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Abstract— Distributed  computing  frameworks  such  as
MapReduce are often used to process large computational
jobs. They operate by partitioning each job into smaller tasks
executed on different servers. The servers also need to exchange
intermediate values to complete the computation. Experimental
evidence suggests that this so-called Shuffle phase can be a
significant part of the overall execution time for several classes
of jobs. Prior work has demonstrated a natural tradeoff between
computation and communication whereby running redundant
copies of jobs can reduce the Shuffle traffic load, thereby leading
to reduced overall execution times. For a single job, the main
drawback of this approach is that it requires the original job
to be split into a number of files that grows exponentially in
the system parameters. When extended to multiple jobs (with
specific function types), these techniques suffer from a limitation
of a similar flavor, i.e., they require an exponentially large
number of jobs to be executed. In practical scenarios, these
requirements can significantly reduce the promised gains of the
method. In this work, we show that a class of combinatorial
structures called resolvable designs can be used to develop
efficient coded distributed computing schemes for both the single
and multiple job scenarios considered in prior work. We present
both theoretical analysis and exhaustive experimental results
(on Amazon EC2 clusters) that demonstrate the performance
advantages of our method. For the single and multiple job cases,
we obtain speed-ups of 4.69x (and 2.6x over prior work) and
4.31x over the baseline approach, respectively.

Index Terms— MapReduce, data-intensive computing, coded
multicasting, communication load, TeraSort, aggregate functions,
distributed learning.

I. INTRODUCTION

IN RECENT years, there has been a surge in the usage ofvarious cluster computing frameworks such as MapReduce,
Hadoop and Spark. The era of big data analytics whereby
a large amount of data needs to be processed in a fast
manner has fueled this growth. In these systems, the data set
is usually split into disjoint files stored across the servers.
The computation takes place in three steps. In theMap step,
the servers process the input files to generateintermediate
valueshaving the form of (key, value) pairs. In the nextShuffle
step, the intermediate pairs areexchanged between the servers.
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In the finalReducestep, each server computes a set of output
functions defined based on the keys. Henceforth, we refer to
this as the MapReduce framework.
The MapReduce framework has proven to be quite versatile
and large scale clusters in industry and academia routinely
process terabytes of data using this approach. It is a protocol
well suited for several applications; it fits the computation
of functions which are useful for machine learning [1],
e.g., in deep residual learning for image recognition [2].
Prakashet al.[3] have adapted the general MapReduce frame-
work to graph analytics where computation at each vertex of
the graph requires data only from the neighboring vertices. It is
important to note that the framework intertwines computation
and communication. Specifically, multiple workers allow for
parallel computation; yet data needs to be exchanged between
them to complete the processing of the job. The termsservers
andworkerswill be used interchangeably throughout the text.
A typical MapReduce implementation splits the overall job
into a number of equal-sized (or approximately equal-sized)
tasks and assigns a single task to each server. However,
for many classes of jobs, extensive experimental results
have shown that in such implementations the Shuffle phase
can be quite expensive and dominates the overall execution
time [4]. There have been several papers [4]–[7], on the
impact of the Shuffle phase on the overall execution of a
MapReduce job and corresponding work on alleviating it.
These effects have been reported in the work of Guoet al.[5]
on Shuffle-heavy operations such as SelfJoin, TeraSort and
RankedInvertedIndex. Distributed graph analytics also suffer
from long communication phases as observed in [3] and [8].
The CDC scheme in [9] (see also [1]) showed an interesting
information theoretic perspective on trading off computation
vs. communication. The basic technique they suggest is to
introduce redundancy in the computation, i.e., execute multiple
copies of a given Map task at different servers and use
coded transmissions to reduce the amount of data exchanged
during the Shuffle phase. The servers use locally available
intermediate values in order to decode the received mes-
sages and compute their output functions. Their work for
a general MapReduce system characterizes and matches the
information-theoretic lower bound on the minimum commu-
nication load under certain assumptions.
In this work, we demonstrate that in practical scenarios,
the original scheme in [9] and [1] require significantly higher
shuffling time than the theoretical prediction. This stems from
the requirement, e.g., that a given job needs to be split into
a large number of small tasks in [9] and we show that it has
detrimental effects on the performance of the method. In this
work, we present a technique based on using combinatorial
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structures known as resolvable designs for exploring the
computation vs. communication tradeoff within distributed
computation and demonstrate its advantages.

II. BACKGROUND,RELATEDWORK AND
SUMMARY OFCONTRIBUTIONS

Ahmadet al.[10] introduced “ShuffleWatcher”, a MapRe-
duce scheduler that reduces throughput and job completion
time. The scheme replicates Map tasks and delays or elon-
gates a job’s communication time depending on the network
load. Other related work on this topic has been published
in [11] which considers a model of MapReduce executed on
a multi-core machine and proposes a topology-aware archi-
tecture to expedite data shuffling. Wanget al.[12] present
an algorithm that finds the optimal placement and jointly
optimizes Map and Shuffle time.
To our best knowledge [9], [13] and [14] were the first

to rigorously examine the MapReduce framework within the
computation vs. communication tradeoff. Their work defines
appropriate notions of computation and communication loads
within MapReduce. Their key finding is that the judicious
usage of coded transmissions in the Shuffle phase can signifi-
cantly reduce the communication load. Compared to a baseline
scheme, their algorithm splits the original job more finely into
a certain number of Map tasks and redundantly assigns each
of them to multiple workers. Nonetheless, their work requires
splitting the job into a very large number of files or tasks. This
limitation hurts their scheme in a number of different ways;
the most immediate one is that they require extremely large
data sets as the cluster size scales. Their proposed method also
has to form many shuffling groups of servers communicating
in the Shuffle phase. For each group, each participating server
will initially form an encoded packet to transmit to the rest of
the group; all these packets are stored in the memory of the
server. As a result, their approach suffers from a significant
overhead in encoding time accounting for all groups.
The idea of Compressed Coded Distributed Computing

(CCDC), presented in [1], applies to scenarios where the
underlying functions being computed can be aggregated.
Examples of such functions include, e.g., Average(), Count(),
Max(), Min(), Median(), Mode(), Range() and Sum(). This
kind of computation is predominant in machine learning
(e.g., ImageNet classification [2] and stochastic gradient
descent [15]). Another scenario is matrix-vector multiplica-
tions that are performed during the forward and backward
propagation in neural networks (cf.[16]). This so-calledcom-
pression techniquewas initially investigated in [17] by means
of a “combiner function” which merges intermediate values
with the same key computed from different Map functions.
This allows for a potential reduction in network traffic as
intermediate values can be aggregated before transmission in
the Shuffle phase. Interestingly, [1] requires the number of jobs
being processed simultaneously to be very large. This can also
be a restrictive assumption in practice.
The recent work of Woolsey et al.in [18] introduces

a scheme to handle the case when each Reduce function
is computed bys > 1workers by utilizing a hybercube
structure which controls the allocation of Map and Reduce
tasks. Their work is motivated by distributed applications
that require multi-round Map and Reduce computations.

Another  approach that  re-examines the  computation-
communication tradeoff from an alternate viewpoint has been
investigated in [7]. In this case, the assumption is that a
server does not need to process all locally available files
and storage constraints do not necessarily imply computation
constraints. A lower bound on thecomputation loadand a
heuristic scheme were derived. In [19], the authors propose a
scheme which gives each server access to a random subset
of the input files and not all Reduce functions depend on the
entire data set.

A. Summary of Contributions

As discussed above both [1] and [9] require a certain
problem dimension to be very large. In particular, [9] considers
a single job and requires it to be split into a number of tasks
that grows exponentially in the problem parameters. On the
other hand [1] considers functions that can be aggregated but
requires the number of jobs being processed simultaneously
to grow exponentially. Our work builds on our initial work in
[20] and [21] and makes the following contributions.

• We demonstrate a natural link between the problem of
reducing MapReduce Shuffle traffic and combinatorial
structures known as resolvable designs [22], which in turn
can be easily generated from linear error correcting codes.

• For the single-job case, our resolvable design based
scheme significantly reduces the number of files com-
pared to [9], [13] and [14]. As compared to an uncoded
scheme, CDC in [9] reduces the shuffle phase load by
a factor ofrif each task is executed onrworkers.
In contrast, our technique reduces the Shuffle phase load
by a factor ofr− 1, but requires much fewer files.
It turns out that in practice our method has a higher gain.
For instance, our experiments (cf.Section IV-E) have an
overall speedup of3.01× compared to [14] where the
procedure of [9] has been applied to a sorting algorithm.

• For the multi-job case we seek a method that combines
the benefits of the coding-theoretic ideas employed in
the single-job case and the fact that the functions being
computed are amenable to aggregation. A simple strat-
egy in the multi-job case would be to simply use the
single-job ideas in a sequential manner. However, our
work shows that a careful assignment of jobs and tasks to
the worker nodes and exploiting the aggregation property
can reduce the Shuffle load significantly. In particular, our
work requires much fewer jobs than CCDC in [1], while
enjoying the exact same Shuffle phase load.

• For both problems we present exhaustive experimental
comparisons on Amazon EC2 clusters with prior work
that demonstrate the efficacy of our method. The code
for our techniques is publicly available at [23] and [24].

Existing distributed frameworks (cf.Hadoop/Spark) typ-
ically use redundancy for a different purpose (e.g., fault
tolerance) while we use it to reduce the Shuffle traffic. Our
work has not been proposed as a variant or incremental fix to
these frameworks. It is demonstrating that a coding-theoretic
viewpoint has the potential to yield great dividends within
the Shuffle phase traffic reduction. Our implementations use
C++ and MPI for a head-to-headcomparison with the work
of [9]. Our approaches are applicable to problems requiring
long communication phases where a decrease in Shuffle time
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can significantly offset an increase in Map time due to redun-
dancy. The translation and/or adaptation of our approaches
into protocols that are used in practice is not the focus of
our work but we hope that this theoretical/numerical evidence
spurs more research in this area.

III. PRELIMINARIES

A. Primer on Resolvable Designs

We begin with some basic definitions from combinatorial
design theory [22] that we need for specifying our protocols.
Definition 1: Adesignis a pair (X,A) consisting of

1) a set of elements (points),X,and
2) a familyA (i.e. multiset) of nonempty subsets ofX
calledblocks, where each block has the same cardinality.

Definition 2: A subsetP ⊂Ain a design(X,A)is said to
be aparallel classif forXi∈P andXj∈P withi=jwe
haveXi∩Xj=∅and∪{j:Xj∈P}Xj=X. A partition ofA
into several parallel classes is called aresolutionand(X,A)
is aresolvable designifA has at least one resolution.
Example 1:Let X  = {1,2,3,4} andA = {{1,2},
{3,4},{1,3},{2,4},{1,4},{2,3}}. The(X,A) forms a
resolvable design with the following parallel classes

P1= {{1,2},{3,4}},P2={{1,3},{2,4}} and

P3= {{1,4},{2,3}}.

It turns out that there is a systematic procedure for construct-
ing resolvable designs, where the starting point is an error
correcting code. We explain this procedure below.
LetZqdenote the additive group of integers moduloq[25].

The generator matrix of an(k, k−1)single parity-check (SPC)
code overZq

1is defined by

GSPC=

⎡

⎢
⎣

1

Ik−1
...
1

⎤

⎥
⎦. (1)

This code has qk−1 codewords which are given byc =
u·GSPC for each possible message vectoru. The code is
systematic so that the firstk−1symbols of each codeword
are the same as the symbols of the message vector. Theqk−1

codewordscicomputed in this manner are stacked into the
columns of a matrixT of sizek×qk−1, i.e.,

T=[cT1,c
T
2,···,c

T
qk−1]. (2)

The corresponding resolvable design is constructed as follows.
LetXSPC=[q

k−1](we use[n]to denote the set{1,2,...,n}
throughout) represent the point set of the design. We define
the blocks as follows. For0≤l≤q−1,letBi,lbe a block
defined asBi,l={j:Ti,j=l}.
The set of blocksASPCis given by the collection of allBi,l
for1≤ i≤kand0≤ l≤q−1so that|ASPC|=kq.The
following lemma (proved in [26]) shows that this construction
always yields a resolvable design.
Lemma 1:The above scheme always yields a resolvable

design(XSPC,ASPC)with XSPC =[q
k−1],|Bi,l|= q

k−2

for all1≤i≤kand0≤l≤q−1. The parallel classes are
analytically described byPi= {Bi,l:0≤ l≤ q−1},for
1≤i≤k.

1We emphasize that this construction works even if qis not a prime, i.e.,Zq
is not a field.

Example 2: The generator matrix of this(3,2)SPC code
overZ2(binary), i.e., fork =3 andq=2 is given by
GSPC= I2×212×1 .The matrixT can be obtained as

T=[cT1,c
T
2,c

T
3,c

T
4]=

⎡

⎣
0 0 1 1
0 1 0 1
0 1 1 0

⎤

⎦.

It can be observed, e.g., thatB1,0= {1,2}andB1,1=
{3,4}so that they form a parallel class. In fact, this construc-
tion returns the resolvable design considered in Example 1.

B. Main Shuffling Algorithm

Throughout the paper we specify the Shuffle phases by
means of various coded transmissions. The following lemma
is repeatedly used in the sequel; the proof is in the Appendix.
Lemma 2:Consider a  group  of k servers G  =
{U1,...,Uk}with the property that every server inG\{U},
stores a chunk of data of sizeB bits, denotedD[],thatU
does not store. Then, Algorithm 1 specifies a protocol where
each server inG can multicast a coded packet useful to the
otherk−1servers such that afterksuch transmissions each
of them can recover its missing chunk. The total number of
bits transmitted in this protocol isBk/(k−1).

Algorithm 1Shuffling Algorithm of Lemma 2

Input: Group of serversG={U1,...,Uk},
data chunks{D[j]:Uj∈G}s.t.∀j, D[j]∈Ulwhere
l=jandD[j]/∈Uj.

1foreach chunkD[j]do
2 Split the chunk intok−1disjoint packets

C={D[j][i]:i=1,...,k−1}.
3 Consider a complete bipartite graph with vertex set

4 {G\{Uj},C}and choose a matchingH
[j]

5 within the graph s.t. each node inG\{Uj}is
6 matched to a node in {D[j][1],...,D[j][k−1]}.
7 H[j](Ul)denotes the right neighbor ofUlinH

[j].
8end
9foreach serverUm ∈G do
10 Um broadcasts

2

Δm =⊕
j
H[j](Um). (3)

11end

IV. SINGLE-JOBCASE

A. Overview of the Method

The process starts by generating the SPC code as described
in Section III-A. The code controls how many subfiles the
data set needs to be split into and the corresponding resolvable
design gives the assignment of subfiles to servers (for the Map
phase). The workers receive the corresponding subfiles from
the master node and process them during the Map phase. The
resulting intermediate values are encoded into packets by each
worker. Specifically, each server computes one encoded packet
for each shuffling group it will be participating into during the
communication phase. Subsequently, they form groups of fixed

2The operation in eq. (3) is a bitwise XOR.
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TABLE I

PROPOSEDPLACEMENTSCHEME FOREXAMPLE4

size and communicate during the Shuffle phase. In the Shuffle
phase, each worker receives intermediate data that it needs
in order to perform its reduction operations. These encoded
packets are decoded using locallycomputed intermediate data.
Finally, the servers reduce their assigned functions and return
all results to the master node.

B. Problem Formulation

We now discuss the problem formulation more formally,
based closely on [9]. In the single-job scenario, the goal is to
process one distributed MapReduce job. LetW denote the data
set. There areN input files that correspond to equal-sized and
disjoint parts ofW.ThereareQ arbitrary output functions
that need to be computed across theseN files. There are a
total ofK serversU1,...,UK. The files will be denoted by
w1,...,wN and the output functions byφj,j=1,...,Q.
Each functionφjdepends on all the filesw1,...,wN. We
assume that thej-th function can be computed by a Map
phase followed by a Reduce phase, i.e.,φj(w1,...,wN) =
hj(gj,1(w1),...,gj,N(wN)). Here,gn = (g1,n,...,gQ,n)
maps the filewnintoQintermediate valuesνj,n,j=1,...,Q
each of which is assumed to be of sizeBbits. The functionhj
maps the intermediate valuesνj,non all files into a “reduced”
valuehj(gj,1(w1),...,gj,N(wN)).
Example 3:Suppose that we consider the problem of com-

putingQ=4functions in a data set consisting ofN =4files
on a cluster withK =4servers. The files arew1,...,w4and
the functions areφ1,...,φ4, e.g.,φ1(w1,...,w4)would be
the evaluation ofφ1on the entire data set. Let us assume
that thei-thserverisassignedfilewifor all values ofi.
In the Map phase, servericomputesgion its assigned file
wifori=1,...,4. In the Reduce phase, we can see that,
e.g.,φ1(w1,...,wN)can be computed asφ1(w1,...,wN)=
h1(g1,1(w1),...,g1,N(wN)).
As noted in Section I, there are several MapReduce jobs

where the Shuffle phase is rather time-intensive. Thus, when
operating on a tradeoff between communication and compu-
tation, i.e., one could choose to increase the computation load
of the system by processing the same file atr >1servers.
This would in turn reduce the number of intermediate values
it needs in the Reduce phase. For the remainder of the paper,
we refer toras the computation load.
Definition 3: The communication load L ∈ [0,1]of a

certain single-job scheme is defined as the ratio of the total
number of bits transmitted in the data shuffling phase toQN B.
In Example 3, for the baseline approach, at the end of the

Map phase, each server needs three values from the other
servers. Thus, the total number of bits transmitted would be
4×3×B=12B. Thus, the communication load of the system
will beL=12B/16B=3/4.
Example 4 that follows examines a single job and demon-
strates that increasingrcan translate into lower communica-
tion loads compared to the baseline method.

TABLE II

CODEDTRANSMISSIONS INALLGROUPS OFEXAMPLE4

Example 4: Consider a system withK =6servers, a com-
putation load ofr=3(i.e., each Map task will be assigned to
3distinct servers) andQ=6functions to be computed. Each
of these functions depends on the entire data set and will be
assigned to one server for the Reduce phase. In our approach
we would subdivide the original job intoN =4files that will
be assigned to the servers as demonstrated in Table I. At the
end of the Map step, each server would have computed the
Q functions on its assigned Map files. Suppose that thei-th
server is responsible for reducing thei-th function. This would
imply, for example, that serverU1needs the first function’s
evaluation on filesw3andw4.
The key idea of our approach is for each server to transmit
a packet that is simultaneously useful to multiple servers.
For example, let us consider the group of serversG1 =
{U1,U3,U6}that were assigned files{w1,w2},{w1,w3}and
{w2,w3}, respectively. At the end of the Map phase, e.g.,
serverU1wantsν1,3,serverU3wantsν3,2and serverU6wants
ν6,1. We assume thatνj,ncan be encapsulated into a packet
with size B bits, denoted byp(νj,n). Furthermore, assume
that this packet can be subdivided into two partsp(νj,n)[1]
andp(νj,n)[2](with sizeB/2bits).
Now consider Table II. Note that serverU1contains filesw1
andw2and can therefore compute allQ functions associated
with them. Thus, it can transmit p(ν3,2)[1]⊕ p(ν6,1)[2]as
specified in row1of the top-right block in Table II. Note
that this transmission issimultaneouslyuseful to both servers
U3andU6. In particular, serverU3already knowsp(ν6,1)[2]
and can therefore decodep(ν3,2)[1]which it wants. Likewise,
serverU6already knowsp(ν3,2)[1]and can decodep(ν6,1)[2]
that it wants. In a similar manner, it can be verified that
each of the transmissions in Table II benefits two servers of
the corresponding group. The process of picking the servers
to consider together can be made systematic; in addition to
server groupG1that we just considered, we can pick three
others:G2= {U1,U4,U5},G3= {U2,U3,U5}andG4=
{U2,U4,U6}which will result in all the servers obtaining their
desired values.

Authorized licensed use limited to: Iowa State University. Downloaded on September 02,2020 at 22:24:38 UTC from IEEE Xplore.  Restrictions apply. 



KONSTANTINIDIS AND RAMAMOORTHY: RESOLVABLE DESIGNS FOR SPEEDING UP DISTRIBUTED COMPUTING 1661

The total number of bits transmitted in this case is therefore
4×3×B/2=6B,whereB is the size of each intermediate
valueνi,jin number of bits; thus, the communication load is
6B
QN B =0.25. In contrast, uncoded transmission from the dif-

ferent servers would have required a total of2×6×B=12B
bits to be transmitted, corresponding to a communication load
of0.5which is twice of the proposed approach. We emphasize
that ifr >1an uncoded scheme will also assign multiple
copies of each Map task to different servers; all of the servers
need to return the values. This assumption is taken into account
in our communication load analysis based on Definition 3 as
it facilitates a fair comparison across different methods and is
implemented in all of the algorithms (cf.[23] and [27]).
We note here that the authors of [9] promise a communi-

cationloadofLcoded(r) =
1
r(1−

r
K)≈ 0.17. In general,

the possible values ofrfor that scheme are{1,...,K}.
However, crucially this result assumes thatN = K

r η1,where
η1is a positive integer. It is evident thatN grows very rapidly
for their scheme. In Section IV-E, we demonstrate that in
real-life experiments this idealized analysis is problematic.
We acknowledge that some MapReduce algorithms may be

impacted bydata skewness[28], a situation when certain Map
or Reduce tasks may take significantly longer to process than
others. However, TeraSort as well as distributed matrix-vector
multiplication (considered in Section V-G) do not suffer from
this issue [29]. For these problems our assumption of homoge-
neous mappers and reducers is a reasonable one. This justifies
the fact that both prior and proposed methods split the data
set into equal-sized subfileseach mapped to an intermediate
value of a fixed number of bits. Also, our algorithms deliber-
ately assign roughly equal number of Reduce operations to
all workers. We emphasize that the focus of our work is
not solving all issues with respect to Shuffle phase traffic
reduction in MapReduce systems but to reveal the potential
of coding-theoretic methods in this area.

C. From Resolvable Designs to Protocol Specification

We assume that Q is a multiple ofK. In Algorithm 2,
we present the protocol which can be understood as follows.
We choose an integer qsuch thatqdividesK, i.e.,K =k×q.
Next, we form a(k, k−1)SPC code and the corresponding
resolvable design using the procedure in Section III-A. The
point setX =[qk−1]and the block setA will be such that
|A|= kq. The blocks ofA will be indexed as Bi,j,i =
1,...,kandj=0,1,...,q−1.
We associate the point set X with the files, i.e.,N =|X |=

qk−1and the block setA with the servers. For the sake of
convenience we will also interchangeably work with servers
indexed asU1,...,UK with the implicit understanding that
eachUi,i∈[K]corresponds to a block fromA.The Maptask
assignment follows the natural incidence between the points
and the blocks, i.e., serverBi,jis responsible for executing
the Map tasks on the set of files Map[Bi,j]={w | ∈Bi,j}.
Thus, at the end of the Map phase, serverBi,jhas computed
theQ intermediate values on the files in Map[Bi,j].
Recall that we assume that K dividesQ.To makeload

balancing fair we assignQ/K functions to each of theK
servers per job for the Reduce phase. This assumes that all
Q functions are computed on every file during the Map phase
and sent to the appropriate server. However, ifQis a multiple

Algorithm 2Proposed Single-Job Protocol

Input: FileW,Q functions, number of servers
K =k×q.K dividesQ.

1Use a(k, k−1)SPC code to generate a design(X,A).
2SplitW intoqk−1disjoint files,w1,...,wqk−1.
3Assign files to servers such that serverBi,jis assigned
filew if ∈Bi,j.

4Partition[Q]intoK equal parts to obtain the setsφBi,j

fori=1,...,kandj=0,...,q−1. Execute the Map
phase on each of the servers.

5Choose all possible sets{B1,j1,B2,j2,...,Bk,jk}where
j∈{0,...,q−1}, such that∩k=1B,j=∅and store
them in a collectionG.

6forγ∈[Q/K]do
7 foreach groupG={B1,j1,B2,j2,...,Bk,jk}∈Gdo
8 DetermineD[]=νφBi,j[γ],∩k= Bk,jk

for

=1,...,kused in Algorithm 1 and execute this
algorithm to exchange this data among the servers
inG.

9 end
10end
11Execute Reduce phase on each of the servers.

ofK, then each transmitter can transmit a coded packet in
which each term is the concatenation of Q/K intermediate
values, one for each function of the receiver. An alternative
approach would be to have the servers communicateQ/K
times, one for each intermediatevalue needed by a server (this
idea is used in Algorithm 2). We letφBi,j⊂[Q]represent the
set of functions assigned for reduction to serverBi,j. The
setsφBi,jform a partition of[Q]. For ease of notation, we let
φBi,j[]represent the-th function in the setφBi,j; ∈[Q/K].
Following the Map phase, in the Shuffle phase, each server
Bi,jneeds intermediate values from other servers so that
it has enough information to reduce the functions inφBi,j.
In this step we transmit coded packets that are simultane-
ously useful to multiple servers. Towards this end we form
a collection of server groups by choosing one block from
each parallel class according to the rule in Step 5 of the
protocol, i.e., we choose serversB1,j1,B2,j2,...,Bk,jk such
that∩k=1B,j = ∅. For a given server groupG (of sizek)
we utilize Algorithm 1.

D. Proof of Correctness and Communication Load Analysis

We now prove that the proposed protocol allows each server
Bi,jto recover enough information at the end of the Shuffle
phase. As the protocol is symmetric with respect to blocks,
we equivalently show that serverB1,j1 is satisfied. Note that
|B1,j1|= q

k−2. For the purposes of our arguments below,
we assume that Q = K. The case whenQ is an integer
multiple of K is quite similar. In this case, with some abuse
of notation, sinceφB1,j1 is a singleton set, we useφB1,j1

to actually represent the function index itself. It is therefore
clear thatB1,j1 needs the intermediate valuesνφB1,j1,nfor

n∈[qk−1]\B1,j1.
Now consider the construction of the server groups.
Let G be a server group whereB1,j1 is chosen fromP1,
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TABLE III

MEASUREMENTS FORSORTING12GB DATA O N16 SERVERNODESWITHOUTCODING

TABLE IV

MAPREDUCETIME FORSORTING12GB DATA O N16 SERVERNODESINCLUDING THEMEMORYALLOCATIONCOST

i.e.,G = {B1,j1,B2,j2,...,Bk,jk}. The following lemma
(proved in [26]), shows that the intersection ofanyk− 1
blocks fromk−1distinct parallel classes is always of size1.
Lemma 3:Consider a proposed resolvable design (X,A)

constructed with parametersk andqand parallel classes
P1,...,Pk.If wepickk−1blocksBi1,l1,...,Bik−1,lk−1
(whereij∈ [k],lj∈{0,...,q−1}) from distinct parallel
classesPi1,...,Pik−1,then|∩

k−1
j=1 Bij,lj|=1.

Furthermore, note that the intersection of all the blocks
inG is empty (cf.Step 5 of Algorithm 2). There is one-
to-one correspondence between this setup and Lemma 2.
The group of servers on which we will apply the lemma
is preciselyG. Also, observe that serverB,j misses the
unique file∩k= Bk,jk that all other servers inG share (cf.
Lemma 3) andB,jwill be reducing the functionφ

B ,j (note
that we have dropped the indexγfrom the intermediate value
corresponding toD[]from Algorithm 2 due to our assumption
thatQ = K). Hence, the correspondence of intermediate
values to chunks of Lemma 2 isD[]=νφB ,j,∩k= Bk,jk

.

We conclude the proof by observing that a given block,
e.g.,B,j participates inq

k−2(q−1) =qk−1−qk−2server
groups each of which allow it to obtain distinct intermediate
values. This can be seen as follows. Suppose for instance,
that∩k= Bk,jk =∩k= Bk,jk wherejm =jm for at least one
value ofm ∈[k]\{}. In this case, we note that the equality
above implies that∩k= Bk,jk ∩k= Bk,jk = ∅. Thisisa
contradiction, becauseBm,jm ∩Bm,jm = ∅as they are two
blocks belonging to the same parallel class.
Therefore, since B,j is missing exactlyq

k−1− qk−2

intermediate values, it follows that at the end of the Shuf-
fle phase it is satisfied. By symmetry, all servers are
satisfied.
Next, we present the analysis of the communication load of

our algorithm. In the uncoded case, each server needsQN/K
intermediate valuesνj,n’s to execute its Reduce phase. Note
that each server already hasrN/K×Q/K of them. Thus,
the communication load is given by

Lsingleuncoded=
K(QN/K−rQN/K2)B

QN B
=1−

r

K
.

On the other hand, for our scheme, the number of bits
transmitted in the Shuffle phase is given by

qk−1(q−1)·B
k

k−1
·
Q

K
.

TABLE V

TERASORTMEMORYALLOCATIONCOSTPERCENTAGE

Thus, the communication load is given by

Lsingleproposed=
qk−1(q−1)·B k

k−1·
Q
K

QN B
=

1

k−1
1−

k

K
,

where the second equality above is obtained by using the fact
thatN =qk−1andK =kq.
Next, note that for our proposed scheme the computation
load isk, i.e.,r=k. Thus, we reduce the overall communica-
tion load by a factor of1

r−1with respect to an uncoded system.
In contrast, the approach in [9], reduces the communication
load by a factor of1r. However, this comes at the expense of
alargeN as discussed previously.

E. TeraSort Experimental Results and Discussion

We implemented our technique on Amazon EC2 and per-
formed comparisons with the method of [14] using their posted
software at [27]. Table III corresponds to a uncoded TeraSort
with r= 1. It shows that the Shuffle phase which takes
999.84seconds, dominates the overall execution time by far.
A detailed description of the setup appears in the Appendix.
Table IV contains the results of TeraSort using our approach
and comparisons with the approach in [14]. Nearly130×106

KV pairs should be sorted. The time required for each phase
has been reported. For the total time taken, we have reported
the numbers including and excluding the memory allocation
time-cost. This is because the results in [14] are generated
using the code in [27] which explicitly ignores the mem-
ory allocation time (cf.communication with the first author
of [14]). However, we have observed that for data sets at this
scale, dynamic memory allocation on the heap (using the C++
newoperator) has a non-negligible impact on the total time.
Thus, in our implementation (available at [23]), we measure
the memory allocation time as well and we report its fraction
on Table V. We emphasize however, that the results in Table IV
indicate that our approach is consistently superior whether or
not one takes into account the memory allocation time.
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To understand the effect of choosing different values ofN
(cf.Table IV), we applied our algorithm with different values
of(k, q)=(r, q)pairs. We observe from Table IV that if we
account for the memory allocation cost, our scheme achieves
up to 4.69× speedup compared to the uncoded TeraSort
whereas if we ignore this cost our schemes demonstrates an
improvement of up to5.51×. Moreover, the gain over the prior
coded TeraSort scheme, if we compare the best time reported
by each scheme, can go up to4.69/1.56≈ 3.01× (when
including memory allocation time) or5.51/2.30 ≈ 2.4×
(when excluding memory allocation time). We note here that
the Shuffle phase results corresponding tor=8for prior work
could not be obtained as their program crashed. The following
inferences can be drawn from Table IV.

• The algorithm starts with the CodeGen phase during
which all workers generate the resolvable design based
on our choice of the parametersqandk. Based on the
design, all groups of workers that will be communicating
in the Shuffle phase are determined. Next, the data set
is split intoN files by the master and the appropriate
files are transmitted to each worker. In our experiments
this phase is quite efficient since the number of groups
we need to generate and consequently the number of
shuffling sub-groups we need to split the group containing
all the servers into, is much smaller than that of the prior
scheme. For example, let us look at the CodeGen time
forr=3 of the prior scheme which ist1 =5.82.
The corresponding number of groups isg1=

K
r+1 =

16
4 = 1820. For our scheme, that time ist2=0.64and
the number of multicast groups isg2= q

r−1(q−1) =
43×3 = 192. Now if we try to interpolate our code
generation cost fromt1, based on our analysis, we would
get:

t2=
g2
g1
×t1=

192

1820
×5.82≈0.61≈t2.

• The Map time mainly depends on the computation loadr.
Sinceris the number of times the whole data set is
replicated and processed across the cluster we expect the
Map cost of both coded schemes to be approximately r
times higher than that of the uncoded implementation.
Indeed, if we look at our scheme forr=4 we see that
25.91
5.71 ≈4.54is a good approximation tor.

• The encoding time of the coded schemes (which is
the time it takes so that all servers form the encoded
packets that they will be transmitting afterwards) is
not directly comparable to the packing of the uncoded
approach which stores each intermediate value serially
in a continuous memory array to ensure that a single
TCP connection is initiated for each intermediate value.
Further examination of the internals of C++ dynamic
memory allocation (which we used) is beyond the scope
of our analysis but one point we emphasize is that we
have a significant benefit over the prior scheme during
encoding. Forr=8, we obtain a speedup of1128.16

26.22 ≈
43.03. This is explained by the fact that in the previous
scheme each server participates into much more groups
and thus it needs to store more encoded data into its
memory.

• The Shuffle phase is where we can see the advantage
of our implementation. For example, whenr=8, our
predicted load will be1/14, while the load of the uncoded
r = 1 scheme will be15/16. Thus, with the same
transmission rate we expect our Shuffle phase to be
13.125times faster. However, our obtained transmission
rate is approximately62.68Mbps. Thus, the overall
gain is expected to be around8.16times. In the actual
measurements our gain is 1105.64

127.43 ≈ 8.68 which is
quite close to the prediction. On the other hand, let us
consider the prior scheme whenr=5. In this case the
load analysis predicts a gain of6.82assuming that the
transmission rates are the same and a gain of4.13when
accounting for the different rates. However, the actual
gain is1105.64297.28 ≈3.72. Some of these discrepancies can
be explained by the fact that the cost of multicasting a
message from a server to nreceivers is not necessarily
ntimes cheaper than unicasting that message separately
to each of thenreceivers. In particular, in Open MPI
there are seven modes of broadcasting a common message
to multiple receivers. These includebasic linear,chain
andbinary treeamong others. For instance, in a typical
binary tree the sender is the root of the tree and the
receivers are the descendants of it. The transmission
starts from the root and propagates downward. The depth
of the tree is logarithmic in the number of nodes so
it can achieve a logarithmic speed-up as compared to
unicast. Since the details of these implementations fall
beyond the scope of our research we have chosen to
use the automatic module which selects the transmission
algorithm on-the-fly depending on the communicator and
message sizes. However, our load analysis corresponds
to abasic linearbroadcast (the sender sends a common
message to all receivers one at a time without parallel
communication). Hence, our definition of communication
load, defined as the total number of bits transmitted
divided by the time, provides a theoretical worst-case of
the load one could achieve; it also sets a common metric
which helps us compare with uncoded approaches and
other coded schemes in equal terms. Indeed, for small
communicators of sizek like in our experiments the
MPI quite likely resorts to the basic linear broadcast and
the transmitter sends the common packet sequentially to
all receivers [30]. If MPI resorts to a parallel broadcast
algorithm such that of a binary tree it won’t generally
perform all transmissions of a tree level in parallel.
However, it will prioritize them such that one child of
each transmitter is serviced first while the other is waiting
and it will maximize the bandwidth of the connections
of the transmitter-receiver pairs which are serviced first.
The overhead of setting the connections is much lesser
in our protocol due to the reduced number of groups.
Specifically, the latency(number of transmissions) of
our method isktransmissions per group for a total of
qk−1(q−1)ktransmissions. Moreover, the lower layers
of network protocols introduce additional headers into
packets likely to affect more the prior scheme due to
smaller payloads.

The major issue of the prior TeraSort scheme in [14] is the
large value ofN that it needs. This translates into a large num-
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Fig. 1. MPI_Comm_Splitexecution time.

ber ( K
r+1 ) of server groups in the shuffling phase. This num-

ber can be prohibitive for High Performance Computing (HPC)
communication protocols like the Message Passing Interface
(MPI). This is because all MPIcommunication is associated
with a communicatorthat describes the communication con-
text and an associated group of processes. But, the cost of
splitting the initial communicatoris non-negligible [31]. In the
case of coded TeraSort of [14] the overall communicator needs
to be split into K

r+1 intra-communicatorseach facilitating the
communication within a group.
We demonstrate the impact of this issue by explicitly

measuring the time needed to split the initial communicator
ofK servers into K

x intra-communicators, each of sizex
for different values ofK andx. Let us refer to Fig. 1. We
see that MPI_Comm_Split incurs an exponential cost that can
easily dominate the overall MapReduce execution. This clearly
indicates that even though the communication load may reduce
with increasingrin the scheme of [14], the overall execution
time may be adversely affected (see [31] for more details).
Another point to consider is that the MPI library might

support a limited number of communicators. Some indicative
examples are those of Open MPI which supports up to
230− 1communicators, MPI over InfiniBand, Omni-Path,
Ethernet/iWARP and RoCE (MVAPICH) which allows for
up to 2000 communicators and High-Performance Portable
MPI (MPICH) that limits this number to 16000. Thus, if we
have (K =50,r=10) the number of required groups will be
50
11 which would exceed these limits. In our method, we could
choose(q, k)=(5,10)or(q, k)=(2,25)both of which are
below Open MPI communicator limits, requiring 7812500 and
16777216 groups, respectively.
Our experiments indicate that the time consumed in memory

allocation can be non-negligible and this is a major issue.
We emphasize though that our gains over prior methods hold
even if we do not take the memory allocation time into
account.
Another interesting aspect of our experiments is that the

observed transmission rate appears to change based on the
value ofr. In our experiments we capped the transmission
rate at100Mbps. However, the observed rate can be as low
as61.04Mbps. As our experiments run on Amazon EC2,

we do not have a clear explanation on the underlying reasons.
Nevertheless, we point out the rates for our proposedr=8
and the prior schemer=5 are quite close.

V. MULTI-JOBCASE FORFUNCTIONS
AMENABLE TOAGGREGATION

In this section we discuss how resolvable designs can
help with processing multiple jobs on a cluster where the
underlying functions are amenable to aggregation. Our goal is
to processJdistributed computing jobs (denotedJ1,...,JJ)
in parallel on a cluster withK servers. The data set of each job
is partitioned intoN disjoint and equal-sized files. The files
of thej-th job are denoted byn(j),n=1,...,N. A total of

Q output functions, denotedφ
(j)
q ,q=1,...,Q, need to be

computed for each job. Note that theseQ functions may be
different across different jobs. We examine a special class of
functions that possess theaggregationproperty.
Definition 4: In database systems, anaggregate functionφ
is one that is both associative and commutative.
For example, in jobs with “linear” aggregation the evalua-
tion of each output function can be decomposed as the sum of
N intermediate values, one for each file, i.e., forq=1,...,Q,

φ(j)q (1
(j),...,N(j))=ν

(j)
q,1+ν

(j)
q,2+···+ν

(j)
q,N,

where ν
(j)
q,n= φ

(j)
q (n(j))and each such value is assumed to

be of sizeBbits. In what follows we useα(ν
(j)
q,1,...,ν

(j)
q,m)to

denote the aggregation ofm intermediate valuesν
(j)
q,1,...,ν

(j)
q,m

of the same functionφ
(j)
q and jobJjinto a single compressed

value. We assume that it is also of sizeB bits.
As before, a master machine places the files on the servers
according to certain rules. Note that each file is placed on at
least one server before initiating the algorithm.
Definition 5: The storage fractionμ∈[1/K,1]of a distrib-

uted computation scheme is the fraction of the data set across
all jobs that each server locally caches.
Once again, we assume that Q is divisible byK. As we
have already discussed, our scheme is easily adapted to that
case, we choose to keep the discussion simple and focus on
theQ=K case, i.e., each server is reducing one function.
The framework starts with the Map phase during which the
servers (in parallel) map every filen(j)that they contain to the

values{ν
(j)
1,n,...,ν

(j)
Q,n}. Following this, the servers multicast

the computed intermediate values amongst one another via a
shared link in the Shuffle phase. In the final Reduce phase,

serverUkcomputes (or reduces)φ
(j)
k (ν

(j)
k,1,...,ν

(j)
k,N)forj=

1,...,Jas it has all the relevant intermediate values required
for performing this operation.
Definition 6: The communication loadLof a scheme exe-
cutingJjobs is the total amount of data (in bits) transmitted
by the servers during the Shuffle phase normalized byJQB.
Our proposed algorithm will be abbreviated as CAMR
(Coded Aggregated MapReduce). Our main idea is to again
use resolvable designs. However, the interpretation of the
design, i.e., the correspondence of the points and blocks with
the MapReduce setup is significantly different.

A. Job Assignment and File Placement

Our cluster consists ofK servers and we choose appropriate
integersq, kso thatK =k×q. The number of filesN needs to
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be divisible byk; we discuss its choice shortly. Next, we form
a(k, k−1)SPC code and the resolvable design, as described
in Section III-A. The jobs to be executed are associated with
the point setX =[qk−1]so thatJ=qk−1. The block setA
is associated with the servers, i.e, each server corresponds to
ablockBi,j,i=1,...,k,andj=0,1,...,q−1.
JobJjis processed by (or “owned” by) the server indexed

byBi,lifj∈ Bi,l. Let us denote the owners ofJjby
X(j)⊂{U1,...,UK}. For each job, the data set is split intok
batchesand each batch is made up ofγfiles, for any positive
integerγ >1(recall thatk|N); even though there are no
other constraints onγ, it gives us a finer control over the
subpacketization level that we want depending on the data set
size. The file placement policy is illustrated in Algorithm 3.

Algorithm 3File Placement

Input:Jjobs, owner sets{X(j),j=1,...,J},kused
in SPC code, batch sizeγ.

1SetN =kγ.
2foreach jobJjdo
3 Split the data set ofJjintoN disjoint files
{1(j),...,N(j)}and partition them into
kbatches ofγfiles each.

4 LetX(j)={Ui1,...,Uik}. Label each batch with a
distinct index of an owner so that

5 the batches areB={B
(j)
[i1]
,...,B

(j)
[ik]
}.

6 foreach ownerUk ∈X
(j)do

7 Store all batches inBexceptB
(j)
[k]in serverUk.

8 end
9end

Each server is the owner ofqk−2jobs (block size). For each
such job it participates ink−1batches of sizeγ, as explained
in Algorithm 3. Hence, our required storage fraction is

μ=
qk−2·(k−1)·γ

Jkγ
=
k−1

K
.

B. Map Phase

During this phase, each server maps all the files of each job
it has partially stored, for all output functions. The resulting

intermediate values have the formν
(j)
q,n=φ

(j)
q (n(j)),q∈[Q],

n∈[N],j∈[J].
At the end of the Map phase, for each jobJj, each mapper

combines all those valuesν
(j)
q,nthat are indexed with the same

qandj(in other words, associated with the same function and
job) and belong to the same batch of files; we have already
referred to this operation as aggregation.

C. Shuffle Phase

The CAMR scheme carries out the data shuffling phase in
three stages. The first two stages use Algorithm 1 of Lemma 2
introduced for the single-job case.
We will be focusing on a server Uk, associated with a
block, sayBx,y, and we will argue thatUk is able to recover
all missing aggregate values at the end of the Shuffle phase.

Based on Algorithm 3,Uk stores batchesB
(j)
[z]for all values of

(j, z)s.t.j∈Bx,yandz=k; those are the bathesUk stores
for all the jobs it owns. ButUk misses one batch for each

of these jobs which isB
(j)
[k]for all values ofjs.t.j∈Bx,y;

in addition,Uk does not store any batches of the remaining

jobs, i.e., it misses the batchesB
(j)
[z]for all values of(j, z)s.t.

j/∈Bx,y.
1) Stage 1:In this stage, only owners of each job commu-
nicate among themselves. Let us fix a jobJjthatUk owns
and consider the servers inX(j)\{Uk}of cardinalityk−1
(cf.Algorithm 3). During the Map phase, each server in that
subset has computed an aggregate needed by the remaining

ownerUk which is (note from Algorithm 3 that batch B
(j)
[k]

is not available inUk)

α
(j)
[k]=α({ν

(j)
k,n:n∈B

(j)
[k]}).

Let us keep the jobJjfixed. Then, if we repeat the above
procedure for all ownersUp ∈ X

(j)we can identify the

aggregatesα
(j)
[p]. Each of these values is needed by exactly

one ownerUp.
There is an immediate correspondence between this setup

and Lemma 2 which isG=X(j) and D[p]=α
(j)
[p]forj=

1,...,J. Hence, Algorithm 1 can be utilized here so that each
owner ofJj, after receivingk−1such values (one from every
other owner of that particular job), can decode all of its missing
aggregates for jobJj. We can repeat this process for every
value ofj, i.e., for every job. In total,Jgroups of servers (the
owner set of each job), each of sizekwill be communicating
among themselves in this stage.
At the end of stage 1, workerUk (blockBx,y) should have

recovered all needed intermediate values of batches of the form
B
(j)
[k]for all values ofjs.t.j∈Bx,y.

2) Stage 2:In this stage, we form communication groups
of both owners and non-owners of a job, so that the latter can
recover appropriate data to reduce their functions.
Towards this end, we form collections of server groups
by choosing one block from each parallel class based
on a simple rule. We choose a group of servers G =
{B1,j1,B2,j2,...,Bk,jk}such that∩

k
=1B,j = ∅. Without

loss of generality, assume thatUk ∈ G. If we remove
Uk fromG, the servers in the corresponding subsetP =
G\{Uk}of cardinality|P|= k−1jointly own a job, say
Jj, that the remaining serverUk does not (cf.Lemma 3).
In addition, based on the aforementioned file placement policy

(cf.Algorithm 3), they share the batch of files B
(j)
[l] for that

common job and someUl∈ X
(j). Note thatUldoes not

contain the batchB
(j)
[l].

The following simple observation is important.
Observation 1: By construction,Ulis precisely the remain-

ing owner ofJjand it should lie in the parallel class that none
of the other owners belong to. This is precisely the same class
in whichUk lies.
During the Map phase, each server inP has computed an
aggregate needed byUk which is

β
(j)
[k]=α({ν

(j)
k,n:n∈B

(j)
[l]}).     (4)

As in stage 1, Lemma 2 fits in this description and
Algorithm 1 defines the communication scheme; the shuffling
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Fig. 2.  Proposed placement scheme forK =6 servers andN =6 files per computing job forJ=4 jobs. The dotted lines show the partition of the servers
into parallel classes.

group isG and each serverUp∈G needs its missing chunk

D[p]=β
(j)
[p]for the unique batch that all servers inP share.

Server Uk participates inq
k−2(q− 1)such groupsG

satisfying the aforementioned rule. For each suchG,Uk does
not own a job (and a corresponding batch) that the servers in

G\{Uk}own. The missing batch is exactlyB
(j)
[l]for somel

such thatUllies in the same parallel class asUk.Attheend
of stage 2,Uk is able to decodeq

k−2(q−1)aggregates of
the form in eq. (4) one for each job it does not own.
3) Stage 3:Each server is still missing values for jobs that it

is not owner of from stage 2. Now, servers communicate within
parallel classes. We emphasize the following observation.
Observation 2: All values that server Uk still needs can
be aggregated and transmitted by a single owner-server in the
same parallel class thatUk belongs to. This server is unique
and transmits one aggregate value of its jobs to every other
server in the same parallel class.
The proof of the above observation follows from stage2

and by the resolvability property of our design. Let us fix a
shuffling group in stage 2, sayG, a subsetP = G\{Uk}
and focus on the excluded serverUk.TheserversinPjointly
own a unique jobJjthatUk misses. The remaining owner of
Jjis someUlthat lies in the same parallel class asUk.Note
that stage2has already allowed us to recover the aggregate
on the unique batch ofJjthat the servers inP share; this
batch is not contained inUl. However, based on Algorithm 3,
Ulcontains all the other batches associated withJjand can
hence compute the aggregate function on them. This is exactly
what happens in stage3for each server.
More formally, we have the following argument. Recall that

thei-th class isPi= {Bi,j,j=0,...,q−1}and fix a job
Jjthat a serverUk∈Piowns andUk ∈Pidoes not. Then
Uktransmits

Δstage 3k =α

l:Ul∈X(j)\{Uk}

{ν
(j)
k,n:n∈B

(j)
[l]}    (5)

toUk ∈Pi; obviously,Uk /∈X
(j). We will do this process

for every job thatUkowns andUk does not. Finally, we will
take every pair(Uk,Uk)of servers in that parallel classPi
and repeat the procedure for all parallel classes.
By the end of this last stage 3,Uk has received all missing

values that it needs for the Reduce phase. Since the above
analysis holds for any value ofk, we have shown that our
communication scheme serves its purpose and all workers have
the necessary data to reduce their functions.

D. Reduce Phase

Using the values it has computed and received, Uk
reducesφ

(j)
k (1

(j),...,N(j)) =α(ν
(j)
k,1,ν

(j)
k,2,...,ν

(j)
k,N)for all

k=1,...,Kandj=1,...,J.
An instance of the above procedure is illustrated in the

following example.

Fig. 3.  Stage1coded multicasts among owners ofJ1.

Example 5: Suppose that our task consists ofJ=4 jobs.
For thej-th job, denotedJj, we need to countQ=6 words

givenbythesetA(j)={χ
(j)
1 ,...,χ

(j)
6 }in a book consisting

ofN =6 chapters using a cluster ofK =6 servers.Jjis
associated with thej-th book and its files with the chapters

1(j),...,6(j). Functionφ
(j)
k ,k=1,...,Q(assigned to server

Uk) counts the wordχ
(j)
k ofA

(j)in the book indexed byj.
We subdivide the original data set of each job intoN =6
files. The files of thej-th job are partitioned into three batches,
namely{1(j),2(j)},{3(j),4(j)}and{5(j),6(j)}. Exactly four
such batches are stored on each server (cf.Fig. 2). The owners
of the jobs are specified as follows.

X(1)= {U1,U3,U5},X
(2)={U1,U4,U6},

X(3)= {U2,U3,U6}andX
(4)={U2,U4,U5}.  (6)

For example, the files of jobJ1,{1
(1),2(1),...,6(1)},are

stored exclusively onU1,U3andU5. Specifically, the three
batches of the first job are

B
(1)
[3]={1

(1),2(1)},B
(1)
[5]={3

(1),4(1)},B
(1)
[1]={5

(1),6(1)}.

Then, batchB
(1)
[3]is stored on serversU1andU5,B

(1)
[5]on

U1andU3and, finally,B
(1)
[1]onU3andU5. Each server locally

storesμ=1
3of all the data sets.

We will clarify the three stages of our proposed Shuffle
phase by means of the following example.

• Stage 1: The owners of each job communicate among
themselves during this stage. Let us consider the group
of servers{U1,U3,U5}which are the owners of J1,
storing{1(1),2(1),3(1),4(1)},{3(1),4(1),5(1),6(1)}and
{1(1),2(1),5(1),6(1)}, respectively. Based on this allo-

cation policy, serverU1needsφ
(1)
1 evaluations of the

batch{5(1),6(1)}, i.e.,ν
(1)
1,5andν

(1)
1,6forJ1or simply the

aggregateα(ν
(1)
1,5,ν

(1)
1,6)  ν

(1)
1,5+ν

(1)
1,6which is the sum of

the counts of wordχ
(1)
1 in files5(1)and6(1). Similarly,

U3needsα(ν
(1)
3,1,ν

(1)
3,2)andU5needsα(ν

(1)
5,3,ν

(1)
5,4).Next,

we refer to Fig. 3. The compressed intermediate values
are represented by circle/green, star/blue and triangle/red.
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TABLE VI

STAGE2TRANSMISSIONSWITHINGROUP{U1,U3,U6}

We further suppose that each value can be split into two
packets (represented by the left and right parts of each
shape). IfU1transmits left circle XOR left star, thenU3
is able to cancel out the star part (sinceU3also “maps”
{3(1),4(1)}) and recover the circle part. Similarly,U5can
recover the star part from the same transmission. Each of
these transmissions is useful to two servers. We can repeat
this process for the remaining jobs. The total number of
bits transmitted in this case is therefore6B. The incurred
communication load isLstage 1=

6B
JQB=

1
4.

• Stage 2: The groups communicating in this stage consist
of both owners and non-owners. The servers recover
values of jobs for which they haven’t stored any file.
LetG = {U1,U3,U6}. Observe from eq. (6) that there
is no job common to all three but each subset of two of
them shares a batch of a job they commonly own. The
remaining server needs an aggregate value of those files.
The values that each ofU1,U3andU6needs as well as the
corresponding transmissions are illustrated in Table VI.
We denote the i-th packet of an aggregate value byα(·)[i].
It turns out that there are4possible such groups we can
pick. The total load isLstage 2=

4×3×B/2
JQB = 6B

JQB=
1
4.

• Stage 3: Servers recover the remaining intermediate
values by receiving unicast transmissions during this last
stage. If we consider the same group as in stage 2,
i.e.,G = {U1,U3,U6}then we can see thatU1still

misses values ν
(3)
1,1,ν

(3)
1,2,ν

(3)
1,3andν

(3)
1,4ofJ3or simply

their aggregateα(ν
(3)
1,1,ν

(3)
1,2,ν

(3)
1,3,ν

(3)
1,4). Observe that all

required files locally reside in the cache ofU2which can
transmit the value toU1. For the complete set of unicast
transmissions see Table VII. The load turns out to be
Lstage 3=

6×2×B
JQB =

1
2.

The communication load of all stages is thenLCAMR=1.
Similarly, the load achieved by the CCDC scheme of [1] for
the same storage fractionμ=1/3isLCCDC=1. Nonetheless,
their approach would require a minimum ofJ= 6

3 =20
distributed jobs to be executed, i.e., we can achieve the same
efficiency on a smaller scale.

E. Aggregated Multi-Job Communication Load Analysis

In the first stage, for each of theJjobs, each of thekowners
computes one aggregate and is associated with a unique
corresponding packet of it, of size B

k−1. The communication
load is

Lstage 1=
JkBk−1
JQB

=
k

K(k−1)
.

The second stage involves the communication within all
possibleqk−1(q−1)groups that satisfy the desired property.
In each case,kservers transmit one value each, of lengthB

k−1

TABLE VII

NEEDEDAGGREGATEVALUES AT THEEND OFSTAGE2

and

Lstage 2=
qk−1(q−1)kBk−1

JQB
=
(q−1)k

K(k−1)
.

Each server does not ownJ−qk−2jobs. For each of them,
during stage 3, one transmission (of lengthB) from a server
in the same parallel class is sufficient. Thus,

Lstage 3=
K J−qk−2 B

JQB
=
q−1

q
.

The total load is

LCAMR=
3

i=1

Lstage i=
k(q−1) + 1

q(k−1)
.     (7)

F. Comparison With Other Schemes

The technique proposed in [1] demonstrates a load of

LCCDC=
(1−μ)(μK+1)

μK
. (8)

for a suitable storage fraction such thatμK∈{1,...,K−1}.
Our storage requirement is equal to μ= k−1

K .Forthesame
storage requirement, eq. (8) yields

LCCDC=
(1−k−1K )(

k−1
K K +1)

k−1
K K

=
k(q−1) + 1

q(k−1)
.

We conclude that the loads induced by the two schemes
are identical. However, their approach fundamentally relies
on the requirement that the minimum number of jobs to be
executed isJCCDC, min=

K
μK+1 . Comparing this value with

our requirement forJCAMR=q
k−1and using a known bound

for the binomial coefficients, we deduce that [32]

JCCDC, min=
K

μK+1
=
kq

k

(a)

≥
kq

k

k(b)

>JCAMR, min,

where the bound of (a) is maximum whenq=2and becomes
stricter forq >2; however, for a fixed value ofk,asq
increases the bound of (b) loosens and it turns out that our
requirement for the number of jobs becomes exponentially
smaller than that of CCDC (recall thatJCAMR, min=q

k−1).

G. Distributed Matrix-Vector Multiplication

Performing large matrix-vector multiplications is a key
building block of several machine learning algorithms. For
instance, during the forward propagation in deep neural net-
works [33] the output of the layer is the result of multiplying
the matrix of the input data set with the weight vector.
In what follows, we formulate the matrix-vector product as
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TABLE VIII

TIME FORCOMPUTING512PRODUCTSAb,m = 234000,n=100ONK =20 SERVERS

a MapReduce operation and compare our algorithm against
the baseline method for the case when we have to simulta-
neously execute multiple such multiplications. Existing work
on the multi-job case does not include practical experiments.
Thus, we cannot compare with other schemes that examine
the computation-communication trade-off on multiple jobs.
Nevertheless, we believe that our experiments provide a good
demonstration of potential benefits of these operations on a
large scale.
Suppose that we want to computeAb for a matrixA
(sizem ×Jn) with a vectorb(sizeJn×1)inadistributed
manner on K servers. We assumeK|m. We initially split
it column-wise intoJblocksA(1),...,A(J). Each block is
associated with one job. Specifically, the job indexed withj
involves multiplyingA(j)(sizem×n) with a vectorb(j)(size
n×1).
We will begin by explaining our model for the baseline

approach. First, we further partition eachA(j)intoqkblock
matrices as follows

A(j)=

⎡

⎢
⎢
⎣

A
(j)
11 ... A

(j)
1k

...
...

...

A
(j)
q1 ... A

(j)
qk

⎤

⎥
⎥
⎦.     (9)

The corresponding decomposition ofb(j)into blocks is as
follows

b(j)= b
(j)
1 ··· b

(j)
n/k|···|b

(j)
n−n/k+1···b

(j)
n

T

. (10)

Each server stores and computes the product of exactly one
block ofA(j),∀j∈ [J](there areK = kqof them) with
the appropriate subvector ofb(j), during the Map phase.
Our Reduce policy is that each server will compute a subset
of the rows of c(j) = A(j)b(j) after processing at its
end. Specifically, serverUiis assigned to compute the rows
{(i−1)m/K,...,im/K}ofc(j)(note that we assume that
K|m). AllK reducers receivek−1products (sizem/K×1)
for each job by servers mapping the same block-row ofA(j)

and sum these results row-wise before transmitting them to the
master. The master machine concatenates them and constructs
the final result.
Letc(m, n, k)be the cost of multiplying two matrices of

dimensionm ×nandn×k. Then, the computation cost for
each server isMuncoded=J·c(m/q, n/k,1).

The communication load isLmultuncoded=
JK(k−1)B
JQB = k−1

where, based on our prior notation, B = m
KT andT is the

number of bits used to represent a single entry of a matrix,
i.e., each transmission is the equivalent of a “compressed”
intermediate value (a column in this case).
We now formulate our CAMR scheme for this problem.

In this case, we splitA(j)intokblock-columns as

A(j)= A
(j)
1 , ..., A

(j)
k
.

For each job (point), we pickkowners (blocks) based on a
SPC-(k, k−1)code that store a part ofA(j)andb(j)[the
splitting ofb(j)is the same as in Eq. (10)]. Specifically, each
owner stores a different set ofk−1block-columns (batches) of
A(j)and the corresponding parts ofb(j). It computes all these
products during the Map phase. The non-owners do not store
any part of these matrices. The Reduce policy also remains
the same as in the baseline method.
The computation cost per server isMCAMR=q

k−2(k−1)·
c(m, n/k,1). The communication load has been computed in
Section V-E, eq. (7).
In theory, CAMR requires a computation overhead of

MCAMR
Muncoded

=
qk−2(k−1)·c(m, n/k,1)

J·c(m/q, n/k,1)
=k−1.

The theoretical gain we would expect in the Shuffle phase is

Lmultuncoded
LCAMR

=
(k−1)2q

k(q−1) + 1
.

H. Matrix-Vector Multiplication Experimental Results and
Discussion

We serially ran multiple matrix-vector products on Amazon
EC2 clusters. The instance type used is x1e.2xlarge for the
master machine and r4.2xlarge for the workers. Our code is
available online [24]. The master machine decomposes each
input matrix and the corresponding vector and sends them to
the appropriate worker nodes.
Table VIII summarizes the results for our use case. The
impact of the Shuffle phase on the total execution time seems
to be greater than in the case of TeraSort and our scheme
reduces the overall time by up to4.31×. In theory, our scheme
requires a computation overhead of9. Indeed, based on
Table VIII the Map phase for our scheme is8.77

1.01≈8.68times
more expensive than that of the uncoded. The gain we would
expect in the Shuffle phase for the values of the parameters
is approximately14.73. In practice, we have achieved a gain

of408.11
52.74 ≈7.74. Nevertheless, if we consider equal transmis-

sion rates in both cases that speedup would be169.190.857.74 =
14.41which is very close to the prediction.

VI. CONCLUSIONS ANDFUTUREWORK

In this work we presented a distributed computing protocol
by leveraging the properties of resolvable designs. These
designs can be generated from single parity-check codes. Our
techniques apply for the execution of a single job with arbi-
trary functions and a multi-job scenario where the functions
can be aggregated. Prior work has identified and proposed
techniques for exploring these tradeoffs for both problems.
However, in both cases those techniques require certain prob-
lem dimensions to be very large in the problem parameters.
Specifically, in the single-job case, they require a large number
of files, whereas in the multi-job case they require a large
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number of jobs. In practical scenarios, this is a serious issue
and adversely affects the job execution times. Our proposed
approaches work with significantly smaller number of subfiles
(single-job) and jobs (multi-job), respectively. We theoretically
analyze the performance of our schemes and also present
exhaustive experiments on Amazon EC2 platforms that con-
firm the performance advantages of our methods.
We point out that our number of subfiles is still exponential

in the problem parameters but with a much smaller exponent.
We emphasize that it remains well within the limits of popular
message-passing protocols such as Open MPI for many prac-
tical scenarios. Reducing this number further while continuing
to have a low communication load is an interesting direction
for future work. Our multi-job scheme (and prior work [1])
does not handle precedence constraints or a redundant Reduce
function assignment to the workers that naturally arise in some
MapReduce problems. Adapting our work to take these into
account would be another avenue for future work.

APPENDIX

Proof of Lemma 2

We shall refer to Algorithm 1 in order to show that each
server inGcan recover its missing data chunk. For a group of
serversG={U1,...,Uk}and the packets of the chunkD[j],
i.e.,C={D[j][1],...,D[j][k−1]}consider a complete graph
with the following set of vertices{G\{Uj},C}; the matching
H[j]described in Algorithm 1 will be defined based upon
this graph, i.e., each vertex in{G\{Uj}}will be matched
to a distinct vertex inC.Fixapairofservers{Um,Uk}⊂G
and the packetΔm transmitted fromUm toUk. By canceling
out all terms ofΔm thatUklocally stores, it can recover the
remaining term, i.e.,H[k](Um)(note thatUkparticipates in
exactlyk−1such matchings, i.e., inH[j],∀j=k). Keeping
Uk fixed, we repeat this process for every possible server
Um ∈ G\{Uk}. Since each of them is associated with a
distinct packet ofD[k]it follows that by receiving thek−1
packets

{Δm :Um ∈G\{Uk}},

Ukcan recover the following packets

{D[k][i]:Ui∈G\{Uk}}.

Subsequently,Ukconcatenates them in order to recoverD[k].
Since this proof holds independent of the choice of Um,
we have shown that all servers can recover their missing
chunks. To conclude the argument, we note that since each
chunk is assumed to be of sizeB bits and it was split into
k−1packets of sizeB/(k−1), the total amount of transmitted
data isBk/(k−1).

DETAILS OFTERASORTIMPLEMENTATION

We have implemented TeraSort on Amazon EC2 clusters
using our proposed approach. The implementation was per-
formed in C++ using the Open MPI library for communica-
tion among the processes of the master and the servers. Our
code builds on [27] and comparisons with the uncoded case
and the approach in [14] have been made.
TeraSort is a popular benchmark that measures the time to

sort a big amount of randomly generated data on a cluster.

The data set in TeraSort is such that each line of the file is a
key-value (KV) pair typically consisting of an integer key and
an arbitrary string value. The sorting is done based on the key.
It is not too hard to see that this KV formulation can be put
in on-to-one correspondence with the formulation in terms of
Map and Reduce functions (cf.Section IV-B).

A. Amazon EC2 Cluster Configuration

We used Amazon EC2 instances among which one served as
a master and the rest of them as servers (servers). The instance
type used is r3.large for the master machine and m3.large
for the servers. After placing the files to the carefully chosen
servers we also impose a limit of 100Mbps for both incoming
and outgoing traffic of all servers; this serves the purpose of
alleviating bursty TCP transmissions.

B. Data Set Description

For the TeraSort experiments we generated 12GB of total
data. Each row of the file holds a 10-byte key and its
corresponding 90-byte value. The TeraGen utility of Hadoop
distribution was used to randomly generate this data. The KV
pairs are lexicographically sorted with respect to the ASCII
code of their keys where the leftmost and the rightmost byte
are the most and the least significant byte, respectively.

C. Platform and Code Implementation Description

Our source code is available at [23]. The master machine
is responsible for placing the files in the local drives of
the servers and deciding the reducer responsibilities for each
server. It also initiates the MPI program to all servers. From
this point onwards, the master will only take time measure-
ments from the servers.
The overall sequence of steps in processing a given
job are: CodeGen→ Map → Pack/Encode→ Shuffle→
Unpack/Decode→ Reduce. We explain these steps below.

• Code generation: All nodes (including the master) start
by generating the resolvable design based on our choice
of the parametersqandk. Next, the data set is split
intoN files by the master and the appropriate files are
transmitted to each server based on Step 3 of Algorithm 2.
The master also broadcasts the keys that describe the
Reduce assignment.

• Map. For each filewathat serverBi,lhas in its block,
it will compute{ν1,a,...,νQ,a}during the Map phase.

• Pack/Encode.For the uncoded implementation, we use
the Pack operation. The Pack stage stores all intermediate
values that will be sent to the same reducer in a contin-
uous memory array so that a single TCP connection for
each sender/receiver pair suffices (which may transmit
multiple KV pairs) when MPI_Sendis called.3In the
coded implementation encoded packets are created from
the mapped data as described in Algorithms 1, 2.

• Shuffle.For each shuffling groupG a server belongs to,
it will broadcast an appropriate encoded packet to the rest
of the group.

3In the shuffling phase of the uncoded case, each server unicasts data to
a single receiver at any particular time, which is exactly the purpose of
MPI_Sendcall.
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• Unpack/Decode.In the uncoded implementation we use
the Unpack operation which simply deserializes the
received data to a list of KV pairs. In the coded imple-
mentation the intermediate values are decoded locally on
each server from the received data.

• Reduce. The  Reduce function is applied on the
unpacked/decoded data.
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