/0.84
a’ . 0.48/0.88
Just ones 0.49/0.79
a’ . 0.44/0.75

Table 4. The effect of different kernel functions for the adjacency
matrix A; over the Social-STGCNN performance.

fewer samples of the data. We ran a series of experiments
where 5%, 10%, 20% and 50% of the training data. The
training data were randomly selected. Once selected, we
fed the same data to train different models. Social-GAN is
employed as a comparison baseline because it has least train-
able parameters amongst previous deep models. Figure 6.2

samples.

shows the data learning efficiency experiments results with
mean and error. We notice that our model exceeds the state
of the art on the FDE metric when only 20% of training data
is used. Also, Social-STGCNN exceeds the performance
of Social-GAN on the ADE metric when trained only on
with 20% of the training data. The results also show that
S-GAN-P did not improve much in performance with more
training data, unlike the present model. It is an interesting
phenomenon that S-GAN-P does not absorb more training
data. We assume that this behavior is due to the fact that
GANSs are data efficient because they can learn a distribution
from few training samples. However, the training of GANs
can easily fall into the problem of mode collapse. In com-
parison, the data efficiency of our model comes from the
parameter efficiency.

1.4
1.2
—— FDE SOTA
—+ ADE SOTA
8- FDE Ours
1.0 —@— FDE S-GAN
-}- ADEOurs =
-#- ADE S-GAN
0.8
0.6
0.4
o o o o o
o~ < © (oo} S

Training data %

Figure 5. Model performance versus shrinked training dataset. The
x-axis shows several randomly samples shrink percentages. The
shade represents errors. The same shrinked data were used across
the models. The figure shows our performance versus Social-GAN
which is the closest model in terms of parameter size to ours.
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6.3. Qualitative Analysis

The quantitative analysis section shows that Social-
STGCNN outperforms previous state-of-art in terms of
ADE/FDE metrics. We now qualitatively analyze how
Social-STGCNN captures the social interactions between
pedestrians and takes that into consideration when predict-
ing the distributions. We show cases in which Social-
STGCNN successfully predicts collision free trajectories
between pedestrians coming from different angles, main-
tains parallel walking, and correctly predicts the outcome of
situations where person meets with a group of pedestrians.

We qualitatively compare the prediction results between
Social-GAN [6], Social-STGCNN with Ly norm (equa-
tion 8) as the kernel function and Social-STGCNN with
inverse Ly norm (equation 2) as the kernel function.
Parallel walking In scenarios one and two in figure 3, two
pedestrians are walking in parallel. Usually, when people are
walking in parallel they are tightly connected to each other
and their momentum will be preserved in the future. The
predictions by Social-STGCNN and Social-GAN all show
that these two pedestrians will keep walking in parallel in the
future. However, the predicted density by Social-STGCNN
closely matches with the ground truth trajectory unlike the
deviation we see in Social-GAN.

Using our proposed kernel function agm, ¢ defined in
equation 2 for weighted adjacency matrix helps us model
the social influences between pedestrians better than using
the regular Ly norm kernel function defined in equation 8. It
is shown in scenes one and two that the model with ag;m, ¢
preforms much better in maintaining the relative location
between people walking side by side. In scene five, similar
behavior is observed.

Collision avoidance Scenario three and Scenario four in
figure 3 are scenarios in which two pedestrians are heading
towards similar or opposite directions. A collision could
happen if they maintain their momentum. In scenario 3, two
pedestrians are walking towards a similar direction. The
forecast by Social-GAN acts linearly based on the momen-
tum of the pedestrians and may lead to a collision. In the
forecast of Social-STGCNN , we notice that the trajectories
are adjusted slightly such that they both avoid collision and
align well with the observed momentum of pedestrians. As a
result, Social-STGCNN matches better with ground truth. In
scenario four, Social-GAN fails to avoid the collision, while
ours shows a realistic collision free path prediction.
Individual meeting a group A more complex scenario is
case five in figure 3, in which one person meets a group of
parallel walking individuals. Our model suggests that the
group of people still walk in parallel while adjusting their
heading direction to avoid collision. In this case, although
neither our model nor Social-GAN capture the ground truth
trajectory very well, the predicted distribution by our model
still makes sense from the social interaction point of view.

Diversity in samples and social behaviors In order to un-
derstand in detail how Social-STGCNN generates samples,
we plot the samples generated from predicted bi-variate
Gaussian distributions. There are two different scenarios
in figure 4. In the first scene, three people meet from op-
posite directions. In the other scene, two people merge at
an angle. Several patterns of samples could be generated
by the predicted distributions. In column two in figure 4,
the generated samples adjusts the advancing direction to
avoid possible collisions in both scenes. Another social at-
tribute of pedestrians is to slow down or accelerate to avoid
crash. Samples in the third column in figure 4 capture this
attribute. This analysis shows that our samples encode dif-
ferent expected social behaviors of pedestrians. However,
some samples show undesired behaviors such as collision or
divergence in the last column. More cases of these undesired
behaviors are in the last row of figure4.

7. Conclusion

In this article, we showed that a proper graph-based

spatio-temporal setup for pedestrian trajectory prediction
improves over previous methods on several key aspects, in-
cluding prediction error, computational time and number
of parameters. By applying a specific kernel function in
the weighted adjacency matrix together with our model de-
sign, Social-STGCNN outperforms state-of-art models over
a number of publicly available datasets. We also showed
that our configuration results in a data-efficient model and
can learn from few data samples. We also qualitatively ana-
lyze the performance of Social-STGCNN under situations
such as collision avoidance, parallel walking and individual
meeting a group. In these situations, Social-STGCNN tend
to provide more realistic path forecasts than several other re-
ported methods. Furthermore, Social-STGCNN is extremely
efficient computationally, dividing the number of required
parameters by a factor of 8.5, and boosting the inference
speed by up to 48 x comparing to previous models. In the
future, we intend to extend Social-STGCNN to multi-modal
settings that involve other moving objects including bicycles,
cars and pedestrians.
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