
136

Aditya Ramamoorthy, Anindya Bijoy Das, and Li Tang

DISTRIBUTED, STREAMING MACHINE LEARNING

IEEE SIGNAL PROCESSING MAGAZINE | May 2020 | 1053-5888/20©2020IEEE

The current big data era routinely requires the processing of
large-scale data on massive distributed computing clusters.
In these applications, data sets are often so large that they

cannot be housed in the memory and/or the disk of any one com-
puter. Thus, the data and the processing are typically distributed
across multiple nodes. Distributed computation is thus a neces-
sity rather than a luxury. The widespread use of such clusters
presents several opportunities and advantages over traditional
computing paradigms. However, it also presents newer chal-
lenges where coding-theoretic ideas have recently had a signifi-
cant impact. Large-scale clusters (which can be heterogeneous in
nature) suffer from the problem of stragglers, which are slow or
failed worker nodes in the system. Thus, the overall speed of a
computation is typically dominated by the slowest node in the ab-
sence of a sophisticated assignment of tasks to the worker nodes.

These issues are a potential bottleneck in several impor-
tant and basic tasks, such as (but not limited to) the training
of large-scale models in machine learning. Operations, such
as matrix–vector multiplication and matrix–matrix multipli-
cation (henceforth referred to as matrix computations), play a
significant role in several parts of the machine learning pipe-
line [1] (see the “Applications of Matrix Computations Within
Distributed Machine Learning” section). In this article, we
review recent developments in the field of coding for straggler-
resilient distributed matrix computations.

The conventional approach for tackling stragglers in distrib-
uted computation has been to run multiple copies of tasks on var-
ious machines [2], with the hope that at least one copy finishes
on time. However, coded computation offers significant benefits
for specific classes of problems. We illustrate this by means of a
matrix–vector multiplication example in Figure 1. Consider the
scenario where a user wants to compute ,A xT where A is a t r#
matrix and x is a t 1# vector; both t and r are assumed to be
large. The size of A precludes the possibility that the compu-
tation can take place on a single node. Accordingly, matrix A
is block column decomposed as ,[]A A A A1 2 3= where each
Ai is the same size. Each worker node is given the responsi-
bility of computing two submatrix–vector products so that the

Digital Object Identifier 10.1109/MSP.2020.2974149
Date of current version: 28 April 2020

Straggler-Resistant Distributed Matrix
Computation via Coding Theory
Removing a bottleneck in large-scale data processing

©ISTOCKPHOTO.COM/HAMSTER3D

Authorized licensed use limited to: Iowa State University. Downloaded on May 08,2020 at 21:44:36 UTC from IEEE Xplore. Restrictions apply.

137IEEE SIGNAL PROCESSING MAGAZINE | May 2020 |

computational load on each worker is two-thirds of the original.
We note here that the master node that creates the encoded matri-
ces, e.g., (),A A2 3+ only needs to perform additions (and more
generally scalar multiplications). The computationally intensive
task of computing inner products of the rows of the encoded
matrices with x is performed by the worker nodes. Even if one
worker is a complete straggler, i.e., it fails, there is enough infor-
mation for a master node to compute the final result. However,
this requires the master node to solve a linear system of equations
to decode the final result. A similar approach (with additional
subtleties) can be used to arrive at a corresponding illustrative
example for matrix–matrix multiplication.

Straggler mitigation using coding techniques has also been
considered in a different body of work that broadly deals with
reducing file-access delays when retrieving data from cloud
storage systems [3]–[6]. Much of this article deals with under-
standing tradeoffs between file-access latency and the redun-
dancy introduced by the coding method under different service
time models for the servers within the cloud. Coded systems
in turn introduce interesting challenges in the queuing delay
analysis of these systems. These solutions can also be adapted
for use within coded computing.

Applications of matrix computations within
distributed machine learning
Computing high-dimensional linear transforms is an important
component of dimensionality reduction techniques, such as princi-
pal component analysis and linear discriminant analysis [7]. Large-
scale linear regression and filtering are also canonical examples of
problems where linear transformations play a key role. They are

also key components of training deep neural networks [1] and us-
ing them for classification, as we explain in detail.

Every layer of a fully connected deep neural network (see
Figure 2) requires matrix–matrix multiplications in both for-
ward and backward propagation. Suppose that the training
data can be represented as a matrix P0 of size ,f m# where f
is the number of features and m is the number of samples. In
forward propagation, in any layer i the input Pi 1- is multiplied
by the weight matrix ,Wi and the bias term bi is added. Fol-
lowing this, it is passed through a nonlinear function, (),gi $ to
obtain Pi (the input of the next layer), i.e.,

.()g1 andZ W P b P Zi i i i
T

i i i1= + =-

We note here that if Wi is a large matrix, then we have a large-
scale matrix–matrix multiplication problem that needs to be
solved in this step.

Similar issues also arise in the backpropagation step, where
the weight matrices and bias vectors are adjusted. We typically
use a variant of gradient descent to obtain the weight matrix

W0 W1 W2

AT
1 x AT

2 x AT
3 x

x(A2 + A3)T x(A3 + A1)T x(A1 + A2)T

FIGURE 1. Matrix A is split into three equal-sized block columns. Each
node is responsible for computing submatrix–vector products sequentially
from top to bottom. Note that A xT can be decoded even if one node fails.

X1

X2

Xf

Y1

Yq

Hidden Units OutputInput

FIGURE 2. A fully connected neural network with three hidden layers where an input vector has a size f (number of features) and can be classified into
one of q classes.

Authorized licensed use limited to: Iowa State University. Downloaded on May 08,2020 at 21:44:36 UTC from IEEE Xplore. Restrictions apply.

138 IEEE SIGNAL PROCESSING MAGAZINE | May 2020 |

Wi
j at iteration j in layer i using an appropriate learning rate

.a Now, if ,dZi
j ,dWi

j and dPi
j indicate the gradients of the

chosen loss function with respect to ,Zi ,Wi and Pi respec-
tively, then for any iteration ,j we compute

	 d g dZ Z Pi
j

i i
j

i
j

9= l ^ h   and   ;d
m

d1W Z Pi
j

i
j

i
jT
1= -

and update  dW W Wi
j

i
j

i
j1

a= -
-   and  ,d dP W Zi

j
i
jT

i
j

1 =-

where the symbol 9 indicates the Hadamard product. Thus,
the backpropagation step requires matrix–matrix multiplica-
tion in each layer as well. Furthermore, each of these steps is
repeated over multiple iterations.

As a concrete example, consider AlexNet [8], which performs
a 1,000-way classification of the ImageNet data set and provides
a top-five test error rate of under 15.3%. It has a training set of 1.2 mil-
lion images, 50,000 validation images, and a test set of 150,000
images, each of which is a 224 224 3# # (,)150 528= image.
So, for training, P0 has a size .1 5 105#. by . .1 2 106# AlexNet
consists of eight layers, among which five are convolutional layers
and the other three are fully connected layers. Thus, this network
has 43,264 and 4,096 neurons in the fifth and sixth layers. So, W6
has a size of 4,096 # 43,264. Thus, in the sixth layer of the forward
propagation, the network requires the product of two matrices of
size 4,096 # 43,264 and , (.) .43 264 1 2 106# #

Problem formulation
We present a formulation of the distributed matrix–matrix multi-
plication problem in this section. Note that matrix–vector multi-
plication is a special (though very important) case of matrix–ma-
trix multiplication, and the formulation carries over in this case
in a natural manner. Consider a scenario where a master node
has two large matrices, A Rt r! # and ,B Rt w! # and wishes to
compute A BT in a distributed fashion using N worker nodes.

Each worker node is assigned a storage fraction for the
coded columns of A (denoted)Ac and B (denoted).Bc The
coded columns of A and B should be created by means of
computationally inexpensive operations, e.g., scalar multipli-
cations and additions. While the storage fraction constraint
can be satisfied by potentially nonlinear coded solutions, our
primary interest will be in linearly coded solutions where A
and B are decomposed into block matrices of size p m# and
p n# respectively, as follows:

, ,andA
A

A

A

A
B

B

B

B

B

,

,

,

,

,

,

,

,p

m

p m p

n

p n

0 0

1 0

0 1

1 1

0 0

1 0

0 1

1 1

h

f

j

f

h h

f

j

f

h= =

-

-

- - -

-

- -

> >H H
� (1)

so that the blocks in A and B are of size / /() ()t p r m# and
/ /() (),t p w n# respectively. The master node generates cer-

tain linear combinations of the blocks in A and B and sends
them to the worker nodes. The master node also requires each
worker node to compute the product of some or all of their
assigned matrices in a specified sequential order; we refer to
this as the responsibility of the worker node. For instance, if a
given worker node stores coded matrices ,A0u A1u and ,B0u B1u
and is required to compute all four pairwise products, then the

scheme specifies the order, e.g., ,A BT
0 0u u ,A BT

01
u u ,A BT

0 1u u A BT
1 1u u

or ,A BT
1 1u u ,A BT

01
u u ,A BT

0 1u u ,A BT
0 0u u and so on. The following two

cases of block-partitioning A and B are of special interest.
■■ Case 1 p 1()= : In this scenario, both A and B are decom-

posed into block columns, i.e., []A A A Am0 1 1f= - and
[],B B B Bn0 1 1f= - so that recovering A BT is equivalent

to recovering A Bi
T

j for all pairs , ,i m0 1f= - , ,j 0 f=
.n 1-

■■ Case 2 m n 1()= = : We set []A A A AT T T
p
T

0 1 1f= - and
[]B B B BT T T

p
T

0 1 1f= - so that / .A B A BT
i
p

i
T

i0
1

= =
-

The computational cost of computing A BT is ()rw t2 1-
floating point operations (flops), which is approximately

(, ,)r t w rtw2cost = when t is large. In the distributed setup
under consideration, the computational load on each worker
node is less than the original cost of computing ,A BT and the
advantages of parallelism can therefore be leveraged.

We note some minor differences in the matrix–vector mul-
tiplication scenario at this point. Here, the master node wishes
to compute ,A xT where x is a vector. As x is much smaller
than ,A we typically only impose the storage constraint for the
worker nodes for the matrix A and assume that x is available to
all of them. The case when x is further split into subvectors [9]
will be treated along with the matrix–matrix multiplication case.

Example 1
Consider distributed matrix multiplication with p 1= and

.m n 2= = Furthermore, we define the matrix polynomials as
follows:

	 () () ;z zz z andA A A B B B0 1 0 1
2= + = +

so that () () .z z z z zA B A B A B A B A BT T T T T
0 0 1 0 0 1

2
1 1

3= + + +

Suppose that the master node evaluates ()zA and ()zB at dis-
tinct points , , .z zN0 1f - It sends ()zA i and ()zB i to the ith
worker node, which is assigned the responsibility of computing

() ().z zA BT
i i

It follows that as soon as any four out of the N worker
nodes return the results of their computation, the master node
can perform polynomial interpolation to recover the (),k l th
entry of each A Bi

T
j for /k r0 21# and / .l w0 21# There-

fore, such a system is resilient to N 4- failures.
Note here that each worker node stores coded versions

of A and B of size /t r 2# and /t w 2# respectively, i.e.,
/ .1 2A Bc c= = The computational load on each work-

er is / / /(, ,) (, ,) ,r t w r t w2 2 4cost cost= i.e., one-fourth of
the original. Furthermore, each worker communicates
a / /r w2 2# matrix to the master node.

On the other hand, splitting the matrices as in case 2 yields
a different tradeoff.

Example 2
Let m n 1= = and ,p 2= so that B

B
1
0

1
0A

A andA B= =8 8B B and
consider the following matrix polynomials:

	 () () ,z z z zandA A A B B B0 1 0 1= + = +

so that () () () .z z z zA B A B A B A B A BT T T T T
1 0 0 0 1 1 0 1

2= + + +

Authorized licensed use limited to: Iowa State University. Downloaded on May 08,2020 at 21:44:36 UTC from IEEE Xplore. Restrictions apply.

139IEEE SIGNAL PROCESSING MAGAZINE | May 2020 |

As before, the master node evaluates ()zA and ()zB at dis-
tinct points , ,z zN0 1f - and sends the coded matrices to the
worker nodes that calculate () ().z zA BT

i i In this case, as soon
as any three workers complete their tasks, the master node can
interpolate to recover () ()z zA BT and obtain the desired result
()A B A BT T

0 0 1 1+ as the coefficient of .z The other coefficients
are interference terms. Thus, this system is resilient to N 3-
stragglers and strictly improves on Example 1 with the same
storage fraction / .1 2A Bc c= =

The dimensions of ()zA and ()zB are /t r2# and
/t w2# so that the computational load on each worker is

/ /(, ,) (, ,)r t w r t w2 2cost cost= , i.e., it is twice that of the
workers in Example 1. Moreover, each worker node communi-
cates an wr # matrix to the master node, i.e., the communica-
tion load is four times that of Example 1.

Metrics for evaluating coded computing solutions
Examples 1 and 2 illustrate the core metrics by which coded com-
puting solutions are evaluated. More formally, for given storage
fractions Ac and Bc and the responsibilities of all worker nodes,
we evaluate a solution by a subset of the following metrics.

■■ Recovery threshold: We say that a solution has recovery thresh-
old x if A BT can be decoded by the master node as long as
any x worker nodes return the results of their computation, e.g.,
the thresholds were four and three respectively in Examples 1
and 2. This metric is most useful under the assumption that
worker nodes are either working properly or in failure.

■■ Recovery threshold(II): A more refined notion of recovery
is required when we consider scenarios where worker
nodes may be slow but not complete failures. For instance,
Figure 3 shows an example where each worker node is
assigned two matrix–vector products and operates sequen-
tially from top to bottom. It can be verified by inspection
that as long as any three matrix–vector products are
obtained from the worker nodes in this manner, the master
node has enough information to decode .A xT For instance,
Figure 3(a) depicts a situation where W2 is failed and W0
is slow as compared to .W1 The solution leverages the par-
tial computations of W0 as well. We say that a solution has
a recovery threshold(II) of xl if the master node can decode
the intended result if it receives the result of xl computa-
tions from the worker nodes; these computations have to
respect the sequential order within each worker node.

■■ Computational load per worker node: The complexity of
determining A BT is (, ,)r t wcost flops. The computational

load per worker is measured as a fraction of (, ,),r t wcost
e.g., in Examples 1 and 2, the fractions are 1/4 and 1/2,
respectively. If A and B are sparse, then the computational
load on the worker will depend on the number of nonzero
entries in them. We discuss this point in more detail in the
section “Opportunities for Future Work.”

■■ Communication load per worker node: The communication
load per worker measures the number of values that a work-
er node needs to send to the master node, normalized by .rw

■■ Decoding complexity: All linear schemes under consider-
ation in this article require solving a system of linear equa-
tions to decode the result .A BT The time-complexity of
solving an arbitrary #, , system of equations grows as .3,
This is another metric that needs to be small enough for a
scheme to be useful. For instance, in Example 1, the master
node needs to solve a 4 4# system of equations /rw 4
times. Thus, the time cost of decoding is roughly proportion-
al to ;rw there is no dependence on .t On the other hand, the
computation load on a worker depends in a multiplicative
manner on .t In scenarios where t is large, it can be argued
that the decoding cost is negligible compared to the worker
computation. Nevertheless, this is a metric that needs to be
considered. Decoding in Examples 1 and 2 corresponds to
polynomial interpolation and is thus a “structured” system of
equations that can be typically solved much faster than
Gaussian elimination.

■■ Numerical stability: Solving linear equations to determine
A BT naturally brings up the issue of numerical stability of
the decoding. Specifically, if the system of equations is ill-
conditioned, then the decoded result may suffer from sig-
nificant numerical inaccuracies. Let P be a real-valued
matrix and ()Pmaxv and ()Pminv denote its maximum and
minimum singular values [10]. We define its condition
number as /() () ().cond P P Pmax minv v=

As a rule of thumb, if the system of equations has a condition
number of ,10l it results in the loss of approximately l bits of
numerical precision. For any distributed scheme, we ideally
want the worst-case condition number over all possible recov-
ery matrices to be as small as possible.

Overview of techniques
The overarching idea in almost all of the works in this area is
one of “embedding” the matrix computation into the structure
of an erasure code. Note that (,)n k erasure codes [11] used in
point-to-point communication have the property that one can

W0 W1 W2

AT
1 x AT

2 x AT
3 x

x(A2 + A3)T x(A3 + A1)T x(A1 + A2)T

W0 W1 W2

AT
1 x AT

2 x AT
3 x

x(A2 + A3)T x(A3 + A1)T x(A1 + A2)T

(a) (b)

FIGURE 3. (a) and (b) Two example scenarios where the master node obtains the results of three completed tasks (respecting the sequential order) from
the worker nodes. The scheme is such that the master node is guaranteed to recover A xT as long as any three tasks are completed.

Authorized licensed use limited to: Iowa State University. Downloaded on May 08,2020 at 21:44:36 UTC from IEEE Xplore. Restrictions apply.

140 IEEE SIGNAL PROCESSING MAGAZINE | May 2020 |

decode the intended message for several erasure patterns, e.g.,
for maximum distance separable (MDS) codes, as long as any
k coded symbols (out of)n are obtained, the receiver can de-
code the intended message. Most constructions of MDS codes
are nonbinary and decoding typically involves multiplications
and divisions. There are also several constructions of binary,
near-MDS codes, e.g., low-density parity-check and fountain
codes, that allow recovery with high probability from any
()k 1 e+ symbols for small 02e when n and k are large. The

decoding can be performed by simple add/subtract operations.
For instance, Example 1 demonstrates an embedding of

matrix–matrix multiplication into the structure of a Reed–Sol-
omon code. This embedding essentially requires that the ith
worker node computes the evaluation of polynomial () ()z zA BT
at ;zi this evaluation may or may not be received based on
whether the ith worker node is a straggler. In contrast, in the tra-
ditional communication scenario, the transmitter computes the
evaluation and the channel uncertainty dictates whether or not
the evaluation is received. Moreover, the decoding in Example
1 corresponds to polynomial interpolation, which is precisely
what Reed–Solomon decoding (from erasures) amounts to.
Despite the similarities, we emphasize that, in the matrix com-
putation setup, we operate within the real field ,R while tradi-
tional erasure coding almost exclusively considers operations
over finite fields. As we will see, this introduces additional
complications in the distributed computation scenario.

The original idea of using redundancy to protect against
node failures in distributed matrix computation goes back to
the work on “algorithm-based fault tolerance” from the
1980s [12], [13]. However, more recent contributions have
significantly improved on them. Ideas from polynomial
evaluation and interpolation have played an important role
in this area. We briefly recapitulate some of these ideas in
the following sections.

Primer on polynomials
Let ()u z u zk

d
k

k
0R= = be a polynomial of degree d with real

coefficients. Let ()u z()j denote the jth derivative of u(z). It can
be verified that

	 () ! ,u z u j z
k
j

()j
k

k

d
k j

0

=
=

-c m/ � (2)

where 0=i
k` j if .k i< Furthermore, note that we can also rep-

resent u(z) by considering its Taylor series expansion around a
point ,R!b i.e.,

	 ()
!
()

() .u z
k

u
z

()k

k

d
k

0

b
b= -

=

/ � (3)

It is well known that u(z) has a zero of multiplicity , at R!b
if and only if ()u 0()i b = for i0 ,1# and () .u 0() !b,

Another well-known fact states that if we obtain d + 1 evalu-
ations of u(z) at distinct points , , ,z zd1 1f + then we can inter-
polate to find the coefficients of u(z). This follows from the fact
that the Vandermonde matrix V with parameters , , ,z zd1 1f +

i.e., zV ,i j j
i= for , ,i d j d0 1 1# # # # + is nonsingular when

, , ,z j d1 1j f= + are distinct. An interesting generalization

holds when we consider not only the evaluations of u(z) but
also its derivatives. We illustrate this by the following example.

Example 3
Let d = 2, so that ()u z u u z u z0 1 2

2= + + and the first deriva-
tive () .u z u u z2()1

1 2= + Suppose we obtain (), (),u zu z ()
1

1
1

and (),u z2 where .z z1 2! We claim that this suffices to re-
cover u(z). To see this, assume otherwise, i.e., there exists
() ()u z u z!u such that () (), () (),u z u zu z u z () ()

1 1
1

1
1

1= =u u and
() () .u z u z2 2= u This in turn implies that there exists a polyno-

mial () () ()a z u z u z= - u such that () () () .a z a z a z 0()
1

1
1 2= = =

Now, we note that a(z) is such that it has a zero of multiplic-
ity 2 at z1 and a zero of multiplicity 1 at z2. The fundamental
theorem of algebra states that if a polynomial has more zeros
(counting multiplicities) than its degree, then it has to be identi-
cally zero. Therefore, we can conclude that a(z) is identically
zero, and we can recover u(z) exactly. This can also be equiva-
lently be seen by examining the following:

() () () .det z
z z

z
z

z z z z z z z
1 0

1
2

1
2 2 01

1
2

1

2

2
2

2
2

1 2 1
2

1
2

1 2
22= - + - = -> H

In general, for a polynomial u z()u z k
d

k
k

0R= = of degree
d, suppose that we obtain ()u z()

i
, for , ,k0 1i, f= - [where

() ()u z u z()0 =] for distinct points , , , .z i N1i f= In this case, if
,k d 1i

N
i1 $R += then we can recover u(z) exactly [14].

Note that polynomial interpolation is equivalent to solving
a Vandermonde system of equations. However, since this sys-
tem of equations is structured, the complexity can be reduced.
Specifically, a degree-d polynomial can be interpolated with
time-complexity ()logO d d2 [15].

Distributed matrix–vector multiplication
In more recent times, the power of coding-theoretic methods for
matrix–vector multiplication was first explored in the work of
Lee et al. [20]. In the notation of the section “Problem Formu-
lation,” set p = 1 and consider splitting []A A A Am0 1 1f= -
into m equal-sized block columns. Here m is a parameter that is
a design choice. The idea of Lee et al. [20] is to pick the generator
matrix of a (N, m) MDS code denoted () .gG Rij

m N!= # The
master node then computes

g AAl il
i

m

i
0

1

=
=

-
u /

and distributes x and Alu to the lth worker node for
, , ,l N0 1f= - which computes .A xl

Tu The master node wish-
es to decode , , .j m0 1A xj

T f= - Suppose that worker nodes
indexed by , ,i im0 1f - are the first m nodes to return their re-
sults. Note that the master node has

(), , , ,lg m0 1forA x A xi
T

ji
j

m

i
T

0

1

l l f= = -
=

-
u /

which implies that it can solve a system of linear equations to
determine the required result if the m × m submatrix of G in-
dexed by columns , ,i im0 1f - is nonsingular; the MDS property

Authorized licensed use limited to: Iowa State University. Downloaded on May 08,2020 at 21:44:36 UTC from IEEE Xplore. Restrictions apply.

141IEEE SIGNAL PROCESSING MAGAZINE | May 2020 |

of G guarantees this. Typical choices of G include picking it
as a Vandermonde matrix with distinct parameters , , .z zN1 f

In this case, each Alu is the evaluation of ()zA =

z zA A Am
m

0 1 1
1g+ + + -

- at z = zl. The recovery thresh-
old is m, the computational and communication load of each
worker node is /m1 th of the original and the decoding can
be performed faster than Gaussian elimination (see the section
“Primer on Polynomials”). However, numerical stability is a sig-
nificant concern when G has the Vandermonde form. It is well
known from the numerical analysis literature [21] that the con-
dition number of a #, , real Vandermonde matrix grows expo-
nentially in ., Column 2 of Table 1 contains some illustrative
figures. It shows that even for N = 30 with a threshold ,28x =
the condition number is too high to be useful in practice.

On the other hand, choosing each entry of G independent
identically distributed (i.i.d.) at random from a continuous dis-
tribution also works with high probability, and the computa-
tional load per worker is still /m1 th of the original. Numerical
stability is better [22]; however, decoding the system of equa-
tions will typically take time, which is cubic in the size of the
system of equations.

One can also use the idea of using polynomial interpolation
with multiplicities discussed in the section “Primer on Poly-
nomials.” Let the jth derivative of ()zA be defined as follows:

() ! .z j z
k
j

A A()j
k

k

m
k j

0

1

=
=

-
-c m/

Suppose that the storage fraction / .m2Ac = In this case, for
the ith worker node, the master node assigns the computation
of first [()]zA xi

T and then [()] .zA x()
i

T1 As soon as a worker
node completes a task, it sends the result to the master node.
The result of Ramamoorthy et al. [16] demonstrates that as
long as the master node receives m matrix–vector multiplica-
tion results, it can decode the intended result, i.e., its recovery
threshold(II) is m. The computational and communication load
of each worker is /m2 th of the original. The key advantage of
this scheme is that it allows the master node to leverage partial
computations performed by slow nodes. However, numerical
stability continues to be a problem here.

The numerical stability issue with both approaches dis-
cussed can be addressed (to a certain extent) by a related idea
that involves polynomials over finite fields. In particular,
one can define polynomials over finite fields and their corre-
sponding Hasse derivatives (resulting in so-called universally
decodable matrices) and use an isomorphism between finite

field elements and appropriate matrices to arrive at “binary”
schemes that have a much better behaved condition number.
We illustrate the basic idea here and refer the reader to [16] for
the full details.

Example 4
Let ()u z u u z u z0 1 2

2= + + be a polynomial of degree 2. The
discussion in the section “Primer on Polynomials” indicates that
an associated 3 × 3 Vandermonde matrix is nonsingular when the
polynomial is evaluated at distinct points z1, z2, and z3. It turns
out that we can instead evaluate the polynomial at appropriately
defined matrices instead and obtain schemes with useful proper-
ties. Let binary matrix C correspond to the matrix representation
of the finite field ()GF 23 (see [16] and [23] for details) and con-
sider powers of C, i.e., C, reduced modulo-2, as

., .mod
0
1
0

0
0
1

1
1
0

0
0
1

1
1
0

0
1
1

2and so, e.gC C2= => >H H

Consider the G specified as follows (where each power of C is
reduced modulo-2):

.G
I
I
I

I
C
C

I
C
C

I
C
C2

2

4

3

6
= > H

The work of Ramamoorthy et al. [16] shows, for example, that
any 3 × 3 block matrix of G is nonsingular. For instance, the
9 × 9 matrix formed by picking the first three block columns
has determinant –1 over .R In the matrix–vector multiplication
scenario, we can use G as the coding matrix (see Figure 4) by
setting m = 9. This system can tolerate one failure.

An advantage of this method is that G is binary. Moreover,
it has a significantly better worst-case condition number as
compared to the polynomial approach (see Table 1, column 4).
However, we are unaware of efficient decoding techniques for
these methods. Thus, the decoding complexity is equivalent to
Gaussian elimination.

Convolutional codes are another class of erasure codes
where messages are encoded into sequences of varying
lengths. As an example, consider two row vectors in

, []u u uuR3
0 00 01 02= and [] .u u uu1 10 11 12= These vectors

can also be represented as polynomials ()D u Du ji ij
j

0
2R= =

for i = 0, 1, where D is an indeterminate. Consider the follow-
ing encoding of [() ()]:D Du u0 1

Table 1. The worst-case condition numbers for the different schemes.

Scenario Polynomial [17]* Orthogonal Polynomial [18] [16] + Embedding† All-Ones [19]
Random
[19]

,N 15 13x= = .1 689 106# 686.27 411 910 264.49
,N 15 12x= = .1 695 106# 7,612.7 949 .1 066 104# .1111 103#
,30N 28x= = .2 293 1013# 7,902.6 – 2,868.32 1,374.59

)Vandermonde scheme: the parameters are spaced uniformly in [-1, 1].
†Each worker node is assigned two matrix–vector products corresponding to the polynomial evaluation and its first derivative. The embedding matrix C corresponds to the matrix
representation of GF(33).

Authorized licensed use limited to: Iowa State University. Downloaded on May 08,2020 at 21:44:36 UTC from IEEE Xplore. Restrictions apply.

142 IEEE SIGNAL PROCESSING MAGAZINE | May 2020 |

[() () () ()] () ()

() () () () () () .

D D D D D D
D

D D D D D D D

1
0

0
1

1
1

1
c c c c u u

u u u u u u

0 1 2 3 0 1

0 1 0 1 0 1

=

= + +^ ^h h6
6 ;@

@
E

It is not too hard to see that the polynomials ()Du0 and ()Du1
(equivalently the vectors ,u u0 1) can be recovered from any
two entries of the vector [() () () ()] .D D D Dc c c c0 1 2 3 For
instance, suppose that we only have ()Dc2 and ()Dc3 where

() () () () D u u u u D u u D andc2 00 10 01 11 02 12
2= + + + + +

() () () .D u u u D u u D u Dc3 00 01 10 02 11
2

12
3= + + + + +

Starting with u00 from the constant term of (),Dc3 one can
recover u10 from ()Dc2 and iteratively u01 from ()Dc3 and
so on. A similar argument applies if we consider a different
pair of entries from [() () () ()] .D D D Dc c c c0 1 2 3 Distributed
matrix–vector multiplication can be embedded into this con-

volutional code by interpreting the coefficients of the powers
of D as the assignments to the workers (see [19] and [24]).

Example 5
Consider a system with N = 4 workers, with .5 8Ac =
We partition A into m = 8 block columns of equal
size, which are denoted as , , , .A A A0 1 7f So, we have

()D D D DA A A AA T T T T
0 0 1 2

2
3

3= + + + and ()D AA T
1 4= +

.D D DA A AT T T
5 6

2
7

3+ + The matrices assigned to the ith
worker are given by the coefficient of the powers of D in

(),DCi where

() () () ()

.() ()

D D D D

D D
D

1
0

0
1

1
1

1
C C C C

A A

0 1 2 3

0 1=

6
6 ;@ E

@

This is illustrated in Figure 5. It can be verified that the system
is resilient to two failures. Furthermore, it can be shown that the
system of equations that the master node has to solve can be put
in lower-triangular form upon appropriate permutations. Thus,
decoding is quite efficient. This approach leads to a slightly
nonuniform assignment of tasks to the different worker nodes,
e.g., W3 has one additional matrix–vector product to compute as
compared to the other worker nodes. However, this nonunifor-
mity can be made as small as desired by choosing a large enough
m, while ensuring that the decoding complexity remains low.
It also has a much better condition number as compared to the
polynomial-based schemes (see Table 1, column 5). It turns out
that multiplying the elements of the encoding matrix by random
numbers allows us to provide upper bounds on the worst-case
condition number of the recovery matrices (see Table 1, col-
umn 6). Decoding in this case requires a least-squares solution;
this least-squares solution can be made more efficient by exploit-
ing the sparse nature of the underlying matrices [19].

A fountain coding approach (also known as rateless cod-
ing) was presented in the work of Mallick et al. [25]. In this
scenario, the master node keeps computing random bina-
ry linear combinations of the sAi and sending them to the
worker nodes. These combinations are chosen from a care-
fully designed degree sequence. The properties of this degree
sequence guarantee with high probability that as long as the
receiver obtains ()m 1 e+ matrix–vector products where

02e is a small constant, the receiver can decode the desired
result (the result is asymptotic in m). Furthermore, this decod-
ing can be performed using a so-called peeling decoder, which
is much simpler than running full-blown Gaussian elimina-
tion. In a peeling decoder, at each time instant, the receiver
can find one equation where there is only one unknown. This
is important because, in the large m regime, the cubic com-
plexity of Gaussian elimination would be unacceptably high,
whereas the peeling decoder has a complexity logm m. .

Distributed matrix–matrix multiplication
The situation is somewhat more involved when consider-
ing the distributed computation of .A BT In this case, one
needs to consider the joint design of the coded versions of
the blocks of A and B [see (1)]. This topic was the focus of

W0 W1

W2 W3

(A0 + A3 + A6)

(A1 + A4 + A7)

(A2 + A5 + A8)

x

(A0 + A4 + A8)

(A1 + A5 + A6 + A7)

(A2 + A3 + A4 + A7 + A8)

x

(A0 + A5 + A7 + A8)

(A1 + A3 + A4 + A6 + A7 + A8)

(A2 + A4 + A5 + A6 + A8)

x

(A0 + A3 + A4 + A6 + A8)

(A1 + A4 + A5 + A6)

(A2 + A3 + A4 + A5 + A7)

x

FIGURE 4. The scheme corresponding to the approach of Ramamoorthy
et al. [16] as described in Example 4.

W0 W1 W2 W3

A0

A1

A2

A3

x x x x

∗

A4

A5

A6

A7

∗

A0 + A4

A1 + A5

A2 + A6

A3 + A7

∗

A0

A1 + A4

A2 + A5

A3 + A6

A7

FIGURE 5. The scheme corresponding to the approach of Das et al. [19] as
described in Example 5.

Authorized licensed use limited to: Iowa State University. Downloaded on May 08,2020 at 21:44:36 UTC from IEEE Xplore. Restrictions apply.

143IEEE SIGNAL PROCESSING MAGAZINE | May 2020 |

the so-called algorithm-based fault-tolerance (ABFT) tech-
niques [12], [13] in the 1980s. However, ABFT techniques
result in suboptimal recovery thresholds. Yu et al. [17] pre-
sented an elegant solution to this problem based on polyno-
mials. Their solution matches a corresponding lower bound
on the threshold in certain cases. Interestingly, work on
embedding matrix–matrix multiplication into the structure
of polynomials was considered much earlier in the work of
Yagle [26]; however, this was in the context of speeding up
the computation rather than straggler resilience.

The basic ideas of using polynomials for matrix–matrix mul-
tiplication have already been illustrated by Examples 1 and 2 in
the section “Problem Formulation.” We now present a more in-
depth discussion of these techniques along with a host of other
approaches that have been considered in the literature. The first
idea along these lines in Yu et al. [17] corresponds to the case
of p 1= and arbitrary m and n (using the notation introduced
in the section “Problem Formulation”). As before, polynomial
() .z zA Ai

m
i

i
0
1R= =

- However, the second polynomial with coef-
ficients , , ,j n0 1B j f= - needs to be chosen more carefully.
The underlying simple and useful trick is to choose ()zB in
such a way that A Bi

T
j for , , , , ,i m j n0 1 0 1f f= - = -

appear as coefficients of zl for , ,l mn0 1f= - of the poly-
nomial () ().z zA BT Yu et al. [17] propose

() () ,z z z zandA A B Bj
j

m
j

j
j

n
jm

0

1

0

1

= =
=

-

=

-

/ /

() () .z z zso that A B A BT
j
T

k

n

j

m

k
j km

0

1

0

1

=
=

-

=

-
+//

The ith worker node is assigned ()zA i and ()zB i so that the stor-
age fractions are /m1Ac = and / .n1Bc = The node is tasked with
computing () ().z zA BT

i i Evidently, () ()z zA BT can be interpo-
lated to determine the intended result as long as the master node
obtains mn distinct evaluations of it. This solution is such that the
computational load and the communication load on each worker
is /mn1 th of the original. It also achieves the optimal recovery
threshold (under communication load limitations on the worker
nodes). Furthermore, the decoding complexity corresponds to
running /rw mn polynomial interpolations of a degree ()mn 1-
polynomial. Nevertheless, this technique has serious numerical
stability issues stemming from the ill-conditioned nature of the
Vandermonde-structured recovery matrices discussed before (see
the section “Distributed Matrix–Vector Multiplication”).

A generalization of this approach for matrix–matrix mul-
tiplication when p 1> was considered in Yu et al. [27] and
Dutta et al. [28] around the same time. This was earlier exam-
ined in the matrix–vector context when each worker only gets
subvectors of x in the work of Dutta et al. [9], which can be
considered as a special case of this result when .n 1= How-
ever, the threshold in Yu et al. [27] is better than that in Dutta
et al. [9]. Our discussion loosely follows the presentation in
Yu et al. [27]. Note that when ,p 1= our unknowns are pre-
cisely , , , , , , .i m j n0 1 0 1A Bi

T
j f f= - = - However, when

p 2= (for instance), the unknowns now involve the sum of
certain terms. Indeed, when ,m n p 2= = = we have

 .A B
A B A B
A B A B

A B A B
A B A B

T
T T

T T

T T

T T
00 00 10 10

01 00 11 10

00 01 10 11

01 01 11 11
=

+

+

+

+
= G

Recall, that our goal is to form polynomials ()zA and ()zB
with coefficients from , , , , , ,i m j p0 1 0 1Aij f f= - = -
and , , , , , ,k p l n0 1 0 1Bkl f f= - = - such that the useful
terms appear as appropriate coefficients of consecutive powers
of z in () ().z zA BT When p 1> (unlike),p 1= the presence of
interference terms becomes unavoidable. Nevertheless, one can
choose ()zA and ()zB in such a way that we can interpolate the
useful terms along with interference terms at the master node.
This can lead to a strictly better threshold as indicated in Exam-
ple 2; see [27] for full details. For ,m n p 2= = = we choose

() ,z z z zA A A A A00 10 01
2

11
3= + + +

() , z z z z so thatB B B B B10 00 11
4

01
5= + + +

() () () () ()

() () ()

() () ,

z z z z

z z z

z z

A B A B A B

A B A B A B A B

A B A B

T T T

T T T T

T T

00 00 10 10
2

01 00 11 10
3 4

00 01 10 11
5

6
01 01 11 11

7

))

)

)

= + + +

+ + + + +

+ + +

where (*) in the expression refers to an interference term that
is not of interest to us. () ()z zA BT is a matrix polynomial of de-
gree 7 and can therefore be interpolated as long as eight distinct
evaluations are obtained. In general, the result of Yu et al. [27]
shows that the threshold of their scheme is .pmn p 1x = + -
The scheme can be decoded efficiently via polynomial inter-
polation. However, the numerical stability issue in this case
is even more acute as the degree of the fitted polynomial is

,pmn p 2+ - i.e., much higher.
Recently, some contributions in the literature have attempted to

address the numerical stability issues associated with polynomial-
based approaches. In Das et al. [19], the authors demonstrate that
convolutional codes can be used for matrix multiplication as well.
They also demonstrate a computable upper bound on the worst-
case condition number of the recovery matrices. This approach
allows for schemes that are significantly better in terms of the
numerical stability. Subramaniam et al. [22] consider choosing the
encoding matrices (each entry i.i.d.) from a continuous distribu-
tion. Fahim and Cadambe [18] propose an alternative approach
where the underlying polynomial scheme now operates on the
basis of orthogonal polynomials, such as Chebyshev polynomi-
als. They show that the condition number of the recovery matrices
can be upper-bounded polynomially in the system parameters (as
long as the number of stragglers is a constant), unlike real Vander-
monde matrices, where the condition number grows exponentially.
The recent work of Ramamoorthy and Tang [29] presents a dif-
ferent approach wherein polynomials are evaluated at structured
matrices, such as circulant permutation and rotation matrices. The
worst-case condition numbers obtained by this scheme are much
lower than those obtained by Fahim and Cadambe [18].

Example 6
We now present an experimental comparison of different ap-
proaches for computing A BT with ,r w 9 000= = and differ-
ent t (see Table 2). We set up a cluster in the Amazon Web

Authorized licensed use limited to: Iowa State University. Downloaded on May 08,2020 at 21:44:36 UTC from IEEE Xplore. Restrictions apply.

144 IEEE SIGNAL PROCESSING MAGAZINE | May 2020 |

Services cloud with one t2.2xlarge machine as the master
node and N 11= t2.small worker nodes. We considered a
system with ,p m n1 3= = = so that the threshold .9x = The
entries in Table 2 correspond to the worst-case computation
time of each worker node for different values of t. We picked
the set of workers that correspond to the worst condition num-
ber for the different schemes. For these methods, the worker
computation time increases roughly linearly with t, while the
decoding time does not change. The computational load on the
worker nodes in the convolutional code approach is slightly
higher than that in the polynomial code approach. This dif-
ference can be made as small as desired with higher subpack-
etization [19]. Note, however, that the condition number of the
convolutional code is multiple orders of magnitude smaller.
Our code implements the to and from communication from the
master node to the workers sequentially; parallel implementa-
tions can further reduce the communication time.

Opportunities for future work
We hope the discussion in the preceding sections has convinced
the reader that the area of coded matrix computation is a grow-
ing one and that there is ample scope to contribute toward it in
various ways. MATLAB and Python code for several of the
schemes in this survey article can be downloaded from https://
github.com/anindyabijoydas/StragglerMitigate​ConvCodes
[30]. We now outline some outstanding issues that require clos-
er attention from the research community as a whole.

The vast majority of work in this area has considered dis-
tributed schemes for computing A BT for arbitrary matrices A
and B. However, in several practical scenarios, these matrices
are sparse. This can change the computational complexity cal-
culation significantly. We illustrate this by considering matrix–

vector multiplication. If A (of dimension)t r# is such that each
column contains at most s nonzero entries, then computing
A xT takes rs2. flops. Suppose that we apply the polynomial
solution of the section “Distributed Vector–Matrix Multiplica-
tion.” In this situation, each coded matrix Alu has approximately
sm nonzero entries per column in the worst case (assuming sm
< t). The worker node that computes xAl

Tu will therefore require
(/)m rsm rs1 2 2# = flops. This means that in the worst case
each worker node has the “same” computational load as com-
puting A xT , i.e., the computational advantage of distributing
the computation may be lost. Table 3 tabulates the time for com-
puting xAl

Tu (for a , ,30 000 30 000# A) using the solution of
Lee et al. [20] for a system with N 15= worker nodes with a
threshold of m 12x = = for two kinds of sparse matrices:
1)	 an A that has the b-diagonal structure where only the diag-

onal and b off-diagonal terms are nonzero
2)	 an A where the nonzero entries are chosen at random.
Table 3 also lists the time of computing an uncoded matrix
vector product, i.e., .A xi

T It is clear that the worker node com-
putation time increases significantly for the coded case. This is
an issue with other papers [16], [17], [19], [24], [27] as well. The
fountain-coding approach for the matrix–vector case [25] fares
better here because with high probability the linear combina-
tion generated by the master node has low weight. However,
Mallick et al. [25] do not provide provable guarantees on the
recovery threshold and do require rather high values of m. This
was also considered in Wang et al. [31] for the matrix–matrix
case, though it is unclear whether their scheme respects the
storage constraints on the workers as formulated in the section
“Problem Formulation.” The recent work of Wang et al. [32]
makes progress on this problem. Wang et al. [32] define the
computational load of a given coding solution in the matrix–
vector case as the number of nonzero elements of the corre-
sponding coding matrix. Their paper contains a discussion
about lower bounds and achievability schemes for this metric.

Throughout this review article, we have highlighted the
role of embedding an erasure code into a distributed matrix
computation problem. We have shown that in the computation
context, special attention needs to be paid to the numerical sta-
bility of the recovery of .A BT Much existing work does not
provide guarantees on the worst-case or average-case condi-
tion numbers. This is an important direction that needs to be
pursued. There have been some initial results in this area [18],
[19], [22], [29], but much remains to be done.

Table 3. A comparison of worker computation times when A is sparse.

Percentage of
Zero Entries 90%‡ 80%‡ 70%‡
Time for uncoded
case (ms)*

11.9(13.3) 22.1(22.7) 36.8(35.4)

Time for coded
case (ms)†

109(83.8) 110.1(104.3) 122.2(108.2)

)The worker time for finding A x.l
T

†The time to find A x.l
Tu

‡The number in parentheses is for the case when A has a -b diagonal structure and
the other number is for a sparse random A.

Table 2. A comparison of the different schemes in terms of average worker computation time,
total communication time (in parentheses), average decoding time, and worst-case condition number.

Methods

Worker Computation and Communication Time (s)

Decoding Time (s) Condition Numbert = 12,000 t = 18,000 t = 24,000
Polynomial Codes* [17] 6.8(5) 10.8(6.9) 14.2(8.6) 1.24 24,753.93
Orthogonal Polynomial Codes* [18] 6.8(5) 10.8(6.9) 14.2(8.6) 1.24 266.59
Random Khatri–Rao Product Codes* [22] 6.8(5) 10.8(6.9) 14.2(8.6) 0.2 128.95
All-Ones Convolutional Codes† [19] 7.9(6.7) 12.2(8.9) 15.7(11.9) 0.24 95.198
Random Convolutional Codes† [19] 7.9(6.7) 12.2(8.9) 15.7(11.9) 0.41 87.093

/ .B 1 3Ac c= =)

† / .B 2 5Ac c= =

Authorized licensed use limited to: Iowa State University. Downloaded on May 08,2020 at 21:44:36 UTC from IEEE Xplore. Restrictions apply.

145IEEE SIGNAL PROCESSING MAGAZINE | May 2020 |

The majority of existing work only deals with the recovery
threshold (see the section “Problem Formulation”), which is in
one-to-one correspondence with treating an erasure as a failed
node. However, recovery threshold(II) considers a more fine-
grained model, where different worker nodes operate at dif-
ferent speeds. The systematic design of schemes that provably
leverage partial computations by the worker nodes is interest-
ing. Ramamoorthy et al. [16] consider the case of matrix–vector
multiplication, but systematic extensions to the matrix–matrix
multiplication case would be of interest.

Authors
Aditya Ramamoorthy (adityar@iastate.edu) received his
B.Tech. degree in electrical engineering from the Indian
Institute of Technology, Delhi, in 1999 and his M.S. and Ph.D.
degrees from the University of California, Los Angeles, in
2002 and 2005, respectively. He served as an editor of IEEE
Transactions on Information Theory from 2016 to 2019 and
IEEE Transactions on Communications from 2011 to 2015.
He is the recipient of the 2012 Iowa State University’s Early
Career Engineering Faculty Research Award, the 2012
National Science Foundation CAREER Award, and the
Harpole-Pentair professorship in 2009 and 2010. His research
focus is in the areas of information theory and coding theory
and their applications in a variety of domains such as distrib-
uted computation, machine learning and caching. He is a
Senior Member of the IEEE.

Anindya Bijoy Das (abd149@iastate.edu) received his B.
Sc. degree in electrical and electronic engineering from
Bangladesh University of Engineering and Technology, Dhaka,
in 2014, and his M.Eng. degree in electrical engineering from
Iowa State University, Ames, in 2018. He is currently working
toward his Ph.D. degree in the Department of Electrical and
Computer Engineering at Iowa State University. His research
interests include coding theory and machine learning.

Li Tang (litang@iastate.edu) received his B.E. degree in
mechanical engineering and his M.S. degree in electrical and
information engineering from Beihang University, Beijing,
China, in 2011 and 2014, respectively. He is currently working
toward his Ph.D. degree in the Department of Electrical and
Computer Engineering at Iowa State University, Ames IA. His
research interests include network coding and channel coding.

References
[1] I. Goodfellow, Y. Bengio, A. Courville, and, and Y. Bengio, Deep Learning.
Cambridge: MIT Press, 2016.

[2] G. Ananthanarayanan, A. Ghodsi, S. Shenker, and I. Stoica, “Effective straggler
mitigation: Attack of the clones,” in Proc. 10th USENIX Conf. Networked
Systems Design and Implementation (NSDI), 2013, pp. 185–198.

[3] N. B. Shah, K. Lee, and K. Ramchandran, When do redundant requests reduce
latency? 2013. [Online] Available: https://arxiv.org/abs/1311.2851

[4] G. Joshi, E. Soljanin, and G. Wornell, “Efficient redundancy techniques for
latency reduction in cloud systems,” ACM Trans. Model. Perform. Eval. Comput.
Syst., vol. 2, no. 2, pp. 12:1–12:30, 2017. doi: 10.1145/3055281.

[5] B. Li, A. Ramamoorthy, and R. Srikant, “Mean-field analysis of coding versus
replication in large data storage systems,” ACM Trans. Model. Perform. Eval.
Comput. Syst., vol. 3, no. 1, pp. 3:1–3:28, 2018. doi: 10.1145/3159172.

[6] D. Wang, G. Joshi, and G. W. Wornell, “Efficient straggler replication in large-
scale parallel computing,” ACM Trans. Model. Perform. Eval. Comput. Syst., vol.
4, no. 2, pp. 7:1–7:23, Apr. 2019. doi: 10.1145/3310336.

[7] C. M. Bishop, Pattern Recognition and Machine Learning. Berlin: Springer-
Verlag, 2006.

[8] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “ImageNet classification with
deep convolutional neural networks,” in Proc. Advances in Neural Information
Processing Systems (NeurIPS), 2012, pp. 1097–1105. doi: 10.1145/3065386.

[9] S. Dutta, V. Cadambe, and P. Grover, “Short-dot: Computing large linear trans-
forms distributedly using coded short dot products,” in Proc. Advances in Neural
Information Processing Systems (NeurIPS), 2016, pp. 2100–2108.

[10] R. A. Horn and C. R. Johnson, Matrix Analysis. Cambridge, U.K.: Cambridge
Univ. Press, 1990.

[11] S. Lin and D. J. Costello, Error Control Coding, 2nd ed. Englewood Cliffs, NJ:
Prentice Hall, 2004.

[12] K.-H. Huang and J. A. Abraham, “Algorithm-based fault tolerance for matrix
operations,” IEEE Trans. Comput., vol. 100, no. 6, pp. 518–528, 1984. doi: 10.1109/
TC.1984.1676475.

[13] J.-Y. Jou and J. A. Abraham, “Fault-tolerant matrix arithmetic and signal pro-
cessing on highly concurrent computing structures,” Proc. IEEE, vol. 74, no. 5, pp.
732–741, 1986. doi: 10.1109/PROC.1986.13535.

[14] G. Sobczyk, “Generalized Vandermonde determinants and applications,”
Aportaciones Matematicas, Serie Comunicaciones, vol. 30, pp. 203–213, 2002.

[15] V. Y. Pan, “TR-2013003: Polynomial evaluation and interpolation—Fast and
stable approximate solution,” City Univ. of New York, 2013. [Online] Available:
https://academicworks.cuny.edu/gc_cs_tr/378/

[16] A. Ramamoorthy, L. Tang, and P. O. Vontobel, “Universally decodable matri-
ces for distributed matrix-vector multiplication,” in Proc. IEEE Int. Symp.
Information Theory (ISIT), 2019, pp. 1777–1781. doi: 10.1109/ISIT.2019.8849451.

[17] Q. Yu, M. Maddah-Ali, and S. Avestimehr, “Polynomial codes: An optimal
design for high-dimensional coded matrix multiplication,” in Proc. Advances in
Neural Information Processing Systems (NeurIPS), 2017, pp. 4403–4413.

[18] M. Fahim and V. R. Cadambe, “Numerically stable polynomially coded com-
puting,” in Proc. IEEE Int. Symp. Information Theory (ISIT), 2019, pp. 3017–3021.
doi: 10.1109/ISIT.2019.8849468.

[19] A. B. Das, A. Ramamoorthy, and N. Vaswani, Random convolutional coding
for robust and straggler resilient distributed matrix computation. 2019. [Online]
Available: https://arxiv.org/abs/1907.08064

[20] K. Lee, M. Lam, R. Pedarsani, D. Papailiopoulos, and K. Ramchandran,
“Speeding up distributed machine learning using codes,” IEEE Trans. Inf. Theory,
vol. 64, no. 3, pp. 1514–1529, 2018. doi: 10.1109/TIT.2017.2736066.

[21] V. Pan, “How bad are Vandermonde matrices?” SIAM J. Matrix Anal. Appl.,
vol. 37, no. 2, pp. 676–694, 2016. doi: 10.1137/15M1030170.

[22] A. M. Subramaniam, A. Heidarzadeh, and K. R. Narayanan, “Random Khatri-
Rao-product codes for numerically-stable 500 distributed matrix multiplication,” in
Proc. Allerton Conf. Communication, Control, and Computing (Allerton), Sept.
2019, pp. 253–259. doi: 10.1109/ALLERTON.2019.8919859.

[23] W. P. Wardlaw, “Matrix representation of finite fields,” Math. Mag., vol. 67, no.
4, pp. 289–293, 1994. doi: 10.2307/2690850.

[24] A. B. Das and A. Ramamoorthy, “Distributed matrix-vector multiplication: A
convolutional coding approach,” in Proc. IEEE Int. Symp. Information Theory
(ISIT), 2019. doi: 10.1109/ISIT.2019.8849395.

[25] A. Mallick, M. Chaudhari, and G. Joshi, “Fast and efficient distributed matrix-
vector multiplication using rateless fountain codes,” in Proc. IEEE Int. Conf.
Acoustics, Speech and Signal Processing (ICASSP), 2019, pp. 8192–8196. doi:
10.1109/ICASSP.2019.8682347.

[26] A. E. Yagle, “Fast algorithms for matrix multiplication using pseudo-number-
theoretic transforms,” IEEE Trans. Signal Process., vol. 43, no. 1, pp. 71–76, 1995.
doi: 10.1109/78.365287.

[27] Q. Yu, M. A. Maddah-Ali, and A. S. Avestimehr, “Straggler mitigation in dis-
tributed matrix multiplication: Fundamental limits and optimal coding,” in Proc.
IEEE Int. Symp. Information Theory (ISIT), 2018, pp. 2022–2026. doi: 10.1109/
ISIT.2018.8437563.

[28] S. Dutta, M. Fahim, F. Haddadpour, H. Jeong, V. Cadambe, and P. Grover,
“On the optimal recovery threshold of coded matrix multiplication,” IEEE Trans.
Inf. Theory, vol. 66, no. 1, pp. 278–301, 2019. doi: 10.1109/TIT.2019.2929328.

[29] A. Ramamoorthy and L. Tang, Numerically stable coded matrix computations
via circulant and rotation matrix embeddings. 2019. [Online] Available at: https://
arxiv.org/abs/1910.06515

[30] “Straggler mitigation codes,” GitHub, San Francisco. Accessed on: Mar. 2,
2020. [Online] https://github.com/anindyabijoydas/StragglerMitigateConvCodes

[31] S. Wang, J. Liu, and N. Shroff, “Coded sparse matrix multiplication,” in Proc.
Int. Conf. Machine Learning (ICML), 2018, pp. 5152–5160.

[32] S. Wang, J. Liu, N. Shroff, and P. Yang, “Computation efficient coded linear
transform,” in Proc. Int. Conf. Artificial Intelligence and Statistics, 2019.

�
SP

Authorized licensed use limited to: Iowa State University. Downloaded on May 08,2020 at 21:44:36 UTC from IEEE Xplore. Restrictions apply.

