
TOPOLOGICAL OPTICS

Synthesis and observation of
non-Abelian gauge fields in real space
Yi Yang1*, Chao Peng2,3, Di Zhu1, Hrvoje Buljan4,5, John D. Joannopoulos1,
Bo Zhen6*, Marin Soljačić1

Particles placed inside an Abelian (commutative) gauge field can acquire different phases when
traveling along the same path in opposite directions, as is evident from the Aharonov-Bohm
effect. Such behaviors can get significantly enriched for a non-Abelian gauge field, where even
the ordering of different paths cannot be switched. So far, real-space realizations of gauge fields
have been limited to Abelian ones.We report an experimental synthesis of non-Abelian gauge
fields in real space and the observation of the non-Abelian Aharonov-Bohm effect with classical
waves and classical fluxes. On the basis of optical mode degeneracy, we break time-reversal
symmetry in different manners, via temporal modulation and the Faraday effect, to synthesize
tunable non-Abelian gauge fields.The Sagnac interference of two final states, obtained by
reversely ordered path integrals, demonstrates the noncommutativity of the gauge fields. Our
work introduces real-space building blocks for non-Abelian gauge fields, relevant for classical
and quantum exotic topological phenomena.

G
auge fields are the backbone of gauge
theories, the earliest example of which is
classical electrodynamics. However, until
the seminal Aharonov-Bohm effect (1), the
scalar and vector potentials of electro-

magnetic fields had been considered as a con-
venient mathematical aid rather than as objects
carrying physical consequences. Berry (2) re-
vealed that the Aharonov-Bohm phase imprinted
on electrons can be interpreted as a real-space
example of geometric phases, which in fact ap-
pear in versatile physical systems. For charge-
neutral particles, such as photons and cold atoms,
synthetic gauge fields can be created in real,
momentum, or synthetic (i.e., other parameters
besides position or momentum) space. These

synthetic gauge fields enable engineered, artifi-
cial magnetic fields in systems of either broken
or invariant time-reversal symmetry; thus, they
play a pivotal role in realizations of topological
phases, quantum simulations, and optoelectronic
applications.
Gauge fields are classified as Abelian (com-

mutative) or non-Abelian (noncommutative), de-
pending on the commutativity of the underlying
group. Synthetic Abelian gauge fields have
been realized in various platforms including
cold atoms (3–5), photons (6–8), polaritons (9),
and superconducting qubits (10). The synthesis
of non-Abelian gauge fields is more challenging
because of the requirements of degeneracy and
noncommutative, matrix-valued gauge potentials.

So far, they have been achieved only in momen-
tum and synthetic spaces. Specifically, non-Abelian
gauge fields have been realized in momentum
space using two-dimensional spin-orbit coupling
(11, 12) in cold atoms. In synthetic space, non-
Abelian geometric phases (13), initially observed
in nuclear magnetic resonances (14), have en-
abled non-Abelian geometric gates (15) and the
simulation of an atomic Yang monopole (16).
There have been complementary efforts to

synthesize non-Abelian gauge fields in real space.
Two initial proposals, using atoms, were based
on tripod couplings in spatially varying laser
fields (17) and laser-assisted, state-dependent
tunneling in optical lattices (18). Since then, real-
space non-Abelian gauge fields have been predicted
to enable numerous intriguing phenomena, such
as the quantum anomalous Hall effect (19), topo-
logical insulators in shaken lattices (20), and
real-space non-Abelian monopoles in super-
fluids (21). To observe non-Abelian gauge fields,
Wu and Yang (22) conceived the non-Abelian
Aharonov-Bohm effect, which has been widely
discussed in gauge theory. Moreover, there have
been several proposals in atomic (18, 23) and
photonic (24, 25) systems that aim at implement-
ing this effect with synthetic gauge fields. Despite
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Fig. 1. Comparison between SU(2) Abelian and non-Abelian gauge
fields in real space and in Hilbert space. (A to D) Along a closed loop
inside an Abelian gauge field proportional to sz (A) or sy (C), the state
evolves by rotating around the z (B) or y (D) axis of the Poincaré sphere.
Within each case [(A) and (B), or (C) and (D)], the state evolution is

always commutative. (E and F) In non-Abelian gauge fields, the
evolution operators for different loops are no longer commutative,
which leads to different final states, sqff and sfqf , for the same initial
state si. The noncommutativity can be tested by an Aharonov-Bohm
interference of the two final states.
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these theoretical advances, the synthesis and ob-
servation of non-Abelian gauge fields in real space
remain experimentally elusive.
We report the observation of the non-Abelian

Aharonov-Bohm effect by synthesizing non-Abelian
gauge fields in real space. Exploiting a degeneracy

in photonicmodes, we creatednon-Abelian gauge
fields by cascading multiple nonreciprocal optical
elements that break the time-reversal symmetry
in orthogonal bases of Hilbert space.
Synthetic non-Abelian gauge fields demand

a degeneracy of levels, which can, for example,

be achieved bymaking use of the internal degrees
of freedom in quantum gases or exploiting the
polarization/mode degeneracy and electromag-
netic duality in photons. For a particle moving
along a closed path in a non-Abelian gauge field,
its evolution operator readsW ≡ P expi ∮ A dl,
where P represents a path-ordered integral
and A is the matrix-valued gauge field. Its
trace,W ≡ TrW, is gauge-invariant and is also
known as the Wilson loop. For particles with
N-fold degeneracies, the non-Abelian gauge
fields can take forms of U(N). Here, we focus on
the SU(2) gauge fields, because our photonic
system enables the definition of a pseudospin—
a two-fold degeneracy in the polarization states.
Crucially, we focus on the situations where the
involved gauge fields break time-reversal sym-
metry and state transport becomes nonreciprocal.
In what follows, we illustrate the consequence
of real-space gauge fields on the pseudospin
evolution in Hilbert space [i.e., the Poincaré (or
Bloch) sphere].
There is a difference between how a state

evolves in Abelian gauge fields and how it
evolves in non-Abelian gauge fields (Fig. 1). In
a uniform Abelian gauge field proportional to
sz, the evolution operator along a closed loop
can be simplified asW = exp(ifsz), where sz is
the z component of the Pauli matrices and f is
the flux of the gauge field through this closed
loop (Fig. 1A). Consequently, the state rotates by
2f around the z axis of the Poincaré sphere (26)
(Fig. 1B). If the state evolves along two consec-
utive closed loops, the two evolution operators
are commutative, which reflects the Abelian
nature of this gauge field. Similarly, a homoge-
neous gauge field proportional to sy in real
space (Fig. 1C) is also Abelian, as the state always
evolves around the y axis in the Hilbert space
(Fig. 1D).
In contrast, non-Abelian gauge fields require

inhomogeneous gauge structures. Figure 1, E
and F, illustrates such an example where two
different sz and sy gauge structures are con-
catenated into one compounded closed loop. The
same initial state si can now evolve into dif-
ferent final states, sqff or sfqf (Fig. 1G), depending
on the different ordering—f and then q, or al-
ternatively, q and then f—of the two gauge
structures. The interference between the two
final states sqff and sfqf is known as the non-
Abelian Aharonov-Bohm effect (27). This effect,
as experimentally demonstrated below, is the
most direct manifestation of non-Abelian gauge
fields in real space.
In our photonic implementation, we exper-

imentally synthesize the inhomogeneous gauge
potentials in a fiber-optic system (Fig. 2A).
We identify the horizontal and vertical trans-
verse modes (denoted by |hi and |vi, respectively)
in optical fibers as the pseudospin. Crucially,
we synthesize two types of gauge fields, fsz
and qsy, using two distinct methods to break
time-reversal symmetry.
To construct a gauge field of fsz, we first use

dynamic modulations that dress |hi and |vi with
nonreciprocal phase shifts of ±f, respectively.
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Fig. 2. Synthesis of non-Abelian gauge fields. (A) Non-Abelian gauge fields for photons. Temporal
modulation and the Faraday effect, which break time-reversal symmetry in two orthogonal bases of
the Hilbert space, are used to synthesize sz and sy gauge fields, respectively. (B) Synthesis of sz
gauge field. Pseudospin-dependent nonreciprocal phase shifts are created through sawtooth phase
modulations. (C) Synthesis of sy gauge field. Nonreciprocal rotation of the pseudospin is achieved
via the Faraday effect in a terbium gallium garnet crystal. (D) Experimental setup. The interference
between different final pseudospin states—originating from reversed ordering of the gauge
structures—is read out through a Sagnac interferometer, which gives rise to the non-Abelian
Aharonov-Bohm effect. PBS/C, polarization beam splitter/combiner; PM, phase modulator; AWG,
arbitrary waveform generator; COL, collimator; TGG, terbium gallium garnet; PD, photodetector.
(E) Schematic of interference between clockwise (CW) and counterclockwise (CCW) pathways.
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Specifically, four lithium niobate phase modu-
lators—two (labeled 1 and 2) for |hi and two
(labeled 3 and 4) for |vi—are driven by arbitrary
waveform generators that create phase shifts in
the form of sawtooth functions in time (Fig. 2B).
Modulators 1 and 4 are positive in slope, f1,4 =
wt mod 2p, whereas modulators 2 and 3 are
negative in slope, f2,3 = –wtmod 2p. The delay
line between modulators 1 and 2 (3 and 4)
corresponds to a delay time t. As a result, besides
dynamic phases, |hi (|vi) picks up an extra phase
f = wt (–wt) in the forward (i.e., left-to-right)
direction, but an opposite phase –f (+f) in
the backward direction. This pair of opposite
nonreciprocal phases for opposite pseudospin
components (|hi and |vi) corresponds to a fsz
gauge field, which is continuously tunable by
varying the modulation frequency w.
A second, orthogonal type of gauge field, qsy,

is created using the Faraday effect (Fig. 2C).
Specifically, light is coupled out of the fiber,
sent through a terbium gallium garnet crystal
placed in an external magnetic field, and then
coupled back into the fiber. Through the Faraday
effect, pseudospin of light is rotated in a non-

reciprocal way, which corresponds to a gauge
field of qsy. This gauge field is also continuously
tunable through the external magnetic field.
We then concatenate the two non-Abelian

gauge fields to demonstrate the non-Abelian
Aharonov-Bohm effect via Sagnac interfer-
ometry (Fig. 2, D and E). In such a Sagnac con-
figuration, the two sites A and B in Fig. 2A are
combined into the same physical location to
enable well-defined non-Abelian gauge fluxes.
Evolved from the clockwise (CW) and counter-
clockwise (CCW) paths of the Sagnac loop, the
two final states are sqff = sz exp(iqsy) exp(ifsz)si
and sfqf = exp(–ifsz) exp(–iqsy)szsi, where the
sz term maintains a consistent handedness
of the polarization for counterpropagating
states. The interference of the two final states
is given by

sf ¼ sqff þ sfqf ¼ �sx½expðiq′syÞexpðifszÞ þ

expðifszÞexpðiq′syÞ�si ð1Þ

(28), where q′ = q + p/2 and sx is a global spin
flip. This interference describes a Sagnac-type

realization of the non-Abelian Aharonov-Bohm
effect (27)—the interference between two final
states that originate from the same initial state
but undergo reversely ordered, inhomogeneous
path integrals (Fig. 1, E and G) in the CW and
CCW directions.
In our experimental setup (Fig. 2D) (28), we

place a polarization synthesizer in front of the
Sagnac loop to prepare any desired pseudospin
state as the input in a deterministic manner.
After exiting the Sagnac loop, the two final
states sqff and sfqf interfere with each other. The
associated interference intensity is projected
onto the horizontal and vertical bases, which are
then measured separately. Within the Sagnac
loop, a solenoid—driven by tunable pulsed cur-
rents (peak current ≈ 2 kA, duration ≈ 10 ms)—
provides a magnetic field between 0 and ~2 T
(28) for the Faraday rotator. The solenoid also
provides a temporal trigger signal for the de-
tection. For the dynamic modulation, we assign
four differentmodulation frequencies (i.e., slopes
of the temporal sawtooth functions) +w1, –w2,
–w3, and +w4 to each of the modulators with wj

( j = 1, 2, 3, 4) defined to be positive. We impose
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Fig. 3. Non-Abelian Aharonov-Bohm interference. (A) Contrast
function r on the Poincaré sphere, featured by a fixed zero/pole pair
(on the equator) and a tunable zero/pole pair (which indicates the
consequence of gauge fluxes). The two pairs of zeros and poles
are always antipodal. (B and C) Location (latitude and longitude)
of the tunable pole on the Poincaré sphere as a function of the
gauge fluxes (q, f). Abelian gauge fields correspond to on-equator

poles (red dashed lines); non-Abelian gauge fields correspond to
off-equator poles, both of which are experimentally demonstrated.
(D) Wilson loops W on the synthetic torus (q, f). |W| = 2 (red
dashed lines) is a necessary but insufficient condition for non-Abelian
gauge fields [compare to (B)]. (E and F) Examples of predicted
and observed contrast functions r for Abelian (Q, U, and V) and non-
Abelian (X and Y) gauge fields.
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an additional constraint that w ≡ (w1 + w2)/2 =
(w3 + w4)/2. This modified arrangement from
Fig. 2Bmaintains the same nonreciprocal phases
and thus the gauge fields fsz (28). The advantage
of this modification is an experimental one: It
relocates the relevant interference fringes from
zero to a nonzero carrier frequencyW ≡ w1 – w2 +
w3 – w4, which is less sensitive to environmental
or backscattering noises.
We next define our experimental observable

and explain its relevance to non-Abelian gauge
fields. In the original U(1) Abelian Aharonov-
Bohm effect, the observable is the interference
intensity as a function of the Abelian magnetic
flux. In our case, analogously, for each given set
of non-Abelian gauge fields (q, f), we measure
the contrast r between the interference inten-
sities projected onto the horizontal and vertical
bases. Specifically, we measure r(q, f, a, b) ≡
IWh =I

W
v , where (a, b) are the latitude and lon-

gitude of the input pseudospin state on the
Poincaré sphere and IWhðvÞ are the intensities of the
|hi and |vi components of the output pseudospin
state at the carrier frequency W, respectively.
Therefore, r is defined on a manifold of S2 ×
T 2, which is spanned by the Hilbert space of
the input pseudospin S2 and the synthetic space
of the gauge fields (q, f) that is T2.
For a fixed set of gauge fields (q, f), the con-

trast function r(a, b) always exhibits two pairs
of first-order zeros and poles on the Poincaré
sphere (Fig. 3A) (28). Within each pair, the zero
and the pole are always antipodal and thus
represent orthogonal pseudospins. One pair,
being linear polarizations (1, 0) (zero) and (0, 1)
(pole), is fixed on the two ends of the equator,
regardless of the choice of (q, f). The other
orthogonal pseudospin pair, however, is tunable
on the entire sphere via (q, f). These zeros and
poles are conserved quantities on the Poincaré
sphere and dictate the behavior of the contrast
r function. Their generation, evolution, and an-
nihilation are directly related to the transitions
between the Abelian and non-Abelian regimes.
Figure 3, B and C, shows the latitude a and
longitude b of the tunable pole on the Poincaré
sphere as a function of gauge fields (q, f). When
q =mp/2 or f = np/2 (m and n are integers), the
tunable zero-pole pair appears on the equator
(red dashed lines in Fig. 3B). This key feature—
an on/off-equator zero/pole—can be used to
straightforwardly differentiate between Abelian
and non-Abelian gauge fields synthesized in our
experiment (Fig. 3, E and F).
The necessary and sufficient condition for

gauge fields to be non-Abelian is as follows. There
exist two loop operators,W1 andW2, both start-
ing and ending at the same site in space, such
that they are noncommutative; that is,W1W2 ≠
W2W1 (29). In an Aharonov-Bohm interfer-
ence, whether Abelian or non-Abelian, W1 and
W2 can be identified as a pair of time-reversal
partners that share the same physical path. We
first examine W1 = lb

–1 ⋅ lt and W2 = lt
–1 ⋅ lb in

the Abelian Aharonov-Bohm experiment, whose
two distinct top and bottom paths are denoted
by lt and lb, respectively. Under time reversal,

both momentum and vector potentials flip sign,
rendering W1 = W2 = exp(ig). W1 and W2 are
clearly commutative and exhibit identical, scalar
Berry phases g (28). In our non-Abelian Aharonov-
Bohm experiment, the time-reversal pairW1 and
W2 can be analogously defined by replacing lt
and lb with CW and CCW paths (Fig. 2E), which
yields

W1 ¼ P expi ∮
CCW�1 �CW

A dl

¼ sz ½expðiqsyÞexpðifszÞ�sz ½expðiqsyÞexpðifszÞ�
ð2Þ

W2 ¼ P expi ∮
CW�1 �CCW

�A dl

¼ ½expðifszÞexpðiqsyÞ�sz ½expðifszÞexpðiqsyÞ�sz

ð3Þ
(28). The condition for W1 and W2 to be non-
commutative is satisfied when q ≠mp/2 and f ≠
np/2 (28); the same condition also guarantees
the existence of a zero and a pole of the contrast
function away from the equator (Fig. 3B). Be-
cause W1 and W2 are also connected via a
unitary gauge transformation (28), they always
share the same Wilson loop (28): W = Tr W1 =
Tr W2 = 2 – (4 cos2 q sin2 f). Figure 3D shows
this Wilson loop on the T2 space of gauge fields.
Generally speaking, in an N-fold degenerate
system, |W| = N means that the state evolution
can be trivially understood by decoupling the
system into the product ofN Abelian subsystems
(29). In our case, such trivial configurations
are shown with red dashed lines [q = (m + 1/2)p;
f = np; or q = mp and f = (n + 1/2)p] in Fig. 3D.
Nonetheless, |W| ≠ N is only a necessary but
insufficient condition for gauge fields to be non-
Abelian (29), as is evident from the comparison
between Fig. 3B and Fig. 3D: Some config-
urations with |W | ≠ N are still Abelian. This is
supported by recent observations from photonic
waveguides, where non-Abelian geometric phases
can arise from Abelian gauge fields (30).
We then characterize our synthetic gauge fields

by measuring the contrast function r (Fig. 3, E

and F). A comparison ismade between theoretical
predictions (top row) and experimental measure-
ments (bottom row) for five sampling points on
the synthetic space T2: Q, U, and V are Abelian,
and X and Y are non-Abelian. In the Abelian case
Q [(q, f) ≈ (0, 0)], the tunable pole and the fixed
zero annihilate each other at (a, b) = (0°, 0°); so
do the tunable zero and the fixed pole at (a, b) =
(0°, 180°). As a result, the contrast remains a
constant r = 1 regardless of the input pseudospin
state. This is a direct consequence of the preserved
time-reversal symmetry in the absence of gauge
fluxes. In case U [(q, f) ≈ (–0.21p, 0)], the an-
nihilation of poles with zeros is lifted; nonetheless,
both poles and zeros appear on the equator, and
the gauge structure remains Abelian, because we
only break time-reversal symmetry once. In case
V [(q, f)≈ (–0.21p, 0.50p)], which is still Abelian, the
two poles (zeros) coalesce and produce a second-
order pole (zero) on the equator. In cases X [(q,
f) ≈ (–0.21p, –0.30p)] and Y [(q, f) ≈ (0.24p, –
0.30p)], the synthetic gauge fields become non-
Abelian, as indicated by the observed off-equator
zeros and poles. For all the cases, our observations
show agreement with the associated predictions.
In our interferometer, the two spin bases |hi
and |vi are not perfectly degenerate because of
the difference in their refractive indices (~10–4).
This difference leads to a reciprocal, linear
birefringent phase (i.e., a dynamic phase contri-
bution), which is calibrated and consistently ap-
plied to all measurements (28).
Up to this point, we have measured the con-

trast r for fixed gauge fluxes while changing
the input states. In a complementary manner,
we can now fix the input state (a, b) and demon-
strate the tunability of the synthesizednon-Abelian
gauge fields by measuring the contrast r for dif-
ferent synthetic gauge fluxes (q, f). As shown in
Fig. 4, we reach similar agreement between the
theoretical prediction and the measurement.
We have demonstrated an experimental syn-

thesis of non-Abelian gauge fields in real space,
which is confirmed by our observation of the
non-Abelian Aharonov-Bohm effect using clas-
sical particles and classical fluxes. The realized
gauge fields demonstrate a viable way to engineer
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Fig. 4. Tunability of the non-Abelian gauge fields. (A and B) Predicted (A) and measured (B)
contrast function r for a fixed incident pseudospin state (a, b) ≈ (–51°, –12°). The gauge fields fsz and
qsy are continuously tuned by respectively varying the modulation frequencies in the arbitrary
waveform generators and the voltages applied to the solenoid.
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the Peierls phase in the simulation of topological
systems, such as the non-Abelian Hofstadter
models (18) [see also our lattice models (28)].
Our experiment also introduces non-Abelian
ingredients for realizing high-order topological
phases and topological pumps. In addition,
recent advances in on-chip modulation and
magneto-optical materials could enable future
observations of non-Abelian topology in inte-
grated photonic platforms. Toward the quantum
regime, non-Abelian gauge fields might be used
to help generate non-Abelian anyonic excitation
to offer an alternative, synthetic approach for
topological quantum computation. Finally, the
synergy of non-Abelian gauge fields with engi-
neered interactions (e.g., bosonic blockade and
superconducting qubits) might enable the real-
ization of many-body physics such as the non-
Abelian fractional quantum Hall effect.
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states in photonic platforms.
system that is tunable between Abelian and non-Abelian regimes will be important for studying complex topological
elements and verified this accomplishment by the observed interference patterns in a Sagnac interferometer. Having a 

 generated non-Abelian gauge fields by cascading multiple nonreciprocal opticalet al.synthesized optically. Yang 
are more difficult to realize in solid-state systems, but recent theoretical work has suggested that these could be 
commutative; and non-Abelian (noncommutative), where the sequence in which the field is applied matters. The latter
systems. There are two kinds of fields: Abelian, in which the measured effects on an observable parameter are 

The development of gauge fields is fundamental to our theoretical understanding of interactions in physical
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ARTICLE TOOLS http://science.sciencemag.org/content/365/6457/1021

MATERIALS
SUPPLEMENTARY http://science.sciencemag.org/content/suppl/2019/09/04/365.6457.1021.DC1

REFERENCES

http://science.sciencemag.org/content/365/6457/1021#BIBL
This article cites 38 articles, 2 of which you can access for free

PERMISSIONS http://www.sciencemag.org/help/reprints-and-permissions

Terms of ServiceUse of this article is subject to the 

 is a registered trademark of AAAS.ScienceScience, 1200 New York Avenue NW, Washington, DC 20005. The title 
(print ISSN 0036-8075; online ISSN 1095-9203) is published by the American Association for the Advancement ofScience 

Science. No claim to original U.S. Government Works
Copyright © 2019 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of

on S
eptem

ber 1, 2020
 

http://science.sciencem
ag.org/

D
ow

nloaded from
 

http://science.sciencemag.org/content/365/6457/1021
http://science.sciencemag.org/content/suppl/2019/09/04/365.6457.1021.DC1
http://science.sciencemag.org/content/365/6457/1021#BIBL
http://www.sciencemag.org/help/reprints-and-permissions
http://www.sciencemag.org/about/terms-service
http://science.sciencemag.org/

