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Abstract
The classic graphical Cheeger inequalities state that if
M is an n×n symmetric doubly stochastic matrix, then

1− λ2(M)

2
≤ φ(M) ≤

√
2 · (1− λ2(M))

where φ(M) = minS⊆[n],|S|≤n/2

(
1
|S|
∑
i∈S,j 6∈SMi,j

)
is

the edge expansion ofM , and λ2(M) is the second largest
eigenvalue of M . We study the relationship between
φ(A) and the spectral gap 1− Reλ2(A) for any doubly
stochastic matrix A (not necessarily symmetric), where
λ2(A) is a nontrivial eigenvalue of A with maximum
real part. Fiedler showed that the upper bound on φ(A)
is unaffected, i.e., φ(A) ≤

√
2 · (1− Reλ2(A)). With

regards to the lower bound on φ(A), there are known
constructions with

φ(A) ∈ Θ

(
1− Reλ2(A)

log n

)
,

indicating that at least a mild dependence on n is
necessary to lower bound φ(A).

In our first result, we provide an exponentially better
construction of n× n doubly stochastic matrices An, for
which

φ(An) ≤ 1− Reλ2(An)√
n

.

In fact, all nontrivial eigenvalues of our matrices are 0,
even though the matrices are highly nonexpanding. We
further show that this bound is in the correct range (up
to the exponent of n), by showing that for any doubly
stochastic matrix A,

φ(A) ≥ 1− Reλ2(A)

35 · n
.

As a consequence, unlike the symmetric case, there is a
(necessary) loss of a factor of nα for 1

2 ≤ α ≤ 1 in lower
bounding φ by the spectral gap in the nonsymmetric
setting.

Our second result extends these bounds to general
matrices R with nonnegative entries, to obtain a two-
sided gapped refinement of the Perron-Frobenius theorem.

∗California Institute of Technology
†California Institute of Technology

Recall from the Perron-Frobenius theorem that for such
R, there is a nonnegative eigenvalue r such that all
eigenvalues of R lie within the closed disk of radius
r about 0. Further, if R is irreducible, which means
φ(R) > 0 (for suitably defined φ), then r is positive
and all other eigenvalues lie within the open disk, so
(with eigenvalues sorted by real part), Reλ2(R) < r. An
extension of Fiedler’s result provides an upper bound
and our result provides the corresponding lower bound
on φ(R) in terms of r−Reλ2(R), obtaining a two-sided
quantitative version of the Perron-Frobenius theorem.

1 Introduction.
1.1 Motivation and main result. We study the re-
lationship between edge expansion and second eigenvalue
of nonnegative matrices. We restrict to doubly stochastic
matrices for exposition in the introduction, since the def-
initions are simpler and it captures most of the key ideas.
The extension to general nonnegative matrices is treated
in Section 1.2. Let A be an n × n doubly stochastic
matrix, equivalently interpreted as a bi-regular weighted
digraph. The edge expansion of A, denoted as φ(A), is
defined as

φ(A) = min
S⊆[n],|S|≤n/2

∑
i∈S,j 6∈S

Ai,j

|S|
.

The fact that A is doubly stochastic implies that φ(A) =
φ(AT ). φ is a measure of how much the graph would
have to be modified for it to lose strong-connectedness;
it also lower bounds how frequently, in steady state, the
associated Markov chain switches between the blocks of
any bi-partition; thus, it fundamentally expresses the
extent to which the graph is connected.

The connection between edge expansion and the
second eigenvalue has been of central importance in
the case of symmetric doubly stochastic matrices M
(equivalently, reversible Markov chains with uniform
stationary distribution). For such M , let the eigenvalues
be 1 = λ1 ≥ λ2 ≥ . . . ≥ λn ≥ −1. The Cheeger
inequalities give two-sided bounds between the edge
expansion φ(M) and the spectral gap 1− λ2(M).

Theorem 1.1. [Dod84, AM85, Alo86] (Cheeger’s in-
equalities for symmetric doubly stochastic matrices) Let
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M be a symmetric doubly stochastic matrix, then

1− λ2(M)

2
≤ φ(M) ≤

√
2 · (1− λ2(M)).

This is closely related to earlier versions for Rieman-
nian manifolds [Che70, Bus82]. Notably, the inequalities
in Theorem 1.1 do not depend on n. Further, they are
tight up to constants – the upper bound on φ is achieved
by the cycle and the lower bound by the hypercube.

The key question we address in this work is whether
or to what extent the Cheeger inequalities survive for
nonsymmetric doubly stochastic matrices (the question
was already asked, for e.g., in [MT06]). Let A be a doubly
stochastic matrix, not necessarily symmetric. The
eigenvalues of A lie in the unit disk around the origin in
the complex plane, with an eigenvalue 1 called the trivial
or stochastic eigenvalue corresponding to the eigenvector
1 (the all 1’s vector), and all other eigenvalues considered
nontrivial. Let the eigenvalues of A be ordered so that
1 = λ1 ≥ Reλ2 ≥ . . . ≥ Reλn ≥ −1. The spectral
gap will be defined as 1 − Reλ2(A). There are three
motivations for this definition: first, the continuous-time
Markov chain based on A is exp(t · (A − I)), and this
spectral gap specifies the largest norm of any of the
latter’s nontrivial eigenvalues; second, Reλ2(A) = 1 if
and only if φ = 0 (i.e., if the matrix is reducible); finally,
this gap lower bounds the distance (in the complex plane)
between the trivial and any nontrivial eigenvalue.

It was noted by Fiedler [Fie95] that the upper bound
on φ in Cheeger’s inequality (Theorem 1.1) carries over
easily to general doubly stochastic matrices, because for
M = (A+AT )/2, φ(A) = φ(M) and Reλ2(A) ≤ λ2(M).
(In fact, Fiedler made a slightly different conclusion with
these observations, but they immediately give the upper
bound on φ, see the extended version of the paper [MS19]
for an extension and proof.

Lemma 1.1. (Fiedler [Fie95]) Let A be any n×n doubly
stochastic matrix, then

φ(A) ≤
√

2 · (1− Reλ2(A)).

It remained to investigate the other direction, i.e.,
the lower bound on φ(A) in terms of the spectral gap
1− Reλ2(A). Towards this end, we define the function

Definition 1.1. Γ(n) = min
A

φ(A)

1− Reλ2(A)
where A is

an n× n doubly stochastic matrix.

For symmetric doubly stochastic matrices this mini-
mum is no less than 1/2. However, for doubly stochastic
matrices A that are not necessarily symmetric, there
are known (but perhaps not widely known) examples
demonstrating that it is impossible to have a function Γ

entirely independent of n. These examples, discussed in
Section 3.1, show that

(1.1) Γ(n) ≤ 1

log n
.

One reason that φ and 1 − Reλ2 are important
is their connection to mixing time τ – the number
of steps after which a random walk starting at any
vertex converges to the uniform distribution over the
vertices. For the case of symmetric doubly stochastic
matrices – or in general reversible Markov chains – it
is simple to show that τ ∈ O

(
logn
1−λ2

)
, and by Cheeger’s

inequality (Theorem 1.1), it further gives τ ∈ O
(

logn
φ2

)
where n is the number of vertices. For the case of
general doubly stochastic matrices – or in general not-
necessarily-reversible Markov chains – it still holds that
τ ∈ O

(
logn
φ2

)
by a result of Mihail ([Mih89], and see

[Fil91]). Depending on the situation, either Reλ2 or φ
may be easier to estimate. Most often, one is interested
in concisely-specified chains on exponential-size sets, i.e.,
the number of vertices is n but the complexity parameter
is log n. In this case, either φ or λ2 (for the reversible
case) can be used to estimate τ . However, if the matrix
or chain is given explicitly, then one reason the Cheeger
inequalites are useful is because it is simpler to estimate
τ using λ2 which is computable in P while computing φ
is NP-hard [GJS74].

From the point of view of applications to Markov
Chain Monte Carlo (MCMC) algorithms, a log n loss in
the relation between φ and 1−Reλ2 as implied by (1.1),
is not a large factor. For MCMC algorithms, since “n” is
the size of the state space being sampled or counted and
the underlying complexity parameter is log n, if it were
true that Γ(n) ≥ log−c n for some constant c, then the
loss in mixing time estimates would be polynomial in the
complexity parameter, and thus, the quantity 1− Reλ2
could still be used to obtain a reasonable estimate of the
mixing time even in the case of nonsymmetric doubly
stochastic matrices.

However, the truth is much different. Our main
result is that Γ(n) does not scale as log−c n, but is
exponentially smaller.

Theorem 1.2. (Bounds on Γ)

1

35 · n
≤ Γ(n) ≤ 1√

n
.

We give an explicit construction of doubly stochastic
matrices An for the upper bound on Γ. This construction
of highly nonexpanding doubly stochastic matrices
has, in addition, the surprising property that every
nontrivial eigenvalue is 0. Thus, for non-reversible
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Markov chains, the connection between φ and Reλ2
breaks down substantially, in that the upper bound
on mixing time obtained by lower bounding φ by the
spectral gap 1− Reλ2 can be be exponentially weaker
(when the complexity parameter is log n) than the actual
mixing time, whereas for reversible chains there is at
worst a quadratic loss.

This theorem has a very natural extension to general
nonnegative matrices, as we next describe.

1.2 General nonnegative matrices and a two-
sided quantitative refinement of the Perron-
Frobenius theorem We extend our results to general
nonnegative matrices R. By the Perron-Frobenius theo-
rem (see Theorem 2.1), since R is nonnegative, it has a
nonnegative eigenvalue r (called the PF eigenvalue) that
is also largest in magnitude amongst all eigenvalues, and
the corresponding left and right “PF eigenvectors” u and
v have all nonnegative entries. Further, if R is irreducible,
i.e., the underlying weighted digraph on edges with posi-
tive weight is strongly connected (for every (i, j) there is
a k such that Rk(i, j) > 0), then r is a simple eigenvalue,
and u and v have all positive entries. We henceforth as-
sume that nonzero nonnegativeR has been scaled (to 1

rR)
so that r = 1. Thus we can again write the eigenvalues
of R as 1 = λ1(R) ≥ Reλ2(R) ≥ · · · ≥ Reλn(R) ≥ −1.
Scaling changes the spectrum but not the edge expan-
sion (which we define next), so this canonical scaling is
necessary before the two quantities can be compared.

Defining the edge expansion of R is slightly delicate
so it will be done in Definition 2.3, with explanation in
Lemma 2.1; here we excerpt here only the final definition.
Let R be a nonnegative matrix with PF eigenvalue 1.
If every pair of left and right PF eigenvectors (u, v) for
R have some i such that u(i) = 0 or v(i) = 0, then
define φ(R) = 0. Otherwise, fix any left and right PF
eigenvectors u and v, normalized so that 〈u, v〉 = 1, and
define the edge expansion of R as

φ(R) = min
S⊆[n],

∑
i∈S ui·vi≤ 1

2

∑
i∈S,j∈S

Ri,j · ui · vj∑
i∈S

ui · vi
.

Given this definition of φ(R), we show the following.

Theorem 1.3. Let R be a nonnegative matrix with PF
eigenvalue 1, and let u and v be any corresponding left
and right eigenvectors. Let κ = mini ui · vi, and if κ > 0,
let u and v be normalized so that 〈u, v〉 = 1. Then

1

30
· 1− Reλ2(R)

n+ ln
(
1
κ

) ≤ φ(R) ≤
√

2 · (1− Reλ2(R)).

The upper bound in Theorem 1.2 is a straightforward
extension of Fiedler’s bound (Lemma 1.1) based on

the above mentioned definition of φ (Definition 2.3).
Also note that the lower bound in Theorem 1.2 can be
obtained by setting κ = 1

n in Theorem 1.3.
Since Theorem 1.3 gives a two-sided relation between

the second eigenvalue of nonnegative matrices and
their edge expansion, it gives a two-sided quantitative
refinement of the Perron-Frobenius theorem. Although
the Perron-Frobenius theorem implies that the nontrivial
eigenvalues of an irreducible nonnegative matrix R with
PF eigenvalue 1 have real part strictly less than 1, it does
not give any concrete separation. Further, it also does
not provide a qualitative (or quantitative) implication
in the other direction – whether a nonnegative matrix R
with all nontrivial eigenvalues having real part strictly
less than 1 implies that R is irreducible. Theorem 1.3
comes to remedy this by giving a lower and upper bound
on the spectral gap in terms of φ, a quantitative measure
of the irreducibility of R. We are not aware of any
previous result of this form.

1.3 Mixing time The third quantity we study is the
mixing time of general nonnegative matrices, and we
relate it to their singular values, edge expansion, and
spectral gap. This helps us obtain new bounds on mixing
time, and also obtain elementary proofs for known results.
These results are treated in detail in the second part of
the paper, in Section 5.

1.4 Perspectives

1.4.1 Matrix perturbations Let A be a nonnega-
tive matrix with PF eigenvalue 1 and corresponding
positive left and right eigenvector w with 〈w,w〉 = 1,
and let κ = mini w

2
i . Given such A, it is certainly eas-

ier to calculate its spectrum than its edge expansion.
However, in other cases, e.g., if the matrix is implicit
in a nicely structured randomized algorithm (as in the
canonical paths method [SJ89]), the edge expansion may
actually be easier to bound. From this point of view, a
lower bound on φ(A) in terms of the spectral gap is an
eigenvalue perturbation bound. Specifically, one might
write a nonnegative matrix A with small edge expansion
φ(A) as a perturbation of another nonnegative matrix
A0, i.e.,

A = A0 + δ ·B

where A0 has disconnected components S, Sc (for S
achieving φ(A)), and B is a matrix such that ‖B‖2 ≤ 1,
Bw = 0 and BTw = 0. Due to the conditions on A and
B, A0 has PF eigenvalue 1 with left and right eigenvector
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w, and since BDw1 = 0, writing 1S = 1− 1S , we have,∣∣∣∣ 〈1S , DwBDw1S〉
〈1S , DwDw1S〉

∣∣∣∣ =

∣∣∣∣ 〈1S , DwBDw1S〉
〈1S , DwDw1S〉

∣∣∣∣
=

∣∣∣∣ 〈Dw1S , BDw1S〉
〈Dw1S , Dw1S〉

∣∣∣∣
≤ ‖B‖2
≤ 1,

and it follows then that φ(R0)− δ ≤ φ(R) ≤ φ(R0) + δ,
and since in this case φ(R0) = 0, so φ(A) ≤ δ. Edge
expansion is therefore stable with respect to perturbation
by B. What about the spectral gap?

A0 has (at least) a double eigenvalue at 1, and A
retains a simple eigenvalue at 1, so it is natural to try
to apply eigenvalue stability results, specifically Bauer-
Fike ([BF60], [Bha97] §VIII), to obtain an upper bound
on |1 − λ2(A)| (and therefore also on 1 − Reλ2(A)).
However, Bauer-Fike requires A0 to be diagonalizable,
and the quality of the bound depends upon the condition
number of the diagonalizing change of basis1. There
are extensions of Bauer-Fike which do not require
diagonalizability, but deteriorate exponentially in the
size of the Jordan block, and the bound still depends on
the condition number of the (now Jordan-izing) change
of basis ([Saa11] Corollary 3.2). Since there is no a priori
(i.e., function of n) bound on these condition numbers,
these tools unfortunately do not imply any, even weak,
result analogous to Theorem 1.2.

In summary, the lower bound in Theorem 1.2 should
be viewed as a new eigenvalue perturbation bound:

1− Reλ2(A) ≤ 30 · δ ·
(
n+ ln

(
1

κ

))
.

A novel aspect of this bound, in comparison with the
prior literature on eigenvalue perturbations, is that it
does not depend on the condition number (or even the
diagonalizability) of A or of A0.

1.4.2 Relating eigenvalues of a nonnegative ma-
trix and its additive symmetrization Let A be any
nonnegative matrix with PF eigenvalue 1, and corre-
sponding positive left and right eigenvector w. Our
result helps to give the following bounds between the
second eigenvalue of a nonnegative matrix A and that
of its additive symmetrization 1

2 (A+AT ).

Lemma 1.2. Let A be any nonnegative matrix with PF
eigenvalue 1 and corresponding positive left and right

1The condition number is inf(‖B‖ · ‖B−1‖) over B such that
BAB−1 is diagonal, with ‖ · ‖ being operator norm.

eigenvector w, let κ = mini w
2
i andM = 1

2 (A+AT ).Then

1

1800

(
1− Reλ2(A)

n+ ln
(
1
κ

) )2

≤ 1− λ2 (M) ≤ 1− Reλ2(A).

The bounds immediately follows from Theorem
1.3 and the fact that φ is unchanged by additive
symmetrization. We remark that any improved lower
bound on 1− λ2(M) in terms of 1− Reλ2(A) will help
to improve the lower bound in Theorem 1.3. As a
consequence of Lemma 1.2, any bound based on the
second eigenvalue of symmetric nonnegative matrices
can be applied, with dimension-dependent loss, to
nonnegative matrices that have identical left and right
eigenvector for the PF eigenvalue.

An example application of Lemma 1.2 is the fol-
lowing. For some doubly stochastic A (not necessarily
symmetric), consider the continuous time Markov Chain
associated with it, exp(t · (A− I)). It is well-known (for
instance, [DSC96]) that for any standard basis vector
xi,∥∥∥∥exp(t · (A− I))xi −

1

n
1

∥∥∥∥2
1

≤ n · exp (−2 · (1− λ2 (M)) · t) .

Thus, using Lemma 1.2, we immediately get the bound
in terms of the second eigenvalue of A itself (instead of
its additive symmetrization),∥∥∥∥exp(t · (A− I))xi −

1

n
1

∥∥∥∥2
1

≤ n · exp

− 1

1800

(
1− Reλ2(A)

n+ ln
(
1
κ

) )2

· t

 .

1.4.3 The role of singular values Although in the
symmetric case singular values are simply the absolute
values of the eigenvalues, the two sets can be much less
related in the nonsymmetric case. It is not difficult to
show the following (see the extended version of the paper
[MS19]).

Lemma 1.3. Let A be a nonnegative matrix with PF
eigenvalue 1, and let w be the positive vector such that
Aw = w and ATw = w. Then

1− σ2(A)

2
≤ φ(A),

where σ2(A) is the second largest singular value of A.

Despite appearances, this tells us little about edge
expansion. To see this, consider the directed cycle on n
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vertices, for which every singular value (and in particular
σ2) is 1, so Lemma 1.3 gives a lower bound of 0 for φ,
although φ = 2/n. A meaningful lower bound should be
0 if and only if the graph is disconnected, i.e. it should be
continuous in φ. An even more striking example is that
of de Bruijn graphs (described in Section 3.1), for which
half the singular values are 1, although φ = Θ(1/ log n).
Eigenvalues, on the other hand, are more informative,
since a nonnegative matrix with PF eigenvalue 1 has a
multiple eigenvalue at 1 if and only if, as a weighted
graph, it is disconnected.

Despite these observations, singular values can be
useful to infer information about mixing time, and can
be used to recover all known upper bounds on mixing
time using φ, as discussed in Section 5 and Lemma 5.1.

Outline: We state the preliminary definitions, the-
orems, and notations in Section 2. We give the con-
struction for the upper bound on Γ in Theorem 1.2 in
Section 3, and the lower bound on Γ will follow from
the general lower bound on φ in Theorem 1.3. We give
details regarding the lower bound on φ in Theorem 1.3 in
Section 4. We relate mixing time to singular values, edge
expansion, and the spectral gap in Section 5 respectively.
We defer all proofs to the extended version of the paper
[MS19].

2 Preliminaries
We consider doubly stochastic matrices which are non-
negative matrices with entries in every row and column
summing to 1. We also consider general nonnegative
matrices R, and say that R is strongly connected or ir-
reducible, if there is a path from s to t for every pair
(s, t) of vertices in the underlying digraph on edges with
positive weight, i.e. for every (s, t) there exists k > 0
such that Rk(s, t) > 0. We say R is weakly connected, if
there is a pair of vertices (s, t) such that there is a path
from s to t but no path from t to s in the underlying
digraph (on edges with positive weight). We restate the
Perron-Frobenius theorem for convenience.

Theorem 2.1. (Perron-Frobenius theorem
[Per07, Fro12]) Let R ∈ Rn×n be a nonnegative
matrix. Then the following hold for R.

1. R has some nonnegative eigenvalue r, such that all
other eigenvalues have magnitude at most r, and R
has nonnegative left and right eigenvectors u and v
for r.

2. If R has some positive left and right eigenvectors u
and v for some eigenvalue λ, then λ = r.

3. If R is irreducible, then r is positive and simple
(unique), u and v are positive and unique, and all

other eigenvalues have real part strictly less than r.

We denote the all 1’s vector by 1, and note that
for a doubly stochastic matrix A, 1 is both the left and
right eigenvector with eigenvalue 1. We say that 1 is the
trivial (or stochastic) eigenvalue, and 1 is the trivial (or
stochastic) eigenvector, of A. All other eigenvalues of A
(corresponding to eigenvectors that are not trivial) will
be called nontrivial (or nonstochastic) eigenvalues of A.
Similarly, by Perron-Frobenius (Theorem 2.1, part 1),
a nonnegative matrix R will have a simple nonnegative
eigenvalue r such that all eigenvalues have magnitude at
most r, and it will be called the trivial or PF eigenvalue of
R, and all other eigenvalues of R will be called nontrivial.
The left and right eigenvectors corresponding to r will
be called the trivial or PF left eigenvector and trivial
or PF right eigenvector. This leads us to the following
definition.

Definition 2.1. (Second eigenvalue) If A is a doubly
stochastic matrix, then λ2(A) is the nontrivial eigenvalue
of A with the maximum real part, and λm(A) is the non-
trivial eigenvalue that is largest in magnitude. Similarly,
if R is any general nonnegative matrix with PF eigen-
value 1, then λ2(R) is the nontrivial eigenvalue with the
maximum real part, i.e., 1 = λ1(R) ≥ Reλ2(R) ≥ · · · ≥
Reλn(R) ≥ −1, and λm(R) is the nontrivial eigenvalue
that is largest in magnitude.

We will also consider singular values of nonnega-
tive matrices A with identical positive left and right
eigenvector w for PF eigenvalue 1, and denote them as
1 = σ1(A) ≥ σ2(A) ≥ · · · ≥ σn(A) ≥ 0 (see Lemma
4.4 for proof of σ1(A) = 1). We denote (i, j)’th en-
try of M ∈ Cn×n by M(i, j) or Mi,j depending on the
importance of indices in context, denote the conjugate-
transpose of M as M∗ and the transpose of M as MT .
Any M ∈ Cn×n has a Schur decomposition (see, e.g.,
[Lax07]) M = UTU∗ where T is an upper triangular
matrix whose diagonal entries are the eigenvalues of M ,
and U is a unitary matrix. When we write “vector” we
mean by default a column vector. For a vector v, we
write v(i) or vi to denote its i’th entry. For any two
vectors x, y ∈ Cn, we use the standard inner product
〈x, y〉 =

∑n
i=1 x

∗
i · yi defining the norm ‖x‖2 =

√
〈x, x〉.

We write u ⊥ v to indicate that 〈u, v〉 = 0. Note that
〈x,My〉 = 〈M∗x, y〉. We denote the operator norm
of M by ‖M‖2 = maxu:‖u‖2=1 ‖Mu‖2, and recall that
the operator norm is at most the Frobenius norm, i.e.,
‖M‖2 ≤

√∑
i,j |Mi,j |2. We write Du for the diagonal

matrix whose diagonal contains the vector u. Recall the
Courant-Fischer variational characterization of eigenval-
ues for symmetric real matrices, applied to the second
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eigenvalue:

max
u⊥v1

〈u,Mu〉
〈u, u〉

= λ2(M),

where v1 is the eigenvector for the largest eigenvalue
of M . We will use the symbol J for the all 1’s matrix
divided by n, i.e., J = 1

n1 · 1
T .

We say that any subset S ⊆ [n] is a cut, denote its
complement by S, and denote the characteristic vector
of a cut as 1S , where 1S(i) = 1 if i ∈ S and 0 otherwise.

Definition 2.2. (Edge expansion of doubly stochastic
matrices) For a doubly stochastic matrix A, the edge
expansion of the cut S is defined as

φS(A) :=
〈1S , A1S〉

min{〈1S , A1〉, 〈1S , A1〉}

and the edge expansion of A is defined as

φ(A) = min
S⊆[n]

φS(A)

= min
S⊆[n]

〈1S , A1S〉
min{〈1S , A1〉, 〈1S , A1〉}

= min
S,|S|≤n/2

∑
i∈S,j∈S

Ai,j

|S|
.

We wish to extend these notions to general nonnega-
tive matrices R. Since eigenvalues and singular values of
real matrices remain unchanged whether we consider R
or RT , the same should hold of a meaningful definition
of edge expansion. However, note that Definition 2.2
has this independence only if the matrix is Eulerian,
i.e., R1 = RT1. Thus, to define edge expansion for
general matrices, we transform R using its left and right
eigenvectors u and v for eigenvalue 1 to obtain DuRDv,
which is indeed Eulerian, since

DuRDv1 = DuRv = Duv = DuDv1

= DvDu1 = Dvu = DvR
Tu = DvR

TDu1.

Since DuRDv is Eulerian, we can define the edge
expansion of R similar to that for doubly stochastic
matrices:

Definition 2.3. (Edge expansion of nonnegative ma-
trices) Let R ∈ Rn×n be a nonnegative matrix with PF
eigenvalue 1. If there are no positive (i.e., everywhere
positive) left and right eigenvectors u and v for eigen-
value 1, then define the edge expansion φ(R) = 0. Else,
let u and v be any (see Lemma 2.1 for justification)
positive left and right eigenvectors for eigenvalue 1, nor-
malized so that 〈u, v〉 = 1. The edge expansion of the
cut S is defined as

(2.2) φS(R) :=
〈1S , DuRDv1S〉

min{〈1S , DuRDv1〉, 〈1S , DuRDv1〉}

and the edge expansion of R is defined as

φ(R) = min
S⊆[n]

φS(R)

= min
S⊆[n],

∑
i∈S ui·vi≤ 1

2

〈1S , DuRDv1S〉
〈1S , DuDv1〉

= min
S⊆[n],

∑
i∈S ui·vi≤ 1

2

∑
i∈S,j∈S

Ri,j · ui · vj∑
i∈S

ui · vi
.

Lemma 2.1. Let R ∈ Rn×n be a nonnegative matrix
with PF eigenvalue 1. Then the value of φ(R) according
to Definition 2.3 is independent of the choice of the spe-
cific (left and right) eigenvectors u and v for eigenvalue
1 of R.

Proof. Let G be the underlying unweighted directed
graph for R, where there is an edge (u, v) in G if and
only if Ru,v > 0. We prove the lemma based on the
structure of G. Let G be maximally partitioned into k
weakly connected components.

1. If G has some weakly connected component which
does not have a 1 eigenvalue, then for any pair of
left and right eigenvectors u and v for eigenvalue 1,
there will be at least one entry i such that ui = 0
or vi = 0. For such matrices R, from Definition 2.3,
φ(R) = 0.

2. If all weakly connected components of G have
eigenvalue 1, but there is some weakly connected
component S that is not strongly connected, then
there is no positive pair of eigenvectors u and v for

R, or even for S. Observe that S =

[
A B
0 C

]
with

B 6= 0, else G is not maximally partitioned. For the
sake of contradiction, let x and y be positive left
and right eigenvectors for eigenvalue 1 of S. From
Sy = y and STx = x, we get that Ay1 +By2 = y1
and ATx1 = x1 with x and y partitioned into x1, x2
and y1, y2 based on the sizes of A,B,C. Thus,

〈x1, y1〉 = 〈x1, Ay1+By2〉 = 〈ATx1, y1〉+〈x1, By2〉
= 〈x1, y1〉+ 〈x1, By2〉

implying 〈x1, By2〉 = 0 which is a contradiction
since x1 and y1 are positive and there is some entry
in B which is not 0. Thus, since every pair of
eigenvectors x and y for eigenvalue 1 of S has some
entry i with xi = 0 or yi = 0, every pair of (left and
right) eigenvectors u and v for R (for eigenvalue 1)
has some entry i which is 0, and so by Definition
2.3, φ(R) = 0.
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3. If G consists of one strongly connected component
(i.e., k = 1), then by Perron-Frobenius (Theorem
2.1, part 3), there is a unique (up to scaling) pair of
positive eigenvectors u and and v for eigenvalue 1.

4. The remaining case is that G has k ≥ 2 strongly
connected components each with eigenvalue 1. By
Perron-Frobenius (Theorem 2.1), there is some pair
of positive left and right eigenvectors u and v for
eigenvalue 1 (obtained by concatenating the positive
left and right eigenvectors for each component
individually). Choose the set S to be one of the
components (the one for which the denominator of
equation (2.2) is at most 1

2 ), then the numerator of
equation (2.2) will be 0, and thus φ(R) = 0 even in
this case, corresponding to the existence of a strict
subset of vertices with no expansion.

Thus, Definition 2.3 for φ(R) does not depend on the
specific choice of u and v.

The Perron-Frobenius theorem (Theorem 2.1, part 3)
can now be restated in terms of φ(R) and Reλ2(R) as
follows.

Lemma 2.2. (Perron-Frobenius, part 3 of Theorem 2.1,
restated) Let R be a nonnegative matrix with PF eigen-
value 1. If φ(R) > 0, then Reλ2(R) < 1.

Further, we obtain the following converse of Lemma
2.2.

Lemma 2.3. (Converse of Lemma 2.2) Let R be a
nonnegative matrix with PF eigenvalue 1. If Reλ2(R) <
1, and there exists a pair of positive left and right
eigenvectors u and v for eigenvalue 1 of R, then φ(R) >
0.

Proof. We show the contrapositive. Let R be as stated
and let φ(R) = 0. From Definition 2.3, if there are no
positive eigenvectors u and v for eigenvalue 1, the lemma
holds. So assume there are some positive u and v for
eigenvalue 1 of R. Since φ(R) = 0, there is some set S for
which φS(R) = 0, or

∑
i∈S,j∈S Ri,j ·ui ·vj = 0. But since

ui > 0 and vi > 0 for each i, and since R is nonnegative,
it implies that for each i ∈ S, j ∈ S, Ri,j = 0. Further,
since DuRDv is Eulerian, i.e. DuRDv1 = DvR

TDu1, it
implies that

∑
i∈S,j∈S Ri,j · ui · vj = 0, further implying

that Ri,j = 0 for each i ∈ S, j ∈ S. As a consequence,
v can be rewritten as two vectors vS and vS , where
vS(i) = v(i) if i ∈ S and vS(i) = 0 otherwise, and
similarly vS . Similarly, split u into uS and uS . Note that
vS and vS are linearly independent (in fact, orthogonal),
and both are right eigenvectors for eigenvalue 1 (similarly
uS and uS as left eigenvectors). Thus, this implies that
eigenvalue 1 for R has multiplicity at least 2, and thus
λ2(R) = 1, as required.

The upper and lower bounds on φ(R) in Theorem 1.3 are
quantitative versions of Lemmas 2.2 and 2.3 respectively.

We note that Cheeger’s inequalities hold not only for
any symmetric doubly stochastic matrix, but also for any
nonnegative matrix R which satisfies detailed balance.
We say that a nonnegative matrix R with positive left
and right eigenvectors u and v for PF eigenvalue 1
satisfies detailed balance if DuRDv is symmetric, which
generalizes the usual definition of detailed balance (or
reversibility) for stochastic matrices. We first note that if
R satisfies the condition of detailed balance, then R has
all real eigenvalues. To see this, let W = D

1
2
uD
− 1

2
v where

the inverses are well-defined since we assume u and v are
positive (else φ = 0 by definition), and A = WRW−1

where A has same eigenvalues as R. For w = D
1
2
uD

1
2
v 1

which is both the left and right eigenvector of A for
eigenvalue 1, the detailed balance condition translates
to DwADw = DwA

TDw, which implies A = AT , which
further implies that all eigenvalues of A (and R) are real.
We can thus state Cheeger inequalities for nonnegative
matrices satisfying detailed balance.

Theorem 2.2. (Cheeger’s inequalities for nonnegative
matrices satisfying detailed balance) Let R be a nonneg-
ative matrix with PF eigenvalue 1 and positive left and
right eigenvectors u and v (else φ(R) = 0 by definition),
and let R satisfy the condition of detailed balance, i.e.
DuRDv = DvR

TDu. Then

1− λ2(R)

2
≤ φ(R) ≤

√
2 · (1− λ2(R)).

3 Construction of doubly stochastic matrices
with small edge expansion and large spectral
gap

As discussed, it might have been tempting to think
that Γ(n) (see Definition 1.1) should be independent of
the matrix size n, since this holds for the symmetric
case, and also for the upper bound on φ for the
general nonsymmetric doubly stochastic case (Lemma
1.1). However, two known examples showed that a mild
dependence on n cannot be avoided.

3.1 Known Constructions

Klawe-Vazirani construction: The first is a construc-
tion of Klawe [Kla84] – these families of d-regular undi-
rected graphs have edge expansion (log n)−γ for various
0 < γ < 1. However, there is a natural way in which
to direct the edges of these graphs and obtain a (d/2)-
in, (d/2)-out -regular graph, and it was noted by U.
Vazirani [Vaz17] in the 1980s that for this digraph A,
which shares the same edge expansion as Klawe’s, all
eigenvalues (except the stochastic eigenvalue) have norm
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≤ 1/2. Specifically, one construction is as follows: let
n be an odd prime, and create the graph on n vertices
with in-degree and out-degree 2 by connecting every
vertex v ∈ Z/n to two vertices, 1 + v and 2v. Dividing
the adjacency matrix of the graph by 2 gives a doubly
stochastic matrix AKV . It is simple to see (by transform-
ing to the Fourier basis over Z/n) that the characteristic
polynomial of AKV is x(x − 1)((2x)n−1 − 1)/(2x − 1),
so apart from the trivial eigenvalue 1, AKV has n − 2
nontrivial eigenvalues λ such that |λ| = 1

2 and one eigen-
value 0, and thus, Reλ2(AKV ) ≤ 1

2 . Further, upper
bounding the edge expansion φ by the vertex expansion
bound (Theorem 2.1 in [Kla84]), it follows that for some
constant c,

Γ(n) ≤ φ(AKV )

1− Reλ2(AKV )
≤ c ·

(
log logn

log n

)1/5

.

de Bruijn construction: A second example is the
de Bruijn digraph [Bru46]. This is if anything even
more striking: the doubly stochastic matrix (again rep-
resenting random walk along an Eulerian digraph) has
edge expansion Θ(1/ log n) [DT98], yet all the nontriv-
ial eigenvalues are 0. More specifically, define a spe-
cial case of de Bruijn [Bru46] graphs as follows: Let
n = 2k for some integer k, and create the graph of
degree 2 on n vertices by directing edges from each
vertex v = (v1, v2, . . . , vk) ∈ {0, 1}k to two vertices,
(v2, v3, . . . , vk, 0) and (v2, v3, . . . , vk, 1). Dividing the ad-
jacency matrix of the graph by 2 gives a doubly stochastic
matrix AdB . Since this random walk completely forgets
its starting point after k steps, every nontrivial eigen-
value of AdB is 0 (and each of its Jordan blocks is of
dimension at most k). Further, it was shown in [DT98]
that φ(AdB) ∈ Θ(1/k), and thus,

Γ(n) ≤ φ(AdB)

1− Reλ2(AdB)
≤ 1

k
=

1

log n
.

Other literature – Feng-Li construction: We round
out this discussion by recalling that Alon and Boppana
[Alo86, Nil91] showed that for any infinite family of
d-regular undirected graphs, the adjacency matrices,
normalized to be doubly stochastic and with eigenvalues
1 = λ1 ≥ λ2 ≥ . . . ≥ −1, have λ2 ≥ 2

√
d−1
d − o(1). Feng

and Li [Li92] showed that undirectedness is essential to
this bound: they provide a construction of cyclically-
directed r-partite (r ≥ 2) d-regular digraphs (with
n = kr vertices for k > d, gcd(k, d) = 1), whose
normalized adjacency matrices have (apart from r
“trivial” eigenvalues), only eigenvalues of norm ≤ 1/d.
The construction is of an affine-linear nature quite similar
to the preceding two, and to our knowledge does not
give an upper bound on Γ any stronger than those.

3.2 A new construction To achieve the upper
bound in Theorem 1.2, we need a construction that
is exponentially better than known examples. We give
an explicit construction of n×n doubly stochastic matri-
ces An (for every n) that are highly nonexpanding, since
they contain sets with edge expansion less than 1/

√
n,

even though every nontrivial eigenvalue is 0. The con-
struction might seem nonintuitive, but in the extended
version of the paper [MS19], we give some explanation
of how to arrive at it.

Theorem 3.1. Let m =
√
n,

an =
m2 +m− 1

m · (m+ 2)
, bn =

m+ 1

m · (m+ 2)
,

cn =
1

m · (m+ 1)
, dn =

m3 + 2m2 +m+ 1

m · (m+ 1) · (m+ 2)
,

en =
1

m · (m+ 1) · (m+ 2)
, fn =

2m+ 3

m · (m+ 1) · (m+ 2)
,

and define the n× n matrix

An =



an bn 0 0 0 0 0 · · · 0
0 cn dn en en en en · · · en
0 cn en dn en en en · · · en
0 cn en en dn en en · · · en
0 cn en en en dn en · · · en
0 cn en en en en dn · · · en
...

...
...

...
...

...
...

. . .
...

0 cn en en en en en . . . dn
bn fn cn cn cn cn cn · · · cn


.

Then the following hold for An:

1. An is doubly stochastic.

2. Every nontrivial eigenvalue of An is 0.

3. The edge expansion is bounded as

1

6
√
n
≤ φ(An) ≤ 1√

n
.

4. As a consequence of 1,2,3,

φ(An) ≤ 1− Reλ2(An)√
n

and thus
Γ(n) ≤ 1√

n
.

Proof. The proof is given in the extended version of the
paper [MS19].
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This completes the proof of the upper bound in
Theorem 1.2. We remark that for the matrices An
constructed in Theorem 3.1, it holds that

φ(An) ≤ 1− |λi(A)|√
n

for any i 6= 1, giving a stronger guarantee than that
required for Theorem 1.2.

We also remark that it would be unlikely to arrive at
such a construction by algorithmic simulation, since the
eigenvalues of the matrices An are extremely sensitive.
Although λ2(An) = 0, if we shift only O(1/

√
n) of

the mass in the matrix An to create a matrix A′n, by
replacing an with a′n = an + bn, bn with b′n = 0, fn
with f ′n = fn + bn and keeping cn, dn, en the same, then
λ2(A′n) = 1. Thus, since perturbations of O(1/

√
n)

(which is tiny for large n) cause the second eigenvalue
to jump from 0 to 1 (and the spectral gap from 1 to
0), it would not be possible to make tiny changes to
random matrices to arrive at a construction satisfying
the required properties in Theorem 3.1.

4 Lower bound on the edge expansion φ in
terms of the spectral gap

In this section, we prove the lower bound on φ in
Theorem 1.3, and the lower bound on φ in Theorem
1.2 will follow as a special case. The proof is a result of
a sequence of lemmas that we state next. All proofs for
the lemmas in this section can be found in the extended
version of the paper [MS19]. The first lemma states that
φ is sub-multiplicative in the following sense.

Lemma 4.1. Let R ∈ Rn×n be a nonnegative matrix
with left and right eigenvectors u and v for the PF
eigenvalue 1. Then

φ(Rk) ≤ k · φ(R).

For the case of symmetric doubly stochastic matrices
R, Lemma 4.1 follows from a theorem of Blakley and
Roy [BR65]. (It does not fall into the framework of
an extension of that result to the nonsymmetric case
[Pat12]). Lemma 4.1 helps to lower bound φ(R) by
taking powers of R, which is useful since we can take
sufficient powers in order to make the matrix simple
enough that its edge expansion is easily calculated. The
next two lemmas follow by technical calculations.

Lemma 4.2. Let T ∈ Cn×n be an upper triangular
matrix with ‖T‖2 = σ and for every i, |Ti,i| ≤ β. Then

‖T k‖2 ≤ n · σn ·
(
k + n

n

)
· βk−n.

Using Lemma 4.2, we can show the following lemma
for the special case of upper triangular matrices with
operator norm at most 1.

Lemma 4.3. Let T ∈ Cn×n be an upper triangular
matrix with ‖T‖2 ≤ 1 and |Ti,i| ≤ α < 1 for every
i. Then ‖T k‖ ≤ ε for

k ≥
4n+ 2 ln(nε )

1− α
.

Given lemmas 4.1 and 4.3, we can lower bound φ(R)
in terms of 1 − |λm(R)| (where λm is the nontrivial
eigenvalue that is maximum in magnitude). Our aim
is to lower bound φ(R) by φ(Rk), but since the norm
of Rk increases by powering, we cannot use the lemmas
directly, since we do not want a dependence on σ(R) in
the final bound. To handle this, we transform R to A,
such that φ(R) = φ(A), the eigenvalues of R and A are
the same, but σ(A) = ‖A‖2 = 1 irrespective of the norm
of R.

Lemma 4.4. Let R be a nonnegative matrix with pos-
itive (left and right) eigenvectors u and v for the PF
eigenvalue 1, normalized so that 〈u, v〉 = 1. Define
A = D

1
2
uD
− 1

2
v RD

− 1
2

u D
1
2
v . Then the following hold for A:

1. φ(A) = φ(R).

2. For every i, λi(A) = λi(R).

3. ‖A‖2 = 1.

Given Lemma 4.4, we lower bound φ(A) using φ(Ak)
in terms of 1 − |λm(A)|, to obtain the corresponding
bounds for R.

Lemma 4.5. Let R be a nonnegative matrix with positive
(left and right) eigenvectors u and v for the PF eigenvalue
1, normalized so that 〈u, v〉 = 1. Let λm be the nontrivial
eigenvalue of R that is maximum in magnitude and let
κ = mini ui · vi. Then

1

20
· 1− |λm|

n+ ln

(
1

κ

) ≤ φ(R).

Given Lemma 4.5, we use the trick of lazy random
walks to get a bound on 1− Reλ2(R) from a bound on
1− |λm(R)|.

Lemma 4.6. Let R be a nonnegative matrix with positive
(left and right) eigenvectors u and v for the PF eigenvalue
1, normalized so that 〈u, v〉 = 1. Let κ = mini ui · vi.
Then

1

30
· 1− Reλ2(R)

n+ ln
(
1
κ

) ≤ φ(R).
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For any doubly stochastic matrix A,

1− Reλ2(A)

35 · n
≤ φ(A),

and thus
1

35 · n
≤ Γ(n).

This completes the proof of the lower bound on φ in
Theorem 1.3, and the upper bound on φ in Theorem 1.3
is shown in the extended version of the paper [MS19].
Combined with Theorem 3.1, this also completes the
proof of Theorem 1.2.

5 Mixing time
We now study the mixing time of nonnegative matrices,
and relate it to all the quantities we have studied so far.
To motivate the definition of mixing time for general
nonnegative matrices, we first consider the mixing time
of doubly stochastic matrices. The mixing time of
a doubly stochastic matrix A (i.e., of the underlying
Markov chain) is the worst-case number of steps required
for a random walk starting at any vertex to reach a
distribution approximately uniform over the vertices. To
avoid complications of periodic chains, we assume that A
is 1

2 -lazy, meaning that for every i, Ai,i ≥ 1
2 . Given any

doubly stochastic matrix A, it can be easily converted
to the lazy random walk 1

2I + 1
2A. This is still doubly

stochastic and in the conversion both φ(A) and the
spectral gap are halved. The mixing time will be finite
provided only that the chain is connected. Consider the
indicator vector 1{i} for any vertex i. We want to find the
smallest τ such that Aτ1{i} ≈ 1

n1 or Aτ1{i} − 1
n1 ≈ 0,

which can further be written as
(
Aτ − 1

n1 · 1
T
)
1{i} ≈ 0.

Concretely, for any ε, we want to find τ = τε(A) such
that for any i,∥∥∥∥(Aτ − 1

n
1 · 1T

)
1{i}

∥∥∥∥
1

≤ ε.

Given such a value of τ , for any vector x such that
‖x‖1 = 1, we get∥∥∥∥(Aτ − 1

n
1 · 1T

)
x

∥∥∥∥
1

=

∥∥∥∥∥∑
i

(
Aτ − 1

n
1 · 1T

)
xi1{i}

∥∥∥∥∥
1

≤
∑
i

|xi|
∥∥∥∥(Aτ − 1

n
1 · 1T

)
1{i}

∥∥∥∥
1

≤
∑
i

|xi| · ε

= ε.

Thus, the mixing time τε(A) is the number τ for which
‖(Aτ − J) · x‖1 ≤ ε for any x such that ‖x‖1 = 1.

We want to extend this definition to any nonnegative
matrix R with PF eigenvalue 1 and corresponding
positive left and right eigenvectors u and v. Note that
if R is reducible (i.e., φ(R) = 0), then the mixing
time is infinite. Further, if R is periodic, then mixing
time is again ill-defined. Thus, we again assume that
R is irreducible and 1

2 -lazy, i.e. Ri,i ≥ 1
2 for every

i. Let x be any nonnegative vector for the sake of
exposition, although our final definition will not require
nonnegativity and will hold for any x. We want to
find τ such that Rτx about the same as the component
of x along the direction of v. Further, since we are
right-multiplying and want convergence to the right
eigenvector v, we will define the `1-norm using the left
eigenvector u. Thus, for the starting vector x, instead
of requiring ‖x‖1 = 1 as in the doubly stochastic case,
we will require ‖Dux‖1 = 1. Since x is nonnegative,
‖Dux‖1 = 〈u, x〉 = 1. Thus, we want to find τ such that
Rτx ≈ v, or

(
Rτ − v · uT

)
x ≈ 0. Since we measured the

norm of the starting vector x with respect to u, we will
also measure the norm of the final vector

(
Rτ − v · uT

)
x

with respect to u. Thus we arrive at the following
definition.

Definition 5.1. (Mixing time of general nonnegative
matrices R) Let R be a 1

2 -lazy, irreducible nonnegative
matrix with PF eigenvalue 1 with u and v as the
corresponding positive left and right eigenvectors, where
u and v are normalized so that 〈u, v〉 = ‖Duv‖1 = 1.
Then the mixing time τε(R) is the smallest number τ
such that

∥∥Du

(
Rτ − v · uT

)
x
∥∥
1
≤ ε for every vector x

with ‖Dux‖1 = 1.

We remark that similar to the doubly stochastic case,
using the triangle inequality, it is sufficient to find mixing
time of standard basis vectors 1{i}. Let yi =

1{i}
‖Du1{i}‖1

,
then yi is nonnegative, ‖Duyi‖1 = 〈u, yi〉 = 1, then for
any x, such that ‖Dux‖1 = 1, we can write

x =
∑
i

ci1{i} =
∑
i

ci‖Du1{i}‖1yi

with

‖Dux‖1 =

∥∥∥∥∥Du

∑
i

ci1{i}

∥∥∥∥∥
1

=
∑
i

|ci|‖Du1{i}‖1 = 1.
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Thus, if for every i,
∥∥Du

(
Rτ − v · uT

)
yi
∥∥
1
≤ ε, then∥∥Du

(
Rτ − v · uT

)
x
∥∥
1

=

∥∥∥∥∥Du

(
Rτ − v · uT

)∑
i

ci‖Du1{i}‖1yi

∥∥∥∥∥
1

≤
∑
i

ci‖Du1{i}‖1
∥∥Du

(
Rτ − v · uT

)
yi
∥∥
1

≤ ε.

Thus, it is sufficient to find mixing time for every
nonnegative x with ‖Dux‖1 = 〈u, x〉 = 1, and it will
hold for all x.

For the case of reversible nonnegative matrices M
with PF eigenvalue 1, the mixing time is well-understood,
and it is easily shown that

(5.3) τε(M) ≤
ln
(
n
κ·ε
)

1− λ2(M)

(Theorem 1.1)
≤

2 · ln
(
n
κ·ε
)

φ2(M)
.

We will give corresponding bounds for the mixing time of
general nonnegative matrices. All proofs for the lemmas
in this Section can be found in the extended version of
the paper [MS19].

5.1 Mixing time and singular values We first
show a simple lemma relating the mixing time of
nonnegative matrices to the second singular value. This
lemma is powerful enough to recover the bounds obtained
by Fill [Fil91] and Mihail [Mih89] in an elementary
way. Since the largest singular value of any general
nonnegative matrix R with PF eigenvalue 1 could be
much larger than 1, the relation between mixing time and
second singular value makes sense only for nonnegative
matrices with the same left and right eigenvector for
eigenvalue 1, which have largest singular value 1 by
Lemma 4.4.

Lemma 5.1. (Mixing time and second singular value)
Let A be a nonnegative matrix (not necessarily lazy) with
PF eigenvalue 1, such that Aw = w and ATw = w for
some w with 〈w,w〉 = 1, and let κ = mini w

2
i . Then for

every c > 0,

τε(A) ≤
c · ln

( √
n√
κ·ε

)
1− σc2(A)

≤
c · ln

(
n
κ·ε
)

1− σc2(A)
.

For the case of c = 2, Lemma 5.1 was obtained by
Fill [Fil91], but we find our proof simpler.

5.2 Mixing time and edge expansion We now
relate the mixing time of general nonnegative matrices
R to its edge expansion φ(R). The upper bound for row
stochastic matrices R in terms of φ(R) were obtained

by Mihail [Mih89] and simplified by Fill [Fil91] using
Lemma 5.1 for c = 2. Thus, the following lemma is not
new, but we state it for completeness, and also provide a
simple proof in the extended version of the paper [MS19].

Lemma 5.2. (Mixing time and edge expansion) Let
τε(R) be the mixing time of a 1

2 -lazy nonnegative matrix
R with PF eigenvalue 1 and corresponding positive left
and right eigenvectors u and v, and let κ = mini ui · vi.
Then

1
2 − ε
φ(R)

≤ τε(R) ≤
4 · ln

(
n
κ·ε
)

φ2(R)
.

5.3 Mixing time and spectral gap We obtain
bounds for the mixing time of nonnegative matrices in
terms of the spectral gap, using methods similar to the
ones used to obtain the upper bound on φ in Theorem
1.3.

Lemma 5.3. (Mixing time and spectral gap) Let τε(R)
be the mixing time of a 1

2 -lazy nonnegative matrix R with
PF eigenvalue 1 and corresponding positive left and right
eigenvectors u and v, and let κ = mini ui · vi. Then

1
2 − ε√

2 · (1− Reλ2(R))
≤ τε(R) ≤ 20 ·

n+ ln

(
1

κ · ε

)
1− Reλ2(R)

.

We remark that there is only additive and not
multiplicative dependence on ln

(
n
κ·ε
)
. Further, our

construction for the upper bound in Theorem 1.2 also
shows that the upper bound on τ using Reλ2 in Lemma
5.3 is also (almost) tight. For the construction of An in
Theorem 1.2, letting the columns of Un be u1, . . . , un,
for x = u2, (Akn − J)u2 = (1− (2 +

√
n)−1)ku3, and so

for k = O(
√
n), the triangular block of AO(

√
n) has

norm about 1/e, which further becomes less than ε
after about ln

(
n
ε

)
powers. Thus for the matrices An,

τε(An) ∈ O
(√
n · ln

(
n
ε

))
. This shows Lemma 5.3 is also

(almost) tight since λ2(An) = 0.

5.4 Mixing time of a nonnegative matrix and
its additive symmetrization We can also bound
the mixing time of a nonnegative matrix A with the
same left and right eigenvector w for PF eigenvalue
1, with the mixing time of its additive symmetrization
M = 1

2 (A + AT ). Note that we obtained a similar
bound on the spectral gaps of A and M in Lemma 1.2.
Since φ(A) = φ(M), we can bound τε(A) and τε(M)
using the two sided bounds between edge expansion and
mixing time in Lemma 5.2. For the lower bound, we get
γ1 ·

√
τε(M) ≤ τε(A), and for the upper bound, we get

τε(A) ≤ γ2 · τ2ε (M),
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where γ1 and γ2 are some functions polylogarithmic in
n, κ, 1ε . However, by bounding the appropriate operator,
we can show a tighter upper bound on τε(A), with only
a linear instead of quadratic dependence on τε(M).

Lemma 5.4. Let A be a 1
2 -lazy nonnegative matrix with

positive left and right eigenvector w for PF eigenvalue
1, let M = 1

2 (A+AT ), and κ = mini w
2
i . Then

1− 2ε

4 · ln
1
2
(
n
κ·ε
) · τ 1

2
ε (M) ≤ τε(A) ≤

2 · ln
(
n
κ·ε
)

ln
(
1
ε

) · τε(M).

One example application of Lemma 5.4 is the
following: given any undirected graph G such that each
vertex has degree d, any manner of orienting the edges of
G to obtain a graph in which every vertex has in-degree
and out-degree d/2 cannot increase the mixing time of
a random walk (up to a factor of ln

(
n
κ·ε
)
).

5.5 Mixing time of the continuous operator Let
R be a nonnegative matrix with PF eigenvalue 1 and
associated positive left and right eigenvectors u and
v. The continuous time operator associated with R is
defined as exp (t · (R− I)), where for any matrix M , we
formally define exp(M) =

∑
i=0

1
i!M

i. The reason this
operator is considered continuous, is that starting with
any vector x0, the vector xt at time t ∈ R≥0 is defined
as xt = exp (t · (R− I))x0. Since

exp (t · (R− I)) = exp(t·R)·exp(−t·I) = e−t
∞∑
i=0

1

i!
tiRi

where we split the operator into two terms since R and I
commute, it follows that exp (t · (R− I)) is nonnegative,
and if λ is any eigenvalue of R for eigenvector y, then
et(λ−1) is an eigenvalue of exp (t · (R− I)) for the same
eigenvector y. Thus, it further follows that u and v are
the left and right eigenvectors for exp (t · (R− I)) with
PF eigenvalue 1. The mixing time of exp (t · (R− I)), is
the value of t for which∥∥Du

(
exp (t · (R− I))− v · uT

)
v0
∥∥
1
≤ ε

for every v0 such that ‖Duv0‖1 = 1, and thus, it is
exactly same as considering the mixing time of exp(R−I)
in the sense of Definition 5.1.

Lemma 5.5. Let R be a nonnegative matrix (not nec-
essarily lazy) with positive left and right eigenvectors u
and v for PF eigenvalue 1, normalized so that 〈u, v〉 = 1
and let κ = mini ui · vi. Then the mixing time of
exp(t · (R− I)), or τε (exp(R− I)) is bounded as

1
2 − ε
φ(R)

≤ τε (exp(R− I)) ≤
100 · ln

(
n
κ·ε
)

φ2(R)
.

5.6 Bounds using the canonical paths method
For the case of symmetric nonnegative matrices M with
PF eigenvalue 1, as stated earlier in this section in
equation 5.3, since τ varies inversely with 1−λ2 (up to a
loss of a factor of ln( n

κ·ε )), it follows that any lower bound
on the spectral gap can be used to upper bound τε(M).
Further, since 1− λ2 can be written as a minimization
problem for symmetric matrices (see Section 2), any
relaxation of the optimization problem can be used to
obtain a lower bound on 1−λ2, and inequalities obtained
thus are referred to as Poincare inequalities. One such
method is to use canonical paths [Sin92] in the underlying
weighted graph, which helps to bound mixing time in
certain cases in which computing λ2 or φ is infeasible.
However, since it is possible to define canonical paths
in many different ways, it leads to multiple relaxations
to bound 1− λ2, each useful in a different context. We
remark one particular definition and lemma here, since
it is relevant to our construction in Theorem 3.1, after
suitably modifying it for the doubly stochastic case.

Lemma 5.6. [Sin92] Let M represent a symmetric dou-
bly stochastic matrix. Let W be a set of paths in M , one
between every pair of vertices. For any path γu,v ∈ S
between vertices (u, v) where γu,v is simply a set of edges
between u and v, let the number of edges or the (un-
weighted) length of the path be |γu,v|. Let

ρW (M) = max
e=(x,y)

∑
(u,v):e∈γu,v

|γu,v|

n ·Mx,y
.

Then for any W ,

1− λ2(M) ≥ 1

ρW (M)

and thus,
τε(M) ≤ ρW (M) · ln

(n
ε

)
.

Corollary 5.1. Combining Lemma 1.3 and Lemma
5.6, it follows that for any doubly stochastic matrix A,
and any set W of paths in the underlying graph of AAT ,

τε(A) ≤
2 · ln

(
n
ε

)
1− σ2

2(A)
=

2 · ln
(
n
ε

)
1− λ2(AAT )

≤ 2 · ρW (AAT ) · ln
(n
ε

)
.

Consider the example An in Theorem 3.1. It is not
difficult to see that

(5.4) τε(An) ∈ O
(√

n · ln
(n
ε

))
.

This follows since the factor of
√
n ensures that the only

non zero entries in the triangular matrix Tn (see the
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extended version of the paper for details [MS19]) in the
Schur form of Ad

√
ne are about e−1, and the factor of

ln
(
n
ε

)
further converts these entries to have magnitude

at most ε
n in Aτ . Thus, the operator norm becomes

about ε
n , and the `1 norm gets upper bounded by ε.

However, from Theorem 3.1, since φ(An) ≥ 1
6
√
n
, it

follows from Lemma 5.2 that τε(An) ∈ O
(
n · ln

(
n
ε

))
,

about a quadratic factor off from the actual upper
bound in equation 5.4. Further, from Theorem 3.1,
the second eigenvalue of An is 0, and even employing
Lemma 5.3 leads to a quadratic factor loss from the
actual bound. However, Lemma 5.1 and Corollary 5.1
do give correct bounds. Since σ2(An) = 1 − 1√

n+2

from Theorem 3.1, it follows from Lemma 5.1 for c = 1
that τε(An) ∈ O

(√
n · ln

(
n
ε

))
, matching the bound in

equation 5.4. Now to see the bound given by canonical
paths and corollary 5.1, consider the matrix M = AnA

T
n .

Every entry of M turns out to be positive, and the
set W is thus chosen so that the path between any
pair of vertices is simply the edge between the vertices.
Further, every entry of the matrix M is at least c · n− 3

2

for some constant c (see the extended version of the
paper [MS19] for details), and from Corollary 5.1, we
get that τε(An) ∈ O

(√
n · ln

(
n
ε

))
, matching the bound

in equation 5.4.
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