2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW)

Dynamic Neural Relational Inference for Forecasting Trajectories

Colin Graber

Alexander Schwing

University of Illinois at Urbana-Champaign

{cgraber2, aschwing}@illinois.edu

Abstract

Understanding interactions between entities, e.g., joints
of the human body, team sports players, etc., is crucial for
tasks like forecasting. However, interactions between enti-
ties are commonly not observed and often hard to quantify.
To address this challenge, recently, ‘Neural Relational In-
ference’ was introduced. It predicts static relations between
entities in a system and provides an interpretable represen-
tation of the underlying system dynamics that are used for
better trajectory forecasting. However, generally, relations
between entities change as time progresses. Hence, static
relations improperly model the data. In response to this,
we develop Dynamic Neural Relational Inference (dNRI),
which incorporates insights from sequential latent variable
models to predict separate relation graphs for every time-
step. We demonstrate on several real-world datasets that
modeling dynamic relations improves forecasting of com-
plex trajectories.

1. Introduction

Relations between entities are versatile and appear ev-
erywhere, often without us noticing. For instance, joints
of the human body are constrained in their movement by a
skeleton, team sport players move in practiced formations,
and traffic patterns emerge due to enforced rules and respect
for our peers. Despite distinct temporal dynamics between
entities which emerge in many different situations, it is ex-
tremely challenging to explicitly characterize and recover
them from observed trajectories. This is in part due to the
fact that there are little to no ground truth labels available.
For instance, team sport players often have a hard time spec-
ifying the causes of their reactions.

Due to this difficulty, in recent years a considerable
amount of work has been invested to develop methods
which retrieve those interactions. However, many of those
methods only recover interactions implicitly, e.g., via graph
networks [43, 34, 39, 18,47, 11, 46] or via attention [32, 3].
Implicitly characterizing and exploiting relations doesn’t
grant much insight into the underlying system, as these
types of approaches lack an explicitly interpretable com-
ponent. To address this concern, recently, neural relational

Frame 21 Frame 46

Figure 1: Predicted motion of dNRI on capture subject #35
(top row) and all predicted joint relations (bottom row). The
illustrated edges represent those connected to the right heel
which change during these three frames.

Frame 2

inference (NRI) has been proposed [22]. NRI is one of the
first methods which produces an interpretable representa-
tion of the relations between entities in the process of pre-
dicting system dynamics. However, importantly, NRI as-
sumes that these relations remain static across an observed
trajectory. This is a significant restriction: in many systems,
entity relations change over time. Using NRI in those cases
will retrieve interactions averaged over time, which doesn’t
accurately represent the underlying system.

To address this concern, we develop ‘dynamic Neural
Relational Inference’ (dNRI), a method which recovers in-
teractions between entities at every point in time. More
specifically, following NRI, we formulate explicit recovery
of the system interactions as a latent variable model: each
latent variable denotes the strength of a relation between
entities. Using the estimated relational strength, we want
to recover the observed trajectory as accurately as possi-
ble. However, different from NRI, the developed system
estimates latent variables at every point in time (see Fig. |
for an example visualization of these dynamic relations).
Furthermore, we adapt recent advances in sequential latent-
variable models to the NRI framework to learn both a se-
quential relation prior that depends on the history of an in-
put trajectory and an approximate relation posterior which

2160-7516/20/$31.00 ©2020 |IEEE 4383

DOI 10.1109/CVPRW50498.2020.00517

Authorized licensed use limited to: University of Illinois. Downloaded on September 02,2020 at 21:47:52 UTC from IEEE Xplore. Restrictions apply.

takes both past and future variable states into account.

We assess the proposed dNRI method on challenging
motion capture and sports trajectory datasets. We show
the developed technique significantly improves recovery of
the observed trajectories when compared against static NRI.
We additionally demonstrate that the model predicts rela-
tions which change across different phases of the trajecto-
ries, which static NRI cannot possibly achieve.

2. Background: Neural Relational Inference

To uncover interactions between entities of a system, it
is common to study a surrogate task: predicting their trajec-
tories across time. Specifically, given IV entities, let th)
represent the feature vector of entity ¢« € {1,...,N} at
time step ¢, for example position and velocity. The Neu-
ral Relational Inference [22] framework models forecasting
of trajectories x; = (x},...,x}) by first predicting a set of
interactions among the entities. Subsequently, these inter-
actions are used to improve prediction of future trajectories.
The rationale behind this: accurately recovered interactions
permit accurate forecasting.

Formally, interactions between entities take the form of
a latent variable z; ; € {1,...,e} for every pair of entities
1 and j, where e is the number of relation types being mod-
eled. These relations do not have any pre-defined meaning,
but rather the model learns to assign a meaning to each type.
In order to predict both the latent relation variables z; ; and
the future trajectories of the entities, NRI learns a varia-
tional auto-encoder (VAE) [21, 37]. Its observed variables
represent the entity trajectories x and the latent variables
represent the entity relations z. Following a classical VAE,
the following evidence lower bound (ELBO) is maximized:

L($,0) = Eq, (alx) [log po(x|2)] = KL[gy (2[x)[[p(2)], (1)

where ¢ and 6 are trainable parameters of probability distri-
butions. This formulation consists of three primary proba-
bility distributions, which we describe subsequently.

The encoder produces a factorized categorical distribu-
tion of the form g4(z|x) = [[,.; ¢s(2i;x) as a func-
tion of the entire input sequence x. This is done using
a fully-connected graph neural network (GNN) architec-
ture [40, 28, 12] containing one node per entity. This model
learns an embedding for each pair of entities which is then
used to produce a posterior relation probability for every
relation type being predicted.

Given the distribution provided by the encoder, sam-
ples of the relation are used as input in the decoder. The
sampling procedure needs to be differentiable so that we
can update model weights via backpropagation; however,
standard sampling from a categorical distribution is non-
differentiable. Consequently, we instead take samples from
the concrete distribution [33, 20]. This distribution is a con-

tinuous approximation to the discrete categorical distribu-
tion, and sampling from it proceeds via reparameterization
by first sampling a vector g from the Gumbel(0, 1) distribu-
tion and then computing:

z; ; = softmax((h; ; +g)/7), (2)

where h; ; are the predicted posterior logits for z; ; and 7 is
a temperature parameter that controls smoothness of the dis-
tribution. This process approximates discrete sampling in
a differentiable manner and enables to backpropagate gra-
dients from the decoder reconstruction all the way to the
encoder parameters ¢.

The decoder py(x|z) uses a sampled set of interactions
z to assist in predicting the future states of the variables x.
To this end, it factorizes in an autoregressive manner, i.e., it
takes the form

T
Do (X|Z) = Hp9 (Xt+1|X1:t,Z)] (3)
t=1

Similar to the encoder, the decoder model is based on a
GNN. Unlike the encoder, however, a separate GNN is
learned for every edge type. When running message pass-
ing for a given edge (i, 7), the used edge model corresponds
to the prediction made by the input latent variable z; ;. One
can also hard-code an edge type to represent no interaction,
in which case no messages are passed across that edge dur-
ing computation. Kipf et al. [22] experiment with Marko-
vian decoders, in which case the GNN is simply a function
of the previous prediction, and decoders that depend on all
prior states, in which case a recurrent hidden state is up-
dated using the GNN.

The prior p(z) := [[;; p(2;,;) is a uniform indepen-
dent categorical distribution per relation variable. If one
edge is fixed to represent no interaction, the value of the
prior for this edge can be chosen based on the expected spar-
sity of relations for the given problem. This tunes the loss
such that the encoder is biased towards the desired sparsity
level.

The training procedure for NRI consists of the follow-
ing steps: first, the encoder processes the current input x to
predict the posterior relation probability g4 (z|x) for every
pair of entities. Next, a set of relations are sampled from
the concrete approximation to this distribution. Given these
samples z, the final step is to predict the original trajectory
%2, ...,%x". To improve decoding performance and ensure
that the decoder depends on the predicted edges, Kipf et
al. [22] provide the decoder at training time with ground-
truth inputs for a limited number of steps, e.g., 10, and then
predict the remainder of the trajectory as a function of the
previous predictions. The ELBO described in Eq. (1) con-
tains two terms: first, the reconstruction error, which as-
sumes the predicted outputs represent means of a Gaussian

4384

Authorized licensed use limited to: University of Illinois. Downloaded on September 02,2020 at 21:47:52 UTC from IEEE Xplore. Restrictions apply.

it it+1 ir+2 >
2 2 2
Decoder P (sl N P
_____ _){ X [x=1711) %)‘ pox+ [x121) %)’ XX 171),)
(z-1) [g (g1
x Y ry
Encoder ()) L
(. Enooder Lo @) - - L g () - -~ g (e - -
){dezt—llxl:r—lzlzl—Z) } -)’f ol X2 }_ -){ ol X 217 }_ ______ A

Xr+1

Prior H_

Xt—l

XI
Figure 2: The computation graph used by dNRI.

distribution with fixed variance ¢ and consequently takes
the form

xt— %t
- Z Z % + const. %)

T
i t=2
Second, the KL-divergence between the uniform prior and
the predicted approximate posterior, which takes the follow-

ing form:

ZH(q¢ (zi5]x)) + const.)
i

Here, H represents the entropy function. The constant term
is due to the uniform prior, which leads to marginalization
of one of the encoder terms in the loss.

The NRI formulation assumes the relations among all of
the entities to be static. However, we think this assump-
tion is too strong for many applications — the ways in which
entities interact often changes over time. For instance, bas-
ketball players adjust their positioning relative to different
teammates at different points in time. To address this is-
sue, in the following section, we will describe our ‘dynamic
Neural Relational Inference’ (ANRI).

3. Dynamic Neural Relational Inference

To uncover dynamic interactions and better track enti-
ties for which relations change over time, we develop Dy-
namic Neural Relational Inference (dNRI). Specifically, we
predict a separate relation zf,j for every time step t. This
allows the model to respond to entities whose relations
vary throughout a trajectory, thereby improving its ability
to anticipate future states. Using our dNRI formulation re-
quires tracking the evolution of the relations between enti-
ties across time, which was not needed by static NRI. This
requires a novel encoder, decoder, and prior, which are in-
spired by prior work on sequential latent variable modeling
(see Sec. 5 for details). We discuss these components below
after providing an overview of our proposed approach.

3.1. Overview

Predicting separate relations at every time step requires
rethinking the purpose of each of the model components.
As discussed in Sec. 2, the prior is effectively a tunable
component of the loss function. In contrast, to make the
prior more useful in a sequential context, we now require
it to predict the relations between entities at every point in
time given all of the previous states of the system.

In static NRI, the encoder predicts a single edge config-
uration covering an entire set of input trajectories. In con-
trast, here, we task the encoder with understanding the state
of the system at every point in time based on both the past
and the future. This “information” is passed from the en-
coder to the prior during training due to a KL divergence
term of the loss function. This change hence encourages
the prior model to better anticipate future relations.

As a result of sequential relation prediction, the decoder
is now more flexible too: it can use different models at dif-
ferent points in time based on how the system changes. All
of these changes lead to a more expressive model that im-
proves prediction performance. An overview of the compu-
tation graph which we use for dNRI is provided in Fig. 2.
We now describe each of its components in detail.

3.2. Decoder

Our dNRI formulation permits to use any decoder also
developed for static NRI. Importantly however, we obtain
additional flexibility. The primary difference in this stage
is that the relation variable inputs z now vary per time step.
Formally, the decoder model hence factorizes as follows:

T
Do (X‘Z) — Hpe (Xt+1|X1:t’ Zl:t)) (6)

t=1

In practice, this amounts to selecting a model for every edge
at each time step instead of using the same model through-
out the sequence. This allows the decoder to adjust its pre-
dictions based on the state of the system, improving its abil-
ity to model dynamic systems.

3.3. Prior

Since we expect entity relations to vary at each time step,
it is important to capture these changes in the prior distri-
bution. For this, we learn an auto-regressive model of the
prior probabilities of the relation variables, where at each
time step ¢ the prior is conditioned on previous relations as
well as the inputs up to time ¢. This takes the form:

T
Do (Z|X) — Hp¢ (Zt‘XLt,Zl:t_l)) (7)
t=1

The prior architecture which we use is as follows: the input
for each time step is passed through the following GNN ar-

4385

Authorized licensed use limited to: University of Illinois. Downloaded on September 02,2020 at 21:47:52 UTC from IEEE Xplore. Restrictions apply.

\\\

) LSTMenc N

*—ﬁ” pol(x X" 21 ‘ 2

‘ \‘ LSTMpc _>{\) (ZI|X) } O _» _>{ P&(Xt+ Ix ',tZ .t) })A(H_]
N N) J
§ J

_ﬂ pg(Xt+2|X1:t+}Z1:t+l) ‘

. 7N LSTMprior_) p¢(zt+llxl:t+lz1:t) l
LLSTMW fonc| AM} '
!))
/ 1 N -/
1
1

Decoder)

\ Encoder & Prior /

for every pair of entities at every time step. These are aggregated using a forward LSTM to encode the past history of entity
relations and a backwards LSTM to encode the future history of entity relations. The prior is computed as a function of only
the past history, while the approximate posterior is computed as a function of both the past and future. A set of edge variables
are sampled from the approximate posterior, and these are used to select edge models for the decoder GNN. The decoder
evolves a hidden state using this GNN and the previous predictions and predicts the state of the entities at the next time step.

chitecture to produce an embedding per edge per time step:

3.4. Encoder

The role of the encoder is to approximate the distribu-

hl, = x! (8)
. ! felmb (.) . tion of relations at each time step as a function of the en-
v h(ivj)-,l =fe ([hi,l’ hJ}I]) ©) tire input, as opposed to just the past input history. As de-
scribed by Krishnan et al. [24] and Fraccaro et al. [10], the
e—v: h!,=f, Z hfi i (10) true posterior distribution over the latent variables pg(z|x)
'] o is a function of the future states of the observed variables
X. Thus, a key component of our encoder is an LSTM that
vrer h{ e =2 ([oh5,]) AD yoomp

This architecture implements a form of neural message
passing in a graph, where vertices v represent entities ¢ and
edges e represent relations between entity pairs (7, j). Ev-
ery model f is a multilayer perceptron (MLP), and each h
represents intermediate hidden states over the entities or re-
lations during computation. The output of this computation
is the embedding hz i.)emb? which captures the state of the
relations between entities ¢ and j at time .

Each of these embeddings is fed into an LSTM [17]. In-
tuitively, this LSTM models the evolution of the relations
between entities across time. Finally, another MLP trans-
forms the hidden state at each time step into the logits of
the prior distribution. These final two steps are formally
specified as follows:

t—1
h(z‘,j>,prior) ’

12)
pe(z'|x'", 211 = softmax (fprior (hti’j)’prior)) . (13)

ht

(i,5),prior — LSTMoprior (ht

(i,5),emb?

Fig. 3 provides an illustration of the prior model. Note
that, in lieu of passing the previous relation predictions to
the prior as input, we encode the dependence of the prior
on the relations for previous time steps in the hidden state

h(i) prior -

processes the states of the variables in reverse. We re-use
the relation embedding h’é i) emb described previously and
pass these representations through a backward LSTM. The
final approximate posterior is then obtained by concatenat-
ing this reverse state and the forward state provided by the
prior and passing the result into a MLP. The encoder is also
illustrated in Fig. 3, and is formally described via:
t+1

(i,j),enc))
4o (ZEM) |X) :softmax(nc ([h'(fiyj)ﬂnc, hfi’j)}prior}». (15)

Note that the encoder and prior models share parameters, so
we use ¢ to refer to the parameters of both of these models.

Since the model components of dNRI have changed from
static NRI, the training and inference procedures also re-
quire modifications. These will be discussed next.

ht

(i,5),enc

=LSTMene (h@,j)mb, h (14)

3.5. Training/Inference

To train the parameters ¢ and 6 of the encoder/prior and
decoder, we proceed as follows: the input trajectories x are
passed through the GNN model to produce relation embed-
dings hfi)j)ﬂmb for every time ¢ and every entity pair (3, j).
These representations are input into the forward/backward
LSTMs, and the prior p,(z|x) and approximate posterior
¢4(z|x) are computed. We then sample from the approxi-

mate posterior to get predicted relations z. Given these, we

4386

Authorized licensed use limited to: University of Illinois. Downloaded on September 02,2020 at 21:47:52 UTC from IEEE Xplore. Restrictions apply.

then predict the trajectory distribution pg(x|z). Unlike in
the static NRI case, we always provide ground-truth states
to the decoder as input during training, as we observed that
providing ground-truth for a fixed number of steps and then
using predictions as input for the rest of the trajectory per-
formed worse for dNRI. Finally, we calculate the ELBO:
the reconstruction error is computed following Eq. (4), and
the KL divergence is computed as

T

D\ H (a6 (2h51%)) =D a0 (21 %) log py (2 [x ', 2771
t=1 2,
(16)
At test time, we are tasked with predicting future states
of the system. This means that we cannot utilize the en-
coder to predict edges, as we do not have the proper infor-
mation about the future. Therefore, given previous predic-
tions x1*, we compute the prior distribution over relations
pg (z"1]x1*, 2"'~1). We sample from the prior to obtain
relation predictions z‘, and use this as well as our previ-
ous predictions to estimate the next state of the variables
po (x"T1|x"* z'*). This process continues until the entire
trajectory is predicted.

4. Experiments

To show dNRI’s strengths compared to static NRI, we
provide experimental results on synthetic particle, human
motion capture, basketball player, and traffic trajectory
datasets. To show the operation of our models, we addition-
ally visualize sample trajectories and predicted relations.

Unless otherwise specified, we compare the following
models and architectures: for the dNRI encoder/prior GNN,
fembs fL, fL, and f2 are all two-layer MLPs with 256 hid-
den/output units and ELU activations. The LSTM models
used by the prior and the encoder use 64 hidden units. Both
forior and feqe are 3-layer MLPs with 128 hidden units and
ReLU activations. The static NRI encoder consists of the
exact same GNN architecture with the exception that the
input into femp consists of the entire input trajectory. In
this case, the encoder logits are produced by passing hemp
through a 3-layer MLP with 256 hidden units and a number
of output units equal to the number of relation types being
modeled. This is equivalent to the MLP encoder described
by Kipf et al. [22], except we add an additional MLP to the
output of the GNN. We use the recurrent decoder described
by Kipf et al. [22] in Eqs. 13-17 and in C.5 for both static
and dynamic NRI. Addditionally, every model hard-codes
the first edge type to represent no interaction.

For evaluation purposes, models are provided with n ini-
tial time steps of input and are tasked with predicting some
number of future steps. When evaluating the static model,
we use two different inference procedures: the first, labeled
as ‘Static NRI’, uses the provided initial n time steps of in-

0.005 : 3
Static NRI ;
—— dNRI
0.004 r
-
-
-
0.003 -
w
(%)
= i
0.002 =
0.001 et =
' // 0069 ‘n‘
0.000 f
0 10 20

Step
Figure 4: Synthetic data trajectory prediction errors and re-
lation prediction visualization.

put to predict relation types; these relations are then used
for decoding the entire end of the trajectory. The second
inference procedure, labeled as ‘Static NRI, “Dynamic” In-
ference’, re-evaluates the relation predictions using the most
recent n trajectory predictions.

In addition to the NRI-based models, we study addi-
tional simple baselines: SingleLSTM predicts the trajec-
tory for each independently using an LSTM with shared
parameters. JointLSTM predicts the trajectories for all of
the entities jointly using an LSTM, i.e., both the inputs
and outputs are the concatenated states of all entities. FC-
Graph uses the same decoder architecture as dNRI, but as-
sumes a fully-connected graph with one edge type at ev-
ery time step. Further details and prediction visualizations
can be found in the Appendix. Code used to implement
these models and run these experiments can be found at
https://github.com/cgraber/cvpr_dNRI.

4.1. Synthetic Physics Simulations

The purpose of these experiments is to evaluate the abil-
ity of dNRI to recover ground-truth dynamic relations. For
this we consider a synthetic dataset constructed to contain
dynamic relations. Each trajectory consists of three par-
ticles: the first two (red) move with a constant velocity in
some direction. The third (blue) is initialized with a random
velocity, but is additionally “pushed” away by the other par-
ticles whenever the distance separating them is less than 1.

Our findings are summarized in Fig. 4. Static NRI, with
average relation prediction F1 of 27.1, is unable to model
the dynamic relations, and performs worse than dNRI,
which has average relation prediction F1 of 54.3.

4.2. Motion Capture Data

Next we study motion capture recordings from several
subjects taken from the CMU motion capture database [8].
We run experiments on two subjects: the first, #35, is the
same subject evaluated by Kipf ef al. [22] and consists of
walking trajectories. The second, #118, consists of trials
where the subject stands stationary for a differing amount
of time and then jumps forward. For the former subject, we
follow Kipf et al. [22]: train using sequences of length 50

4387

Authorized licensed use limited to: University of Illinois. Downloaded on September 02,2020 at 21:47:52 UTC from IEEE Xplore. Restrictions apply.

0.008 0.008
0.0014) —— FCGraph 0.00141 —— FCGraph 0.007| — FCGraph 0.007] — FCGraph
0.0012 SingleLSTM 0.0012 SingleLSTM : SingleLSTM ! SingleLSTM
—— JointLSTM —— JointLSTM 0.0061 —— JointLSTM z 0.0061 —— JointLSTM
0.00107 —— Static NRI ‘ 0.00101 —— static NRI 0.005| — Static NRI 7, 0.005{ — Static NRI
w 0.0008] — S- NRI, "Dyn." Inf. w 0 0008] — S-NRI, "Dyn." Inf. w —— S.NRI, "Dyn." Inf. 7, w — S.NRI, "Dyn." Inf.
2 dNRI 2 —— dNRI 20.004) __ gnRi 20.0047 ___ gnRi
0.0006 0.0006 0.003 0.003
0.0004 0.0004 0.002 0.002
0.0002 0.0002 0.001 0.001
0.0000 20 40 0.0000% 20 40 0.0007 10 20 30 a0 2009 10 20 30 40

Step
(a) #35, 2 relation types

Step

(b) #35, 4 relation types

Figure 5: Trajectory prediction errors on motion capture data.

representing standard deviation.

dNRI

Static NRI

S. NRI (Dyn.)

Frame 2 Frame 21 Frame 46

Figure 6: Sample predictions for dNRI (top row), static
NRI (middle row), and static NRI with “dynamic” inference
(bottom row) on a test trajectory for motion capture subject
#35 using 4 relation types. The red, solid skeleton repre-
sents the ground-truth state, and the blue, dotted skeleton
represents model predictions.

and evaluate on sequences of length 99 by providing the first
50 frames and predicting the following 49 frames. Due to
the lack of regular motion in the trials for subject 118, how-
ever, we cannot evaluate in the same way — the initial sta-
tionary period varies per trial and provides no information
about the jumping motion. Instead, we evaluate as follows:
after providing the models with the initial 50 frames of a
given trial, we save the current encoder/prior/decoder states
and predict the next 40 frames. We then restore the previ-
ous states, provide the model with the next step of input,
and then predict another 40 frames. This process continues
until the end of the trial is reached. We then average the
errors for every number of steps, between 1 and 40, since
ground-truth states were provided to the model. Separate
models are trained to predict two and four relation types.

Fig. 5a and Fig. 5b display the prediction errors for sub-
ject #35. The dNRI models are able to predict future trajec-
tories better than both the static NRI models and the simpler
baselines. As demonstrated in Fig. 6, the dNRI model is

Step
(c) #118, 2 relation types

Step

(d) #118, 4 relation types

Results are averaged across 5 initializations, with shaded area

dNRI

Static NRI

S. NRI (Dyn.)

Figure 7: Sample predictions for dNRI (top row), static
NRI (middle row), and static NRI with “dynamic” inference
(bottom row) on a test trajectory for motion capture subject
#118 using 4 relation types. The red, solid skeleton repre-
sents the ground-truth state, and the blue, dotted skeleton
represents model predictions. Each frame is predicted 20
time steps after the most recent ground-truth was provided.

able to predict many frames into the future of the walk cy-
cle without straying too far from the ground-truth skeleton.
In contrast, the static NRI model makes significant errors
much earlier, reaching a point where significant deformi-
ties in the skeleton appear. A visualization of some of the
predicted edges for this trajectory are shown in Fig. 1. We
observe that, relative to the ‘heel’ of the skeleton, different
relation types are active when picking it up, moving it for-
ward, and placing it back down. This indicates that different
models are useful during these three phases of movement.
Fig. 5c and Fig. 5d display the prediction errors for sub-
ject #118. Once again, the dNRI models outperform the
static NRI models in predicting the future, while performing
comparably to the other baselines. However, unlike these
baselines, dNRI aids with prediction interpretation, i.e., re-
lation prediction. Fig. 7 shows four predicted time steps for
the static and dynamic models, each of which is the 20th
step of prediction after the most recent ground-truth states
were provided. All models are able to capture the general

4388

Authorized licensed use limited to: University of Illinois. Downloaded on September 02,2020 at 21:47:52 UTC from IEEE Xplore. Restrictions apply.

—— FCGraph
SingleLSTM

0.015} — jointLSTM
Static NRI
W 0,010, — S-NRI, "Dyn." Inf.
=

—— dNRI

0.005

0.000

5 10 15
Step

Figure 8: Prediction errors (left) and sample trajectory predictions (right 3) on basketball data. From left to right, these plots
represent ground-truth, static NRI, and dNRI (ours). The first 40 frames are provided to the models (transparent), and the

models are tasked with predicting the final 9 frames (solid).

Figufe 9: Edge predictions corresponding to dNRI predic-
tions in Fig. 7. The displayed edges represent those con-
nected to the left hand which change during these frames.

jumping motion, but dNRI much more accurately tracks the
locations of the leg and hip joints. Fig. 9 visualizes edges
used to make these predictions. The relations predicted by
the model during the jump preparation phase differ from
the relations predicted while the subject is in the middle of
jumping. The static model cannot select different relations
between different movement phases, and therefore is less
flexible than the dynamic model.

4.3. Basketball Data

We next study basketball player trajectory data [53].
Each trajectory contains the 2D positions and velocities of
the offensive team, consisting of 5 players. They are pre-
processed into 49 frames which span approximately 8 sec-
onds of play. All models are trained on the first 40 frames of
the training trajectories; at evaluation time, the models are
provided with either the first 30 or 40 frames of input and
are tasked with predicting the remaining frames. We train
models predicting two relation types.

Fig. 8 displays the prediction errors on the test data for
these experiments. On this data, dNRI significantly outper-
forms the static NRI model in predicting the future trajec-
tory of the players. Fig. 8 also presents a sample player
trajectory from the validation dataset, and Fig. 10 displays
the predicted edges during the third and 45th time steps.

Figure 10: Sample predicted edges for basketball data. The
top row represents static NRI, and the bottom row repre-
sents ANRI (ours).

The static model mispredicts the general path of the red
and blue players, while dNRI is able to capture the cor-
rect movement direction. This may be a consequence of
the predicted edges: the static model does not predict a re-
lation between the orange player and either the red or the
blue player, and therefore the model does not use the path
of the orange player to inform their trajectories. In contrast,
the dynamic model predicts a relation between these players
at the beginning of the trajectory, which informs the initial
movement of these entities. In the later frame, the dynamic
model no longer predicts these relations, indicating they are
not useful to predict the motion of these entities at this time.

4.4. Traffic Trajectory Data

Finally, we study the newly-introduced inD traffic
dataset [5]. This dataset consists of recorded vehicle, bicy-
cle, and pedestrian trajectories at traffic intersections. Dif-
ferent from the other studied datasets, the number of entities
being tracked varies over time as they enter/leave the area.

4389

Authorized licensed use limited to: University of Illinois. Downloaded on September 02,2020 at 21:47:52 UTC from IEEE Xplore. Restrictions apply.

Consequently, RNN models 010
or static NRI are not ap-
plicable: they assume pres-
ence of the same entities at 0.06
all times. The data con-
tains 36 recordings; we use
19/7/10 for train, validation, 0.02
and test. For evaluation, we 0.00
divide each recording into 0 10 20 30 40
sequences of 50 steps. For step .
each entity that is present E1gure 11: Tre'gectory predic-
. . . tion errors on inD dataset.
in the sequence, we provide
the model with ground-truth
position and velocity for the first 5 steps it is present, after
which the model forecasts the remainder of its trajectory.
Fig. 11 presents results on this data for dNRI, trained
with 4 relations, against an FCGraph baseline. dNRI, which
has the ability to model multiple types of interactions be-
tween different entities, outperforms FCGraph by a margin.

—— FCGraph
0.081 —— dNRI (4 edge)

MSE

0.04

5. Related Work

Related to our developed ‘dynamic Neural Relational In-
ference’ (dNRI) is the recently introduced static NRI [22].
NRI is an unsupervised model which explicitly represents
and infers interactions purely from observational data. For
this, a variational auto-encoder model [21, 37] is formulated
where the latent code represents the underlying interaction
graph in the form of an adjacency matrix. Both the en-
coder and reconstruction models are based on graph neural
nets [40, 28, 12]. Different from our dNRI, this static ver-
sion assumes that the interaction remains identical across
time. While this assumption is valid for some systems, it is
violated most of the time. We address this concern by devel-
oping a model that predicts separate relations at every point
in time. Additionally, an independent uniform prior per la-
tent variable is used, whereas we learn a data-dependent se-
quential prior. Other recent work has attempted to extend
NRI in other ways, e.g., by using factorized graphs [49] or
including additional structural priors [27]. These extensions
are orthogonal to our approach.

Many prior works have attempted to learn the dynamics
of various types of systems. These include physical sys-
tems, using data from simulated trajectories [4, 16, 6, 35,

] or generated video data [48, 46], human motion [1, 25,

, 50, 51, 38], and simulated or real agents [44, 19, 52].
Different from our work, these methods either know/assume
the underlying graph structure or infer interactions implic-
itly. Attention mechanisms [32, 3, 41, 42] can also be
viewed as uncovering the interactions of systems, and they
have been used previously as a component of graph neu-
ral networks [34, 18, 47, 11, 46, 36]. However, different
from these works, we explicitly infer interactions over the
latent graph structure. There have been attempts to discover

relations in other settings as well, including causal reason-
ing [14] and computational neuroscience [29, 30].

A recent line of work has investigated sequential ver-
sions of latent variable models that extend the variational
auto-encoder to sequential data. Deep Kalman filters [24],
though motivated as an extension to Kalman filters with
nonlinear transition/observation functions, learn an autore-
gressive approximate posterior over the latent state vari-
ables within a VAE framework which is a function of both
past and future observation states. Other related works are
motivated as introducing stochastic variables into recurrent
neural net models. These include VRNN [7], which learns
a smoothing prior/approximate posterior which is the func-
tion of past inputs at every time step, SRNN [10], whose
prior/approximate posterior are a function of the entire in-
put at every time step, and Z-Forcing [13], which uses a
similar prior/approximate posterior but provides the pre-
dicted latent variables as input to the decoder. Aneja et
al. [2] apply a similar model to the task of image caption-
ing, but they use separate hidden states for the encoder and
decoder. We differ from these approaches in several ways:
most importantly, our latent variables have an explicit in-
terpretation that represent relations between entities, while
theirs do not have a direct interpretable meaning. In ad-
dition, we apply our model to predict the future of a pro-
vided input trajectory, while their models are used to an-
alyze the structure of text/speech and to generate realis-
tic samples from the training distribution. Similarly, other
works which predict trajectories using latent-variable ap-
proaches (e.g., [26, 9, 23, 45]) differ in that the learned la-
tent variables represent the state of individual entities or a
scene rather than interactions. Several of these works aug-
ment the ELBO with additional auxiliary losses to improve
performance. A similar loss may be able to improve the
performance of dNRI, which we leave to future work.

6. Conclusions

We introduced Dynamic Neural Relational Inference,

extending the NRI framework to systems where the rela-
tions between entities are expected to change across time.
We demonstrated that modeling dynamic entity relations
leads to better performance across various tasks. In the fu-
ture, we will investigate whether we can adapt additional
methods used by recent sequential latent variable models,
such as auxiliary loss functions, to further improve perfor-
mance.
Acknowledgements. This work is supported in part
by NSF under Grant No. 1718221 and MRI #1725729,
UIUC, Samsung, 3M, Cisco Systems Inc. (Gift Award CG
1377144) and Adobe. We thank Raymond Yeh for visual-
ization code, Yurii Vlasov for the helpful discussions, and
Cisco for access to the Arcetri cluster.

4390

Authorized licensed use limited to: University of Illinois. Downloaded on September 02,2020 at 21:47:52 UTC from IEEE Xplore. Restrictions apply.

References

(1]

(2]

(3]

(4]

(51

(6]

(71

(8]

(91

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

(18]

[19]

[20]

A. Alahi, K. Goel, V. Ramanathan, A. Robicquet, L. Fei-Fei,
and S. Savarese. Social Istm: Human trajectory prediction in
crowded spaces. In Proc. CVPR, 2016. 8

J. Aneja, H. Agrawal, D. Batra, and A. Schwing. Sequential
latent spaces for modeling the intention during diverse image
captioning. In Proc. ICCV, 2019. 8

D. Bahdanau, K. Cho, and Y. Bengio. Neural machine trans-
lation by jointly learning to align and translate. In Proc.
ICLR, 2015. 1, 8

P. W. Battaglia, R. Pascanu, M. Lai, D. Rezende, and K.
Kavukcuoglu. Interaction networks for learning about ob-
jects, relations and physics. In Proc. NIPS, 2016. 8

J. Bock, R. Krajewski, T. Moers, S. Runde, L. Vater, and
L. Eckstein. The ind dataset: A drone dataset of naturalis-
tic road user trajectories at german intersections. In arXiv
preprint arXiv:1911.07602, 2019. 7

M. B. Chang, T. Ullman, A. Torralba, and J. B. Tenenbaum.
A compositional object-based approach to learning physical
dynamics. In Proc. ICLR, 2017. 8

J. Chung, K. Kastner, L. Dinh, K. Goel, A. C. Courville, and
Y. Bengio. A recurrent latent variable model for sequential
data. In Proc. NIPS, 2015. 8

CMU. Carnegie-mellon motion capture database, 2003. 5
N. Deo and M. M. Trivedi. Convolutional social pooling for
vehicle trajectory prediction. In Proc. CVPRW, 2018. 8

M. Fraccaro, S. K. Sgnderby, U. Paquet, and O. Winther.
Sequential neural models with stochastic layers. In Proc.
NIPS, 2016. 4, 8

V. Garcia and J. Bruna. Few-shot learning with graph neural
networks. In Proc. ICLR, 2018. 1, 8

J. Gilmer, S. S. Schoenholz, P. F. Riley, O. Vinyals, and G. E.
Dahl. Neural message passing for quantum chemistry. In
Proc. ICML, 2017. 2,8

A. Goyal, A. Sordoni, M.-A. Coté, N. R. Ke, and Y. Bengio.
Z-forcing: Training stochastic recurrent networks. In Proc.
NIPS, 2017. 8

C. Granger. Investigating causal relations by econometric
models and cross-spectral methods. Econometrica, 1969. 8
A. Gupta, J. Johnson, F. Li., S. Savarese, and A. Alahi. Social
gan: Socially acceptable trajectories with generative adver-
sarial networks. In Proc. CVPR, 2018. 8

N. Guttenberg, N. Virgo, O. Witkowski, H. Aoki, and R.
Kanai. Permutation-equivariant neural networks applied
to dynamics prediction. arXiv preprint arXiv:1612.04530,
2016. 8

S. Hochreiter and J. Schmidhuber. Long short-term memory.
Neural Computation, 1997. 4

Y. Hoshen. Vain: Attentional multi-agent predictive model-
ing. In Proc. NIPS, 2017. 1, 8

B. Ivanovic and M. Pavone. The trajectron: Probabilistic
multi-agent trajectory modeling with dynamic spatiotempo-
ral graphs. In Proc. ICCV, 2019. 8

E. Jang, S. Gu, and B. Poole. Categorical reparameterization
with gumbel-softmax. In Proc. ICLR, 2017. 2

4391

[21]

(22]

[23]

[24]

[25]

(26]

(27]

(28]

(29]

[30]

(31]

(32]

[33]

(34]

(35]

[36]

(37]

(38]

[39]

D. P. Kingma and M. Welling. Auto-encoding variational
bayes. In Proc. ICLR, 2014. 2, 8

T. Kipf, E. Fetaya, K.-C. Wang, M. Welling, and R. Zemel.
Neural relational inference for interacting systems. In Proc.
ICML,2018. 1,2,5,8

V. Kosaraju, A. Sadeghian, R. Martin-Martin, 1. Reid, H.
Rezatofighi, and S. Savarese. Social-bigat: Multimodal tra-
jectory forecasting using bicycle-gan and graph attention
networks. In Proc. NeurIPS, 2019. 8

R. G. Krishnan, U. Shalit, and D. Sontag. Deep Kalman
Filters. In https://arxiv.org/abs/1511.05121,2015. 4, 8

H. M. Le, Y. Yue, P. Carr, and P. Lucey. Coordinated multi-
agent imitation learning. In Proc. ICML, 2017. 8

N. Lee, W. Choi, P. Vernaza, C. B. Choy, P. H. S. Torr, and
M. Chandraker. Desire: Distant future prediction in dynamic
scenes with interacting agents. In Proc. CVPR, 2017. 8

Y. Li, C. Meng, C. Shahabi, and Y. Liu. Structure-informed
graph auto-encoder for relational inference and simulation.
In ICML Workshop on Learning and Reasoning with Graph-
Structured Data, 2019. 8

Y. Li, D. Tarlow, M. Brockschmidt, and R. Zemel. Gated
graph sequence neural networks. In Proc. ICLR, 2016. 2, 8
S. Linderman and R. Adams. Discovering latent network
structure in point process data. In Proc. ICML, 2014. 8

S. Linderman, R. Adams, and J. Pillow. Bayesian latent
structure discovery from multi-neuron recordings. In Proc.
NIPS, 2016. 8

L-J. Liu*, R. Yeh*, and A. G. Schwing. PIC: Permutation
Invariant Critic for Multi-Agent Deep Reinforcement Learn-
ing. In Proc. CORL, 2019. * equal contribution. 8

M.-T. Luong, H. Pham, and C. D. Manning. Effective ap-
proaches to attention-based neural machine translation. In
Proc. EMNLP, 2015. 1,8

C.J. Maddison, A. Mnih, and Y. W. Teh. The concrete distri-
bution: a continuous relaxation of discrete random variables.
In Proc. ICLR, 2017. 2

F. Monti, D. Boscaini, J. Masci, E. Rodola, J. Svoboda, and
M. M. Bronstein. Geometric deep learning on graphs and
manifolds using mixture model cnns. In Proc. CVPR, 2017.
1,8

D. Mrowca, C. Zhuang, E. Wang, N. Haber, L. Fei-Fei, J.
Tenenbaum, and Daniel L. Yamins. Flexible neural repre-
sentation for physics prediction. In Proc. NeurIPS, 2018. 8
M. Narasimhan, S. Lazebnik, and A. G. Schwing. Out of the
Box: Reasoning with Graph Convolution Nets for Factual
Visual Question Answering. In Proc. NeurIPS, 2018. 8

D. J. Rezende, S. Mohamed, and D. Wierstra. Stochastic
backpropagation and approximate inference in deep genera-
tive models. In Proc. ICML, 2014. 2, 8

A. Rudenko, L. Palmieri, M. Herman, K. M. Kitani, D. M.
Gavrila, and K. O. Arras. Human motion trajectory predic-
tion: A survey. arXiv preprint arXiv:1905.06113,2019. 8
A. Santoro, D. Raposo, D. G. Barrett, M. Malinowski, R.
Pascanu, P. Battaglia, and T. Lillicrap. A simple neural net-
work module for relational reasoning. In Proc. NIPS, 2017.
1

Authorized licensed use limited to: University of Illinois. Downloaded on September 02,2020 at 21:47:52 UTC from IEEE Xplore. Restrictions apply.

[40] F. Scarselli, M. Gori, A. C. Tsoi, M. Hagenbuchner, and G.
Monfardini. The graph neural network model. IEEE Trans.
on NN, 2008. 2, 8

[41] L. Schwartz, A. G. Schwing, and T. Hazan. High-Order At-
tention Models for Visual Question Answering. In Proc.
NIPS, 2017. 8

[42] I. Schwartz, S. Yu, T. Hazan, and A. G. Schwing. Factor
Graph Attention. In Proc. CVPR, 2019. 8

[43] S. Sukhbaatar, A. Szlam, and R. Fergus. Learning multiagent
communication with backpropagation. In Proc. NIPS, 2016.
1

[44] C. Sun, P. Karlsson, J. Wu, J. Tenenbaum, and K. Murphy.
Stochastic prediction of multi-agent interactions from partial
observations. In Proc. ICLR, 2019. 8

[45] C. Tang and R. R. Salakhutdinov. Multiple futures predic-
tion. In Proc. NeurIPS, 2019. 8

[46] S. Van Steenkiste, M. Chang, K. Greff, and J. Schmidhuber.
Relational neural expectation maximization: Unsupervised
discovery of objects and their interactions. In Proc. ICLR,
2018. 1,8

[47] P. Veli¢kovié, G. Cucurull, A. Casanova, A. Romero, P. Lio,
and Y. Bengio. Graph attention networks. In Proc. ICLR,
2018. 1, 8

[48] N. Watters, D. Zoran, T. Weber, P. Battaglia, R. Pascanu,
and A. Tacchetti. Visual interaction networks: Learning a
physics simulator from video. In Proc. NIPS, 2017. 8

[49] E. Webb, B. Day, H. Andres-Terre, and P. Li6. Factorised
neural relational inference for multi-interaction systems. In
ICML Workshop on Learning and Reasoning with Graph-
Structured Data, 2019. 8

[50] Z. Xu, Z. Liu, C. Sun, K. Murphy, W. T. Freeman, J. B.
Tenenbaum, and J. Wu. Unsupervised discovery of parts,
structure, and dynamics. In Proc. ICLR, 2019. 8

[51] Y. Ye, M. Singh, A. Gupta, and S. Tulsiani. Compositional
video prediction. In Proc. ICCV, 2019. 8

[52] R. Yeh, A. G. Schwing, J. Huang, and K. Murphy. Diverse
Generation for Multi-agent Sports Games. In Proc. CVPR,
2019. 8

[53] Y. Yue, P. Lucey, P. Carr, A. Bialkowski, and 1. Matthews.
Learning fine-grained spatial models for dynamic sports play
prediction. In Proc. ICDM, 2014. 7

4392

Authorized licensed use limited to: University of Illinois. Downloaded on September 02,2020 at 21:47:52 UTC from IEEE Xplore. Restrictions apply.

