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Resolvable Designs for Speeding
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Abstract— Distributed  computing  frameworks soch as
MapHReduce are often uwsed to process large computational
johs. They operate by partitioning each job into smaller tasks
executed on different servers. The servers also need to exchange
intermediate values to complete the computation. Experimental
evidence suggests that this so-called Shuffle phase can be a
significant part of the overall execation time Tor several classes
of jobs, Prior work has demonstrated a natural tradeolT between
computation and communication whereby running redundant
copies of jobs can reduce the Shuffle traffic load, thereby leading
to reduced overall execution times. For a single job, the main
drawback of this approach is that it reguires the original job
to he split into a number of files that grows exponentially in
the system parameters. When extended to multiple jobs (with
specific function types), these techniques suffer from a limitation
of a similar favor, i.e. they require an exponentially large
number of jobs to be executed. In practical scenarios, these
requirements can significantly reduce the promised gains of the
method. In this work, we show that a class of combinatorial
structures called resolvable designs can be uwsed to develop
efficient coded distributed computing schemes for both the single
and multiple job scenarios considered in prior work, We present
both theoretical analysis and exhaostive experimental results
{on Amazon EC2 clusters) that demonstrate the performance
advantages of our method. For the single and multiple job cases,
we obtain speed-ups of 4.69x% (and 2.6x over prior work) and
4.31x over the baseline approach, respectively.

Index Terms—MapReduce, data-intensive computing, coded
multicasting, communication load, TeraSort, aggregate functions,
distributed learning.

I. INTRODUCTION

N RECENT years, there has been a surge in the usage of

various cluster computing frameworks such as MapReduce,
Hadoop and Spark. The era of big data analytics whereby
a large amount of data needs to be processed in a fast
manner has fueled this growth. In these systems, the data set
is wsually split into disjoint files stored across the servers.
The computation takes place in three steps. ln the Map step,
the servers process the input files to generate infermediate
values having the form of (key, value) pairs. In the next Shujfle
step, the intermediate pairs are exchanged between the servers.
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In the final Reduce step, each server compultes a set of output
functions defined based on the keys. Henceforth, we refer to
this as the MapReduce framework.

The MapReduce framework has proven to be quile versatile
and large scale clusters in industry and academia routinely
process terabyles of data using this approach. It is a protocol
well suited for several applications; it fits the computation
of functions which are wseful for machine learning [1],
e.g., in deep residual learning for image recognition [2].
Prakash et al. [3] have adapted the general MapReduce frame-
work to graph analytics where computation at each veriex of
the graph requires data only from the neighboring vertices. It is
important to note that the framework intertwines computation
and communication. Specifically, multiple workers allow for
parallel computation; yet data needs to be exchanged between
them to complete the processing of the job. The terms servers
and warkers will be used interchangeably throughout the text.

A typical MapReduce implementation splits the overall job
into a number of equal-sized (or approximately equal-sized)
tasks and assipns a single task to each server. However,
for many classes of jobs, extensive experimental results
have shown that in such implementations the Shuffle phase
can be quite expensive and dominates the overall execution
time [4]. There have been several papers [4]-[7]. on the
impact of the Shuffle phase on the overall execution of a
MapReduce job and corresponding work on alleviating it
These effects have been reported in the work of Guo ef al. [5]
on Shuffle-heavy operations such as Selfloin, TeraSort and
RankedInvertedIndex. Distributed graph analytics also suffer
from long communication phases as observed in [3] and [8].

The CTXC scheme in [9] (see also [1]) showed an interesting
information theoretic perspective on trading off computation
vs. communication. The basic technique they suggest is to
introduce redundancy in the computation, i.e., execute multiple
copies of a given Map task at different servers and use
coded transmissions to reduce the amount of data exchanged
during the Shuffle phase. The servers use locally available
intermediate values in order to decode the received mes-
sages and compute their output functions. Their work for
a general MapReduce system characterizes and matches the
information-theoretic lower bound on the minimum commu-
nication load under certain assumptions.

In this work, we demonstrate that in practical scenarios,
the original scheme in [9] and [1] require significantly higher
shuffling time than the theoretical prediction. This stems from
the requirement, e.g., that a given job needs to be split into
a large number of small tasks in [9] and we show that it has
detrimental effects on the performance of the method. In this
work, we present a technique based on using combinatorial
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structures known as resolvable designs for exploring the
computation vs. communication tradeoff within distributed
computation and demonstrate its advantages.

I1. BACKGROUND, RELATED WORK AND
SUMMARY OF CONTRIBUTIONS

Ahmad ef al. [10] introduced “ShuffleWatcher”, a MapRe-
duce scheduler that reduces throughput and job completion
time. The scheme replicates Map tasks and delays or elon-
gales a job’s communication time depending on the network
load. Other related work on this topic has been published
in [11] which considers a model of MapReduce executed on
a multi-core maching and proposes a topology-aware archi-
tecture to expedite data shuffling. Wang ef al. [12] present
an algorithm that finds the optimal placement and jointly
optimizes Map and Shuffle time.

To our best knowledge [9], [13] and [14] were the first
to rigorously examine the MapReduce framework within the
computation vs. communication tradeoff. Their work defines
appropriate notions of computation and communication loads
within MapReduce. Their key finding is that the judicious
usage of coded transmissions in the Shuffle phase can signifi-
cantly reduce the communication load. Compared to a baseline
scheme, their algorithm splits the original job more finely into
a certain number of Map tasks and redundantly assigns each
of them to multiple workers. Nonetheless, their work requires
splitting the job into a very large number of files or tasks. This
limitation hurts their scheme in a number of different ways:
the most immediate one is that they require extremely large
data sets as the cluster size scales. Their proposed method also
has to form many shuffling groups of servers communicating
in the Shuffle phase. For each group, each participating server
will initially form an encoded packet to transmit to the rest of
the group: all these packets are stored in the memory of the
server. As a resull, their approach suffers from a significant
overhead in encoding time accounting for all groups.

The idea of Compressed Coded Distributed Computing
(CCDC), presented in [1], applies to scenarios where the
underlying functions being computed can be aggregated.
Examples of such functions include, e.g., Average(), Count(),
Max(), Min(), Median(), Mode(), Range(} and Sum(). This
kind of computation is predominant in machine learning
ie.g., lmageNet classification [2] and stochastic gradient
descent [15]). Another scenario is matrix-vector multiplica-
tions that are performed during the forward and backward
propagation in neural networks (cf [16]). This so-called com-
pression fechnigque was initially investigated in [17] by means
of a “combiner function™ which merges intermediate values
with the same key computed from different Map functions.
This allows for a potential reduction in network traffic as
intermediate values can be aggregated before transmission in
the Shuffle phase. Interestingly, [1] requires the number of jobs
being processed simultaneously to be very large. This can also
be a restrictive assumplion in practice.

The recent work of Woolsey ef al in [18] introduces
a scheme to handle the case when each Reduce function
is computed by s = 1 workers by utilizing a hybercube
structure which controls the allocation of Map and Reduce
tasks. Their work is motivated by distributed applications
that require multi-round Map and Reduce computations.
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Another approach that re-examines the computation-
communication tradeoff from an alternate viewpoint has been
investigated in [7]. In this case, the assumption is that a
server does not need to process all locally available files
and storage constraints do not necessarily imply computation
constraints. A lower bound on the computation load and a
heuristic scheme were derived. In [19], the authors propose a
schemne which gives each server access to a random subset
of the input files and not all Reduce functions depend on the
entire data set.

A. Summary of Contributions

As discussed above both [1] and [9] require a certain
problem dimension o be very large. In particular, [9] considers
a single job and requires it to be split into a number of tasks
that grows exponentially in the problem parameters. On the
other hand [1] considers functions that can be aggregated but
requires the number of jobs being processed simultaneously
to grow exponentially. Our work builds on our initial work in
[20] and [21] and makes the following contributions,

« We demonsirale a natural link between the problem of
reducing MapReduce Shuffle traffic and combinatorial
structures known as resolvable designs [22], which in turn
can be easily generated from linear error correcting codes.

« For the single-job case, our resolvable design based
scheme significantly reduces the number of files com-
pared to [9], [13] and [14]. As compared o an uncoded
scheme, CDC in [9] reduces the shuffle phase load by
a factor of v if each task is executed on r workers.
In contrast, our technique reduces the Shuffle phase load
by a factor of v — 1, bul requires much fewer files.
It turns out that in practice our method has a higher gain.
For instance, our experiments (cf Section TV-E) have an
overall speedup of 3.01x compared to [14] where the
procedure of [9] has been applied to a sorting algorithm.

« For the multi-job case we seek a method that combines
the benefits of the coding-theoretic ideas employed in
the single-job case and the fact that the functions being
computed are amenable to aggregation. A simple strat-
egy in the multi-job case would be to simply use the
single-job ideas in a sequential manner. However, our
work shows that a careful assignment of jobs and tasks to
the worker nodes and exploiting the aggregation property
can reduce the Shuffle load significantly. In particular, our
work requires much fewer jobs than CCDC in [1], while
enjoying the exact same Shuffle phase load.

« For both problems we present exhaustive experimental
comparisons on Amazon EC2 clusters with prior work
that demonstrate the efficacy of our method. The code
for our techniques is publicly available at [23] and [24].

Existing distributed frameworks (¢f. Hadoop/Spark) typ-
ically use redundancy for a different purpose (e.g.. fault
tolerance) while we vse it to reduce the ShufMe traffic. Our
work has not been proposed as a variant or incremental fix o
these frameworks. It is demonstrating that a coding-theoretic
viewpoint has the potential to yield great dividends within
the Shuffle phase traffic reduction. Our implementations use
C++ and MFI for a head-to-head comparison with the work
of [9]. Our approaches are applicable to problems requiring
long communication phases where a decrease in Shuffle time
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can significantly offset an increase in Map time due to redun-
dancy. The translation and/or adaptation of our approaches
into protocols that are used in practice is not the focus of
our work but we hope that this theoretical/numerical evidence
spurs more research in this area.

IIl. PRELIMINARIES
A. Primer on Resolvable Designs

We begin with some basic definitions from combinatorial
design theory [22] that we need for specifying our protocols.

Definition 1: A design is a pair (X, A) consisting of

1) a set of elements (poinrs), X, and

2) a family 4 (i.e. multiset) of nonempty subsets of X

called blocks, where each block has the same cardinality.

Definition 2: A subset P 4 in a design (X, .4) is said to
be a parallel class if for X; € P and X; € P with 1 £ 7 we
have X; N X; = 0 and Uy, cpy Xy = X. A partition of A
into several parallel classes is called a resolution and (X, A)
is a resolvable design it 4 has at least one resolution.

Example 1: Let X = {1,2,3 4} and 4 = {{1,2},
13,4},11,3},{2,4},{1,4},{2,3}}. The (X, 4) forms a
resolvable design with the following parallel classes

‘P] = {{1,2},{314}}1172: {{1!3}1{214}'}
Py = {{1!4}1{213”

It turns out that there is a systematic procedure for construct-
ing resolvable designs, where the starting point is an error
correcting code. We explain this procedure below.

Let &, denote the additive group of integers modulo g [25].
The generator matrix of an (&, k—1) single parity-check (SPC)
code over T,! is defined by

and

(1

Gspe = L1 | ¢
1
This code has g*~! codewords which are given by ¢ =
- Ggpe for each possible message vector . The code is
systematic so that the first £ — 1 symbols of each codeword
are the same as the symbols of the message vector. The g*~!
codewords ¢; compuled in this manner are stacked into the
columns of a matrix T of size k = ¢~ L, ie.,

T=[cT,cI,..- _.cg;:_]]. (2)

The corresponding resolvable design is constructed as follows.
Let Xspo = [¢%!] (we use [n] to denote the set {1,2,...,n}
throughout) represent the point set of the design. We define
the blocks as follows. For 0 < | <0 ¢ — 1, let B;; be a block
defined as B{,; = {j H Ti,j = ”

The set of blocks A spc is given by the collection of all B;
for 1 =d<kand0=1<g—1s0that |Aspc| = kq. The
following lemma (proved in [26]) shows that this construction
always yields a resolvable design.

Lemma I The above scheme always yields a resolvable
design (X spc, Aspc) with Xspe = [g° 1], [Bya| = ¢*
forall 1 <¢< kand 0 <1 < g — 1. The parallel classes are
analytically described by Py = {By; : 0 =1 = g — 1}, for
1<i<Ek,

'We emphasize that this construction works even if g is not a prime, ie., Eq
is not a field,
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Fxample 2; The generator matrix of this (3,2) SPC code
over %y (binary), ie., for & = 3 and ¢ = 2 is given by
Gspo = [szz llel . The matrix T can be obtained as

oo 1 1
T=[clcd cdel]=10 1 0 1].
0 1 1 0

It can be observed, e.g., that By = {1,2} and By =
13,4} so that they form a parallel class. In fact, this construc-
tion returns the resolvable design considered in Example 1.

B. Main Shuffling Algorithm

Throughout the paper we specify the Shuffle phases by
means of various coded transmissions. The following lemma
is repeatedly used in the sequel; the proof is in the Appendix.

Lemma 2: Consider a  group of k serves & =
10, ..., U} with the property that every server in & {T},
stores a chunk of data of size B bits, denoted D[q, that 7y
does not store. Then, Algorithm 1 specifies a protocol where
each server in ¢ can multicast a coded packet useful to the
other k — 1 servers such that after & such transmissions each
of them can recover its missing chunk. The total number of
bits transmitted in this protocol is BEk/(k — 1).

Algorithm 1 Shuffling Algorithm of Lemma 2

Input: Group of servers & = {Uy, ..., U},

data chunks {Dyy; : U; € G} st ¥y, Dyy; € Up where
1 for each chunk T'; do
z | Split the chunk into & — 1 disjoint packets

O= {I}[j][i] ri=1,.. . k=1

Consider a complete bipartite graph with vertex set
{@\ {U;},C} and choose a matching F !
within the graph s.t. each node in 74 {I7;} is
matched to a node in {Dp;[1],..., Dy [k — 1]}
HUI(TT;) denotes the right neighbor of [ in HUl.
s end

o for each server U, & (7 do
w | [7,, broadcasts?

- W ke W

(3)

Ap = ?HU][Um].

11 end

IV, SINGLE-JOB CASE
A, Overview of the Method

The process starts by generating the SPC code as described
in Section IlI-A. The code controls how many subfiles the
data set needs to be split into and the corresponding resolvable
design gives the assignment of subfiles to servers (for the Map
phase). The workers receive the corresponding subfiles from
the master node and process them during the Map phase. The
resulting intermediate values are encoded into packets by each
worker. Specifically, each server computes one encoded packet
for each shuffling group it will be participating into during the
communication phase. Subsequently, they form groups of fixed

*The operation in eq. (3) is a bitwise XOR.

Authonzed licensed use limited fo: lowa State University. Downloaded on September (2 2020 at 22:24-38 UTC from IEEE Xplore. Restricions applhy.



IEEE/ACM TRANSACTIONS ON NETWORKING, VOL, 28, NO. 4, AUGUST 2020

TABLE I
PROPOSED PLACEMENT SCHEME FOR EXAMPLE 4
Parallel class 2] Pa P
Server [ Uz [ Uy Us L
Mapped files | wy, g | wa, g | wy,wa | wo,wg | wy,wy | wgp,wg
size and communicate during the Shuffie phase. In the Shuffle TABLE 1l
phase, each worker receives intermediate data that it needs CODED TRANSMISSIONS IN ALL GROUPS OF EXAMPLE 4
in order to perform its reduction operations. These encoded Group | Server Transmission
packets are decoded using locally computed intermediate data. o plrz 2)[1] & ple,1)[2]
Finally, the servers reduce their assigned functions and return [ s plea)[1] & plez)2
all results to the master node. gﬂ PEW.:% 'I’ @'P:::b'l .3% :
1 Pl z) (1] & pliaq )1
Ga Us | plus2)[2] @ plig)]
B. Problem Formulation Us | plran)[2] @ p(r,4)[2
We now discuss the problem formulation more formally, G 52 Pvs,3) é S p(vaa) :
based closely on [9]. In the single-job scenario, the goal is to 3 U3 FE:‘E"Sg o5 gp Eui'l::: 2]
process one distributed MapReduce job, Let ¥V denote the data U; i(v:::l & i{::‘;} 1
set. 'I“h:re are IV 'u1|:lbut files that oorresp:ond to equal-sized Iand e Uy I?El*ﬁ: 2] @ pl :,:2:2} 1]
disjoint parts of V. There are J arbitrary output functions Us plra 2)[2] ® plvs 3)[2]

that need to be computed across these IV files. There are a
total of K servers Uy, ..., Ug. The files will be denoted by
wiy,...,wy and the output functions by &;.7 = 1,....0.
Each function ¢; depends on all the files wy,... wy. We
assume that the j-th function can be computed by a Map
phase followed by a Reduce phase, ie. ¢j{wq,... wy) =
hi(gja(wn),....g5n(wn)). Here, gn = (g1n,---,90.n)
maps the file w,y, into ) intermediate values vind=1,..., )
each of which is assumed to be of size B bits. The function h 5
maps the intermediate values v, on all files into a “reduced™
value k(g i(ua), ..., gy.w(wwn)).

Example 3: Su]:npcse that we consider the problem of com-
puting ¢} = 4 Tunctions in a data set consisting of N = 4 files
on a cluster with K = 4 servers. The files are wu, ..., uy and
the functions are ¢, ..., ¢4, €8, (W, ..., wy) would be
the evaluation of ¢; on the entire data set. Let us assume
that the i-th server is assigned file w; for all values of 4
In the Map phase, server i computes g; on its assigned file
wy for i = 1,...,4. In the Reduce phase, we can see that,
e.g., dy(wy,...,wy) can be computed as ¢ (ur, ..., wy) =
hilgralwy), .o g1 w(ww])

As noted in Section I, there are several MapReduce jobs
where the Shuffle phase is rather time-intensive. Thus, when
operating on a tradeott between communication and compu-
tation, i.e., one could choose to increase the computation load
of the system by processing the same file at » > 1 servers.
This would in turn reduce the number of intermediate values
it needs in the Reduce phase. For the remainder of the paper,
we refer to r as the computation load.

Definition 3: The communication load L = [0,1] of a
certain single-job scheme is defined as the ratio of the total
number of bils transmitted in the data shuffling phase to QN B.

In Example 3, for the baseline approach, at the end of the
Map phase, each server meeds three values from the other
servers. Thus, the total number of bils ransmitted would be
4x3x B = 128, Thus, the communication load of the system
will be L = 12B/168 = 3/4.

Example 4 that follows examines a single job and demon-
strates that increasing r can translate into lower communica-
tion loads compared to the baseline method.

Example 4: Consider a system with i = 6 servers, a com-
putation load of r = 3 (i.e., each Map task will be assigned to
3 distinct servers) and () = 6 functions to be computed. Each
of these tunctions depends on the entire data set and will be
assigned to one server for the Reduce phase. In our approach
we would subdivide the original job into IV = 4 files that will
be assigned to the servers as demonstrated in Table 1. At the
end of the Map step, each server would have computed the
(2 functions on its assigned Map files. Suppose that the i-th
server is responsible for reducing the :-th function. This would
imply, for example, that server U7y needs the first function’s
evaluation on files wy and wy.

The key idea of our approach is for each server o transmit
a packet that is simultaneously useful to multiple servers.
For example, let us consider the group of servers (7 =
10, Us, Ug) that were assigned files {wy,ws}, {un, ws ] and
{w, w |, respectively. At the end of the Map phase, e.g.,
server [y wants vy 5, server Uy wants vy o and server U wants
vg,1. We assume that v; , can be encapsulated into a packet
with size B bits, denoted by p(v;,). Furthermore, assume
that this packet can be subdivided into two parts p(v;,)[1]
and pli;n)[2] (with size B/2 bits).

MNow consider Table 11. Note that server [7y contains files wy
and ws and can therefore compute all ( functions associated
with them. Thus, it can transmit p{v32)[1] & plve1)[2] as
specified in row 1 of the top-right block in Table Il. Note
that this transmission is simultaneously useful to both servers
Uy and Us. In particular, server Us already knows p(rs 1)[2]
and can therefore decode p 113.2)[1] which it wants. Likewise,
server Uy already knows p(i42)[1] and can decode p(vg 1) [2]
that it wanis. In a similar manner, it can be verified that
cach of the transmissions in Table 11 benefits two servers of
the corresponding group. The process of picking the servers
to consider together can be made systematic: in addition to
server group (77 thal we just considered, we can pick three
others: Gy = {U, Uy, Us), Gg = {Us, Us,Us} and Gy =
105, Uy, Ug ) which will result in all the servers obtaining their
desired values.
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The total number of bits transmitted in this case is therefore
4% 3= B/2=68, where B is the size of each intermediate
value 14 ; in number of bits; thus, the communication load is
J,:’H = (0.25. In contrast, uncoded transmission from the dif-
ferent servers would have required a total of 2 <6 = B =128
bits to be transmitted, corresponding to a communication load
of 0.5 which is twice of the proposed approach. We emphasize
that if ¥ = 1 an uncoded scheme will also assign multiple
copies of each Map task to different servers; all of the servers
need to return the values. This assumption is taken into account
in our communication load analysis based on Definition 3 as
it facilitates a fair comparison across different methods and is
implemented in all of the algorithms (cf. [23] and [27]).

We note here that the authors of [9] promise a communi-
cation load of Leogea(r) = 1(1 — &) = 0.17. In general,
the possible values of r for that scheme are {1....,K}.
However, crucially this result assumes that N = (7 ), where
71 is a positive integer. It is evident that N grows very rapidly
for their scheme. In Section IV-E, we demonstrate that in
real-life experiments this idealized analysis is problematic.

We acknowledge that some MapReduce algorithms may be
impacted by data skewness [28], a situation when certain Map
or Reduce tasks may take significantly longer to process than
others. However, TeraSort as well as distributed matrix-vector
multiplication {considered in Section ¥-G) do not suffer from
this issue [29]. For these problems our assumption of homoge-
neous mappers and reducers is a reasonable one. This justifies
the fact that both prior and proposed methods split the data
sel into equal-sized subfiles each mapped o an intermediate
value of a fixed number of bits. Also, our algorithms deliber-
ately assign roughly equal number of Reduce operations to
all workers. We emphasize that the focus of our work is
not solving all issues with respect to Shuffle phase traffic
reduction in MapReduce systems but to reveal the potential
of coding-theoretic methods in this area.

. From Resolvable Designs to Protocol Specification

We assume that ¢ is a multiple of K. In Algorithm 2,
we present the protocol which can be understood as follows.
We choose an integer g such that ¢ divides K, i.e., K = k=g
Next, we form a (&, & — 1) SPC code and the corresponding
resolvable design using the procedure in Section II1-A. The
point set X' = [g"!] and the block set A will be such that
| 4] = kq. The blocks of 4 will be indexed as B, ;.1 =
l,....kand =0,1,...,9 — L

We associate the point set A" with the files, i.e., N = |A| =
g"~! and the block set .4 with the servers. For the sake of
convenience we will also interchangeably work with servers
indexed as U/y,..., Uy with the implicit understanding that
each Uy, i < [K] corresponds to a block from 4. The Map task
assignment follows the natural incidence berween the points
and the blocks, ie., server By is responsible for executing
the Map tasks on the set of files Map|B; ;| = {w. | £ = By}
Thus, at the end of the Map phase, server B; ; has computed
the ¢ intermediate values on the files in Map|B; ;|.

Recall that we assume that K divides (). To make load
balancing fair we assign £}/K functions to each of the K
servers per job for the Reduce phase. This assumes that all
() functions are computed on every file during the Map phase
and sent to the appropriate server. However, if ) is a multiple

Algorithm 2 Proposed Single-Job Protocol

Input: File W, @ functions, number of servers
K =k = q. K divides ).

1 Use a (k, k — 1) SPC code to generate a design (A, A4).

2 Split W into g* ! disjoint files, wy, ...

3 Assign files to servers such that server B; ; is assigned
file wy if £ € By ;.

4 Partition [Q] into K equal parts to obtain the sets ¢
fori=1,...,kand §=0,...,q9 — 1. Execute the Map
phase on each of the servers.

5 Choose all possible sets { By ;,. Bo ;... .., By y, } where
de € 40,...,q— 1}, such that Nf_, By ;, = [ and store
them in a collection (.

6 for + € [Q/K] do

7 | for each group G = { B j,, B2y, ...  Brj.} € G do

8 Determine Djy = VP i) g e By, 10T

£=1,...,k used in Algorithm 1 and execute this
algorithm to exchange this data among the servers
in .

9 | end

1 end

11 Execute Reduce phase on each of the servers.

s Wak—1.

of K, then each transmitter can transmit a coded packet in
which each term is the concatenation of /K intermediaie
values, one for each function of the receiver. An alternative
approach would be to have the servers communicate /K
times, one for each intermediate value needed by a server (this
idea is used in Algorithm 2). We let %<5 — [(J] represent the
set of functions assigned for reduction to server B; ;. The
sets .1 form a partition of [(2]. For ease of notation, we let
.3 [¢] represent the £-th function in the set $52; £  [Q/K].

Following the Map phase, in the Shuffle phase, each server
B, ; needs intermediate values from other servers so that
it has enough information to reduce the functions in #%.,
In this step we transmit coded packets that are simultane-
ously useful to multiple servers. Towards this end we form
a collection of server groups by choosing one block from
each parallel class according to the rule in Step 5 of the
protocol, Le., we choose servers By ;,, Bo 5., ..., By, such
that rj_, By, = 0. For a given server group G (of size k)
we utilize Algorithm 1.

0. Proof af Correctness and Communication Load Analysis

We now prove that the proposed protocol allows each server
B; ; to recover enough information at the end of the Shuffle
phase. As the protocol is symmetric with respect to blocks,
we equivalently show that server B, ;, is satisfied. Note that
|B1,j;| = ¢* 2 For the purposes of our arguments below,
we assume that () = K. The case when () is an integer
multiple of K is guite similar. Tn this case, with some abuse
of notation, since #1.51 is a singleton set, we use %1
to actually represent the function index itself. It is therefore
clear that B ; needs the intermediate values v e, , for
n € [¢" 71\ By,

Now consider the construction of the server groups.
Let G be a server group where B, ;, is chosen from 7,
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TABLE 1l
MEASUREMENTS FOR SORTING 1 2GB DATA ON 16 SERVER NODES WITHOUT CODING
Map Fack Shuffic Unpnck Reduce Toital Time Ruaite
{sec.) (5o} (o) {see.) (L] [sec.) {Mhbps.)
I | 355 | oW AL 1243 T3 TE |
TABLE I¥
MAPREDUCE TIME FOR SORTING 12GB DATA ON 16 SERVER NODES INCLUDING THE MEMORY ALLOCATION COST
Todal Time
CodeGen | Map | | shume | UPPRK | pogue, {sec) Sperdnp Rate .
(s} (s} g {sec.) (see.) wilout wefont {Mlbps.) ;
(sec.) (sec.) wildlA MA wihdA MA
Uncoded: - 571 11.75 110564 446 12.88 114044 1126.58 100.83 16
Prior: v = 3 582 17.94 224,80 455,08 623 14,54 729,38 456,76 1.56% 2.2Tx 5470 560
Frior: v = G 26.78 29.99 100015 297.28 B 16 16.47 137883 490.28 083 2.30= G1.04 4368
Frior: v+ = & 3841 51.03 1128.18 - - - - - - - - 12870
Proposed: m = 4 064 2591 993 07,15 691 17.29 36783 35201 310 3.19x 8847 fid
Proposed: v = 8§ 0.61 6246 26.22 127.43 B33 17.85 24295 20458 460 G.5lx G268 128
ie, G = {Bij,B2,.... By j }. The following lemma TABLE ¥

(proved in [26]), shows that the intersection of any & — 1
blocks from & — 1 distinct parallel classes is always of size 1.

Lemma 3: Consider a proposed resolvable design (X, .A)
constructed with parameters & and ¢ and parallel classes
ph . ,..pk. If we piﬂk k — 1 blocks Bihh'” . ,B;'* 1dk_1
(where i; = [k], I[; € {0,....q — 1}) from distinct parallel
classes Py, ..., Py _,. then | ﬁ’?;: By g |=1

Furthermore, note that the intersection of all the blocks
in & is empty (cf Step 5 of Algorithm 2). There is one-
to-one correspondence between this setup and Lemma 2.
The group of servers on which we will apply the lemma
is precisely . Also, observe that server By ;, misses the
unique file Mix¢ By j, that all other servers in G share (cf.
Lemma 3) and By j, will be reducing the function ¢ (note
that we have dropped the index < from the intermediate value
corresponding to Dy from Algorithm 2 due to our assumption
that ¢ = K). Hence, the correspondence of intermediate
values to chunks of Lemma 2 is Dy = VBt e B

Sz B 5

We conclude the proof by observing that a given I'::Iock,
e.g., By, participates in ¢*=%(q — 1) = ¢*=! — "2 server
groups each of which allow it to obtain distinct intermediate
values. This can be seen as follows. Suppose for instance,
that Nye By j, = ﬂ*?ﬁkal_fi_ where jm 7 j, for at least one
value of m = [k] Y, {£}. In this case, we note that the equality
above implies that Mg By 5, (MkzeBry; 7 0. This is a
contradiction, because By, ;.. M By e as they are two
blocks belonging to the same parallel class.

Therefore, since By j, is missing exactly I L
intermediate values, it follows that at the end of the Shuf-
fle phase it is satisfied. By symmetry, all servers are
satisfied.

MNext, we present the analysis of the communication load of
our algorithm. In the uncoded case, each server needs QN/K
intermediate values iy ,'s to execute its Reduce phase. Note
that each server already has +V/K = Q/K of them. Thus,
the communication load is given by

_ K(QN/K —rQN/K)B _ |t
QNB T

On the other hand, for our scheme, the number of bits
transmitted in the Shuffle phase is given by

Q@
K

single
uncoded

K

k
k—1 _ R I
¢ (g—1) Br—

TERASORT MEMORY ALLOCATION COST PERCENTAGE

Memaory allocation time (%) |
Uneoded: 1.2
Prior: r = 3 ne
Pricr: r =5 644
Prior: r = § -
Proposed: r = 4 4.1
Proposed: r = 8 15.8

Thus, the communication load is given by
¢Me-1)-Bg- R _ 1 ¢k
QNB E—1 K

where the second equality above is obtained by using the fact
that N = ¢! and K = kq.

Next, note that for our proposed scheme the computation
load is k. i.e.. r = k. Thus, we reduce the overall communica-
tion load by a factor of ﬁ with respect to an uncoded system.
In contrast, the approach in [9], reduces the communication
load by a factor of +. However, this comes at the expense of
a large NV as discussed previously.

single _
Lp[::p:m{:(i -

E. TeraSort Experimental Results and Discussion

We implemented our technique on Amazon EC2 and per-
formed comparisons with the method of [14] using their posted
software at [27]. Table 11T corresponds to a uncoded TeraSort
with + = 1. Tt shows that the Shuffle phase which takes
909.54 seconds, dominates the overall execution time by far.
A detailed description of the setup appears in the Appendix.

Table IV contains the results of TeraSort using our approach
and comparisons with the approach in [14]. Nearly 130 = 108
KV pairs should be sorted. The time required for each phase
has been reported. For the total time taken, we have reported
the numbers including and excluding the memory allocation
time-cost. This is because the results in [14] are generated
using the code in [27] which explicitly ignores the mem-
ory allocation time (¢ff communication with the first author
of [14]). However, we have observed that for data sets at this
scale, dynamic memory allocation on the heap (using the C++
new operator) has a non-negligible impact on the total time.
Thus, in our implementation (available at [23]), we measure
the memory allocation time as well and we report its fraction
on Table V. We emphasize however, that the resulis in Table I'V
indicate that our approach is consistently superior whether or
not one takes into account the memory allocation time.
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To understand the effect of choosing different values of N
{cf. Table TV}, we applied our algorithm with different values
of (k,g) = (r,¢) pairs. We observe from Table IV that if we
account for the memory allocation cost, our scheme achieves
up to 4.69x speedup compared to the uncoded TeraSort
whereas it we ignore this cost our schemes demonstrates an
improvement of up to 5.51 . Moreover, the gain over the prior
coded TeraSort scheme, if we compare the best time reported
by each scheme, can go up to 4.69/1.56 = 3.01x (when
including memory allocation time) or 5.51,/2.30 = 2.4x
{when excluding memory allocation lime). We note here that
the Shuffle phase results corresponding to r = 8 for prior work
could not be obtained as their program crashed. The following
inferences can be drawn from Tahle IV.

« The algorithm starts with the CodeGen phase during
which all workers generate the resolvable design based
on our choice of the parameters g and k. Based on the
design, all groups of workers that will be communicating
in the Shuffle phase are determined. Next, the data set
is split into N files by the master and the appropriate
files are transmitted to each worker. In our experiments
this phase is quite efficient since the number of groups
we need to generale and consequently the number of
shuffling sub-groups we need to split the group containing
all the servers into, is much smaller than that of the prior
scheme. For example, let us look at the CodeGen time
for v = 3 of the prior scheme which is #; = 5.82.
The corresponding number of groups is ¢ = (.,) =
(') = 1820. For our scheme, that time is £, = 0.64 and
the number of multicast groups is go = ¢" g — 1) =
4% « 3 = 192. Now if we try to interpolate our code
generalion cost from ¢, based on our analysis, we would
get:

fz _ g2 £ 192

= —— w KE2 = (.6] = tg.
a 1820 2

+ The Map time mainly depends on the computation load r.
Since v is the number of times the whole data set is
replicated and processed across the cluster we expect the
Map cost of both coded schemes to be approximately r
times higher than that of the uncoded implementation.
Indeed, if we look at our scheme for r = 4 we see that
281 = 4.54 is a good approximation to 7.

« The encoding time of the coded schemes (which is
the time it takes so that all servers form the encoded
packets that they will be transmitting afterwards) is
not directly comparable to the packing of the uncoded
approach which stores each intermediate value serially
in a continuous memory array to ensure that a single
TCP connection is initiated for each intermediate value.
Further examination of the internals of C++ dynamic
memory allocation (which we used) is beyond the scope
of our analysis but one point we emphasize is that we
have a significant benefit over the prior scheme during
encoding. For r = 8, we obtain a speedup of 122816 ~
43.03. This is explained by the fact that in the previous
scheme each server participates into much more groups
and thus it needs to store more encoded data into its
memory.

« The Shuffle phase is where we can see the advaniage

of our implementation. For example, when v = 8, our
predicted load will be 1/14, while the load of the uncoded
r = 1 scheme will be 15/16. Thus, with the same
transmission rate we expect our Shuffle phase to be
13.125 times faster. However, our obtained transmission
rate is approximately 62.68 Mbps. Thus, the overall
gain is expected to be around 8.16 times. In the actual
measurements our gain is Lhont ~ 8.68 which is
quite close to the prediction. On the other hand, let us
consider the prior scheme when v = 5. In this case the
load analysis predicts a gain of 6.82 assuming that the
transmission rates are the same and a gain of 4.13 when
accounting for the different rates. However, the actoal
gain is 128 = 372, Some of these discrepancies can
be explained by the fact that the cost of mullicasting a
message from a server o nreceivers is nol necessarily
i times cheaper than unicasting that message separately
to each of the n receivers. In particular, in Open MPI
there are seven modes of broadcasting a common message
to multiple receivers. These include basic linear, chain
and binary free among others. For instance, in a typical
binary tree the sender is the root of the tree and the
receivers are the descendants of it. The transmission
starts from the root and propagates downward. The depth
of the tree is logarithmic in the number of nodes so
it can achieve a logarithmic speed-up as compared to
unicast. Since the details of these implementations fall
beyond the scope of our research we have chosen to
use the automatic module which selects the transmission
algorithm on-the-fly depending on the communicator and
message sizes. However, our load analysis corresponds
to a basic linear broadcast (the sender sends a commaon
message o all receivers one at a time without parallel
communication). Hence, our definition of communication
load, defined as the total number of bils transmitted
divided by the time, provides a theoretical worst-case of
the load one could achieve; it also s¢is a common metric
which helps us compare with uncoded approaches and
other coded schemes in equal terms. Indeed, for small
communicators of size k like in our experiments the
MPT quite likely resorts to the basic linear broadcast and
the transmitter sends the common packel sequentially to
all receivers [30]. If MPI resorts to a parallel broadcast
algorithm such that of a binary tree it won't generally
perform all transmissions of a tree level in parallel.
However, it will prioritize them such that one child of
each transmitter is serviced first while the other is waiting
and it will maximize the bandwidth of the connections
of the transmitter-receiver pairs which are serviced first.
The overhead of setting the connections is much lesser
in our protocol due to the reduced number of groups.
Specifically, the [atency (oumber of transmissions) of
our method is k transmissions per group for a total of
q*'(g — 1)k transmissions. Moreover, the lower layers
of network protocols introduce additional headers into
packets likely to affect more the prior scheme due to
smaller payloads.

The major issue of the prior TeraSort scheme in [14] is the
large value of IV that it needs. This translates into a large num-
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Fig. 1. MPI_Comm_Split execulion time.

ber { {,.f]]} of server groups in the shuffling phase. This num-
ber can be prohibitive for High Performance Computing (HPC)
communication protocols like the Message Passing Interface
(MPI). This is because all MPI communication is associated
with a communicator that describes the communication con-
text and an associated group of processes. But, the cost of
splitting the initial communicator is non-negligible [31]. In the
case of coded TeraSort of [14] the overall communicator needs
to be split into {rflj intra-communicators each facilitating the
communication within a group.

We demonstrate the impact of this issue by explicitly
measuring the time needed to split the initial communicator
of K servers into (%) intra-communicators, each of size x
for different values of K and x. Let us refer to Fig. 1. We
see that MP1_Comm_Split incurs an exponential cost that can
easily dominate the overall MapReduce execution. This clearly
indicates that even though the communication load may reduce
with increasing » in the scheme of [14], the overall execution
time may be adversely affected (see [31] for more details).

Another point to consider is that the MPI library might
support a limited number of communicators. Some indicative
examples are those of Open MPI which supports up to
2% — 1 communicators, MPT over InfiniBand, Omni-Path,
EthernetiWARFP and RoCE (MVAPICH) which allows for
up to 2000 communicators and High-Performance Portable
MPI (MPICH) that limits this number to 16000, Thus, if we
have (K = 50, r = 10) the number of required groups will be

ﬁ] which would exceed these limits, In our method, we could
choose (g, k) = (5,10) or (g, k) = (2,25) both of which are
below Open MPI communicator limits, requiring 7812500 and
16777216 groups, respectively.

Our experiments indicate that the time consumed in memory
allocation can be non-negligible and this is a major issue.
We emphasize though that our gains over prior methods hold
even if we do not take the memory allocation time into
account.

Another interesting aspect of our experiments is that the
observed transmission rate appears (o change based on the
value of r. In our experiments we capped the (ransmission
rate at 100 Mbps. However, the observed rate can be as low
as G1.04 Mbps. As our experiments run on Amarzon EC2,
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we do not have a clear explanation on the underlying reasons.
Mevertheless, we point out the rates for our proposed r = 8
and the prior scheme r = 5 are quite close.

V. MuLTi-JoB CASE FOR FUNCTIONS
AMENABLE TO AGGREGATION

In this section we discuss how resolvable designs can
help with processing multiple jobs on a cluster where the
underlying functions are amenable to aggregation. Our goal is
to process J distributed computing jobs (denoted 77, ..., 75
in parallel on a cluster with K servers. The data set of each job
is partitioned into N disjoint and equal-sized files. The files
of the j-th job are denoted by n'"!,n=1,...,N. A total of
) output functions, denoted r,{:f;.ﬂ,q =1,...,0, need to be
computed for each job. Note that these () functions may be
different across different jobs. We examine a special class of
functions that possess the aggregation property.

Definition 4: In database systems, an aggregale function ¢
is one that is both associative and commutative.

For example, in jobs with “linear” aggregation the evalua-
tion of each output function can be decomposed as the sum of

N intermediate values, one for each file, e, forg=1,. .. @),
; T ) 5] i
:p{qf:'{lm_, LN = i e e e o g 1
where v — ¢ (n'7)) and each such value is assumed to
be of size B bits. In what follows we use al[a:é‘l’{, - UET’L} to
denote the aggregation of m intermediate values I.-’é'jill coy vf;’;\.,

of the same function c_:':.[;:” and job 7; into a single compressed
value, We assume that it is also of size B bits.

As before, a master machine places the files on the servers
according to certain rules. Note that each file is placed on at
least one server before initiating the algorithm.

Definition 5: The storage fraction u = [1/K, 1] of a distrib-
uted computation scheme is the fraction of the data set across
all jobs that each server locally caches.

Once again, we assume that () is divisible by K. As we
have already discussed, our scheme is easily adapted to that
case, we choose to keep the discussion simple and focus on
the (} = K case, ie., each server is reducing one function.

The tramework starts with the Map phase during which the
servers (in parallel) map every file n'?) that they contain to the
values | v.}'_?ﬂ, e ?vg_Jn}_ Following this, the servers multicast
the computed intermediate values amongst one another via a

shared link in the Shuffle phase. In the final Reduce phase,
() ()

server Uy computes (or reduces) c_ﬂaf }{ukll,, oty ) for j =
1,...,.J as it has all the relevant intermediate values required
for performing this operation.

Definition 6; The communication load L of a scheme exe-
cuting J jobs is the total amount of data (in bits) transmitted
by the servers during the Shuffle phase normalized by JOQB.

Our proposed algorithm will be abbreviated as CAMR
(Coded Aggregated MapReduce). Our main idea is to again
use resolvable designs. However, the interpretation of the
design, i.e., the correspondence of the points and blocks with
the MapReduce setup is significantly ditferent.

A. Job Assignment and File Placement

Our cluster consists of K servers and we choose appropriate
integers q, & so that K = kg, The number of files N needs to
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be divisible by k; we discuss its choice shortly. Next, we form
a [k, k—1) SPC code and the resolvable design, as described
in Section IlI-A. The jobs to be executed are associated with
the point set X' = [¢* '] so that J = ¢*'. The block set .4
is associated with the servers, i.e, each server corresponds to
ablock By ;,+=1,....k and =0,1,...,9 — L

Job 7; is processed by (or “owned” by) the server indexed
by By if 7 € By;. Let us denote the owners of 7; by
XY {Uy, ..., Uk }. For each job, the data set is split into k
batches and eax:h batch is made up of ~ files, for any positive
integer v > 1 (recall that &|/N); even though there are no
other constraints on -y, it gives us a finer control over the
subpacketization level that we want depending on the data set
size. The file placement policy is illustrated in Algorithm 3.

Algorithm 3 File Placement

Input: J jobs, owner sets {X7), j=1,...,
in SPC code, balch size +.
1 Set N = k.
2 for each job J; do
3 | Split the data set of J; into N disjoint files
{1 .. NU} and partition them into
f: batches of - files each.
4 | Let XU ={15 ,...,[];}. Label each batch with a
distinet index of an nwncr s0 that
the batches are B = {B/),..., B/},
for each owner Uy = XU do

| Store all batches in ¥ except B[;E] in server L.
end
end

J}. k used

L B |

Each server is the owner of ¢* 2 jobs {block size). For each
such job it participates in k£ — 1 batches of size ~, as explained
in Algorithm 3. Hence, our required storage fraction is

P k-1 k-1
B= Tk K

B. Map Phase

During this phase, each server maps all the files of each job
it has partially stored, for all output functions. The resulting
intermediate values have the form um = ¥ }(nU}} q <[],
n € [N], j € J].

At the end of the Map phase, for each job 7, each mapper
combines all those values vq[.{"% that are indexed with the same
g and j {in other words, associated with the same function and
job) and belong to the same baltch of files; we have already
referred to this operation as aggregation,

C. Shuffle Phase

The CAMER scheme carries out the data shuffling phase in
three stages. The first two stages use Algorithm 1 of Lemma 2
introduced for the single-job case.

We will be focusing on a server Uy, associated with a
block, say By . and we will argue that L7 is able to recover
all missing aggrepate values at the end of the Shuftle phase.
Based on Algorithm 3, U stores batches Bf;]J for all values of

(7,z) s.t.j € By, and = # k'; those are the bathes [/, stores
for all the jobs it owns. Bul [/ misses one batch for each
of these jobs which is E[‘?] for all values of j s.t. j € By gl
in addition, Uy does not store an¥ baiches of the remaining
jobs, i.e., it misses the batches B tor all values of (7, z) s.t.
J ﬁf Bﬂf.y~

1) Stage 1: In this stage, only owners of each job commu-
nicate among themselves, Let us fix a job 7, that Ly owns
and consider the servers in X U\ {Up | of cardinality & — 1
(cf. Algorithm 3). During the Map phase, each server in that
subset has computed an aggregate needed by the remainin,
owner 7 which is (note from Algorithm 3 that batch BH]
is not available in U7)

' 1)

apy = al{y,: ne B,

(%]

Let us keep the job J; fixed. Then, if we repeat the above
procedure for all owners U, € XY we can identify the
aggregales D":L';f Each of these values is needed by exactly
one owner Up.

There is an immediate correspondence between this setup
and Lemma 2 which is G = XY and Dy = a{;';] for j =
1,...,J. Hence, Algorithm 1 can be utilized here so that each
owner of 7;, after receiving k£ — 1 such values (one from every
other owner of that particular job), can decode all of its missing
aggregates for job [7;. We can repeat this process for every
value of j, i.e.. for every job. In total, J groups of servers (the
owner set of each job), each of size & will be communicating
among themselves in this stage.

Al the end of stage 1, worker Il (block By ) should have
recovered all needed intermediate values of batches of the form
BE’JI for all values of j st j € By

2) Stage 2: In this stage, we form communication groups
of both owners and non-owners of a job, so that the latter can
recover appropriate data to reduce their functions.

Towards this end, we form collections of server groups
by choosing one block from each parallel class based
on a simple rule. We choose a group of servers G =
{Bl_.j] . BQ___-;.I, Caay Bk___]'i_} such that r—|§=1.B£_J!. = . Without
loss of generality, assume that Uy ¢ &, If we remove
Ug from &, the servers in the corresponding subset P =
G {Ugr} of cardinality |P| = k — 1 jointly own a job, say
;. that the remaining server Uy does not {¢f. Lemma 3).
In addition, based on the aforementioned file placemm policy
(cf. Algorithm 3), they share the batch of files E[jl for that

common job and somc [, = X9, Note that [J; does not
contain the batch B[:i

The following simple observation is important.

Observation I By construction, L is precisely the remain-
ing owner of .7; and it should lie in the parallel class that none
of the other owners belong to. This is precisely the same class
in which Uy lies.

During the Map phase, each server in P has computed an
aggregate needed by Uy which is

(7}
ne By h).

As in stage 1, Lemma 2 fits in this description and
Algorithm 1 defines the communication scheme; the shuffling

ﬁfi’}l = a[{:f}_f] : i4)
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Fig, 2. Proposed placement scheme for K = 6 servers and NV = 6 files per compating job for J = 4 jobs. The dotted lines show the partition of the servers

into parallel classes.

group is & and each server Uy € & needs its missing chunk
Dy = H[j} for the unique batch that all servers in P share.

Server [y participates in ¢*~%(g — 1) such groups G
satisfying the aforementioned rule. For each such &, U does
not own a job (and a corresponding batch) that the servers in
G U} own, The missing batch is exactly J*j for some |
such that I7 lies in the same parallel class as 7. Al the end
of stage 2, Uy is able to decode ¢°~2(g — 1) aggregates of
the form in eq. (4) one for each job it does not own.

3} Stage 3; Each server is still missing values for jobs that it
is not owner of from stage 2. Now, servers communicate within
parallel classes. We emphasize the following observation.

Observation 2; All values that server [V still needs can
be aggrepated and transmitted by a single owner-server in the
same parallel class that L'y belongs to. This server is unique
and transmits one aggregate value of its jobs to every other
server in the same parallel class.

The proof of the above observation follows from stage 2
and by the resolvability property of our design. Let us fix a
shuffling group in stage 2, say G, a subset P = G {Up}
and focus on the excluded server Ug:. The servers in P jointly
own a unique job 7; that U7 misses. The remaining owner of
oy is some [fy that lies in the same parallel class as [l Note
that stage 2 has already allowed us to recover the aggregate
on the unique batch of J; that the servers in P share; this
batch is not contained in U, However, based on Algorithm 3,
[7; contains all the other batches associated with 75 and can
hence compute the aggregate function on them. This is exactly
whalt happens in stage 3 for each server.

More formally, we have the following argument. Recall that
the i-th class is P; = {B,;,7 =0,...,9 — 1} and fix a job
J; that a server Uy, = T; owns and Uy € P; does not. Then
IJ; transmits

U

:‘l;:ugc = cr(
LIeXUN I}

to U € P;; obviously, Ug ¢ XU, We will do this process
for every job that U/ owns and [y does not. Finally, we will
take every pair (U, Uy) of servers in that parallel class P
and repeat the procedure for all parallel classes.

By the end of this last stage 3, [/ has received all missing
values that it needs for the Reduce phase. Since the above
analysis holds for any value of &', we have shown that our
communication scheme serves its purpose and all workers have
the necessary data to reduce their functions.

(K1)
{Vm

I mE E[ﬁ}}) (5)

D. Reduce Phase

Using thc values it has computed and rcccwed [
reduces ¢’ (19),... N} = a(u], v}, ..., u%) for all
k=1,....Kand 7=1,...,J.

An instam:e of the above procedure is illustrated in the
following example.

' I i Ly ” I
L g 3 40 :- 3O 40 5W g0 Lm0 50 6
_____ RO SOOI SO | NSO
m (M Hoem P
el o) =@ iyl -4 el -4
(
“{"53”‘54} =*: “(”ﬁ 3!“’5.4) —*:'”[ 3.1 ¥ 3,2} .§

Stage 1 coded multicasts among owners of .

Fxample 5; Suppose that our task consists of J = 4 jobs.
For the j-th job, denoted 75, we need to count (2 = 6 words
given by the set A9 =[x} y!'} in a book consisting
of N = 6 chapters using a cluster of K — 6 servers. oy s
associated with the j-th book and its files with the chapters
1) ... 69, Function daf Y k=1,...,0Q (assigned to server
[7x) counts the word x ' of A in thr.: book indexed by j.

We subdivide the original data set of each job into N =6
files. The files of the j-th job are partitioned into three batches,
namely {19,200} {3} 440} and {5}, 67)}, Exactly four
such batches are stored on each server (cf Fig. 2). The owners
of the jobs are specified as follows.

XU} - {Uls US*. Uﬁhxfz} = {U-l!'U"l’Uﬂ}‘-
XB = {Uz,Uaﬂ Uﬁ}f and X% = ‘:_U21 Ud-US_]I" (6)
For example, the files of job 7y, {10V, 21 . 61}, are

stored exclusively on U7y, Us and Us. Specifically, the three

batches of the first job are
(1) 1 (1)

By = {1,210}, B =

{3(1]?4“] , Bi:tlll} — {5{1}1 ﬁﬂ}}__

Then, batch B[f.:] is stored on servers U7y and Us, BY on

[5]
Uy and Us and, finally, B} on Us and Us. Each server locally
stores o = % of all the data sets.

We will clarify the three stages of our proposed Shuffle

phase by means of the following example.

+ Stage 1: The owners of each job communicale among
themselves during this stage. Let us consider the group
of servers JSL] 75, Us} which are the owners of [,
storing {14/, g{li 3[1J 410 {3t 4t 501 6l11} and
(10 200 51 61}, resper:lwcl_v Based on this allo-
cation policy, server [ needs ¢;".>1] ) evaluations of the
batch {51, 6411 ie., u}l} and v for 7y or simply the
aggregale tr{a:,uj.y%lé] = um -H,r]f 5 which is the sum of
the counts of word x\" in files 5(1) and 61, Similarly,
75 needs a[y-ilf?vglz}] and Uy needs a{yila}, vélj] MNexl,
we refer to Fig. 3. The compressed intermediate values
are represented by circle/green, star/blue and triangle/red.
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TABLE V1
STAGE 2 TRANSMISSIONS WITHIN GrROUP {071, Us, Ug}
Server Transmits Becovers
U || alvps vl @alvs; w501 | alvg vig
Us | etigvi Dl @a(l e iDL | aGd] v
Us | otdf vl @aley, viiDia) | aled ml)

We further suppose that each value can be split into two
packets (represented by the left and right parts of each
shape). If U} transmits left circle XOR left star, then [y
is able to cancel out the star part (since Us also “maps”
131,411y and recover the circle part. Similarly, Us can
recover the star part from the same transmission. Each of
these transmissions is useful to two servers. We can repeat
this process for the remaining jobs. The total number of
bits transmitied in this case is therefore 6 5. The incurred
communication load is Lyage 1 = _%—BB =4

« Stage 2: The groups communicating in this stage consist
of both owners and non-owners. The servers recover
values of jobs for which they haven’t stored any file.
Let 7 = {71, Us, Ug}. Observe from eq. (6) that there
is no job common to all three but each subset of two of
them shares a batch of a job they commonly own. The
remaining server needs an aggregate value of those files,
The values that each of U7, Uy and U needs as well as the
corresponding transmissions are illustrated in Table VI.
We denote the i-th packet of an aggregate value by (-] [i].
It turns out that there are 4 possible such groups we can
pick. The total load is Lyage — 3282 — 28 — L

« Stage 3: Servers recover the remaining intermediate
values by receiving unicast transmissions during this last
stage. If we consider the same group as in stage 2,
ie, G = (U, Uy, Uz} then we can see that [7; still
misses values vﬁ} y}az} ,yﬁ% and yﬁ of J; or simply

their aggregate a{yi?f,yﬁ,vﬁ::: yﬁ ). Observe that all

required files locally reside in the cache of U which can
transmit the value to 7. For the complete set of unicast
transmissions see Table VII. The load turns out to be

L _ GxdxB _ 1
stige 3 — TJoR 0 3¢

The communication load of all stages is then Loane = 1.
Similarly, the load achieved by the CCDC scheme of [1] for
the same storage fraction 4 = 1/3 is Loope = 1. Nonetheless,
their approach would require a minimum of J = (§) = 20
distributed jobs to be executed, i.e., we can achieve the same
efficiency on a smaller scale.

E. Aggregated Multi-lob Communication Load Analysis

In the first stage, for each of the .J jobs, each of the k owners
computes one aggregate and is associated with a unique
corresponding packet of it, of size -2-. The communication

E—1"
load is

Tk k
QB K(k-1)

The second stage involves the communication within all
possible ¢ (g — 1) groups that satisfy the desired property.
In each case, & servers transmit one value each, of length =5

Ls.mgﬂ 1=

TABLE V11
NEEDED AGGREGATE VALUES AT THE END OF STAGE 2
Server Meeds
o | T e T T
Uz || alvgivggvgsvyi) and aluyy vig, i vsy)
Us || aluggvg vas vig) and alvyg,vids el vig)
Ly -:r{yi?:{, If"‘!: }4:' . y&}g, Vilﬁ?j and u:{:-'f:;j, ufj . :-—Elsé, uiaﬁ;l}
Us ofvi ) Vi g v g: o) and alvi vy g, v vig)
Us || elvgi vs va:vis) and alvg, vi2, s vig
and
mezzq“*w—lnq%-ziq—lw_
JB Kik-1)

Each server does not own .JJ — g2 jobs. For each of them,
during stage 3, one transmission (of length B) from a server
in the same parallel class is sufficient. Thus,

. K(J—q¢~2)B ¢-1
stage 3 = JQB = a -
The total load is

klg—1)+1

3
L‘CAMR=ZLamgﬂ|= Q”ﬂ_l}

i=1

(1)

F Comparison With Other Schemes
The technique proposed in [1] demonstrates a load of

oo Q- p)(pK +1)

cone = .
1.4

for a suitable storage fraction such that K = {1,..., K —1}.

Cwur storage requirement is equal o p = % For the same

storage requirement, eq. (8) yields

- ENELK 1) kg—1)+1
a LK gk 1)

We conclude that the loads induced by the two schemes
are identical. However, their approach fundamentally relies
on the requirement that the minimum number of jobs to be
executed is Joone, min = {;: ‘f_H}. Comparing this value with
our requirement for Jeame = ¢! and using a known bound
for the binomial coefficients, we deduce that [32]

o K (kg @ (kq L] .
JCE'DC. min — (;.;K + 1) - (.ﬁ) = (T) = JCAMR. miins

where the bound of (a) is maximum when g = 2 and becomes
stricter for g > 2; however, for a fixed value of F, as ¢
increases the bound of (b) loosens and it turns out that our
requirement for the number of jobs becomes exponentially
smaller than that of CCDC (recall that Jeamp min = g" ')

(&)

LDCDC

. Distributed Matrix-Vector Multiplication

Performing large matrix-vector multiplications is a key
building block of several machine learning algorithms. For
instance, during the forward propagation in deep neural net-
works [33] the output of the layer is the result of multiplying
the matrix of the input data set with the weight vector.
In what follows, we formulate the matrix-vector product as
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TABLE VI
TIME FOR COMPUTING 512 PRODUCTS Ab, m = 234000, n = 100 oM K = 20 SERVERS
CodeGen Map Encode Shuffle Decode Reduce Total Titme Speedup Rate
(sec.) (sec.) {sec.) (sec.) (sec.) (sec.) (sec.) {Mlbps.)
Unecoded: - 1.01 - 408.11 - 017 409 20 169,10
Proposed: k& = 10 29.63 877 0.41 52.74 343 004 95.02 4.31= O0.85

a MapReduce operation and compare our algorithm against
the baseline method for the case when we have to simulta-
neously execute multiple such multiplications. Existing work
on the multi-job case does not include practical experiments.
Thus, we cannot compare with other schemes that examine
the computation-communication trade-off on multiple jobs.
Nevertheless, we believe that our experiments provide a good
demonstration of potential benefits of these operations on a
large scale.

Suppose that we want to compute Ab for a matrix A
(size m » Jn) with a vector b (size Jn = 1) in a distributed
manner on K servers. We assume K |rm. We initially split
it column-wise into .J blocks A'™, ..., AY). Each block is
associated with one job. Specifically, the job indexed with j
involves multiplying A (size m x n) with a vector b'7! (size
1o 1)

We will begin by explaining our model for the baseline
approach. First, we further partition each AU into gk block
matrices as follows

(7}
AR

o)
‘A‘]k‘

Al 9)

) 5),
AL Ak

The corresponding decomposition of bY) into blocks is as
follows

bl — ["-’Hm )

T
Dl B e8] - 10y

n—n/k+1"

Each server stores and computes the product of exactly one
block of AU %j = [J] (there are K = kq of them) with
the appropriate subvector of b7} during the Map phase.
Our Reduce policy is that each server will compute a subsel
of the rows of ¢ = AWBY! after processing at its
end. Specifically, server I7; is assigned to compute the rows
{(i—1)m/K, ... im/K} of ¢ (note that we assume that
K|m). All K reducers receive & — 1 products (size m/K = 1)
for each job by servers mapping the same block-row of AU/
and sum these results row-wise before transmitting them to the
master. The master machine concatenates them and constructs
the final result,

Let e[, n, k) be the cost of multiplying two matrices of
dimension m = n and n = k. Then, the computation cost for
each server is Muncoged = J - elm/q,n/k, 1).

The communication load is LT" . = % =k-1
where, based on our prior notation, B = 3T and T is the
number of bits used to represent a single entry of a matrix,
i.e., each transmission is the eguivalent of a “compressed”
intermediate value (a column in this case).

We now formulate our CAMR scheme for this problem.
In this case, we split A7) into & block-columns as

— (il (i)
AO = (a7, ., Al].

For each job (point), we pick k owners (blocks) based on a
SPC-(k, k — 1) code that store a part of A7) and bl [the
splitting of b{7) is the same as in Eqg. (10)]. Specifically, each
owner stores a different set of k— 1 block-columns (baiches) of
A7) and the corresponding parts of b')_ It compules all these
products during the Map phase. The non-owners do not store
any part of these matrices. The Reduce policy also remains
the same as in the baseline method.

The computation cost per server is Meamr = " 2(k—1)-
clm,n/k, 1). The communication load has been computed in
Section V-E, eq. (7).

In theory, CAMR requires a computation overhead of

J‘rirc,ﬁ,mn _ Q‘k_z(f»‘ - 1]| : c{m.n;’k. 1] o
Mineoded J-e[mfg,nik 1)
The theoretical gain we would expect in the Shuffle phase is
Lo _ _(k—1)%q
Lecamp klg—1)+1°

kE-1.

H. Matrix-Vector Multiplication Experimental Results and
Dhiscussion

We serially ran multiple matrix-vector products on Amazon
EC2 clusters. The instance type used is xle.2xlarge for the
master machine and r4.2xlarge for the workers. Our code is
available online [24]. The master machine decomposes each
input matrix and the corresponding vector and sends them to
the appropriate worker nodes,

Table VIIT summarizes the results for our use case. The
impact of the Shuffle phase on the total execution time seems
to be greater than in the case of TeraSort and our scheme
reduces the overall time by up to 4.31 . In theory, our scheme
requires a computation overhead of 9. Indeed, based on
Table VTIT the Map phase for our scheme is % =z 8.68 times
more expensive than that of the uncoded. The gain we would
expect in the Shuffle phase for the values of the parameters
is approximately 14.73. In practice, we have achieved a gain
of Tl ~ 7.74. Nevertheless, if we consider equal transmis-
sion rates in both cases that speedup would be 3£5:17.74 =
14.41 which is very close to the prediction.

V1. ConcLusIonNs aND FUTURE WORK

In this work we presented a distributed computing protocol
by leveraging the properties of resolvable designs. These
designs can be generated from single parity-check codes. Our
techniques apply for the execution of a single job with arbi-
trary functions and a multi-job scenario where the functions
can be aggregated. Prior work has identified and proposed
techniques for exploring these tradeoffs for both problems.
However, in both cases those techniques require certain prob-
lem dimensions to be very large in the problem parameters.
Specifically, in the single-job case, they require a large number
of files, whereas in the multi-job case they require a large

Authonzed licensed use limited fo: lowa State University. Downloaded on September (2 2020 at 22:24-38 UTC from IEEE Xplore. Restricions applhy.



KONSTANTINIDIS AND RAMAMOODETHY: RESOLVABLE DESIGNS FOR SPEEDING UP DISTRIBUTED COMPUTING

number of jobs. In practical scenarios, this is a serious issue
and adversely affects the job execution times. Our proposed
approaches work with significantly smaller number of subfiles
{single-job) and jobs {multi-job), respectively. We theoretically
analyze the performance of our schemes and also present
exhaustive experiments on Amazon EC2 platforms that con-
firm the performance advantages of our methods.

We point out that our number of subfiles is still exponential
in the problem parameters but with a much smaller exponent.
We emphasize that it remains well within the limits of popular
message-passing protocols such as Open MPI for many prac-
tical scenarios. Reducing this number further while continuing
to have a low communication load is an interesting direction
for future work. Our multi-job scheme (and prior work [1])
does not handle precedence constraints or a redundant Reduce
function assignment Lo the workers that naturally arise in some
MapReduce problems. Adapting our work 1o take these into
account would be another avenue for future work.

APPENDIX
Proaf of Lemma 2

We shall refer to Algorithm 1 in order to show that each
server in & can recover its missing data chunk. For a group of
servers G = {Uy, ..., Uz} and the packets of the chunk Dp;,
ie., C={Dyl],..., Dy lk — 1]} consider a complete graph
with the following set of vertices {G" {U/;},C}; the matching
HU! deseribed in Algorithm 1 will be defined based upon
this graph, i.e., each vertex in {G " {I/;}} will be maiched
to a distinct vertex in C. Fix a pair of servers {U,, U} © G
and the packet Ay, transmitted from U, to U, By canceling
out all terms of Ay, that U7 locally stores, it can recover the
remaining term, i.e., H*¥(l/,,) (note that U, participates in
exactly k — 1 such matchings, i.e., in HU,¥j # k). Keeping
[V fixed, we repeat this process for every possible server
Uy e G0 {Uk}. Since each of them is associated with a
distinct packet of T it follows that by receiving the k — 1
packets

{&m : Um = l‘3'\. {Uk}' :'-.
Uy can recover the following packets
{Dygli] : Uz € G\ {Uk}}.

Subsequently, U7y concatenates them in order to recover D).
Since this proof holds independent of the choice of U,
we have shown that all servers can recover their missing
chunks. To conclude the argument, we note that since each
chunk is assumed to be of size B bits and it was split into
E—1 packets of size B/(k—1), the total amount of transmitted
data is BE/{k—1).

DETAILS OF TERASORT IMPLEMENTATION

We have implemented TeraSort on Amazon EC2 clusters
using our proposed approach. The implementation was per-
formed in C++ using the Open MPI library for communica-
tion among the processes of the master and the servers. Our
code builds on [27] and comparisons with the uncoded case
and the approach in [14] have been made.

TeraSort is a popular benchmark that measures the time to
sort a big amount of randomly generated data on a cluster.

The data set in TeraSort is such that each line of the file is a
key-value (KV) pair typically consisting of an integer key and
an arbitrary string value. The sorting is done based on the key.
It is not too hard to see that this KV formulation can be put
in on-to-one correspondence with the formulation in terms of
Map and Reduce tunctions (cf: Section IV-B).

A. Amazon EC2 Cluster Configuration

We used Amarzon EC2 instances among which one served as
a master and the rest of them as servers (servers). The instance
type used is r3.large for the master machine and m3.large
for the servers. After placing the files to the carefully chosen
servers we also impose a limit of 100Mbps for both incoming
and outgoing traffic of all servers; this serves the purpose of
alleviating bursty TCP transmissions.

B. Data Set Description

For the TeraSort experiments we generated 12GB of total
data. Each row of the file holds a 10-byte key and its
corresponding 90-byte value. The TeraGen utility of Hadoop
distribution was used to randomly generate this data. The KV
pairs are lexicographically sorted with respect to the ASCII
code of their keys where the lefimost and the rightmost byte
are the most and the least significant byte, respectively.

C. Platform and Code Implementation Description

Our source code is available at [23]. The master machine
is responsible for placing the files in the local drives of
the servers and deciding the reducer responsibilities for each
server. It also initiates the MPI program to all servers. From
this point onwards, the master will only take time measure-
ments from the servers.

The overall sequence of steps in processing a given
job are: CodeGen — Map — Pack/Encode — Shuffle —
Unpack/Decode — Reduce. We explain these steps below.

« Cade peneration: All nodes (including the master) start
by generating the resolvable design based on our choice
of the parameters g and k. Next, the data set is split
into N files by the master and the appropriate files are
transmitted to each server based on Step 3 of Algorithm 2.
The master also broadceasts the Keys that describe the
Reduce assignment.

« Map. For each file w, thal server B;; has in its block,
it will compute {4 4., ..., .} during the Map phase.

o Pack/Encode. For the uncoded implementation, we use
the Pack operation. The Pack stage stores all intermediate
values that will be sent to the same reducer in a contin-
uous memory array so that a single TCP connection for
each senderfreceiver pair suffices (which may transmit
multiple KV pairs) when MPI_Send is called.® In the
coded implementation encoded packets are created from
the mapped data as described in Algorithms 1, 2,

» Shuffle. For each shuffling group 7 a server belongs to,
it will broadcast an appropriate encoded packet to the rest
of the group.

FIn the shuffling phase of the uncoded case, each server unicusts data to
a single receiver at any particular time, which is exactly the purpose of
MPI_gSand call.
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Unpack/Decode. In the uncoded implementation we use
the Unpack operation which simply deserializes the
received data to a list of KV pairs. In the coded imple-
mentation the intermediate values are decoded locally on
each server from the received data.

Reduce. The Reduce function is applied on the
unpacked/decoded data.
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