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A B S T R A C T   

The last mile of freight distribution is a critical part of the supply chain because of its significant 
costs and customers’ increasing expectations from e-commerce and same-day delivery services. 
Automated technologies in freight transportation represent an opportunity to develop more ef
ficient systems characterized by the integration of different and complementary modes. In this 
study, we focus on the possibility of implementing an integrated truck-robot system for the last- 
mile delivery. This typology of problem shares similarities with truck-drone problems, although 
robots are characterized by much slower speeds and can perform several consecutive deliveries. 
Based on these particular features, a heuristic that efficiently identifies solutions based on initial 
truck tours and corresponding joint robot operations is presented. This solution approach le
verages a special version of the “Weighted Interval Scheduling Problem,” which allows for a very 
efficient Dynamic Programming solution. The developed solution approach is adopted to analyze 
the influence on efficiency of different features concerning the robot’s design and operation, and 
the surrounding environment. The results show that robot-assisted last-mile delivery systems are 
quite efficient if robots are employed in heavily congested areas and appropriately retrofitted to 
accommodate several compartments in the robot’s storage.  

1. Introduction 

The last mile of freight distribution represents the weakest link of the supply chain and it is a source of considerable congestion 
and pollution externalities (Rodrigue et al., 2009). The future increase of urbanization and the expansion of e-commerce will bring 
additional pressure for the development of effective, innovative “City Logistics” solutions (Savelsbergh and Van Woensel, 2016). 

Technological advances in automation offer the opportunity to develop newer, more sustainable, and more efficient delivery 
systems. In particular, recent technological progress in automated vehicles (e.g. driverless vehicles, robots, unmanned aerial vehicles) 
is creating the ground for the development of innovative delivery models that could transform the landscape of last-mile delivery. 

Automated modes, such as drones and robots, are transitioning from a purely conceptual phase to the actual prototyping and 
testing driven by key players in high-tech services and delivery market. Amazon and Google (Halzack, 2016; Nicas, 2018), and DHL 
and UPS (Hern, 2014; Desjardins, 2018), are all working on the possibility of replacing the more costly traditional truck-based 
delivery process with drones in areas characterized by low accessibility (due to geographical constraints) or long delivery times (due 
to traffic). In order to compensate fuel efficiency and size issues, drones can operate as an assisting mode to traditional freight 
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distribution modes and depart and return to delivery trucks (Joerss et al., 2016). Robots represent an interesting solution as well, 
particularly in urban environments characterized by high densities of stops and relatively short delivery distances. Robots’ storage 
could be divided into different compartments so that each trip could serve more than a single customer at a time (although this 
feature is not currently present in real-world systems) and compensate for their lower speeds. Different companies are already testing 
robots for mail delivery (Bishop, 2016) and food deliveries (Burns, 2016; Coldewey, 2019). In 2016, the truck manufacturer  
Mercedes-Benz Vans started a partnership with Starship Technologies, the maker of six-wheeled delivery robots, to develop an 
integrated delivery service with trucks and robots (Daimler, 2017), as shown in Fig. 1. Here, the truck ferries robots that can swarm 
around the neighbourhood to perform the last few hundred meters of delivery. Robots’ storage is locked and can be opened only by 
the customers with a code. For safety reasons, the robots, which move on sidewalks, travel at pedestrian speeds. Given the limited 
service range (2 miles) and load (about 20 kg), such integrated service seems particularly suitable for the last-mile distribution of 
small-sized items like parcels, groceries and food. In 2019, Amazon too has officially started field-testing its new robot-based delivery 
service, “Amazon Scout,” for same-day package deliveries (Scott, 2019). It is unclear, though, whether these robots would be em
ployed in connection with trucks or independently. 

Although different companies are already considering the employment of delivery robots and running initial tests, little is known 
about the potential gains in delivery time or costs of carriers’ operations. While several theoretical studies have focused on the efficiency 
of drones’ delivery systems in terms of saved delivery times and costs (Murray and Chu, 2015; Carlsson and Song, 2017; Wang et al., 
2017; Ha et al., 2018; Agatz et al. 2018), very few studies have focused on the specific case of robots. Although drones and sidewalk 
robots can be broadly included in the same category of “automated delivery modes”, several differences can be identified. From a design 
perspective, robots are characterized by having higher capacities (20–30 kg vs 2–5 kg) and a potentially higher number of compart
ments (which would ultimately allow two or more consecutive stops in their routes). From an operational perspective, robots are 
characterized by having considerably lower speeds (5–10 kmph vs 50–100 kmph) and longer ranges (5–10 km vs 10–30 km). Based on 
these features, in the near future, robots seem to be more suitable for deliveries of low-value items (e.g. groceries, mail) in dense urban 
environments whereas drones could be more appropriate for deliveries of high priority valuable items (e.g. healthcare and fashion 
products) in remote or rural areas. Finally, robots and drones will probably differ from a regulatory framework as well since the second 
ones seem to face more safety concerns due to their risk of harming people and infrastructure. For this reason, drones may need 
additional licenses for the use of airspace. Along these lines, this study investigates the implementation of a coordinated truck-robot 
delivery service for the last-mile parcel delivery and its possible efficiency gains under different scenarios characterized by different 
traffic conditions, demand configurations, design and system operational features. The analyses are restricted to relatively small sce
narios (neighborhood size with 50 stops) in order to focus on the influence of different factors on reliable scenarios. 

The first contribution of this paper consists in the derivation of an optimization algorithm for the development of efficient 
“mixed” delivery routes where the original truck’s route is modified to include robot trips (sub-tours). The problem is an extension of 
the traditional Traveling Salesman Problem (TSP) and shares similarities with some recent optimization approaches proposed for the 
drone-assisted delivery problem. The main features of the proposed approach consist in the development of initial truck routes and 
their partition into optimal robot sub-tours based on the concept of robot operations. The formulation is a special case of 
“Independent Set Problem” (a NP-hard problem) known as “Weighted Interval Scheduling Problem”, which allows for an efficient 
Dynamic Programming-based solution algorithm. In addition, the proposed approach leverages specific features of the problem, such 
as the lower speed of the ancillary robot and the sequential nature of the problem to reduce the size of the optimization problem. 

The second contribution of this paper consists in a detailed evaluation of the potential benefits of robot-assisted deliveries based 
on different deployment and environmental features. The influence of factors such as traffic speed and congestion, the capacity of 
robot’s storage, and the length of drop-off operations is evaluated in terms of improved efficiency. The results of the analyses lead to a 
broader discussion on the opportunities and challenges for the implementation of integrated delivery service with trucks and robots. 

In this paper, after a brief presentation of previous research on related problems, we provide a description of the robot-assisted 
truck delivery problem. We describe our proposed formulation and solution approach, and we investigate their performance. In the 
final part of the paper, we present the analysis of alternative scenarios characterized by different robots’ operational features and 
deployment conditions, followed by a discussion on implementation and conclusions. 

Fig. 1. Starship delivery robot. (Source: Mercedes-Benz, n.d.)  
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2. Related literature 

The robot-assisted truck delivery problem studied here (hereinafter referred to as Traveling Salesman Problem with Robot or TSP- 
R) can be formulated similarly to other extensions of the “traditional” TSP characterized by the possibility of serving some of the 
customers with ancillary vehicles. Cuda et al. provide a relatively comprehensive overview (Cuda et al., 2015); their article is 
recommended for an in-depth literature review of two-echelon routing problems. However, the most relevant studies are summarized 
below. 

The first extension of TSP to account for a combination of two modes in joint tours and sub-tours is the Truck and Trailer Routing 
Problem (TTRP). In this problem, a truck with a detachable trailer serves two different sets of customers: the first one that can be 
served by either a truck or truck-trailer, and the second one that can be served by a truck alone. The rationale behind this division was 
the presence of accessibility constraints in areas of the city that prevented the employment of large vehicles. In the TTRP, the solution 
that minimizes costs consists of a combination of the main route traveled by two joint vehicles and several truck sub-tours. Different 
heuristics have been adopted to solve this problem, including TABU search (Chao, 2002; Scheuerer, 2006), and Simulated Annealing 
(Lin et al., 2009). Villegas et al. (2011) and Villegas et al. (2013) propose metaheuristics based on a greedy randomized adaptive 
search procedure (GRASP) and use a “cluster-first, route-second” approach. Exacts approaches based on branching optimization 
techniques have been investigated by Drexl (2012) and Drexl (2014). 

Another similar problem is the Traveling Salesman Problem with drones (TSP-D), where deliveries can be performed by means of 
an integrated system of trucks and drones.1 Unlike customers in the TTRP problem, any customer can be served by a drone that is 
launched and picked up by a truck along its route. The drones typically have a flight range and capacity limited to one parcel (only 
one customer can be served per trip). Furthermore, drones’ drop-off and rendezvous operations with the truck need to be coordinated. 
As a result, a considerable number of solutions involving different combinations of launch, pickup nodes and customers served might 
arise even for small problems involving a handful of customers. In the “flying sidekick traveling salesman problem,” Murray and Chu 
(2015) formulate the problem for optimal truck and drone routes by means of a Mixed Integer Programming (MIP) formulation and 
propose different heuristic approaches to solve it. The same formulation has been adopted by Ha et al. (2018) who developed a 
heuristic GRASP based on a split procedure specifically tailored to the TSP-D. Wang et al. (2017) investigate the TSP-D from a worst- 
case point of view by identifying maximal potential savings (compared to the traditional truck-based delivery) from different delivery 
options. Other studies have focused on analytical approaches to identify the efficiency of such combined delivery systems (Carlsson 
and Song, 2017). Finally, Agatz et al. (2018) provide an alternative Integer Programming (IP) formulation of the problem based on 
the concept of “operations” that is adopted to optimally solve the TSP-D problem for instances up to 12 customers. In addition, they 
propose different heuristics based on the combination of local search and dynamic programming techniques. The number of studies 
on the topic of aerial drones and their applications has rapidly grown, and more than a hundred articles have been published between 
2015 and 2017. For a recent up-do-date survey of this issue the reader is referred to Otto et al. (2018). 

To the best of our knowledge, there are only two published papers that have formally investigated the implementation of robot- 
assisted parcel deliveries (Boysen et al., 2018; Jennings and Figliozzi, 2019). In the first study, the proposed delivery system relies 
on small depots where the parcels can be transshipped from the truck to robots in charge of single-item last-mile deliveries. The 
authors investigate optimal scheduling procedures for the delivery truck and the robots’ drop-offs along the truck route by 
adopting different MIP formulations. In the second one, the authors propose a continue approximation model to identify the 
deployment of several robots dropped off and picked up by a single truck at predetermined points. Their corresponding travel time, 
distance, and delivery savings are determined for a specific case study. Two conference papers have also investigated the possi
bility of deploying sidewalk robots in support of truck delivery (Poeting et al., 2019; Sonneberg et al., 2019). In the first study, the 
authors develop a system of micro-depots served by trucks that can be used as hubs for robot deliveries. In the second one, a 
Location Routing Problem involving delivery robots is investigated to determine the efficiency of this new technology and the 
influence of alternative compartment sizes. 

In this study, the TSP-R is considered more as a particular case of the TSP-D since no additional infrastructure is involved and 
the “drop-off” and “pickup” of a single robot needs to be coordinated with the truck delivery stops. There are, however, different 
features of this problem that make it unique among its own kind. In Table 1 we provide a qualitative summary of the main 
differences among the TTRP, TSP-D, and TSP-R based on the available literature. First, since robots, unlike drones, are always 
characterized by lower speeds than trucks, they are suitable for deliveries only in particular situations: relatively small-scale areas 
characterized by a high density of stops. For this reason, in our analyses we focus on scenarios of 50 customers in a 6 km2 area. The 
loading/unloading operations are performed while the truck is stopped for a delivery (the robot cannot re-join the truck while it is 
cruising). Thus, the efficiency of loading/unloading operations becomes critical in the TSP-R (whereas this aspect is relatively 
overlooked in the TTRP and TSP-D). Finally, thanks to the possibility of developing divisible storage, robots can perform more than 
one consecutive delivery. While the addition of two or more storage compartments does not yield significant changes in the 
mathematical formulation from the TSP-D, the corresponding growth of solutions makes the TSP-R computationally more chal
lenging. As a result, the optimization approach presented in this study leverages specific features of the robot problem to derive an 
efficient and accurate heuristic. 

1 Different definitions of the similar versions of the same problem have been found in the literature. In this study we refer to the combined problem 
as TSP-D, as suggested by Agatz et al. (2018). 
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3. Problem formulation and heuristic solution approach 

In this section, after presenting the integer programming formulation of the TSP-R, we present a description of our heuristic 
optimization approach. Such an approach is based on a “route-first cluster-second” method where, by means of a local search, truck 
routes are explored in order to integrate robot deliveries. 

3.1. Integer programming formulation 

The TSP-R described in the previous section is formally described here by means of an IP formulation. This formulation is a 
modification of the TSP-D by Agatz et al. (2018), which is based on the concept of “operation.” Here, an operation consists of a 
sequence of nodes that can be served by the truck with a robot on board, or by a truck and robot that split at a departure node, serve 
nodes independently and rejoin at a pickup node. In particular, given a graph G V E( , ) where the truck starts and finishes its trip 
from/to an entry (or depot) node v0 and serves customers corresponding to l nodes (v v, l1 ), our problem formulation is based on the 
following assumptions:  

1. Each customer node can be visited by a truck or a robot. This is a realistic assumption if we allow customers to come at the 
building entrance for pickup.  

2. Each robot has a maximum capacity of p parcels. As previously discussed, robots’ storage could be retrofitted to accommodate two 
or more compartments.  

3. Robot pickup and drop-off can occur at any node, but cannot occur between two stops. While a more flexible framework with 
additional dedicated stops for pickup and drop-off might be more beneficial, it might not be always feasible (e.g. lack of parking).  

4. Robots can be dropped off only when the truck is ready to leave for the following customer node since it is a procedure supervised 
by the driver, which requires an amount of time tdrop. Picking-up (empty) robots also requires additional time (in addition to the 
wait) expressed as tpickup.  

5. Each delivery operation requires a homogenous period of time tdel. In reality this task is likely to follow a normal distribution, 
however this simplification allows us to focus on analysis of the design and operations of robots.  

6. Orders do not have delivery time-windows, hence there are no time-constraints affecting the order of stops. This is a reasonable 
assumption when considering relatively small sets of customers in the same area (most likely characterized by the same time- 
window). 

Truck nodes are visited by the truck alone. Robot nodes are visited by the robot alone. Combined nodes are nodes that are visited 
by the truck and robot together. An operation o is composed of: two combined nodes, called the start or drop-off node (so) and end or 
pick-up node (eo); no robot nodes, j j j J, , , n o1 2 o such that n po ; and a nonnegative number mo truck nodes, h h h H, , , m o1 1 o . 
An operation may contain a combination of truck and robot nodes or only truck nodes (meaning that the two modes travel jointly). 
Two different types of operations are illustrated in Fig. 2 where the same configuration of four customers is served by either a “joint” 
truck and robot trip or by the two modes working in parallel. (We refer to Agatz et al. (2018) for a more detailed explanation of this 
concept). 

Each operation o is associated with a certain cost co corresponding to the time required to go from the start node to the end node, 
by visiting robot nodes (if any) and truck nodes. The operation’s cost can be derived as: 

=
+ + + + +

+ + + +

= +

= +

c
d s j d j j d j e n t t t

d s h d h h d h e m t
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Table 1 
Main differences between TTRP, TSP-D and TSP-R.       

TTRP TSP-D TSP-R  

Type of area studied Variable (depending on the 
application)* 

Variable (depending on the 
application)** 

Urban area. Downtown/neighborhood 
size 

Drop-off/Pickup points The truck waits for the trailer at the 
same node 

The truck drops and picks up the drone 
in any point 

The truck drops and picks up the robot at 
delivery stops 

Accessibility constraints Some customers can be served only by a 
truck and not a trailer 

Drones can serve any node as long as in 
their service range 
(10 to 20 km round trip) 

Robots can serve any node as long as in 
their service range 
(less than 4 km round trip) 

Efficiency (compared to TSP) – Dependent on operational and design 
constraints 

Dependent on operational and design 
constraints 

“Supporting mode” tour Several deliveries One single delivery One or more consecutive deliveries 

* Typically involves distribution problems in cities where neighborhoods cannot be easily accessed by truck. See Derigs et al. (2013) for a review 
of applications. 

** Ranging from delivery problems in cities with several deliveries to emergency operations in rural areas with low accessibility. See Otto et al. 
(2018) for a review of applications.  
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where d a, b( ) corresponds to the truck travel time from node a to node b, d a, b( )' is the corresponding robot travel time for the same 
couple of nodes, and o is 1 if operation o includes at least one robot note (meaning no  >  0), 0 otherwise. Note that the operation can 
contain only truck nodes with no = 0. Since the robot can rejoin the truck while it is stopped for delivery, the operation cost 
corresponds to the minimum time for the two modes, including truck’s stop at the pick-up node. A feasible operation should respect 
the capacity constraint. 

The solution of the TSP-R could be expressed as the combination of different operations in the set of feasible ones O that 
minimizes the total time required to serve all the customer locations by either truck or robot. In essence, a mixed truck and robot 
route will be composed by a series of operations that connect each node at the minimum cost. Once all the feasible operations are 
created, the integrated routing problem can be formulated as the following IP problem: 

c xmin
o O

o o
(2)  

subject to x v V1,
o O v

o
( ) (3)  

x y v V,
o O v

o v
( ) (4)  

=
+

x x v V,
o O v

o
o O v

o
( ) ( ) (5)  

+
x y S V v v S, { },

o O S
o v

( )
0

(6)  

+
x 1

o O v
o

( )o (7)  

=y 1vo (8)  

x o O{0, 1},o (9)  

y v V{0, 1}, .v (10) 

Here, xo is a binary variable corresponding to 1 if operation o is chosen and 0 otherwise; yv is a binary auxiliary variable corre
sponding to 1 if v is chosen as a start node in at least one operation and 0 otherwise; O v O( ) represents the subsets of operations 
with v as a start node; O v O( )+ represents the subsets of operations with v as an end node, and O v O( ) is the subset of operations 
that visit node v. The subset S V is introduced such that: O S( ) and O S( )+ consist respectively of the subset of operations with start 
node and end node in S, and their corresponding end and start node in V S. Constraint (3) ensures that each node is covered by an 
operation. Constraint (4) ensures that at most one operation with start node v is chosen. Constraint (5) ensures that the chosen 
operations visit each node once and Constraints (6–7) ensure that truck-and-robot tours are connected by ensuring each customer 
node has at least one corresponding operation starting from and finishing there. Constraint (8) ensures that the delivery tour starts 
and ends at the given entry/exit node. 

Fig. 2. Alternative types of operations within a sequence of four customers.  
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As Agatz et al. (2018) notice, it is possible to reduce the total number of operations by selecting the least expensive one among 
those with the same start node, end node, and equal sets of truck nodes and/or robot nodes (if any), but served in different orders. 
However, the number of operations would still grow exponentially, and the computational time required to optimally solve problems 
of any practical size (more than 8–10 customers) would be prohibitive. For this reason, in this study, we develop a heuristic for TSP-R 
(Section 3.2), based on the similar concept of “robot operation” for given truck tours. Such an approach not only significantly 
simplifies the original problem, but also allows for a very efficient computational approach. 

3.2. Heuristic solution approach 

The proposed heuristic is based on the observation that, for a given truck-only route, finding the “optimal set of robot operations” 
that improves such a route corresponds to a particular case of the Maximum Weighted Independent Set Problem known as Weighted 
Interval Scheduling Problem. Such a problem can be solved efficiently and optimally with a dynamic programming algorithm. Hence, 
a “route-first cluster-second” method is adopted, where an initial truck route is created and then the corresponding optimal com
bination of robot operations is obtained with dynamic programming (Section 3.2.1). A Local Search with Adaptive Perturbation (LS- 
AP) where each solution corresponds to a different initial truck route is performed to iteratively improve the TSP-R solutions (Section 
3.2.2). 

3.2.1. Optimal robot deployment for any given truck tour 
Given a truck tour, a “robot operation” consists of a robot sub-tour and it is represented by a sequence of nodes that include a 

drop-off node where the robot departs from the truck (vs) and a pick-up node where the robot rejoins the truck (ve). A robot operation 
can contain from 3 up to (p + 2) nodes (according to the robot capacity constraint p). If the stops in the original truck tour can be 
indexed according to their order as: +n n{0, 1, 2, , , 1}, then a robot operation k can be defined as a subset R such that: 
v n{0, 1, , 1}s and +v n{1, , 1}e and v vs e. Based on this definition, each operation can be identified as a “forward” op
eration or “backward” operation. A forward operation consists of a subset R where all the served customers’ indices in the original 
truck route sequence are lower than the pick-up node. Vice versa, a backward operation consists of a subset R where at least one 
served customer’s index in the original truck route sequence is higher than the pick-up node. 

A robot operation essentially entails that one or more of the original stops truck route can now be served by a robot. Depending on 
the choice of the drop-off and pick-up nodes, the truck can perform several stops while detached from the robot. Given this definition, 
for each robot operation it is possible to identify the corresponding “savings” sk deriving from employing the robot between node vs
and ve: 

= +s c H v v c e( [ , ])k s e k k (11)  

where c H v v( [ , ])s e corresponds to the original truck tour cost between the drop-off and pick-up nodes (including all nodes visited 
in between), ck corresponds to the robot operation’s cost and it is derived from the first argument of the max in Eq. (1), and ek
corresponds to the “extra savings” derived from serving some customers after the pickup node in case of a backward operation. 
Indeed, in some particular situations, if no served node has index between vs and ve, the operation would yield negative savings as the 
original truck route between these two nodes would be unaltered. Such “extra savings” can be derived as follows: 

=e c H v v c H v v( [ , ]) ( '[ , ])k e e0 0 (12) 

where c H' v , v( [ ])e 0 corresponds to the updated cost of the “new” truck route between the pickup node and the exit node with the 
same robot customers removed. In a nutshell, based on this formulation the overall savings of a specific robot operation depends on 
the original sequence of nodes visited by the truck, the drop-off and pickup nodes, and the replaced original truck nodes by robot 
nodes. 

Based on this formulation of robot operations, the “TSP-R sub-problem” for a given truck route, could be straightforwardly 
reformulated as a Maximum Weight Independent Set Problem (MWISP) where the objective is to maximize total savings by selecting 
the optimal combination of robot operations: 

s xmax
k K

k k
(13)  

subject to a x M x k K(1 ),
i

ik i k
(14)  

=x k K{0, 1},k (15) 

where the variable xk indicates whether an operation k with savings sk is chosen, and constraint (14) is introduced to avoid “con
flicting” operations to be chosen together, and it is based on a “preprocessed” K × K size conflict matrix A, where K is the number of 
all potential bot operations. The values of the conflict matrix, aik are equal to 1 if operation i and operation k are conflicting with each 
other, and 0 otherwise. 

Operation i and operation k are considered conflicting if:  

• They have the same drop-off node, i.e., =v ve,i e,k

• They have the same pickup node, i.e., =v vs,i s,k
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• They share any served node: =R R {v , v }i k s,i e,i

• They overlap such that <v ve,i e,k and <v ve,i s,k

Based on this definition and on the fact that each solution is derived from an initial truck route, the connectivity is guaranteed. In 
order to reduce the size of the optimization problem, it is possible to exclude some operations from the set of potential solutions 
without losing the conditions for optimality (Algorithm 1). First, robot operations that yield negative savings can be discarded since 
they would imply an inefficient use of the robot in comparison to just performing deliveries with the truck (for the specific con
figuration envisaged by the operation). Second, it is possible to identify several “dominated” robot operations. For example, among 
robot operations with same drop-off, pickup and served nodes, only the one yielding the highest savings can be considered. In 
addition, among operations with the same drop-off and pickup nodes, it is possible to consider only the one with the highest savings. 
Indeed, regardless of the customers served and their serving order, between the drop-off and pickup node it is not possible to perform 
more than one forward operation. Furthermore, operations are “not affecting” other preceding or following operations. Hence, for the 
principle of optimality, given a set of robot operations with the same drop-off and pickup node, “dominated” ones can be discarded 
from the solution space. 

Another possibility of reduction of bot operations comes directly from the operational features of the TSP-R. For any given truck 
tour, it is possible to exclude a priori some robot operations, based on the fact that the robot is slower than the truck. Given a potential 
drop-off node, if the time required by the robot to reach and serve a potential customer is higher than the cost of completing the 
remaining tour by truck, then such robot operation would yield negative savings, and can hence be discarded from the solution set. 
For each node visited in the original truck route (H), it is possible to identify a “Reachable Set” (S) of customers/nodes that can 
potentially determine positive savings. Considering the Reachable Set of customers allows to accelerate the creation of robot op
erations to different extents, depending on the speed ratio between the two modes, the area served and configuration of customer 
nodes in the area. 

Algorithm 1. (Pseudocode to derive robot operations).   

INPUT: truck tour H 
OUTPUT: robot operation set K 
FOR each customer h in H\{n,n + 1} (following the order of customers served):  

Generate Reachable Set S 
FOR each customer s in S:  

Generate operations sets Pi given by permutation of j served nodes of size i different from the given drop-off h (vs) and pick-up s (ve):  
=P S i( , )i such that i p1 (capacity constraint) and j h k for any j in the permutation set Pi

Set smax = 0 
FOR each operation j in Pi:  

Derive savings sj by means of Eq.11 
IF sj is positive:  

IF sj  >  smax:  
Add operation to the robot operation set K 

END IF 
END FOR 

END FOR 
END FOR  

Given the particular “sequential” nature of the MWISP2 it is possible to relate it to the more specific Weighted Interval Scheduling 
Problem that can be solved very efficiently by means of dynamic programming (DP). 

Each operation k with savings sk can be considered as an interval characterized by a start index =t vk s and a finish index =f vk e in 
case of forward operation or =f v vmax{ , max( )}k e j (where vmax( )j corresponds to the served node with the highest index) in case of 
backward operation. Two operations (or intervals) i and k are “compatible” or non-conflicting if ti fk or vice versa, meaning that they 
do not overlap. Based on that, it is possible to adopt the DP approach proposed by Kleinberg and Tardos (2006) to solve this type of 
problem. Given the set of K robot operations, the algorithm consists of the following steps:  

1. Sort the operations such that f f fK1 2
2. For each operation k calculate ik, which corresponds to the largest positional index i such that i and k are disjoint (highest index of 

compatible prior operation)  
3. For each operation k calculate the optimal solution to the problem, OPT(k), which corresponds to: 

= +OPT k max s OPT i OPT k( ) { ( ), ( 1)}.k k

In order to avoid recursion, it is possible to store the values in global array N of optimal solutions to sub-problems and adopt the 
following iterative algorithm (Algorithm 2): 

2 The initial truck route can be expressed as a sequence of customers served in chronological order. 
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Algorithm 2. (Algorithm to compute optimal robot solutions for a given truck route).   

Set N[-1] = 0 
Set N[0] = 0 
FOR k = 1,…,K:  

N[k] = max{sk + N[i[k]], N[k − 1]}  

4. Compute the solution by “tracing back” through array N 

The algorithm has a complexity O K K( log ) and yields optimal solutions. We refer to Kleinberg and Tardos (2006) for formal proofs 
of the optimality of the algorithm. 

In order to further reduce the computational efforts for problems involving a large number of customers (e.g. 50 or more), the 
original truck route could be divided in smaller chunks where the same approach is adopted for each of them independently. This 
approach would however introduce a loss of efficiency as it would miss operations involving nodes from different segments. 

3.2.2. Iterated local search 
As already discussed in other studies (Cuda et al., 2015), starting with the optimal TSP tour does not necessarily yield the optimal 

solution to the two-echelon or two-mode routing problems. However, it is also expected that TSP-R solutions derived from the 
optimal truck tour are typically better than the majority of solutions obtained from random tours. For this reason, in the first step of 
the algorithm a TSP-R solution is derived from the best truck route and performing a systematic local search with the goal of 
identifying better combined truck and robot solutions by modifying the original truck tour. In Fig. 3, the evolution of the solution in 
the Iterated Local Search (ILS) for a configuration of 15 customers is shown: first, an initial truck-bot configuration is derived from the 
TSP solution; then after the truck route is modified, an improved truck-bot configuration is identified. 

In order to find a suitable balance between an intensified and diversified search (“exploitation vs. exploration”) we adopt an 
adaptive perturbation strategy where two different types of perturbations are applied depending on the current state of search (Benlic 
and Hao, 2013). Its algorithmic steps are illustrated in Algorithm 3. “Directed perturbations” are performed at early steps after a local 

Fig. 3. Example of proposed ILS approach for a route of 15 customers (truck route in solid line and robot routes in dashed line).  

M.D. Simoni, et al.   Transportation Research Part E 142 (2020) 102049

8



improvement is obtained and they consist of the “first” improving 2-opt swap move identified for a random customer in the truck tour 
sequence. In case no improving swap move could be identified for such randomly selected customer, other customers are tried until a 
threshold number of attempts is reached. With increasing number of local searches performed without improvement, diversification 
grows by applying “random perturbations” with higher probability. Random perturbations are characterized by a variable number of 
swap moves selected uniformly at random. The number of moves also depends on the state of the search and increases with con
secutive local searches without improvements. The probability of applying directed perturbations P is derived as follows: 

=P P emax ,
i
T0
wi

(16)  

where P0 corresponds to a minimum given threshold for selecting a directed perturbation, iwi corresponds to the number of local 
search iterations without improvement, and T a given threshold (input parameter). 

Algorithm 3. (Pseudocode for Local Search with Adaptive Perturbation).   

INPUT: Initial (optimal) truck tour H , max total local searchesnl, maximum local searches without improvement nwi
H S H( ) by Algorithm (1–3) %Derive TSP-R Solutions 
S Sbest %Add solution to the best solution 
Set i = 0 and iwi = 0 %Initialize counter total iterations and iterations without improvement 
WHILE <i nl and <i nwi wi:  

Derive P with Eq. (16) %Derive probability of directed perturbation/randomized perturbation 
IF P  <  random(0;1):   

H H( ) 'd %Apply directed perturbation (first improving 2-opt swap move)  
ELSE:   

H H( ) 'r %Apply randomized perturbation 
END IF  
H S H' '( ') %Derive new TSP-R solution 

IF <S S:'

S Sbest %Add new solution to the best solution  
iwi=0 

ELSE:  
iwi= +i 1wi

END IF 
i = i + 1 

END WHILE  

4. Performance of the heuristic approach 

The quality of the proposed heuristic approach is tested for randomly generated instances with different features. Depending on 
the size of the instance considered, the results of the heuristic are compared to the solution of the corresponding integer formulation 
solved with commercial software or with a theoretical lower bound. 

instance 

4.1. Instances 

For the experiments, several instances are randomly derived by varying: the number of customers (8, 15, 30, 50 and 100), the size 
of served area (2 km2, 4 km2, 9 km2, 12 km2, and 15 km2), and the geographical distribution of customers (minimum distance 
between customers ranging from 100 m to 500 m) (Table 2). In total, 68 instances are generated. 

Considering the nature of the problem investigated (the last-mile delivery issue for specific neighborhoods or downtown areas), it 
is reasonable to limit ourselves to relatively small-scale problems (up to 100 customers, although solving optimally a TSP-R involving 
even smaller (say, 12 customers) by means of state-of-the-art IP solvers would already require hundreds of thousands of variables and 
lead to already prohibitive computation times). For these experiments we assume the robot speed =v 1.0 m sr (slightly lower than 
an adult pedestrian’s average speed of 1.4 m/s (Knoblauch et al., 1996)), and the truck speed =v m s6t (in line with the average 
traffic speeds identified in different urban settings across the world (Uber Movement, 2019)). Each delivery requires a stop (tdel) of 
180 s (3 min). These values are in line with Conway et al. (2016) and Allen et al. (2017). Finally, we assume the average pickup/drop- 
off (launch) time =t s60drop . 

4.2. Performance analysis 

In order to investigate the quality of the proposed heuristic, we compare its results with those obtained by solving the problem 
according to the original IP formulation using the commercial optimization solver GUROBI. Preliminary tests have shown that, with a 
laptop machine (i7-7700HQ, 2.80 GHz), it is not possible to solve optimally instances larger than 8 customers in less than a few hours 
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(similarly to previous studies on the TSP-D). Hence, for practical reasons, we focus here on solving optimally only the first 16 
instances (Instance 1–16). In Table 3, the performance of the heuristic is reported for different levels of the robot’s available storage 
capacity (varying p to maximum 1, 2, or 3 customers served consecutively) in comparison to the optimal solutions. The computa
tional effort required to solve the problems to optimality for each level of capacity corresponds respectively to: 190 s, 570 s, and 
1660 s (on average). The average computation time for the heuristic, given a maximum threshold of 1000 local searches (truck route 
iterations), varies between 1.1 and 14.1 s depending on the level of the robot’s capacity. We indicate the original minimum truck cost 
(obtained by solving the corresponding truck-only TSP problem optimally) with τ. The optimal solution values of the TSP-R for three 
different levels of capacity consisting of 1, 2 or 3 maximum items (allowing for more consecutive deliveries per robot trip) are 
indicated respectively with 1, 2, and 3. Since the iterated local search is probabilistic, we report both the best- and worst-case 
performances of the heuristic out of 100 runs for each instance to give a more complete analysis of the heuristic performance. The 
worst and best solutions obtained from 100 runs of the proposed heuristic are indicated respectively with w and b. The average 
percentage gaps between the optimal solution and the results from the heuristic runs are indicated respectively with ¯. 

The results shown in Table 3 indicate that the proposed heuristic, for relatively small instances, achieves results within a 0–0.2% 
gap from the optimal solution of the TSP-R on average. In all the analyzed instances, the heuristic approach was able to obtain, at 
least once (in some cases in all runs), the optimal solution. It is interesting to see that the quality of the heuristic seems independent 
from the maximum capacity of the robots, as the average gap does not increase for increasing levels of capacity. It is also interesting 
to see that, given the relatively small number of customers (8), and speed ratio between robot and truck (1 to 6), both in the optimal 
TSP-R and heuristic solutions, the capacity of robots is not fully utilized for capacity higher than 2. 

For larger instances (Instances 17–68), the results of the heuristic (for single robot capacity) are compared to the solution 
achieved with a regular TSP. We summarize in Fig. 4a-b the results of the experiments for larger instances (Instance 17–68), with the 
standard parameters used in Section 4.1 ( =v 1m sr , =v 6m st , =t s180stop ) and different nl, nwi parameters for the Local Search in 
relation to the size of the problem (respectively 500 and 100 for instances with 15 customers, 200 and 50 for instances with 30 

Table 2 
Overview of the instances.      

Instances Customers Served Area (km2) Customers Spacing (min distance in m)  

1–4 8 2 100 
5–8 8 2 200 
9–12 8 4 200 
13–16 8 9 200 
17–20 15 2 200 
21–24 15 4 200 
25–28 15 4 400 
29–32 15 9 400 
33–36 30 4 200 
36–40 30 4 400 
41–44 30 6 200 
45–48 30 9 400 
49–52 50 6 200 
53–56 50 6 300 
57–60 50 12 300 
61–64 100 9 300 
65–68 100 15 500 

Table 3 
Performance of the proposed heuristic in comparison with the optimal solution.                

Instance 1 w1, b1, 1̄ 2 w2, b2, 2̄ 3 w3, b3, 3̄

1 2158.5 2001.8 2001.8 2001.8 0.00 1829.8 1843.8 1829.8 0.31 1829.8 1848.9 1829.8 0.35 
2 2081 1873.0 1879.3 1873.0 0.03 1741.5 1741.5 1741.5 0.00 1741.5 1741.5 1741.5 0.00 
3 2127.6 1935.5 1935.5 1935.5 0.00 1841.0 1841.0 1841.0 0.00 1841.0 1841.0 1841.0 0.00 
4 2127.6 1997.1 1997.1 1997.1 0.00 1845.0 1880.8 1845.0 0.19 1845.0 1845.0 1845.0 0.00 
5 2085 1863.6 1863.6 1863.6 0.00 1747.3 1747.3 1747.3 0.00 1747.3 1747.3 1747.3 0.00 
6 2261.6 2062.3 2069.1 2062.3 0.03 1933.3 1933.3 1933.3 0.00 1933.3 1933.3 1933.3 0.00 
7 2116.6 1949.3 1949.3 1949.3 0.00 1769.1 1769.1 1769.1 0.00 1769.1 1769.1 1769.1 0.00 
8 2133.3 1893.1 1893.1 1893.1 0.00 1851.5 1851.5 1851.5 0.00 1851.5 1858.0 1851.5 0.21 
9 2410.3 2258.8 2258.8 2258.8 0.00 2060.5 2060.5 2060.5 0.00 2060.5 2060.5 2060.5 0.00 
10 2541.1 2257.6 2294.8 2257.6 0.11 2240.0 2240.0 2240.0 0.00 2240.0 2240.0 2240.0 0.00 
11 2516.3 2387.1 2395.3 2387.1 0.07 2303.3 2303.3 2303.3 0.00 2303.3 2303.3 2303.3 0.00 
12 2264.6 2112.1 2112.1 2112.1 0.00 1912.1 1931.6 1912.1 0.20 1912.1 1912.1 1912.1 0.00 
13 2807.1 2678.3 2678.3 2678.3 0.00 2520.3 2520.3 2520.3 0.00 2520.3 2520.3 2520.3 0.00 
14 2723.1 2426.6 2426.6 2426.6 0.00 2366.6 2366.6 2366.6 0.00 2366.6 2366.6 2366.6 0.00 
15 2884.3 2719.1 2719.1 2719.1 0.00 2536.6 2536.6 2536.6 0.00 2536.6 2536.6 2536.6 0.00 
16 2928 2691.9 2691.9 2691.9 0.00 2691.9 2691.9 2691.9 0.00 2691.9 2691.9 2691.9 0.00 
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customers, 50 and 10 for instances with 50 customers, and 20 and 5 for instances with 100 customers). The full results of the 
experiments are reported in Appendix A. The results obtained for larger instances are in line with those of smaller instances. Although 
it is not possible to directly compare the heuristic solutions with the optimal ones, the achieved savings (in comparison to the TSP 
solution) are consistent for increasing sizes of the problem and always within a 1–2% range from those obtained for Instances 1–16. 
As expected, the average savings achieved with the heuristic vary depending on the typology of scenario investigated. For relatively 
dense configurations (i.e., 15 or more customers within an area of 2 km2, 30 customers or more within an area of 4 km2) the heuristic 
solutions achieve savings between 14% and 17%. However, for sparser configurations (i.e., 15 customers within an area of 4 km2, 30 
customers an area of 9 km2, and 50 customers or more for an area of 12 km2 or more), the savings would decrease to 10–13%. Lower 
spacing among customers (and consequently the higher presence of customer clusters) seems to favor robot utilization and more 
efficient integrated routes (as shown in Fig. 5). 

Finally, although the obtained results are characterized by a decreasing number of maximum local searches in order to manage 
the computational effort, the solution quality does not seem to be significantly affected. In future research, it would be interesting to 
investigate the performance of the heuristic for higher thresholds of local search with more powerful computational resources. 

Overall, the results of the different tests show that the proposed heuristic approach yields to solutions reasonably close to the 
optimal ones, with a high level of confidence particularly in scenarios characterized by relatively small areas and high customer 
density. 

5. Savings and factors of influence 

In this section, different factors influencing the overall performance of truck-robot delivery systems are investigated: the speed of 
traffic and the truck speed, the robot’s storage capacity, and the duration of drop-off operation. Based on the results, some con
siderations on practical implications for the implementation of robot-assisted delivery systems are made. 

Fig. 4. Maximum savings (blue) and minimum savings (red) achieved for different instance sizes (a) and corresponding average computational 
times (b). 

Fig. 5. TS-R solution for different levels of customer density: (a) Instance 35: 30 customers in 4 km2 and (b) Instance 45: 30 customers in 9 km2 

(truck route in solid line and robot routes in dashed line). 
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5.1. Influence of speed ratio between truck and robot 

The influence of the speed ratio between the two modes, which can reflect the effect of traffic congestion and given infrastructure 
(e.g. traffic lights and street configuration) on the efficiency of the robot-assisted delivery system is tested by means of several 
simulations assuming constant robot speed and variable truck speed (Fig. 6). Several randomized delivery scenarios (10) char
acterized by different configurations of 50 customers in an area of 6 km2 are analyzed for a given robot speed of 1 m/s and truck 
speeds ranging from 2 m/s to 8 m/s (respectively corresponding to a travel cost ratio α = 0.5 and α = 0.125). These scenarios could 
represent a 3–4 h portion of alternative truck routes taking place in different types of neighborhood (e.g., commercial vs. residential) 
or different times of the day (e.g. peak and off-peak hours) or even different downtown speeds in certain cities. Such values are 
consistent with the average downtown last-mile speeds3 measured in several cities’ central business districts (Reed and Kidd, 2019). 
For example, 2018 INRIX’s Global Traffic Scorecard reported average values around 4–5 m/s (8–10 mph) for cities like London, Paris, 
and San Francisco. As expected, the most significant savings (over the corresponding TSP solution) occur in situations characterized 
by high levels of congestion where the truck is only two or four times faster than the robot. In these two cases the savings are 
respectively around 21% and 17%. For higher truck (and traffic) speeds, the savings obtained from the usage of robots decrease to 
values around 15%. Interestingly, above a certain truck speed (6 m/s or higher), the amount of savings stabilizes around 15%. This 
phenomenon can be explained by the possibility of reducing the total delivery times thanks to the parallelization of delivery op
erations, which takes 180 s. Indeed, under these assumptions, it is still possible to perform at least one robot operation per twelve 
stops to serve one or two customers. 

Although it is unlikely that motorized traffic would have speeds lower than 2–3 m/s in most of the urban settings worldwide 
(Reed and Kidd, 2019), it is possible that some limited areas would experience temporary increases in travel times due to accidents or 
special events. In these types of situations, robot-assisted deliveries could become particularly beneficial to avoid clusters of con
gestion and reduce the overall delivery time. In Table 4, the savings (in comparison with the truck-only TSP solution) for alternative 
levels of congested stops (where traffic speed is equal to 1 m/s in the first/last 200 m surrounding the stop) and general truck speeds 
are shown for a scenario of 50 customers. For scenarios with relatively limited congested areas (e.g., 10 or 20% of congested stops), 
the obtained savings are already considerably higher than the corresponding ones with homogenous general truck speeds (e.g., for 
30% of congested stops, the savings almost double for any initial truck speed). Interestingly, for the same levels of congested stops, 
similar savings can be achieved regardless of the initial truck speed (already for relatively …). This result can be explained by the 
possibility of the joint truck-robot delivery system to efficiently adapt and modify the route to minimize the delivery time. For 
example, as shown in Fig. 7, for the same configuration of 50 stops (included the congested ones) and two different average truck 
speeds (4 m/s and 6 m/s), the robot operations’ drop-off and pick-up points, and the truck’s sequence of stops change leading to 
similar levels of savings (respectively 23.5% and 23.0% in comparison to regular TSP solution). For increasing speeds, the truck 
would modify its route such that the robot could serve several congested areas in a single operation. 

5.2. Influence of robot’s storage capacity 

The possibility of performing several consecutive deliveries with the robot, thanks to its different storage compartments, re
presents one of the main advantages of this delivery system (especially in comparison to drones). In order to quantify the influence of 

Fig. 6. Analysis of average savings from the TSP-R with different truck (or traffic) speeds, 6Each box plot shows the first quartile, median, third 
quartile, and lowest/highest datum within 1.5 IQR of the lower/higher quartile, out of 10 instances. 

3 Last mile speed is defined here as: “The speed at which a driver can expect to travel one mile into the central business district during peak hours”. 
(Reed and Kidd, 2019) 
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this feature, 10 randomized scenarios with the same characteristics as earlier are investigated for three levels of available robot 
capacity, or maximum consecutive stops per robot operation (1, 2 or 3). As shown in Fig. 8, the savings (in comparison to the original 
TSP solution) significantly increase from 10.7%, corresponding to the single-stop robot operation solutions, to 16.5% and 19.6% 
corresponding respectively to 2- and 3-stop robot operation solutions. Increasing the number of compartments from one to three can 
hence double the efficiency of robot delivery systems. It is also interesting to see that, for increasing levels of capacity, the majority of 
robot operations utilize the added capacity. In scenarios with two and three maximum stops per robot operation, almost 93% and 
68% of all robot operations are performed at capacity (Fig. 9). Given the relatively low speed of the robot that can serve only a few 
customers, allowing multiple consecutive stops allows for longer operations and more efficient solutions. 

Table 4 
Savings (%) corresponding to alternative levels of congested stops for given average traffic speeds.      

General truck speed (m/s) 

Congested stops 4 6 8  

0% 18.2 16.6 14.6 
10% 22.7 22.8 22.9 
20% 25.7 26.1 26.4 
30% 28.0 28.2 27.9 

Fig. 7. TSP-R solutions with congested stops (in red circles) for alternative truck speeds at (a) 4 m/s and (b) 2 m/s (truck route in solid line and robot 
routes in dashed line) 

Fig. 8. Savings per different levels of robot capacity (maximum consecutive stops per operation).  
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5.3. Influence of pickup and drop-off operations length 

Another possible factor of influence on the overall efficiency of integrated truck-robot delivery systems corresponds to the length 
of drop-off operations. Depending on the level of automation of the truck-robot interface and the possibility of loading the robots’ 
compartments with items before the actual launch, this process could take from a few seconds to a few minutes. In Fig. 10, the 
impacts of three alternative drop-off durations, ranging from 60 s to 3 min, are tested for 50 randomized scenarios with the same 
characteristics as before (Original instances have tdrop = 60 s). The results show that the overall efficiency of the system could 
decrease by around 5% when the length of such operations increases from 60 s to 180 s. 

5.4. Influence of robot’s operation range 

Another important factor influencing the overall efficiency of integrated delivery systems corresponds to the maximum range of 
operation delivery robots. Given robots’ reliance on rechargeable batteries, the presence of several physical obstacles in urban 

Fig. 9. Capacity usage per different levels of robot capacity (maximum consecutive stops per operation).  

Fig. 10. Savings per different durations of drop-off operations.  
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environments and general safety concerns, robots’ trips distance might be limited to a few hundred meters. It emerges from Fig. 11, 
that imposing different maximum distances per bot operation has a considerable impact on the overall efficiency of the system. In 
particular, the savings achievable by robots increases steadily when the maximum threshold for operation distance grows from 
1000 m (8.7% savings) to 3000 m (14.6% savings). The gain per 500 m step increase varies between 1.36% and 1.66%. For thresholds 
above 3000 m, the achievable savings are in line with those obtained in the baseline configuration (i.e. around 19–20 percent for a 
truck/robot speed ratio of 6). 

5.5. Discussion 

The results from the previous analyses allow some useful considerations regarding the implementation of robot-assisted delivery 
systems in scenarios characterized by a few dozens of customers, where one robot can depart from the truck for one or more 
consecutive deliveries. Depending on several factors concerning the operational and design characteristics of robots, and the sur
rounding environment, such integrated systems could provide significant travel time savings (compared to the traditional delivery 
method by truck). 

Given the relatively low speed of the robot (1 m/s or 4 km/h), the ideal deployment scenario consists of a limited area (downtown 
or neighborhood size), characterized by a high level of traffic congestion (with average speed below 4 m/s or 15 km/h), and with a 
dense customer configuration (10 or more customers per square kilometer). Here, the savings achieved with respect to the truck-only 
tour would be around 20 percent. These kinds of conditions could realistically occur in densely populated urban areas during the 
most congested hours of the day. On the other hand, navigation in very crowded areas represents a significant challenge for robots. 
The presence of small areas of congestion around a limited number of customers also represents a valuable opportunity for the 
deployment of the robot, which can increase the overall delivery efficiency up to 30 percent. This type of scenario often occurs as a 
result of traffic accidents, temporary bottlenecks and special events. 

Design and operation features of the robot, such as its storage capacity and launch time, play a significant role in the overall 
system efficiency as well. The possibility of dividing the storage into multiple compartments for multiple consecutive deliveries 
allows considerable efficiency gains (from 10 to 17 percent). Since presently tested robots by private companies appear to have 
only one single storage compartment, their current design might have to be modified to accommodate divisible storage. The 
maximum traveling distance of the robot also plays a significant impact on the performance of the systems: a relatively low 
threshold of 1000–2000 m can curb the overall savings (over traditional truck systems) by 6–8 percent. This is an important 
factor to consider in view of the battery life of these devices and the possibility of recharging them in a timely fashion. For 
example, the longer ranges might involve higher battery utilization and ultimately longer re-charging times. Finally, the effi
ciency of robot drop-off operations can affect the overall performance of the system with differences of about 6 percent between 
1-minute and 3-minute deliveries. The length of this process will strongly depend on the level of automation and integration 
between the truck and robot. For example, the possibility of loading the robot while the truck is en route might considerably save 
time. The results of these analyses are partially in line with those from previous studies. Jennings and Figliozzi (2019) identified 
higher values for a slightly different system (involving several robots dropped off and picked up at predetermined locations) and 
by using a continuous approximation method. Although Boysen et al. (2018) focus on lateness of deliveries as a performance 
measure, a relation can be seen between the positive effect of higher density of drop-off points in their study and the overall 
customers’ density in ours. 

Compared to drone-assisted deliveries, robot-assisted systems are in general less performing due to their relatively low speeds and 
restriction to operate on the same road infrastructure network of trucks. Regardless of the adopted heuristic approach to solve the 
TSP-D problem, drone-based systems have been proved to achieve 20 percent or more savings over the traditional TSP tours when 

Fig. 11. Savings per different maximum distanced allowed for drop-off operations.  
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drones are as fast as the truck and have long fly ranges (above 30 min) (Murray and Chu, 2015). Nevertheless, when considering 
distance range and time endurance limitations, together with other constraints, such as no-fly zones, the gap between becomes much 
narrower. In particular, denser and congested delivery areas of limited size offer the opportunity to robot-assisted systems to con
siderably improve their delivery performance with gains up to 30 percent. Furthermore, thanks to their fewer related safety and 
privacy issues, as compared to drones, robot-assisted deliveries might become a more viable delivery option, at least in urban settings. 
Retrofitting robots’ storage with several compartments could play a crucial role in the overall efficiency of the system and does not 
seem particularly compelling. More challenging issues would entail the navigation (including real-time synchronization) and auto
mation of the drop-off and pick-up process. 

6. Conclusions 

Delivery robots represent a novel opportunity for enhancing last-mile delivery in urban settings. The goal of robot-assisted truck 
delivery systems is to partially replace truck routes and increase the speed of the last-mile delivery process. Although several leaders 
in the supply-chain field, together with robotics start-ups and automakers, have been exploring the feasibility of such a solution, 
currently very little is known about its potential efficiency and implications. In this study, we investigate a robot-assisted truck 
delivery system where a single robot could depart from the truck to perform one or more deliveries by traveling on sidewalks. 

First, the TSP with robot is defined and compared to similar problems in the literature, such as the truck-and-trailer problem and 
the TSP with drones. Since the problem is NP-hard, it can be solved exactly as a MILP only for small instances. For this reason, an 
efficient and accurate heuristic approach based on the concept of robot operations is proposed. The proposed approach adopts 
iterated local search with an adaptive perturbation (LS-AP) scheme to explore possible truck routes, which can be modified to replace 
some stops with robot deliveries. This sub-problem, which can be formulated as a special case of the Maximum Weighted 
Independent Set Problem, can be optimally solved by means of an efficient dynamic programming algorithm. The performance of the 
heuristic is evaluated for different instances by using the corresponding optimal solution and by checking the consistency of the 
results across different sizes of the problem (up to 100 customers). For small instances, the heuristic achieves high quality results 
(with gaps typically below 1 percent) with significant computational time savings. 

Then, a systematic analysis of the system’s efficiency based on different features of the robot and its operating environment is 
performed. The results indicate that the extent of achievable travel-time savings is not straightforward and strongly depends on 
factors such as the speed ratio between truck and robot, the capacity of the robot’s storage, and the configuration of customers. 
Despite their low travel speeds, robots can yield considerable (time) efficiency gains when performing several consecutive deliveries 
and in the presence of traffic congestion. Interestingly, robot-assisted deliveries are particularly beneficial in the presence of a small 
portion of customers located in heavily congested areas. The maximum distance that can be covered by the robot is an important 
factor to consider for the overall efficiency, with significant limitations for ranges below 1 km in scenarios with 10 customers or more 
per km2. To a minor extent, the duration of drop-off can affect the overall efficiency as well. 

In comparison to drone-assisted deliveries (with drones with large flying ranges and speeds twice or three times that of trucks), 
robot-assisted ones are characterized by lower savings. However, when employing only a single drone with greater constraints in 
terms of speed and flying range, the benefits of the two systems are comparable (see Murray and Chu, 2015; Agatz et al., 2018). This 
is an interesting outcome to keep in mind when making considerations about commercial implementation of last-mile delivery 
services based on automated technologies. 

The analyses performed in this study address a considerable set of questions, while leaving others for future research. First, the 
investigations were limited to relatively small scenarios (considering a few dozens of customers) given the small-scale application of 
this delivery solution. Some of the assumptions, such as the homogeneity of delivery operation length and could also be relaxed in 
order to increase the realism of the analyses in future studies. Second, in this study, travel time was used as a main performance 
indicator, while other types of costs, such as operation and maintenance costs (which depend on insurance, labor, and fuel), were not 
considered. The effects of some types of constraints concerning the accessibility of customers and energy constraints, which were not 
included in this first study, could be explicitly included in future studies. Since these issues, along with safety and regulation 
challenges (e.g. capability to operate in crowded environments) will likely play a role in the future adoption of this emerging 
technology, it would be interesting to address them in future research. Finally, from an optimization perspective, a natural extension 
of this work would consist of the development of heuristic approaches for the deployment of several robots in support of a single 
truck. Increasing the number of ancillary robots would significantly increase the complexity of the problem from both a practical and 
theoretical perspective (at least with the approach proposed in this study). An alternative deployment for multiple robots would 
consist of selecting fixed drop-off/pick-up points where the robots can swarm from and return to the truck. 
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