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The current big data era routinely requires the processing of 
large-scale data on massive distributed computing clusters. 
In these applications, data sets are often so large that they 

cannot be housed in the memory and/or the disk of any one com-
puter. Thus, the data and the processing are typically distributed 
across multiple nodes. Distributed computation is thus a neces-
sity rather than a luxury. The widespread use of such clusters 
presents several opportunities and advantages over traditional 
computing paradigms. However, it also presents newer chal-
lenges where coding-theoretic ideas have recently had a signifi-
cant impact. Large-scale clusters (which can be heterogeneous in 
nature) suffer from the problem of stragglers, which are slow or 
failed worker nodes in the system. Thus, the overall speed of a 
computation is typically dominated by the slowest node in the ab-
sence of a sophisticated assignment of tasks to the worker nodes.

These issues are a potential bottleneck in several impor-
tant and basic tasks, such as (but not limited to) the training 
of large-scale models in machine learning. Operations, such 
as matrix–vector multiplication and matrix–matrix multipli-
cation (henceforth referred to as matrix computations), play a 
significant role in several parts of the machine learning pipe-
line [1] (see the “Applications of Matrix Computations Within 
Distributed Machine Learning” section). In this article, we 
review recent developments in the field of coding for straggler-
resilient distributed matrix computations.

The conventional approach for tackling stragglers in distrib-
uted computation has been to run multiple copies of tasks on var-
ious machines [2], with the hope that at least one copy finishes 
on time. However, coded computation offers significant benefits 
for specific classes of problems. We illustrate this by means of a 
matrix–vector multiplication example in Figure 1. Consider the 
scenario where a user wants to compute ,A xT  where A is a t r#  
matrix and x  is a t 1#  vector; both t  and r  are assumed to be 
large. The size of A precludes the possibility that the compu-
tation can take place on a single node. Accordingly, matrix A  
is block column decomposed as ,[ ]A A A A1 2 3=  where each 
Ai  is the same size. Each worker node is given the responsi-
bility of computing two submatrix–vector products so that the 
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computational load on each worker is two-thirds of the original. 
We note here that the master node that creates the encoded matri-
ces, e.g., ( ),A A2 3+  only needs to perform additions (and more 
generally scalar multiplications). The computationally intensive 
task of computing inner products of the rows of the encoded 
matrices with x  is performed by the worker nodes. Even if one 
worker is a complete straggler, i.e., it fails, there is enough infor-
mation for a master node to compute the final result. However, 
this requires the master node to solve a linear system of equations 
to decode the final result. A similar approach (with additional 
subtleties) can be used to arrive at a corresponding illustrative 
example for matrix–matrix multiplication.

Straggler mitigation using coding techniques has also been 
considered in a different body of work that broadly deals with 
reducing file-access delays when retrieving data from cloud 
storage systems [3]–[6]. Much of this article deals with under-
standing tradeoffs between file-access latency and the redun-
dancy introduced by the coding method under different service 
time models for the servers within the cloud. Coded systems 
in turn introduce interesting challenges in the queuing delay 
analysis of these systems. These solutions can also be adapted 
for use within coded computing.

Applications of matrix computations within 
distributed machine learning
Computing high-dimensional linear transforms is an important 
component of dimensionality reduction techniques, such as princi-
pal component analysis and linear discriminant analysis [7]. Large-
scale linear regression and filtering are also canonical examples of 
problems where linear transformations play a key role. They are 

also key components of training deep neural networks [1] and us-
ing them for classification, as we explain in detail.

Every layer of a fully connected deep neural network (see 
Figure 2) requires matrix–matrix multiplications in both for-
ward and backward propagation. Suppose that the training 
data can be represented as a matrix P0  of size ,f m#  where f  
is the number of features and m  is the number of samples. In 
forward propagation, in any layer i  the input Pi 1-  is multiplied 
by the weight matrix ,Wi  and the bias term bi  is added. Fol-
lowing this, it is passed through a nonlinear function, ( ),gi $  to 
obtain Pi  (the input of the next layer), i.e.,

.( )g1 andZ W P b P Zi i i i
T

i i i1= + =-

We note here that if Wi  is a large matrix, then we have a large-
scale matrix–matrix multiplication problem that needs to be 
solved in this step.

Similar issues also arise in the backpropagation step, where 
the weight matrices and bias vectors are adjusted. We typically 
use a variant of gradient descent to obtain the weight matrix 

W0 W1 W2

AT
1 x AT

2 x AT
3 x

x(A2 + A3)T x(A3 + A1)T x(A1 + A2)T

FIGURE 1. Matrix A  is split into three equal-sized block columns. Each 
node is responsible for computing submatrix–vector products sequentially 
from top to bottom. Note that A xT  can be decoded even if one node fails.
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FIGURE 2. A fully connected neural network with three hidden layers where an input vector has a size f  (number of features) and can be classified into 
one of q  classes.
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Wi
j  at iteration j  in layer i  using an appropriate learning rate 

.a  Now, if ,dZi
j  ,dWi

j  and dPi
j  indicate the gradients of the 

chosen loss function with respect to ,Zi  ,Wi  and Pi  respec-
tively, then for any iteration ,j  we compute

	 d g dZ Z Pi
j

i i
j

i
j

9= l ^ h   and   ;d
m

d1W Z Pi
j

i
j

i
jT
1= -

and update    dW W Wi
j

i
j

i
j1

a= -
-    and   ,d dP W Zi

j
i
jT

i
j

1 =-

where the symbol 9  indicates the Hadamard product. Thus, 
the backpropagation step requires matrix–matrix multiplica-
tion in each layer as well. Furthermore, each of these steps is 
repeated over multiple iterations.

As a concrete example, consider AlexNet [8], which performs 
a 1,000-way classification of the ImageNet data set and provides 
a top-five test error rate of under 15.3%. It has a training set of 1.2 mil-
lion images, 50,000 validation images, and a test set of 150,000 
images, each of which is a  224 224 3# #  ( , )150 528=  image. 
So, for training, P0  has a size .1 5 105#.  by . .1 2 106#  AlexNet 
consists of eight layers, among which five are convolutional layers 
and the other three are fully connected layers. Thus, this network 
has 43,264 and 4,096 neurons in the fifth and sixth layers. So, W6  
has a size of 4,096 # 43,264. Thus, in the sixth layer of the forward 
propagation, the network requires the product of two matrices of 
size 4,096 # 43,264 and , ( . ) .43 264 1 2 106# #

Problem formulation
We present a formulation of the distributed matrix–matrix multi-
plication problem in this section. Note that matrix–vector multi-
plication is a special (though very important) case of matrix–ma-
trix multiplication, and the formulation carries over in this case 
in a natural manner. Consider a scenario where a master node 
has two large matrices, A Rt r! #  and ,B Rt w! #  and wishes to 
compute A BT  in a distributed fashion using N  worker nodes.

Each worker node is assigned a storage fraction for the 
coded columns of A (denoted )Ac  and B (denoted ).Bc  The 
coded columns of A and B should be created by means of 
computationally inexpensive operations, e.g., scalar multipli-
cations and additions. While the storage fraction constraint 
can be satisfied by potentially nonlinear coded solutions, our 
primary interest will be in linearly coded solutions where A  
and B are decomposed into block matrices of size p m#  and 
p n#  respectively, as follows:
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-
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so that the blocks in A and B are of size / /( ) ( )t p r m#  and 
/ /( ) ( ),t p w n#  respectively. The master node generates cer-

tain linear combinations of the blocks in A and B and sends 
them to the worker nodes. The master node also requires each 
worker node to compute the product of some or all of their 
assigned matrices in a specified sequential order; we refer to 
this as the responsibility of the worker node. For instance, if a 
given worker node stores coded matrices ,A0u  A1u  and ,B0u  B1u  
and is required to compute all four pairwise products, then the 

scheme specifies the order, e.g., ,A BT
0 0u u  ,A BT

01
u u  ,A BT

0 1u u  A BT
1 1u u  

or ,A BT
1 1u u  ,A BT

01
u u  ,A BT

0 1u u  ,A BT
0 0u u  and so on. The following two 

cases of block-partitioning A and B are of special interest.
■■ Case 1 p 1( )= : In this scenario, both A and B are decom-

posed into block columns, i.e., [ ]A A A Am0 1 1f= -  and 
[ ],B B B Bn0 1 1f= -  so that recovering A BT  is equivalent 

to recovering A Bi
T

j  for all pairs , ,i m0 1f= -  , ,j 0 f=  
.n 1-

■■ Case 2 m n 1( )= = : We set [ ]A A A AT T T
p
T

0 1 1f= -  and 
[ ]B B B BT T T

p
T

0 1 1f= -  so that / .A B A BT
i
p

i
T

i0
1

= =
-

The computational cost of computing A BT  is ( )rw t2 1-  
floating point operations (flops), which is approximately 

( , , )r t w rtw2cost =  when t  is large. In the distributed setup 
under consideration, the computational load on each worker 
node is less than the original cost of computing ,A BT  and the 
advantages of parallelism can therefore be leveraged.

We note some minor differences in the matrix–vector mul-
tiplication scenario at this point. Here, the master node wishes 
to compute ,A xT  where x  is a vector. As x  is much smaller 
than ,A  we typically only impose the storage constraint for the 
worker nodes for the matrix A and assume that x  is available to 
all of them. The case when x  is further split into subvectors [9] 
will be treated along with the matrix–matrix multiplication case.

Example 1
Consider distributed matrix multiplication with p 1=  and 

.m n 2= =  Furthermore, we define the matrix polynomials as 
follows:

	 ( ) ( ) ;z zz z andA A A B B B0 1 0 1
2= + = +

so that ( ) ( ) .z z z z zA B A B A B A B A BT T T T T
0 0 1 0 0 1

2
1 1

3= + + +

Suppose that the master node evaluates ( )zA  and ( )zB  at dis-
tinct points , , .z zN0 1f -  It sends ( )zA i  and ( )zB i  to the ith 
worker node, which is assigned the responsibility of computing 

( ) ( ).z zA BT
i i

It follows that as soon as any four out of the N  worker 
nodes return the results of their computation, the master node 
can perform polynomial interpolation to recover the ( ),k l th  
entry of each A Bi

T
j  for /k r0 21#  and / .l w0 21#  There-

fore, such a system is resilient to N 4-  failures.
Note here that each worker node stores coded versions 

of A  and B of size /t r 2#  and /t w 2#  respectively, i.e., 
/ .1 2A Bc c= =  The computational load on each work-

er  is / / /( , , ) ( , , ) ,r t w r t w2 2 4cost cost=  i.e., one-fourth of  
the original. Furthermore, each worker communicates 
a / /r w2 2#  matrix to the master node.

On the other hand, splitting the matrices as in case 2 yields 
a different tradeoff.

Example 2 
Let m n 1= =  and ,p 2=  so that B

B
1
0

1
0A

A andA B= =8 8B B and 
consider the following matrix polynomials:

	 ( ) ( ) ,z z z zandA A A B B B0 1 0 1= + = +

so that ( ) ( ) ( ) .z z z zA B A B A B A B A BT T T T T
1 0 0 0 1 1 0 1

2= + + +
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As before, the master node evaluates ( )zA  and ( )zB  at dis-
tinct points , ,z zN0 1f -  and sends the coded matrices to the 
worker nodes that calculate ( ) ( ).z zA BT

i i  In this case, as soon 
as any three workers complete their tasks, the master node can 
interpolate to recover ( ) ( )z zA BT  and obtain the desired result 
( )A B A BT T

0 0 1 1+  as the coefficient of .z  The other coefficients 
are interference terms. Thus, this system is resilient to N 3-  
stragglers and strictly improves on Example 1 with the same 
storage fraction / .1 2A Bc c= =

The dimensions of ( )zA  and ( )zB  are /t r2#  and 
/t w2#  so that the computational load on each worker is 

/ /( , , ) ( , , )r t w r t w2 2cost cost= , i.e., it is twice that of the 
workers in Example 1. Moreover, each worker node communi-
cates an wr #  matrix to the master node, i.e., the communica-
tion load is four times that of Example 1.

Metrics for evaluating coded computing solutions
Examples 1 and 2 illustrate the core metrics by which coded com-
puting solutions are evaluated. More formally, for given storage 
fractions Ac  and Bc  and the responsibilities of all worker nodes, 
we evaluate a solution by a subset of the following metrics.

■■ Recovery threshold: We say that a solution has recovery thresh-
old x if A BT  can be decoded by the master node as long as 
any x worker nodes return the results of their computation, e.g., 
the thresholds were four and three respectively in Examples 1 
and 2. This metric is most useful under the assumption that 
worker nodes are either working properly or in failure.

■■ Recovery threshold(II): A more refined notion of recovery 
is required when we consider scenarios where worker 
nodes may be slow but not complete failures. For instance, 
Figure  3 shows an example where each worker node is 
assigned two matrix–vector products and operates sequen-
tially from top to bottom. It can be verified by inspection 
that as long as any three matrix–vector products are 
obtained from the worker nodes in this manner, the master 
node has enough information to decode .A xT  For instance, 
Figure 3(a) depicts a situation where W2  is failed and W0  
is slow as compared to .W1  The solution leverages the par-
tial computations of W0  as well. We say that a solution has 
a recovery threshold(II) of xl if the master node can decode 
the intended result if it receives the result of xl computa-
tions from the worker nodes; these computations have to 
respect the sequential order within each worker node.

■■ Computational load per worker node: The complexity of 
determining A BT  is ( , , )r t wcost  flops. The computational 

load per worker is measured as a fraction of ( , , ),r t wcost  
e.g., in Examples 1 and 2, the fractions are 1/4 and 1/2, 
respectively. If A and B are sparse, then the computational 
load on the worker will depend on the number of nonzero 
entries in them. We discuss this point in more detail in the 
section “Opportunities for Future Work.” 

■■ Communication load per worker node: The communication 
load per worker measures the number of values that a work-
er node needs to send to the master node, normalized by .rw

■■ Decoding complexity: All linear schemes under consider-
ation in this article require solving a system of linear equa-
tions to decode the result .A BT  The time-complexity of 
solving an arbitrary #, ,  system of equations grows as .3,  
This is another metric that needs to be small enough for a 
scheme to be useful. For instance, in Example 1, the master 
node needs to solve a 4 4#  system of equations /rw 4  
times. Thus, the time cost of decoding is roughly proportion-
al to ;rw  there is no dependence on .t  On the other hand, the 
computation load on a worker depends in a multiplicative 
manner on .t  In scenarios where t  is large, it can be argued 
that the decoding cost is negligible compared to the worker 
computation. Nevertheless, this is a metric that needs to be 
considered. Decoding in Examples 1 and 2 corresponds to 
polynomial interpolation and is thus a “structured” system of 
equations that can be typically solved much faster than 
Gaussian elimination.

■■ Numerical stability: Solving linear equations to determine 
A BT  naturally brings up the issue of numerical stability of 
the decoding. Specifically, if the system of equations is ill-
conditioned, then the decoded result may suffer from sig-
nificant numerical inaccuracies. Let P  be a real-valued 
matrix and ( )Pmaxv  and ( )Pminv  denote its maximum and 
minimum singular values [10]. We define its condition 
number as /( ) ( ) ( ).cond P P Pmax minv v=

As a rule of thumb, if the system of equations has a condition 
number of ,10l  it results in the loss of approximately l  bits of 
numerical precision. For any distributed scheme, we ideally 
want the worst-case condition number over all possible recov-
ery matrices to be as small as possible.

Overview of techniques
The overarching idea in almost all of the works in this area is 
one of “embedding” the matrix computation into the structure 
of an erasure code. Note that ( , )n k  erasure codes [11] used in 
point-to-point communication have the property that one can 

W0 W1 W2

AT
1 x AT

2 x AT
3 x

x(A2 + A3)T x(A3 + A1)T x(A1 + A2)T

W0 W1 W2

AT
1 x AT

2 x AT
3 x

x(A2 + A3)T x(A3 + A1)T x(A1 + A2)T

(a) (b)

FIGURE 3. (a) and (b) Two example scenarios where the master node obtains the results of three completed tasks (respecting the sequential order) from 
the worker nodes. The scheme is such that the master node is guaranteed to recover A xT  as long as any three tasks are completed.
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decode the intended message for several erasure patterns, e.g., 
for maximum distance separable (MDS) codes, as long as any 
k  coded symbols (out of )n  are obtained, the receiver can de-
code the intended message. Most constructions of MDS codes 
are nonbinary and decoding typically involves multiplications 
and divisions. There are also several constructions of binary, 
near-MDS codes, e.g., low-density parity-check and fountain 
codes, that allow recovery with high probability from any 
( )k 1 e+  symbols for small 02e  when n  and k  are large. The 

decoding can be performed by simple add/subtract operations.
For instance, Example 1 demonstrates an embedding of 

matrix–matrix multiplication into the structure of a Reed–Sol-
omon code. This embedding essentially requires that the ith 
worker node computes the evaluation of polynomial ( ) ( )z zA BT  
at ;zi  this evaluation may or may not be received based on 
whether the ith worker node is a straggler. In contrast, in the tra-
ditional communication scenario, the transmitter computes the 
evaluation and the channel uncertainty dictates whether or not 
the evaluation is received. Moreover, the decoding in Example 
1 corresponds to polynomial interpolation, which is precisely 
what Reed–Solomon decoding (from erasures) amounts to. 
Despite the similarities, we emphasize that, in the matrix com-
putation setup, we operate within the real field ,R  while tradi-
tional erasure coding almost exclusively considers operations 
over finite fields. As we will see, this introduces additional 
complications in the distributed computation scenario.

The original idea of using redundancy to protect against 
node failures in distributed matrix computation goes back to 
the work on “algorithm-based fault tolerance” from the 
1980s [12], [13]. However, more recent contributions have 
significantly improved on them. Ideas from polynomial 
evaluation and interpolation have played an important role 
in this area. We briefly recapitulate some of these ideas in 
the following sections.

Primer on polynomials
Let ( )u z u zk

d
k

k
0R= =  be a polynomial of degree d with real 

coefficients. Let ( )u z( )j  denote the jth derivative of u(z). It can 
be verified that

	 ( ) ! ,u z u j z
k
j

( )j
k

k

d
k j

0

=
=

-c m/ � (2)

where 0=i
k` j  if .k i<  Furthermore, note that we can also rep-

resent u(z) by considering its Taylor series expansion around a 
point ,R!b  i.e.,

	 ( )
!
( )

( ) .u z
k

u
z

( )k

k

d
k

0

b
b= -

=

/ � (3)

It is well known that u(z) has a zero of multiplicity ,  at R!b  
if and only if ( )u 0( )i b =  for i0 ,1#  and ( ) .u 0( ) !b,

Another well-known fact states that if we obtain d + 1 evalu-
ations of u(z) at distinct points , , ,z zd1 1f +  then we can inter-
polate to find the coefficients of u(z). This follows from the fact 
that the Vandermonde matrix V  with parameters , , ,z zd1 1f +

i.e., zV ,i j j
i=  for , ,i d j d0 1 1# # # # +  is nonsingular when 

, , ,z j d1 1j f= +  are distinct. An interesting generalization 

holds when we consider not only the evaluations of u(z) but 
also its derivatives. We illustrate this by the following example.

Example 3 
Let d = 2, so that ( )u z u u z u z0 1 2

2= + +  and the first deriva-
tive ( ) .u z u u z2( )1

1 2= +  Suppose we obtain ( ),  ( ),u zu z ( )
1

1
1  

and ( ),u z2  where .z z1 2!  We claim that this suffices to re-
cover u(z). To see this, assume otherwise, i.e., there exists 
( ) ( )u z u z!u  such that ( ) ( ),  ( ) ( ),u z u zu z u z ( ) ( )

1 1
1

1
1

1= =u u  and 
( ) ( ) .u z u z2 2= u  This in turn implies that there exists a polyno-

mial ( ) ( ) ( )a z u z u z= - u  such that ( ) ( ) ( ) .a z a z a z 0( )
1

1
1 2= = =  

Now, we note that a(z) is such that it has a zero of multiplic-
ity 2 at z1 and a zero of multiplicity 1 at z2. The fundamental 
theorem of algebra states that if a polynomial has more zeros 
(counting multiplicities) than its degree, then it has to be identi-
cally zero. Therefore, we can conclude that a(z) is identically 
zero, and we can recover u(z) exactly. This can also be equiva-
lently be seen by examining the following:

( ) ( ) ( ) .det z
z z

z
z

z z z z z z z
1 0

1
2

1
2 2 01

1
2

1

2

2
2

2
2

1 2 1
2

1
2

1 2
22= - + - = -> H

In general, for a polynomial u z( )u z k
d

k
k

0R= =  of degree 
d, suppose that we obtain ( )u z( )

i
,  for , ,k0 1i, f= -  [where 

( ) ( )u z u z( )0 = ] for distinct points , , , .z i N1i f=  In this case, if 
,k d 1i

N
i1 $R +=  then we can recover u(z) exactly [14].

Note that polynomial interpolation is equivalent to solving 
a Vandermonde system of equations. However, since this sys-
tem of equations is structured, the complexity can be reduced. 
Specifically, a degree-d polynomial can be interpolated with 
time-complexity ( )logO d d2  [15].

Distributed matrix–vector multiplication
In more recent times, the power of coding-theoretic methods for 
matrix–vector multiplication was first explored in the work of 
Lee et al. [20]. In the notation of the section “Problem Formu-
lation,” set p = 1 and consider splitting [    ]A A A Am0 1 1f= -  
into m equal-sized block columns. Here m is a parameter that is 
a design choice. The idea of Lee et al. [20] is to pick the generator 
matrix of a (N, m) MDS code denoted ( ) .gG Rij

m N!= # The 
master node then computes

g AAl il
i

m

i
0

1

=
=

-
u /

and distributes x  and Alu  to the lth worker node for 
, , ,l N0 1f= -  which computes .A xl

Tu  The master node wish-
es to decode , , .j m0 1A xj

T f= -  Suppose that worker nodes 
indexed by , ,i im0 1f -  are the first m nodes to return their re-
sults. Note that the master node has

( ), , , ,lg m0 1forA x A xi
T

ji
j

m

i
T

0

1

l l f= = -
=

-
u /

which implies that it can solve a system of linear equations to 
determine the required result if the m × m submatrix of G in-
dexed by columns , ,i im0 1f -  is nonsingular; the MDS property 
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of G guarantees this. Typical choices of G include picking it 
as a Vandermonde matrix with distinct parameters , , .z zN1 f

In this case, each Alu  is the evaluation of ( )zA =

z zA A Am
m

0 1 1
1g+ + + -

-  at z = zl. The recovery thresh-
old is m, the computational and communication load of each 
worker node is /m1 th of the original and the decoding can 
be performed faster than Gaussian elimination (see the section 
“Primer on Polynomials”). However, numerical stability is a sig-
nificant concern when G has the Vandermonde form. It is well 
known from the numerical analysis literature [21] that the con-
dition number of a #, , real Vandermonde matrix grows expo-
nentially in .,  Column 2 of Table 1 contains some illustrative 
figures. It shows that even for N = 30 with a threshold ,28x =  
the condition number is too high to be useful in practice.

On the other hand, choosing each entry of G independent 
identically distributed (i.i.d.) at random from a continuous dis-
tribution also works with high probability, and the computa-
tional load per worker is still /m1 th of the original. Numerical 
stability is better [22]; however, decoding the system of equa-
tions will typically take time, which is cubic in the size of the 
system of equations.

One can also use the idea of using polynomial interpolation 
with multiplicities discussed in the section “Primer on Poly-
nomials.” Let the jth derivative of ( )zA  be defined as follows:

( ) ! .z j z
k
j

A A( )j
k

k

m
k j

0

1

=
=

-
-c m/

Suppose that the storage fraction / .m2Ac =  In this case, for 
the ith worker node, the master node assigns the computation 
of first [ ( )]zA xi

T  and then [ ( )] .zA x( )
i

T1  As soon as a worker 
node completes a task, it sends the result to the master node. 
The result of Ramamoorthy et al. [16] demonstrates that as 
long as the master node receives m matrix–vector multiplica-
tion results, it can decode the intended result, i.e., its recovery 
threshold(II) is m. The computational and communication load 
of each worker is /m2 th of the original. The key advantage of 
this scheme is that it allows the master node to leverage partial 
computations performed by slow nodes. However, numerical 
stability continues to be a problem here.

The numerical stability issue with both approaches dis-
cussed can be addressed (to a certain extent) by a related idea 
that involves polynomials over finite fields. In particular, 
one can define polynomials over finite fields and their corre-
sponding Hasse derivatives (resulting in so-called universally 
decodable matrices) and use an isomorphism between finite 

field elements and appropriate matrices to arrive at “binary” 
schemes that have a much better behaved condition number. 
We illustrate the basic idea here and refer the reader to [16] for 
the full details.

Example 4 
Let ( )u z u u z u z0 1 2

2= + +  be a polynomial of degree 2. The 
discussion in the section “Primer on Polynomials” indicates that 
an associated 3 × 3 Vandermonde matrix is nonsingular when the 
polynomial is evaluated at distinct points z1, z2, and z3. It turns 
out that we can instead evaluate the polynomial at appropriately 
defined matrices instead and obtain schemes with useful proper-
ties. Let binary matrix C correspond to the matrix representation 
of the finite field ( )GF 23  (see [16] and [23] for details) and con-
sider powers of C, i.e., C,  reduced modulo-2, as

., .mod
0
1
0

0
0
1

1
1
0

0
0
1

1
1
0

0
1
1

2and so, e.gC C2= => >H H

Consider the G specified as follows (where each power of C is 
reduced modulo-2):

.G
I
I
I

I
C
C

I
C
C

I
C
C2

2

4

3

6
= > H

The work of Ramamoorthy et al. [16] shows, for example, that 
any 3 × 3 block matrix of G is nonsingular. For instance, the 
9 × 9 matrix formed by picking the first three block columns 
has determinant –1 over .R  In the matrix–vector multiplication 
scenario, we can use G as the coding matrix (see Figure 4) by 
setting m = 9. This system can tolerate one failure.

An advantage of this method is that G is binary. Moreover, 
it has a significantly better worst-case condition number as 
compared to the polynomial approach (see Table 1, column 4). 
However, we are unaware of efficient decoding techniques for 
these methods. Thus, the decoding complexity is equivalent to 
Gaussian elimination.

Convolutional codes are another class of erasure codes 
where messages are encoded into sequences of varying 
lengths. As an example, consider  two row vectors in 

, [   ]u u uuR3
0 00 01 02=  and [   ] .u u uu1 10 11 12=  These vectors 

can also be represented as polynomials ( )D u Du ji ij
j

0
2R= =  

for i = 0, 1, where D is an indeterminate. Consider the follow-
ing encoding of [ ( ) ( )]:D Du u0 1

Table 1. The worst-case condition numbers for the different schemes.

Scenario Polynomial [17]* Orthogonal Polynomial [18] [16] + Embedding† All-Ones [19] 
Random 
[19] 

,N 15 13x= = .1 689 106# 686.27 411 910 264.49 
,N 15 12x= = .1 695 106# 7,612.7 949 .1 066 104# .1111 103#
,30N 28x= = .2 293 1013# 7,902.6 – 2,868.32 1,374.59 

)Vandermonde scheme: the parameters are spaced uniformly in [-1, 1].
†Each worker node is assigned two matrix–vector products corresponding to the polynomial evaluation and its first derivative. The embedding matrix C corresponds to the matrix 
representation of GF(33).
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[ ( ) ( ) ( ) ( )] ( ) ( )

( ) ( ) ( ) ( ) ( ) ( ) .

D D D D D D
D

D D D D D D D

1
0

0
1

1
1

1
c c c c u u

u u u u u u

0 1 2 3 0 1

0 1 0 1 0 1

=

= + +^ ^h h6
6 ;@

@
E

It is not too hard to see that the polynomials ( )Du0  and ( )Du1  
(equivalently the vectors ,u u0 1 ) can be recovered from any 
two entries of the vector [ ( )  ( )  ( )  ( )] .D D D Dc c c c0 1 2 3  For 
instance, suppose that we only have ( )Dc2  and ( )Dc3  where

( ) ( ) ( ) ( )  D u u u u D u u D andc2 00 10 01 11 02 12
2= + + + + +

( ) ( ) ( ) .D u u u D u u D u Dc3 00 01 10 02 11
2

12
3= + + + + +

Starting with u00 from the constant term of ( ),Dc3  one can 
recover u10 from ( )Dc2  and iteratively u01 from ( )Dc3  and 
so on. A similar argument applies if we consider a different 
pair of entries from [ ( )  ( )  ( )  ( )] .D D D Dc c c c0 1 2 3  Distributed 
matrix–vector multiplication can be embedded into this con-

volutional code by interpreting the coefficients of the powers 
of D as the assignments to the workers (see [19] and [24]).

Example 5
Consider a system with N = 4 workers, with .5 8Ac =  
We partition A into m = 8 block columns of equal 
size, which are denoted as , , , .A A A0 1 7f  So, we have 

( )D D D DA A A AA T T T T
0 0 1 2

2
3

3= + + +  and ( )D AA T
1 4= + 

.D D DA A AT T T
5 6

2
7

3+ +  The matrices assigned to the ith 
worker are given by the coefficient of the powers of D in 

( ),DCi  where

( ) ( ) ( ) ( )

.( ) ( )

D D D D

D D
D

1
0

0
1

1
1

1
C C C C

A A

0 1 2 3

0 1=

6
6 ;@ E

@

This is illustrated in Figure 5. It can be verified that the system 
is resilient to two failures. Furthermore, it can be shown that the 
system of equations that the master node has to solve can be put 
in lower-triangular form upon appropriate permutations. Thus, 
decoding is quite efficient. This approach leads to a slightly 
nonuniform assignment of tasks to the different worker nodes, 
e.g., W3 has one additional matrix–vector product to compute as 
compared to the other worker nodes. However, this nonunifor-
mity can be made as small as desired by choosing a large enough 
m, while ensuring that the decoding complexity remains low. 
It also has a much better condition number as compared to the 
polynomial-based schemes (see Table 1, column 5). It turns out 
that multiplying the elements of the encoding matrix by random 
numbers allows us to provide upper bounds on the worst-case 
condition number of the recovery matrices (see Table 1, col-
umn 6). Decoding in this case requires a least-squares solution; 
this least-squares solution can be made more efficient by exploit-
ing the sparse nature of the underlying matrices [19].

A fountain coding approach (also known as rateless cod-
ing) was presented in the work of Mallick et al. [25]. In this 
scenario, the master node keeps computing random bina-
ry linear combinations of the sAi  and sending them to the 
worker nodes. These combinations are chosen from a care-
fully designed degree sequence. The properties of this degree 
sequence guarantee with high probability that as long as the 
receiver obtains ( )m 1 e+  matrix–vector products where 

02e  is a small constant, the receiver can decode the desired 
result (the result is asymptotic in m). Furthermore, this decod-
ing can be performed using a so-called peeling decoder, which 
is much simpler than running full-blown Gaussian elimina-
tion. In a peeling decoder, at each time instant, the receiver 
can find one equation where there is only one unknown. This 
is important because, in the large m regime, the cubic com-
plexity of Gaussian elimination would be unacceptably high, 
whereas the peeling decoder has a complexity logm m. .

Distributed matrix–matrix multiplication
The situation is somewhat more involved when consider-
ing the distributed computation of .A BT  In this case, one 
needs to consider the joint design of the coded versions of 
the blocks of A and B [see (1)]. This topic was the focus of 

W0 W1

W2 W3

(A0 + A3 + A6)

(A1 + A4 + A7)

(A2 + A5 + A8)

x

(A0 + A4 + A8)

(A1 + A5 + A6 + A7)

(A2 + A3 + A4 + A7 + A8)

x

(A0 + A5 + A7 + A8)

(A1 + A3 + A4 + A6 + A7 + A8)

(A2 + A4 + A5 + A6 + A8)

x

(A0 + A3 + A4 + A6 + A8)

(A1 + A4 + A5 + A6)

(A2 + A3 + A4 + A5 + A7)

x

FIGURE 4. The scheme corresponding to the approach of Ramamoorthy 
et al. [16] as described in Example 4.

W0 W1 W2 W3

A0

A1

A2

A3

x x x x

∗

A4

A5

A6

A7

∗

A0 + A4

A1 + A5

A2 + A6

A3 + A7

∗

A0

A1 + A4

A2 + A5

A3 + A6

A7

FIGURE 5. The scheme corresponding to the approach of Das et al. [19] as 
described in Example 5.

Authorized licensed use limited to: Iowa State University. Downloaded on May 08,2020 at 21:44:36 UTC from IEEE Xplore.  Restrictions apply. 



143IEEE SIGNAL PROCESSING MAGAZINE   |   May 2020   |

the so-called algorithm-based fault-tolerance (ABFT) tech-
niques [12], [13] in the 1980s. However, ABFT techniques 
result in suboptimal recovery thresholds. Yu et al. [17] pre-
sented an elegant solution to this problem based on polyno-
mials. Their solution matches a corresponding lower bound 
on the threshold in certain cases. Interestingly, work on 
embedding matrix–matrix multiplication into the structure 
of polynomials was considered much earlier in the work of 
Yagle [26]; however, this was in the context of speeding up 
the computation rather than straggler resilience.

The basic ideas of using polynomials for matrix–matrix mul-
tiplication have already been illustrated by Examples 1 and 2 in 
the section “Problem Formulation.” We now present a more in-
depth discussion of these techniques along with a host of other 
approaches that have been considered in the literature. The first 
idea along these lines in Yu et al. [17] corresponds to the case 
of p 1=  and arbitrary m and n (using the notation introduced 
in the section “Problem Formulation”). As before, polynomial 
( ) .z zA Ai

m
i

i
0
1R= =

-  However, the second polynomial with coef-
ficients , , ,j n0 1B j f= -  needs to be chosen more carefully. 
The underlying simple and useful trick is to choose ( )zB  in 
such a way that A Bi

T
j  for , , , , ,i m j n0 1 0 1f f= - = -  

appear as coefficients of zl  for , ,l mn0 1f= -  of the poly-
nomial ( ) ( ).z zA BT  Yu et al. [17] propose 

( ) ( ) ,z z z zandA A B Bj
j

m
j

j
j

n
jm

0

1

0

1

= =
=

-

=

-

/ /

( ) ( ) .z z zso that A B A BT
j
T

k

n

j

m

k
j km

0

1

0

1

=
=

-

=

-
+//

The ith worker node is assigned ( )zA i  and ( )zB i  so that the stor-
age fractions are /m1Ac =  and / .n1Bc =  The node is tasked with 
computing ( ) ( ).z zA BT

i i  Evidently, ( ) ( )z zA BT  can be interpo-
lated to determine the intended result as long as the master node 
obtains mn distinct evaluations of it. This solution is such that the 
computational load and the communication load on each worker 
is /mn1 th of the original. It also achieves the optimal recovery 
threshold (under communication load limitations on the worker 
nodes). Furthermore, the decoding complexity corresponds to 
running /rw mn polynomial interpolations of a degree ( )mn 1-  
polynomial. Nevertheless, this technique has serious numerical 
stability issues stemming from the ill-conditioned nature of the 
Vandermonde-structured recovery matrices discussed before (see 
the section “Distributed Matrix–Vector Multiplication”).

A generalization of this approach for matrix–matrix mul-
tiplication when p 1>  was considered in Yu et al. [27] and 
Dutta et al. [28] around the same time. This was earlier exam-
ined in the matrix–vector context when each worker only gets 
subvectors of x  in the work of Dutta et al. [9], which can be 
considered as a special case of this result when .n 1=  How-
ever, the threshold in Yu et al. [27] is better than that in Dutta 
et al. [9]. Our discussion loosely follows the presentation in 
Yu et al. [27]. Note that when ,p 1=  our unknowns are pre-
cisely , , , , , , .i m j n0 1 0 1A Bi

T
j f f= - = -  However, when 

p 2=  (for instance), the unknowns now involve the sum of 
certain terms. Indeed, when ,m n p 2= = =  we have

 .A B
A B A B
A B A B

A B A B
A B A B

T
T T

T T

T T

T T
00 00 10 10

01 00 11 10

00 01 10 11

01 01 11 11
=

+

+

+

+
= G

Recall, that our goal is to form polynomials ( )zA  and ( )zB  
with coefficients from , , , , , ,i m j p0 1 0 1Aij f f= - = -  
and , , , , , ,k p l n0 1 0 1Bkl f f= - = -  such that the useful 
terms appear as appropriate coefficients of consecutive powers 
of z in ( ) ( ).z zA BT  When p 1>  (unlike ),p 1=  the presence of 
interference terms becomes unavoidable. Nevertheless, one can 
choose ( )zA  and ( )zB  in such a way that we can interpolate the 
useful terms along with interference terms at the master node. 
This can lead to a strictly better threshold as indicated in Exam-
ple 2; see [27] for full details. For ,m n p 2= = =  we choose

( ) ,z z z zA A A A A00 10 01
2

11
3= + + +

( ) ,   z z z z  so thatB B B B B10 00 11
4

01
5= + + +

( ) ( ) ( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ,

z z z z

z z z

z z

A B A B A B

A B A B A B A B

A B A B

T T T

T T T T

T T

00 00 10 10
2

01 00 11 10
3 4

00 01 10 11
5

6
01 01 11 11

7

) )

)

)

= + + +

+ + + + +

+ + +

where (*) in the expression refers to an interference term that 
is not of interest to us. ( ) ( )z zA BT  is a matrix polynomial of de-
gree 7 and can therefore be interpolated as long as eight distinct 
evaluations are obtained. In general, the result of Yu et al. [27] 
shows that the threshold of their scheme is .pmn p 1x = + -  
The scheme can be decoded efficiently via polynomial inter-
polation. However, the numerical stability issue in this case 
is even more acute as the degree of the fitted polynomial is 

,pmn p 2+ -  i.e., much higher.
Recently, some contributions in the literature have attempted to 

address the numerical stability issues associated with polynomial-
based approaches. In Das et al. [19], the authors demonstrate that 
convolutional codes can be used for matrix multiplication as well. 
They also demonstrate a computable upper bound on the worst-
case condition number of the recovery matrices. This approach 
allows for schemes that are significantly better in terms of the 
numerical stability. Subramaniam et al. [22] consider choosing the 
encoding matrices (each entry i.i.d.) from a continuous distribu-
tion. Fahim and Cadambe [18] propose an alternative approach 
where the underlying polynomial scheme now operates on the 
basis of orthogonal polynomials, such as Chebyshev polynomi-
als. They show that the condition number of the recovery matrices 
can be upper-bounded polynomially in the system parameters (as 
long as the number of stragglers is a constant), unlike real Vander-
monde matrices, where the condition number grows exponentially. 
The recent work of Ramamoorthy and Tang [29] presents a dif-
ferent approach wherein polynomials are evaluated at structured 
matrices, such as circulant permutation and rotation matrices. The 
worst-case condition numbers obtained by this scheme are much 
lower than those obtained by Fahim and Cadambe [18].

Example 6 
We now present an experimental comparison of different ap-
proaches for computing A BT  with ,r w 9 000= =  and differ-
ent t (see Table 2). We set up a cluster in the Amazon Web 
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Services cloud with one t2.2xlarge machine as the master 
node and N 11=  t2.small worker nodes. We considered a 
system with ,p m n1 3= = =  so that the threshold .9x =  The 
entries in Table 2 correspond to the worst-case computation 
time of each worker node for different values of t. We picked 
the set of workers that correspond to the worst condition num-
ber for the different schemes. For these methods, the worker 
computation time increases roughly linearly with t, while the 
decoding time does not change. The computational load on the 
worker nodes in the convolutional code approach is slightly 
higher than that in the polynomial code approach. This dif-
ference can be made as small as desired with higher subpack-
etization [19]. Note, however, that the condition number of the 
convolutional code is multiple orders of magnitude smaller. 
Our code implements the to and from communication from the 
master node to the workers sequentially; parallel implementa-
tions can further reduce the communication time.

Opportunities for future work
We hope the discussion in the preceding sections has convinced 
the reader that the area of coded matrix computation is a grow-
ing one and that there is ample scope to contribute toward it in 
various ways. MATLAB and Python code for several of the 
schemes in this survey article can be downloaded from https://
github.com/anindyabijoydas/StragglerMitigate​ConvCodes 
[30]. We now outline some outstanding issues that require clos-
er attention from the research community as a whole.

The vast majority of work in this area has considered dis-
tributed schemes for computing A BT  for arbitrary matrices A  
and B. However, in several practical scenarios, these matrices 
are sparse. This can change the computational complexity cal-
culation significantly. We illustrate this by considering matrix–

vector multiplication. If A (of dimension )t r#  is such that each 
column contains at most s nonzero entries, then computing 
A xT  takes rs2.  flops. Suppose that we apply the polynomial 
solution of the section “Distributed Vector–Matrix Multiplica-
tion.” In this situation, each coded matrix Alu  has approximately 
sm nonzero entries per column in the worst case (assuming sm 
< t). The worker node that computes xAl

Tu  will therefore require 
( / )m rsm rs1 2 2# =  flops. This means that in the worst case 
each worker node has the “same” computational load as com-
puting A xT , i.e., the computational advantage of distributing 
the computation may be lost. Table 3 tabulates the time for com-
puting xAl

Tu  (for a , ,30 000 30 000#  A) using the solution of 
Lee et al. [20] for a system with N 15=  worker nodes with a 
threshold of m 12x = =  for two kinds of sparse matrices: 
1)	 an A that has the b-diagonal structure where only the diag-

onal and b off-diagonal terms are nonzero
2)	 an A where the nonzero entries are chosen at random. 
Table 3 also lists the time of computing an uncoded matrix 
vector product, i.e., .A xi

T  It is clear that the worker node com-
putation time increases significantly for the coded case. This is 
an issue with other papers [16], [17], [19], [24], [27] as well. The 
fountain-coding approach for the matrix–vector case [25] fares 
better here because with high probability the linear combina-
tion generated by the master node has low weight. However, 
Mallick et al. [25] do not provide provable guarantees on the 
recovery threshold and do require rather high values of m. This 
was also considered in Wang et al. [31] for the matrix–matrix 
case, though it is unclear whether their scheme respects the 
storage constraints on the workers as formulated in the section 
“Problem Formulation.” The recent work of Wang et al. [32] 
makes progress on this problem. Wang et al. [32] define the 
computational load of a given coding solution in the matrix–
vector case as the number of nonzero elements of the corre-
sponding coding matrix. Their paper contains a discussion 
about lower bounds and achievability schemes for this metric.

Throughout this review article, we have highlighted the 
role of embedding an erasure code into a distributed matrix 
computation problem. We have shown that in the computation 
context, special attention needs to be paid to the numerical sta-
bility of the recovery of .A BT  Much existing work does not 
provide guarantees on the worst-case or average-case condi-
tion numbers. This is an important direction that needs to be 
pursued. There have been some initial results in this area [18], 
[19], [22], [29], but much remains to be done.

Table 3. A comparison of worker computation times when A is sparse.

Percentage of  
Zero Entries 90%‡ 80%‡ 70%‡ 
Time for uncoded  
case (ms)*

11.9(13.3) 22.1(22.7) 36.8(35.4)

Time for coded  
case (ms)† 

109(83.8) 110.1(104.3) 122.2(108.2)

)The worker time for finding A x.l
T

†The time to find A x.l
Tu

‡The number in parentheses is for the case when A  has a -b diagonal structure and 
the other number is for a sparse random A.

Table 2. A comparison of the different schemes in terms of average worker computation time,  
total communication time (in parentheses), average decoding time, and worst-case condition number.

Methods 

Worker Computation and Communication Time (s) 

Decoding Time (s) Condition Numbert = 12,000 t = 18,000 t = 24,000
Polynomial Codes* [17] 6.8(5) 10.8(6.9) 14.2(8.6) 1.24 24,753.93 
Orthogonal Polynomial Codes* [18] 6.8(5) 10.8(6.9) 14.2(8.6) 1.24 266.59 
Random Khatri–Rao Product Codes* [22] 6.8(5) 10.8(6.9) 14.2(8.6) 0.2 128.95 
All-Ones Convolutional Codes† [19] 7.9(6.7) 12.2(8.9) 15.7(11.9) 0.24 95.198 
Random Convolutional Codes† [19] 7.9(6.7) 12.2(8.9) 15.7(11.9) 0.41 87.093 

/ .B 1 3Ac c= =)

† / .B 2 5Ac c= =
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The majority of existing work only deals with the recovery 
threshold (see the section “Problem Formulation”), which is in 
one-to-one correspondence with treating an erasure as a failed 
node. However, recovery threshold(II) considers a more fine-
grained model, where different worker nodes operate at dif-
ferent speeds. The systematic design of schemes that provably 
leverage partial computations by the worker nodes is interest-
ing. Ramamoorthy et al. [16] consider the case of matrix–vector 
multiplication, but systematic extensions to the matrix–matrix 
multiplication case would be of interest.
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