

pubs.acs.org/JAFC Article

Synthesis of Pyranopyrans Related to Diplopyrone and Evaluation as Antibacterials and Herbicides

Jack H. Roireau, Robert J. Rosano, Nicholas C. Lazzara, Thomas Chen, Joanna Bajsa-Hirschel, Kevin K. Schrader, Stephen O. Duke, Dennis Wykoff, and Robert M. Giuliano*

Cite This: https://dx.doi.org/10.1021/acs.jafc.0c02564

ACCESS

III Metrics & More

Article Recommendations

SI Supporting Information

ABSTRACT: Stereoselective syntheses of new pyranopyrans that are related to the natural product diplopyrone, which is a phytotoxin implicated in cork oak decline, have been achieved from carbohydrate starting materials in two approaches that are based on *C*-glycosides as key intermediates. A *C*-alkynyl glycoside prepared by Ferrier rearrangement was used as the precursor to a new pyranopyran alkyne that showed potent antibacterial activity against the common bacterial pathogen *Edwardsiella ictaluri* that causes enteric septicemia in catfish. The *C*-alkynyl glycoside also showed herbicidal activity. New bioassay data for the pyranopyran nitrile (4a*R*,6*S*,8a*R*)-6-cyano-6,8a-dihydropyrano-[3,2-b]pyran-2(4a*H*)-one, the most potent of the pyranopyrans synthesized to date, were obtained in greenhouse studies that revealed additional herbicidal activity. Other new analogues that were synthesized included desmethylpyranopyrans that were prepared by Isobe *C*-alkynylation-rearrangement/reduction and RCM-based pyranopyran construction. The antibiotic and phytotoxic activities of the new pyranopyrans synthesized in this study highlight the importance of substituents on the nonlactone ring and demonstrate the potential of such compounds as antibiotics and herbicides.

KEYWORDS: pyranopyrans, diplopyrone, phytotoxin, cork oak, C-alkynyl glycoside, enteric septicemia

■ INTRODUCTION

Fungal phytotoxins provide a diverse pool of natural products with which to explore the development of novel antibacterial agents and herbicides based on core secondary metabolite structures. Natural phytotoxins and natural product-based compounds may prove valuable as leads from which to develop more effective and environmentally benign agents. 1-3 For several years, our laboratory has been exploring the synthesis and biological evaluation of compounds that are based on bicyclic pyranopyrans, which is a core structure found in numerous natural products, for example, complex marine polyethers such as brevitoxins and halichondrins, okadaic acid, thyrsiferol, and dactomelynes.^{5,6} These compounds contain one or more bicyclic pyranopyran units, as illustrated by the examples included in Figure 1. Owing to their biological activities, there has been much interest in developing synthetic routes to pyranopyran-containing natural products and their derivatives, and therapeutic agents have been developed, for example, eribulin mesylate. 5,6

Diplopyrone 1 is a pyranopyran phytotoxin isolated from the fungus *Diplodia mutila* and reported by Evidente and coworkers in 2003.⁷ This fungus is thought to be the causative agent in cork oak decline in parts of southern Europe where the disease has negative environmental and economic effects. Originally assigned as 9S,6R,4aS,8aS,⁸ the absolute configuration of natural diplopyrone was reinvestigated and reassigned as 9R,6S,4aS,8aS on the basis of optical spectroscopy and computational methods.⁹ Our laboratory has pursued the synthesis and biological properties of structural analogues of diplopyrone based on pyranopyran structure 1 (Figure 2).⁴ The reason for the choice of this template stems from the

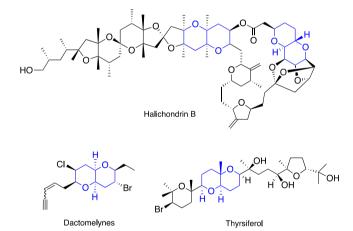


Figure 1. Structures of pyranopyran-containing natural products.

design of our synthesis that uses simple D-sugars as starting materials and the potential flexibility for access to a variety of pyranopyrans that contain different functional groups at the C-6 position that appears to be important to the biological activity of this class of compounds.

Received: April 24, 2020 Revised: July 14, 2020 Accepted: August 18, 2020 Published: August 18, 2020

Figure 2. Pyranopyrans based on the structure of diplopyrone.

We have recently completed and reported the synthesis of compounds 2–4 from carbohydrate starting materials and evaluated them in bioassays for antibacterial, herbicidal, and antifungal activity in collaboration with the USDA-ARS Natural Products Utilization Research Unit.⁴

These tests revealed that one of the structural analogues, pyranopyran nitrile 4, has antibacterial activity against common bacterial pathogens Edwardsiella ictaluri and Flavobacterium columnare that cause enteric septicemia (ESC) and columnaris disease, respectively, in catfish.¹⁰ Pyranopyran nitrile 4 also possessed phytotoxic activity as evidenced by an assay using Lemna paucicostata (L.) Helgelm (duckweed). Compounds 2 and 3 possessed antibacterial and phytotoxic activity but were less potent than the nitrile. Although these results are promising, questions emerged during the course of our earlier study which need to be addressed in relation to our goal of developing novel antibacterials and herbicides based on a core natural product structure. Would our carbohydrate-based synthesis be adaptable to the preparation of structural analogues that contain diverse functionality? Can additional biologically active compounds be identified from our approach? Will an expanded set of pyranopyran analogues help us to gain further insight into the apparent structure-activity relationship involving substituents on the pyranopyran scaffold? In the work described herein, we report that we have successfully synthesized additional analogues through modification of our original synthetic approach. Two of these analogues possessed activity in antibacterial and phytotoxicity assays. Most significant toward the latter question and our overall goal is the preparation of pyranopyran alkyne 8, which exhibits the most potent antibacterial and phytotoxic activity after the nitrile 4. The activity of 8, relative to other analogues, provides further evidence of the importance of the functional group at the C-6 position.

■ MATERIALS AND METHODS

General Methods. Melting points were recorded on a Thomas-Hoover apparatus, and they are uncorrected. Thin-layer chromatography was carried out on aluminum foil-backed silica gel plates coated with a fluorescent indicator. Plates were developed with cerium molybdate stain. Flash chromatography was carried out using 230–400 mesh silica gel. Optical rotations were recorded on a Perkin-Elmer model 341 polarimeter at 20 °C as indicated. HRMS analyses were conducted at the University of Illinois Mass Spectrometry

Laboratory. NMR spectra were recorded on Varian (Agilent) Mercury 300 Plus and JEOL 400 and 500 MHz spectrometers in CDCl $_3$ unless otherwise noted. For $^1\mathrm{H}$ NMR at 300.0 MHz, tetramethysilane reference $\delta=0.0$ ppm, and for $^{13}\mathrm{C}$ NMR at 75.4 MHz, CDCl $_3$ reference $\delta=76.9$ ppm. Spectral assignments were confirmed using correlation spectroscopy (COSY) and double quantum coherence COSY experiments. Reagents and starting materials were purchased from Sigma-Aldrich with the exception of 5% Pd/CaCO $_3$ (Alfa Aesar) and tri-O-acetyl-p-galactal (CarboSynth).

((2R,3R)-3-Acetoxy-6-((trimethylsilyl)ethynyl)-3,6-dihydro-2H-pyran-2-yl)methyl Acetate (10). Using the procedure of Yamada, 11 a solution of commercially available 3,4,6-tri-O-acetyl-Dgalactal (3,4,6-tri-O-acetyl-1,5-anhydro-2-deoxy-D-lyxo-hex-1-enitol) 9 (0.3030 g, 1.1130 mmol) and bis(trimethylsilyl)acetylene (0.3793 g, 2.2260 mmol, 2.0 equiv) in anhydrous dichloromethane (10 mL) was stirred in a three-neck round-bottomed flask that was fitted with a stopper, a two-way adaptor, and a septum. The reaction solution was cooled to -20 °C (CO₂ (s)/i-PrOH), degassed, and placed under argon, after which SnCl₄ (2.23 mL, 2.23 mmol, 1 M solution in CH₂Cl₂, 2 equiv) was added dropwise via a syringe over 20 min. After the addition of SnCl₄, the reaction mixture darkened and was allowed to warm to 0 °C. The reaction was monitored by thin-layer chromatography (TLC; 30% ethyl acetate/hexanes) until the starting material was consumed, usually in 1 h, after which the reaction solution was poured into a mixture of ice and saturated Rochelle's salt and allowed to stir vigorously for a period of 45 min to 1 h. The biphasic solution was extracted with dichloromethane $(2 \times 25 \text{ mL})$, washed with saturated NaHCO₃ (25 mL) and brine (25 mL), dried (Na₂SO₄), and concentrated to yield a yellow oil that was purified by flash chromatography to afford 0.2289 g (66%) of 10 as a clear, colorless oil. $R_f = 0.45$ (30% ethyl acetate/hexanes); $[\alpha]_D^{20} - 283^\circ$ (c 1.0, CHCl₃); ¹H NMR (CDCl₃, 400 MHz): δ 5.96 (dd, 1H, $J_{2,3}$ = 10.1 Hz, $J_{1,2} = 3.6$ Hz, H-2), 5.90 (ddd, 1H, $J_{2,3} = 10.1$ Hz, $J_{3,4} = 5.1$ Hz, $J_{1,3} = 1.8$ Hz, H-3), 4.98 (dd, 1H, $J_{3,4} = 5.1$ Hz, $J_{4,5} = 2.3$ Hz, H-4), 4.92 (dd, 1H, $J_{1,2} = 3.6$ Hz, $J_{1,3} = 1.8$ Hz, H-1), 4.25 (ddd, 1H, $J_{5,6'} =$ 7.3 Hz, $J_{5,6} = 4.9$ Hz, $J_{4,5} = 2.4$ Hz, H-5), 4.19 (dd, 1H, $J_{6,6'} = 11.4$ Hz, $J_{5.6} = 4.9 \text{ Hz}, \text{ H-6}$), 4.05 (dd, 1H, $J_{6.6'} = 11.4 \text{ Hz}$, $J_{5.6'} = 7.3 \text{ Hz}$, H-6'), 1.98 (s, 3H, O<u>Ac</u>), 1.97 (s, 3H, O<u>Ac</u>), 0.07 (s, 9H, Si<u>Me</u>₃); ¹³C NMR (CDCl₃, 100 MHz): δ 170.5, 170.2, 131.8, 122.3, 100.2, 91.9, 69.6, 64.3, 63.2, 62.8, 53.8, 29.2, 20.7, 20.6, 14.1, -0.3. The NMR data for 10 matched that reported.1

(2R,3R)-6-Ethynyl-2-(hydroxymethyl)-3,6-dihydro-2H-pyran-3-ol (11). A solution of 10 (0.2344 g, 0.7551 mmol) in anhydrous methanol (10 mL) was stirred in a round-bottomed flask as anhydrous K_2CO_3 (0.4175 g, 3.0204 mmol, 4 equiv) was added. Upon addition, the solution darkened to a yellow color, and the resulting heterogenous mixture was stirred at room temperature. The reaction was monitored by TLC (2:1 ethyl acetate/hexanes), with consumption of the starting material typically occurring in 1.5–2 h,

after which the solution was acidified to a pH of 7 using Dowex 50 × 8 resin as indicated by pH paper (1–12). The heterogenous mixture was filtered, and the filtrate was concentrated in vacuo to yield an orange solid that was purified by flash chromatography (3:1 ethyl acetate/hexanes) to yield 0.1024 g (88%) of **11** as a white waxy solid that was dried by azeotropic distillation with pentane (5 × 10 mL) and further dried under vacuum overnight. mp 103–105 °C; $[\alpha]_D^{20}$ –541° (c 0.25, CHCl₃); $[it^{11}$ [$\alpha]_D^{27}$ –500 (c 0.23, CHCl₃); $[it^{11}$ NMR (CDCl₃, 300 MHz): δ 6.08 (ddd, 1H, $J_{2,3}$ = 9.9 Hz, $J_{3,4}$ = 5.4 Hz, $J_{1,3}$ = 1.9 Hz, H-3), 5.96 (dd, 1H, $J_{2,3}$ = 10.0 Hz, $J_{1,2}$ = 3.8 Hz, H-2), 5.01 (dd, 1H, $J_{1,2}$ = 4.0 Hz, $J_{4,5}$ = 2.2 Hz, H-5), 4.1–3.8 (bm, 3H, H-4,6,6′), 2.51 (d, 1H, $J_{1,alkynyl}$ = 2.3 Hz, H-alkynyl), 2.22–2.12 (br s, 1H), 2.00–1.92 (bd, 1H); (1) C NMR (CDCl₃, 75 MHz): (1) 128.8, 125.9, 76.4, 76.0, 75.6, 73.8, 72.4, 62.9, 61.8, 61.8, 0.0. The NMR data for **11** matched that reported.

tert-Butyl(((2R,3R)-3-((tert-butyldimethylsilyl)oxy)-6-ethynyl-3,6-dihydro-2H-pyran-2-yl)methoxy)dimethylsilane (12). Method A: A solution of diol 11 (0.5000 g, 3.2432 mmol) in anhydrous DMF (20 mL) was stirred at room temperature as imidazole (1.100 g, 16.2160 mmol, 5.0 equiv) was added, followed by the addition of tert-butyldimethylsilyl chloride (1.2700 g, 8.4323 mmol, 2.6 equiv). The resulting cloudy yellow solution was allowed to stir at room temperature. Reaction progress was monitored by TLC (10% ethyl acetate/hexanes), with the starting material typically consumed after 20-25 h, after which the reaction solution was quenched with saturated NH₄Cl and extracted with ethyl acetate (4 × 10 mL). The combined extracts were washed with water $(2 \times 10 \text{ mL})$ and brine (10 mL), dried (Na2SO4), and concentrated in vacuo to yield a yellow oil which was purified by flash chromatography (10% ethyl acetate/hexanes) to yield 0.4500 g (36%) of 12 as a pale yellow oil. Method B: To a clear, colorless stirring suspension of diol 11 (15.3 mg, 0.0992 mmol) in anhydrous dichloromethane (1 mL) was added TBSOTf (68.4 μ L, 3 equiv, 0.2977 mmol), followed by the addition of 2,6-lutidine (46.2 μ L, 4 equiv, 0.3970 mmol) via a micropipette. Upon the addition of TBSOTf, the reaction solution immediately darkened to a light brown color and became homogenous. The resulting clear, light brown solution was allowed to stir at room temperature with reaction progress being monitored by TLC (10% ethyl acetate/hexanes). Consumption of the starting material typically occurred after 20 min, after which the reaction solution was transferred to a separatory funnel, diluted with 20 mL of dichloromethane, washed with saturated NaHCO₃ (3 × 5 mL), water (5 mL), and brine (5 mL), dried (Na₂SO₄), and concentrated in vacuo to yield a yellow oil that was purified by flash chromatography (10% ethyl acetate/hexanes) to yield 35.4 mg (93%) of 12. $[\alpha]_D^{20}$ -196° (c 1.0, CHCl₃); ¹H NMR (CDCl₃, 400 MHz): δ 5.93 (ddd, 1H, $J_{2,3} = 10.0$ Hz, $J_{3,4} = 5.0$ Hz, $J_{1,3} = 1.8$ Hz, H-3), 5.87 (dd, 1H, $J_{2,3} = 1.8$ Hz, H-3), 5.87 (dd, 1H, = 10.0 Hz, $J_{1,2}$ = 3.5 Hz, H-2), 4.97 (dt, 1H, $J_{1,2}$ = 3.8 Hz, $J_{1,3}$ = 2.0 Hz, H-1), 4.00 (dd, 1H, $J_{3,4} = 5.0$ Hz, $J_{4,5} = 2.3$ Hz, H-4), 3.93 (td, 1H, $J_{5,6} = 6.2$ Hz, $J_{4,5} = 2.4$ Hz, H-5), 3.84 (dd, 1H, $J_{6,6'} = 10.6$ Hz, $J_{5,6} = 6.1$ Hz, H-6), 3.73 (dd, 1H, $J_{6,6'} = 10.5$ HJz, $J_{5,6'} = 6.3$ Hz, H-6'), 2.45 (d, 1H, $J_{1,alkynyl}$ = 2.3 Hz, H-alkynyl), 0.90 (s, 9H, ${}^{t}\underline{Bu}Me_{2}Si$), 0.89 (s, 9H, 'BuMe₂Si), 0.09 (s, 6H, 'BuMe₂Si), 0.08 (s, 6H, t Bu \underline{Me}_{2} Si); 13 C NMR (CDCl $_{3}$, 100 MHz): δ 128.9, 127.5, 80.6, 75.0, 74.1, 63.6, 62.5, 26.1, 18.5, 18.4, 1.2, -3.9, -4.5, -5.0, -5.1.

HRMS (ESI-TOF) m/z: [M + H]⁺ calcd for $C_{20}H_{39}O_3Si_2$, 383.2438; found, 383.2420.

((2R,3R)-3-((tert-Butyldimethylsilyl)oxy)-6-ethynyl-3,6-dihydro-2H-pyran-2-yl)methanol (13). A solution of di-O-TBS ether 12 (0.43 g, 1.236 mmol) in anhydrous methanol (20 mL) was stirred in a round bottom flask as pyridinium p-toluenesulfonate (0.0565 g, 0.2247 mmol, 20.0 mol %) was added. The resulting solution was stirred at room temperature. Reaction progress was monitored by TLC (30% ethyl acetate/hexanes), with the majority of the starting material typically being consumed after 20–24 h, with only minimal diol formation as shown by TLC, after which the solvent was removed under high vacuum, attached to a rotary evaporator whose water bath was maintained at 0 °C. The resulting colorless oil was immediately diluted with cold dichloromethane (40 mL), washed with 0 °C water

(15 mL) and 0 °C saturated NaHCO₃ (10 mL), dried (Na₂SO₄), and concentrated to yield 0.2215 g (73%) of 13 as a clear oil that was immediately used without further purification, with an aliquot being removed for optical rotation data and HRMS analysis. $[\alpha]_D^{20}$ –244° (c 1.0, CHCl₃). NMR data were not obtained because of the instability of 13.

HRMS (ESI-TOF) m/z: [M + H]⁺ calcd for $C_{14}H_{25}O_3Si$, 269.1573; found, 269.1572.

(2S,3R)-3-((tert-Butyldimethylsilyl)oxy)-6-ethynyl-3,6-dihydro-2H-pyran-2-carbaldehyde (14). A solution of primary alcohol 13 (0.1315 g, 0.4899 mmol) in anhydrous dichloromethane (20 mL) was stirred at 0 °C as DIPEA (0.3799 g, 0.51 mL, 2.9393 mmol, 6 equiv), DMSO (0.4592 g, 0.42 mL, 5.8786 mmol, 12 equiv), and SO₃· pyridine (0.3899 g, 2.4494 mmol, 5 equiv) were added. The resulting clear, slightly brown solution was stirred at 0 °C with reaction progress being monitored by TLC (30% ethyl acetate/hexanes) with consumption of the starting material typically occurring in $2-3\ h.$ After the reaction was complete, as shown by TLC, the reaction solution was quenched with cold water (30 mL) and extracted with cold ethyl acetate (3 × 20 mL), and the combined extracts were washed with cold water (4 × 15 mL) and cold brine (10 mL), dried (Na₂SO₄), and concentrated to yield 0.0806 g (62%) of 14 as a redbrown oil. $[\alpha]_D^{20}$ –241° (*c* 1.0, CHCl₃), ¹H NMR (CDCl₃, 300 MHz): δ 9.63 (s, 1H, CHO), 5.92 (s, 1H, H-3), 5.91 (s, 1H, H-2) 5.12 (t, 1H, J = 2.0 Hz, H-1), 4.38-4.32 (m, 2H, H-4,5), 2.51 (d, 1H, J = 2.3Hz, H-alkynyl), 0.83 (s, 9H, ^tBuMe₂Si), 0.06 (s, 3H, ^tBuMe₂Si), 0.04 (s, 3H, ${}^{t}Bu\underline{Me}_{2}Si$); ${}^{13}C$ NMR (CDCl₃, 75 MHz): δ 201.0, 129.0, 126.3, 79.3, 78.6, 75.4, 63.4, 63.3, 25.8, 18.2, -4.0, -4.8.

HRMS (ESI-TOF) m/z: $[M + H]^+$ calcd for $C_{14}H_{23}O_3Si$, 267.1416; found, 267.1418.

Ethyl (Z)-3-((2R,3R,6S)-3-((tert-Butyldimethylsilyl)oxy)-6ethynyl-3,6-dihydro-2H-pyran-2-yl)acrylate (15). To a clear, slightly yellow solution of aldehyde 14 (0.0606 g, 0.2275 mmol) in anhydrous methanol (5 mL) was added (carbethoxymethylene)triphenylphosphorane (0.1189 g, 0.3412 mmol, 1.5 equiv). The resulting homogenous solution was stored at −10 °C overnight with reaction progress being monitored by TLC (10% ethyl acetate/ hexanes) with the starting material typically being consumed in 30-35 h, after which the solvent was removed and the crude product was immediately purified by flash chromatography (10% ethyl acetate/ hexanes) to yield 0.0422 g (55%) of 15 a clear oil. $[\alpha]_D^{20}$ -233.2° (c 1.0, CHCl₃); ¹H NMR (CDCl₃, 400 MHz): δ 6.27 (dd, 1H, $J_{6,7}$ = 11.9 Hz, $J_{5,6}$ = 7.0 Hz, H-6), 5.96–5.83 (m, 3H, H-2, 3, 7), 5.46 (ddd, 1H, $J_{5,6} = 7.0$ Hz, $J_{5,4} = 2.7$ Hz, $J_{5,7} = 1.5$ Hz, H-5), 4.98 (dd, 1H, $J_{1,2} = 1.5$ Hz, H-5) 3.0 Hz, $J_{1,\text{alkynyl}} = 2.4$, Hz, H-1), 4.27 (dd, 1H, $J_{3,4} = 4.5$ Hz, $J_{4,5} = 2.6$ Hz, H-4), 4.17 (qd, 2H, J = 10.5 Hz, J = 7.1 Hz, CH₂), 2.46 (d, 1H, $J_{1,\text{alkynyl}} = 2.3 \text{ Hz}$, H-alkynyl), 1.29–1.26 (t, 3H, J = 7.1 Hz, CH₃), 0.83 (s, 9H, ${}^{t}\underline{Bu}Me_{2}Si$), -0.01 (s, 3H, ${}^{t}\underline{Bu}\underline{Me_{2}}Si$), -0.03 (s, 3H, t Bu \underline{Me}_{2} Si); 13 C NMR (CDCl $_{3}$, 100 MHz): δ 165.9, 147.9, 128.3, 127.4, 120.1, 80.2, 74.5, 72.0, 63.9, 63.1, 60.34 25.9, 18.3, 14.2, -4.2, -4.7.

HRMS (ESI-TOF) m/z: [M + H]⁺ calcd for $C_{18}H_{29}O_4Si$, 337.1835; found, 337.2834.

(4aR,6S,8aR)-6-Ethynyl-6,8a-dihydropyrano[3,2-b]pyran-2-(4aH)-one (8). A solution of ester 15 (0.0370 g, 0.1100 mmol) in anhydrous methanol (2 mL) was heated to reflux, after which ptoluene sulfonic acid (0.0032 g, 0.0165 mmol, 15.0 mol %) was added. The resulting colorless solution was stirred in a roundbottomed flask with reaction progress being monitored by TLC (30% ethyl acetate/hexanes). The starting material was typically consumed after 5-6 h, after which methanol was removed using a rotary evaporator, and toluene was added to the reaction vessel. The resultant clear, colorless solution was allowed to stir overnight at reflux with the starting material typically being consumed after an additional 20 h (~26 h in total). The reaction solution was concentrated in vacuo to yield a brown, crystalline solid that was purified by flash chromatography (30% ethyl acetate/hexanes) to yield 0.0104 g (53%) of 7 as a white crystalline solid. mp 153-154 °C; $[\alpha]_{\rm D}^{20}$ 338° (c 1.0, CHCl₃); ¹H NMR (CDCl₃, 400 MHz): δ 6.88 (dd, $J_{3,4} = 9.8$ Hz, $J_{4,4a} = 5.8$ Hz, H-4), 6.23 (d, 1H, $J_{3,4} = 9.8$ Hz, H-3), 6.15 (dd, 1H, $J_{7,8}$ = 10.1 Hz, $J_{6,7}$ = 3.9 Hz, H-7), 6.06 (ddd, 1H, $J_{7,8}$ = 10.1 Hz, $J_{8,8a}$ = 5.1 Hz, $J_{6,8}$ = 1.8 Hz, H-8), 5.03 (dt, 1H, $J_{6,7}$ = 4.2 Hz, $J_{6,8}$ = 2.1 Hz, H-6), 4.63 (dd, 1H, $J_{8,8a}$ = 5.1 Hz, $J_{4a,8a}$ = 3.1 Hz, H-8a), 4.52 (dd, 1H, $J_{4,4a}$ = 5.8 Hz, $J_{4a,8a}$ = 3.1 Hz, H-4a), 2.58 (d, 1H, J = 2.3 Hz, H-alkynyl); ¹³C NMR (CDCl₃, 100 MHz): δ 162.5, 140.2, 132.0, 125.1, 121.7, 78.8, 75.9, 68.7, 63.6, 61.2.

HRMS m/z: [M + Na]⁺ calcd for $C_{10}H_8O_3Na$, 199.0371; found, 199.0364.

2,3,4,6-Tetra-O-acetyl-1-deoxy-D-arabino-hex-1-enopyranose (16). Glycal 16 was prepared following the published procedure 12 from commercially available 2,3,4,6-tetra-O-acetyl- α -Dglucopyranosyl bromide (20.0 g, 48.6 mmol). Concentration of the crude product gave a red syrup to which a minimum amount of hot isopropanol was added. The solution was cooled to rt and then stored at 0 °C overnight. The white crystalline product was collected. Two more crops of crystals were isolated from the mother liquor, and the combined crystal harvests were dried under high vacuum to afford 12.5 g (77%) of glycal. $R_f = 0.4$ (40% ethyl acetate 60% hexanes); mp 60-63 °C; lit mp 61, 65-66 °C; $[\alpha]_D^{23}$ -18° (c 1.0, ethanol); lit $[\alpha]_D^{2}$ -20° (c 1.8, ethanol); ¹H NMR (CDCl₃): δ 6.62 (s, 1H), 5.84 (d, 1H, J = 4.7 Hz), 5.48 (dd, 1H, J = 5.0 Hz, 2.0 Hz), 4.42-4.19 (m, 3H), 2.13 (s, 3H), 2.11 (s, 3H), 2.08 (s, 3H), 2.04 (s, 3H); ¹³C NMR $(CDCl_3)$: δ 170.2, 169.9, 169.3, 169.3, 139.2, 127.4, 74.1, 67.5, 66.3, 60.9, 20.5, 20.5, 20.3.

(25,5*R*,6*R*)-5-Hydroxy-6-(trimethylsilyl)ethynyl-5,6-dihydro-2*H*-pyran-2-yl)methyl Acetate (17). TMS-alkynyl glycoside 17 was prepared from glycal 16 by the method of Isobe. ¹³ From 9.0 g (27.2 mmol) of glycal, 4.20 g (57%) of 17 was obtained as an oil, after purification by flash chromatography. $R_f = 0.4$ (40% ethyl acetate/hexanes); $[\alpha]_2^{23} - 100.2^{\circ}$ (c 1.8, CHCl₃); lit $[\alpha]_2^{23} - 99.2^{\circ}$ (c 1.2, CHCl₃). The NMR data for 17 matched those reported. ¹³

(2S,5R,6R)-6-Ethynyl-5-hydroxy-5,6-dihydro-2H-pyran-2-ylmethyl Acetate (18). A solution of TMS-alkynyl glycoside 17 (0.72 g, 2.69 mmol) in anhydrous THF (10 mL) was stirred at 0 °C as TBAF (0.806 mL, 1 M solution in THF, 30 mol %) was added via a micropipette. Upon addition, the solution immediately darkened. The resulting homogenous yellow solution was allowed to stir at 0 °C with reaction progress being monitored by TLC (1:1 ethyl acetate/ hexanes) with consumption of the starting material typically occurring in 15-20 min, after which the reaction solution was concentrated and immediately purified by flash chromatography (1:1 ethyl acetate/ hexanes). Desilylated 18 (420 mg, 87%) was obtained as a white solid. $R_f = 0.18$ (40% ethyl acetate/hexanes); mp 73–76 °C; $[\alpha]_D^{23}$ –52.4° $(c 1.2, CHCl_3); ^1H NMR (CDCl_3): \delta 5.88 (dd, 1H, J = 10.5 Hz, 2.3)$ Hz, H-3), 5.75 (dd, J = 10.5 Hz, 2.0, Hz H-4), 4.90 (dd, 1H, J = 5.2Hz, 2.3 Hz, H-1), 4.58 (octet, 1H, H-5), 4.32 (m, 1H, J = 10.3 Hz, 5.2 Hz, 2.3 Hz, 2.0 Hz, H-2), 4.14 (d, 2H, J = 5.0 Hz, H-6,6'), 2.52 (d, 1H, J = 2.3 Hz), 2.09 (s, 3H), 2.00 (d, 1H, J = 10.3, OH); 13 C NMR $(CDCl_3)$: δ 170.8, 129.5, 127.0, 78.2, 76.4, 69.2, 67.1, 65.0, 63.5, 20.7. HRMS (ESI): calcd for C₁₀H₁₂O₄Na [M + Na]⁺, 219.0633; found,

219.0631. (2S,5R,6R)-6-Ethenyl-5-hydroxy-5,6-dihydro-2H-pyran-2-ylmethyl Acetate (19). A 250 mL round-bottom flask fitted with a two-way adaptor and balloon was charged with ethyl acetate (40 mL), quinoline (222.1 µL, 1.8 mmol, 0.58 equiv), and Lindlar's catalyst (50.0 mg, 10 wt %) and cooled in an ice bath. The mixture was purged three times with hydrogen and then stirred for 20 min at 0 °C. A solution of alkyne 18 (400 mg, 2.6 mmol) in ethyl acetate (30 mL) was added, and the flask was again purged three times and then stirred at 0 °C. The reaction was monitored by TLC until the starting material was consumed, typically in 1-1.5 h. The mixture was filtered through a pad of Celite which was washed with ethyl acetate, and the filtrate concentrated to give an oil that was purified by flash chromatography (40% ethyl acetate/hexanes). 19 (405 mg; 97%) was obtained as an oil. The crude product contained a small amount of Cethyl glycoside that could not be separated. $R_f = 0.12$ (40% ethyl acetate/hexanes); $[\alpha]_D^{23}$ -112.3° (c 0.9, CHCl₃); ¹H NMR (CDCl₃): δ 6.10 (ddd, 1H, J = 10.1 Hz, 5.1 Hz, 2.1 Hz, H-3), 5.92 (ddd, 1H, J =17.4 Hz, 10.6 Hz, 5.98 Hz, HC= CH_2), 5.76 (dd, 1H, J = 10.1 Hz, 3.1 Hz, H-4), 5.36 (dd, 1H, J = 17.4 Hz, 1.5 Hz, HC=CH₂), 5.27 (dd,

1H, J = 10.6 Hz, 1.5 Hz, HC=CH₂), 4.44 (m, 1H, J = 8.4 Hz, 3.7 Hz, 3.1 Hz, 2.1 Hz, H-5), 4.33–4.24 (m, 2H, J = 11.9 Hz, 8.4 Hz, 5.9 Hz, 1.5 Hz, H-1, H-6), 3.96 (dd, 1H, J = 11.9 Hz, 3.7 Hz, H-6'), 3.85 (m, 1H, H-2), 2.02 (s, 3H, CH₃), 1.94 (br s, 1H, OH); ¹³C NMR (CDCl₃): δ 170.8, 134.2, 129.7, 129.3, 128.2, 128.0, 118.3, 73.8, 73.7, 71.5, 71.1, 63.7, 63.3, 62.9, 62.6, 20.9.

HRMS (ESI): calcd for $C_{10}H_{14}O_4Na$ [M + Na]⁺, 221.0790; found, 219.0790.

(2R,3R,6S)-6-(Acetyloxy)methyl]-2-ethenyl-3,6-dihydro-2Hpyran-3-yl Prop-2-enoate (20). To a stirring solution of vinyl glycoside 19 (167 mg, 0.84 mmol), acryloyl chloride (128 μ L, 1.3 mmol), and triethylamine (155 μ L, 0.21 mmol 2.5 equiv) in anhydrous dichloromethane (5 mL) at 5 °C was added a solution of DMAP (5 mg) in 500 μ L of dichloromethane. The reaction was monitored by TLC (30% ethyl acetate/hexanes) and completed in 20 min. The mixture was then diluted with dichloromethane (25 mL) and washed once with satd aq NaHCO3 soln, dried (Na2SO4), and concentrated to an oil that was purified by flash chromatography using 30% ethyl acetate/hexanes. Acryloyl derivative 20 (185 mg, 88%) was obtained. $R_f = 0.46$ (40% ethyl acetate/hexanes); $[\alpha]_D^{23} - 292^\circ$ (c 1.0, CHCl₃); ¹H NMR (CDCl₃): δ 6.78 (dd, 1H, J = 10.4 Hz, 1.5 Hz, $HC=CH_2$), 6.36, (dd, 1H, J = 17.3 Hz, 1.5 Hz, $HC=CH_2$), 6.06, (ddd, 1H, J = 17.3 Hz, 10.4 Hz, HC=CH₂), 6.04 (ddd, 1H, J = 10.6Hz, 4.6 Hz, 2.3 Hz, H-3), 5.91 (ddd, 1H, J = 10.3 Hz, 2,8 Hz, 1.0 Hz, H-4), 5.81 (ddd, 1H, J = 17.5 Hz, 10.7 Hz, 5.6 Hz, HC=CH₂), 5.33 (dt, 1H, J = 17.4 Hz, 1.3, Hz, HC=CH₂), 5.20 (dt, 1H, J = 10.7 Hz, 1.3 Hz, HC= CH_2), 5.13 (m, J = 4.6 Hz, 3.0 Hz, 1.0 Hz, H-2), 4.47 (m, 2H, J = 7.6 Hz, 5.6 Hz, 4.0 Hz, 3.0 Hz, 2.8 Hz, 2.3 Hz, 1.3 Hz, H-1, H-5), 4.30 (dd, 1H, *J* = 10.9 Hz, 7.6 Hz, H-6), 3.98, (dd, H, *J* = 10.9 Hz, 4.0 Hz, H-6'), 2.02 (s, 3H, CH₃); 13 C NMR (CDCl₃): δ 170.6, 165.6, 133.1, 131.2, 130.1, 128.1, 125.2, 118.4, 72.0, 70.6, 65.5, 63.5, 20.7.

HRMS (ESI): calcd for $C_{13}H_{16}O_5Na~[M+Na]^+$, 275.0895; found, 275.0891.

(2S,4aR,8aR)-6-Oxo-2,4a,6,8a-tetrahydropyrano[3,2-b]pyran-2-yl]methyl Acetate (6). A flame-dried 50 mL three-neck round bottom flask equipped with a reflux condenser and septum was flushed with argon and charged with 7.0 mL of anhydrous toluene which had previously been degassed and stored under argon and the Grubbs II catalyst (22.3 mg, 10 mmol %). The reaction vessel was then degassed three times and heated in an oil bath to 80 °C. Purified acryloyl ester 20 (90 mg, 0.35 mmol) was dissolved in 0.5 mL of toluene and added via a syringe. The temperature of the oil bath was increased to initiate reflux, and the reaction was stirred for 48 h. After that, the resulting black solution was concentrated and subjected to flash chromatography (50% ethyl acetate/hexanes) to afford 6 (64 mg, 81%). $R_f = 0.48$ (1:1 acetone/hexanes); $[\alpha]_D^{23} - 97^\circ$ (c 0.88, CHCl₃); ¹H NMR (CDCl₃): δ 6.86 (dd, 1H, J = 9.9 Hz, 4.7 Hz, H-4), 6.16 (ddd, 1H, *J* = 10.4 Hz, 4.0, Hz 2.0 Hz, H-8), 6.16 (dd, 1H, *J* = 9.9 Hz, 1.0 Hz, H-3), 6.04 (ddd, 1H, J = 10.4 Hz, 2.4 Hz, 1.0 Hz, H-7), 4.78 (t, 1H, *J* = 4.0 Hz, 1.0 Hz, H-8a), 4.60 (t, 1H, *J* = 4.7 Hz, 4.0 Hz, 1.0 Hz, H-4a), 4.50 (m, 1H, J = 8.2 Hz, 2.7 Hz, 2.4 Hz, 2.0 Hz, H-6), 4.45 (dd, 1H, I = 10.9 Hz, 8.2 Hz, H-9a), 4.02 (dd, 1H, I = 10.9Hz, 2.7 Hz, H-9b); 13 C NMR (CDCl₃): δ 170.6, 162.1, 142.0, 130.3, 124.1, 124.0, 71.1, 69.0, 63.1, 61.9, 20.7.

HRMS (ESI): calcd for $C_{11}H_{12}O_5Na~[M+Na]^+$, 225.0763; found, 225.0760.

(4a*R*,65,8a*R*)-6-(Hydroxymethyl)-6,8a-dihydropyrano[3,2-b]pyran-2(4a*H*)-one (5). A solution of 6 (44.0 mg, 0.24 mmol) in THF (2 mL) containing a drop of water was added to a stirring suspension of lipase PS 30 (44.0 mg), and the mixture was stirred for 2 days. TLC (50% acetone/hexane) showed complete consumption of the starting material and the formation of a more polar component. The crude reaction mixture was filtered to remove solids, and the filtrate was concentrated to a residue that was purified by flash chromatography (50% acetone/hexanes) to give 5 (33.0 mg, 92%) as a clear oil. $R_f = 0.25$ (50% acetone/hexanes); [α] $_{20}^{23} - 66^{\circ}$ (c 1.0, CHCl₃); $_{10}^{1}$ H NMR (CDCl₃): δ 6.89 (dd, 1H, $_{10}^{1}$ = 10.1 Hz, 4.1 Hz, H-4), 6.13 (dd, 1H, $_{10}^{1}$ = 10.0 Hz, 1.5 Hz, H-3), 6.07 (ddd, 1H, $_{10}^{1}$ = 10.5 Hz, 2.1 Hz, H-8), 5.99 (ddd, 1H, $_{10}^{1}$ = 10.5 Hz, 2.3 Hz, 1.1 Hz,

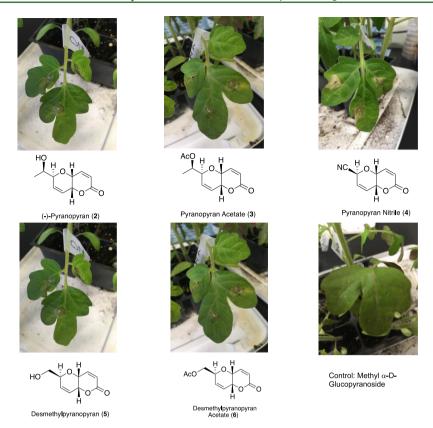


Figure 3. Leaf puncture assay for pyranopyrans 2, 3, 4, 5, and 6 in tomato plants (*L. esculentum*). Photographs of leaves are for 3 day exposure at 1.0 mg/mL.

H-7), 4.86 (m, 1H, H-8a), 4.73 (td, 1H, J = 4.9 Hz, 1.5 Hz, H-4a), 4.34 (m, 1H, H-6), 3.72 (m, 2H, H-9a,9b), 1.88 (m, 1H, OH); 13 C NMR (CDCl₃): δ 162.0, 143.0, 130.5, 124.2, 123.8, 72.9, 69.6, 63.6, 63.1.

HRMS (ESI): calcd for $C_9H_{10}O_4Na$ [M + Na]⁺, 205.0477; found, 225.0480.

(2S,4aR,8aR)-6-Oxo-2,4a,6,8a-tetrahydropyrano[3,2-b]pyran-2-carboxamide (7). Compound 7 was prepared by modification of the procedure of Kiss and Hell. 14 The solvent was changed from methanol to tert-butanol. A mixture of nitrile 4 (0.040 g, 0.226 mmol), the Cu^{II}-4 Å catalyst (0.022 g), acetaldoxime (0.040 g, 0.678 mmol), and tert-butanol (2 mL) was stirred at 70 °C for 4 h. The mixture was filtered through a pad of Celite and concentrated to a yellow-brown solid that was purified by cartridge chromatography on a Waters vacuum manifold system using 5% methanol/chloroform as the eluant (flash chromatography was also successful using 10% methanol/chloroform). Concentration of fractions left a white solid; yield, 0.0227 g (51.5%).R_f 0.2 (10% methanol/chloroform); mp 160-164 °C; $[\alpha]_D$ –268 (c 0.8, methanol; IR (ATR) ν : 3425, 3325, 3219, 1710, 1670, 1618 cm $^{-1}$; 1 H NMR (300 MHz, CDCl $_{3}$): δ 7.10 (dd, 1H, $J_{3,4} = 10.1$ Hz, $J_{4,4a} = 5.4$ Hz, H-4), 6.40 (ddd, 1H, $J_{7,8} = 10.2$ Hz, $J_{6,7} = 3.6 \text{ Hz}, J_{7,8a} = 1.2 \text{ Hz}, \text{ H--7}), 6.16 (d, 1H, <math>J_{3,4} = 10.5 \text{ Hz}, \text{ H--3}),$ 6.10 (m, 1H, H-8), 4.86 (br s, 2H, NH₂), 4.80 (m, 2H, H-6, H-8a), 4.61 (ddd, 1H, $J_{4a,4} = J_{4a,8a} = 4.5$ Hz, $J_{4a,8} = 1.2$ Hz, H-4a); ¹³C NMR $(CDCl_3)$: δ 174.1, 164.8, 143.7, 131.8, 124.5, 123.3, 74.0, 70.2, 64.4. HRMS (ESI-TIF) m/z: calcd for C₉H₁₀NO₄, 196.0610; found,

Leaf Puncture Assay. Tomato leaves (*Lycopersicon esculentum*) from seedlings (\sim 1 month old) were micropunctured with a needle and then exposed to 20 μ L droplets of various test compounds dissolved in sterile water—methanol (1:1). The leaves, depicted in Figure 3, were exposed for 3 days to a concentration of 1.0 mg/mL of each of the test compounds and the control. The assay is similar to the assay described by Evidente. ¹⁵

Antibacterial Bioassays of Pyranopyran Analogues. Microorganisms and Preparation of the Culture Material for Antibacterial Bioassay. The isolate of F. columnare [isolate ALM-00-173 (genomovar II)] was obtained from Dr. Covadonga Arias (School of Fisheries, Aquaculture and Aquatic Sciences, Auburn University, Auburn, Alabama). Cultures of F. columnare ALM-00-173 were maintained separately on modified Shieh (MS) agar plates (pH 7.2–7.4) to maintain purity. Colonies of F. columnare ALM-00-173 were used to prepare the assay culture material by growing in 75 mL of MS broth for 24 h at 29 \pm 1 °C on a rotary shaker at 150 rpm (model C24KC; New Brunswick Scientific, Edison, New Jersey). After 16 h of incubation, a 0.5 McFarland standard of the F. columnare ALM-00-173 culture material was prepared by transferring cells from the broth culture to fresh MS broth.

The isolate of *E. ictaluri* (isolate S02-1039) was obtained from Mr. Tim Santucci (formerly with the College of Veterinary Medicine, Mississippi State University, Stoneville, Mississippi). Cultures of *E. ictaluri* S02-1039 were maintained on 3.8% Mueller—Hinton (MH) agar plates (pH 7.3) (Becton, Dickinson and Company, Sparks, Maryland) to maintain purity. Colonies of *E. ictaluri* S02-1039 were used to prepare the assay culture material by aseptically transferring bacterial cells from colonies to 45 mL of 3.8% MH broth to form a bacterial cell density of the 0.5 McFarland standard.

Antibacterial Bioassay. The pure test compounds 4–7 were dissolved in technical grade 100% methanol. The four test compounds were evaluated for antibacterial activity against F. columnare ALM-00-173 and F. ictaluri S02-1039 using a rapid 96-well microplate bioassay and following previous procedures (Schrader and Harries 2006). Florfenicol was included as a positive drug control. Control wells (no test material added) were also included in each assay. Final test concentrations of compounds and florfenicol were 0.01, 0.1, 1.0, 10.0, 100.0, and 1000.0 μ M. Three replications were used for each dilution of each test compound and drug control. Final results were converted to units of mg/L to permit comparison with previous studies.

Scheme 1. Synthesis of Pyranopyran Alkyne 8

The 24 h 50% inhibition concentration (IC₅₀) and minimum inhibitory concentration (MIC) were determined using sterile 96-well (flat bottom) polystyrene microplates (Corning Costar Corp., Acton, Massachusetts). Initially, dissolved test compounds or florfenicol were transferred using a micropipette separately into individual microplate wells (10 µL/well), and the solvent was allowed to completely evaporate before 0.5 MacFarland bacterial culture was added to the microplate wells (200 μ L/well). Microplates were incubated at 29 \pm 1 °C (VWR model 2005 incubator; Sheldon Manufacturing, Inc., Cornelius, Oregon). A microplate photometer (SpectraCount, Packard Instrument Company, Meriden, Connecticut) was used to measure the absorbance (630 nm) of the microplate wells at time 0 and 24 h. Two replicates of each microplate bioassay were made. Cell viability of F. columnare ALM-00-173 and E. ictaluri S02-1039 was determined at the completion of the growth bioassay for each test compound using the yellow dye 3(4,5-dimethylthiazol-2-yl)-2,5diphenyl tetrazolium bromide (MTT) and previously outlined procedures.1

The means and standard errors of absorbance measurements were calculated, graphed, and compared to controls to determine the MIC, 24 h IC_{50} , and MTT 24 h IC_{50} for each test compound. The 24 h IC_{50} and MIC results for each test compound were divided by the respective 24 h IC_{50} and MIC results obtained for the positive control florfenicol to determine the relative-to-drug-control florfenicol (RDCF) values.

Primary Bioassay for Herbicidal Activity. One filter paper disk (Whatman, Grade 1, 1.5 cm) was placed into each well of a 24-well plate (Corning Incorporated, CoStar 3524). The solution (200 µL, containing 180 µL of water and 20 µL of appropriate dilution of the sample) was transferred into each well. The plate also contained two types of control wells: 1. only with 200 μ L of water and 2. with 180 uL of water and 20 uL of the solvent. For monocot screen, 20 mg of creeping bentgrass (Agrostis stolonifera) seeds and for dicot, five seeds of lettuce (Lactuca sativa) were added into each well. In the experiment, each condition was triplicate. The seeds were surfacesterilized in 2.5% bleach for 10 min and washed with deionized, sterile water. All steps were carried out under sterile conditions under laminar flow hood. Plates were sealed with parafilm and placed in a growth chamber at 26 °C and 120.1 µmol s⁻¹ m⁻¹ average light intensity. After 7 days of incubation, a growth level of seedlings was ranked. The phytotoxicity level was assessed based on the germination rate and ranked by the scale from 0 to 5 (0 = no effect and 5 = complete inhibition of germination).

Secondary Bioassay—*Lemna pausicostata*. The assay was carried out in nonpyrogenic polystyrene six-well plates (CoStar 3506, Corning Incorporated). Each well contained 4950 μ L of Hoagland's media and 50 μ L of water or the solvent or the compound solution. Three wells contained solution with the same concentration. Two three-frond *L. pausicostata* plants of the same age (4–5 day old) and approximate size were transferred into each well. All six-well plates were placed for 7 days in the Percival growth chamber at 26 °C and

120.1 μ mol s⁻¹ m⁻² average light intensity. The area of leaf growth was measured at day 0 and 7 using the Scanalyzer PL (LemnaTec). The results of the treatments were analyzed with R studio (version 3.4.1.) with the drc package. IC₅₀ values were calculated using four-parameter logistic functions.

Greenhouse Studies. In a greenhouse experiment, the phytotoxic activity of pyranopyran nitrile was tested on four plant species velvetleaf (*Abutilon theophrasti*) (10 days old), field bindweed (*Convolvulus arvensis*) (14 days old), crabgrass (*Digitaria sanguinalis*) (14 days old), and barnyard grass (14 days old). The plants grew in pots (10 cm/10 cm/10 cm) in soil Metro-Mix (Sungro). The application of the test compound was performed with Generation III Spray Booth (Bellspray Inc.). The track sprayer released the test solution with a pressure of 207 kPa psi and moved the spray boom with a speed of 1.48 km/h over the plants which gave 360 L of applied solution per hectare. The applied rate for the active ingredient was 1 kg per hectare. The final concentration in the solution of acetone was 1% and Tween 20 was 0.1%.

■ RESULTS AND DISCUSSION

In view of the potent antibacterial activity of pyranopyran nitrile 4, we decided to pursue the synthesis of the corresponding pyranopyran alkyne 8, similar in size but much different in the polarity of the side chain. Compound 8 was synthesized as illustrated in Scheme 1, by modification of the route we developed previously for the nitrile 4, in which a silyl alkyne was substituted for trimethylsilyl cyanide in the Ferrier reaction. The C-alkynylation of tri-O-acetyl-D-galactal 9 with bis(trimethylsilyl)acetylene, as described by Yamada, 11 gave the alkynyl glycoside 10 exclusively as the α -anomer. Deprotection of both hydroxy groups and the alkyne was achieved in a single step by treatment of 10 with potassium carbonate in methanol. 11

Conversion of 11 to the di-O-TBS ether 12 using TBDMSCl/imidazole was less efficient than expected; however, the yield could be improved to 93% using TBDMSOTf as the silylating agent and 2,6-lutidine as the base. The sequence leading from di-O-TBS ether 12 to the Wittig product 15 was carried out without the isolation of intermediate 4-O-TBS ether 13, as our previous studies had shown that similar systems were prone to silyl group migration from the 4-OH to the 6-OH. Oxidation of 13 to aldehyde 14 was carried out with the sulfur trioxide—pyridine complex (Parikh—Doering method). Side products from overoxidation were not observed with this method. The reaction of aldehyde 14 with the stabilized ylide under conditions described by Valverde gave 15 as the Z-isomer exclusively. Desilylation of 15 followed by cyclization gave 8 in 86% yield.

Scheme 2. Synthesis of Desmethylpyranopyrans 4 and 5

The synthesis of 8 was completely stereoselective. Two of its three chirality centers were provided by the starting carbohydrate, the third was established by the α -selective C-alkynylation, and the Wittig reaction gave only the Z-isomer.

Desmethylpyranopyran analogues 5 and 6 were synthesized by a highly stereoselective sequence that is similar to the route we developed for the synthesis of pyranopyrans 2 and 3 with modifications in certain key steps and a different choice of the carbohydrate starting material. The starting glycal in our route to 5 and 6 was 2,3,4,6-tetra-O-acetyl-1-deoxy-D-arabino-hex-1enopyranose (16) which is readily available from acetobromoglucose or acetobromogalactose by modifications of the reported preparation. ¹³ The C-alkynylation of **16** with bis(trimethylsilyl)acetylene as described by Isobe, ¹⁴ followed by hydrolytic workup and sodium borohydride reduction as described, gave exclusively alkynyl alcohol 17 in 57% overall yield with the desired stereochemistry at C-2 (Scheme 2). Four transformations occur in this three-step sequence: Ferrier rearrangement, enol acetate hydrolysis, β -elimination of the C-4 acetoxy group, and ketone reduction. Selective deprotection with TBAF gave alkyne 18. Selective reduction of the alkyne in 18 to the C-vinyl glycoside 19 proved more difficult than expected. In our initial attempts with Lindlar's catalyst in methanol, we obtained mixtures of C-vinyl and C-ethyl glycosides. We found that overreduction could be minimized with a procedure consisting of pretreatment of the catalyst (Pb-poisoned) with quinoline, changing the solvent from methanol to ethyl acetate and lowering the temperature to 0 °C. Efficient reduction of C-alkynyl to C-vinyl glycoside 19 occurred under these conditions. The sequence from starting glycal 16 to 19 proceeds in 48% overall yield. Acryloylation of 19 was straightforward, setting up the key lactone ring closure by RCM, which occurred with the Grubbs II catalyst in toluene at 80 °C to give 6. The reaction time was longer than expected, perhaps because one of the alkenes is electron deficient. A shorter reaction time was realized by including phenol in the RCM, as described by Forman.²⁰ The authors suggest that the rate enhancement that results from the addition of phenol to alkene metathesis is the result of stabilization of the active form of the catalyst and activation of the carbene-ruthenium complex. Carbohydrate deacylation is typically carried out with sodium methoxide in methanol; however, sugar enones are known to react rapidly with methoxide, 21 and we were

concerned that side reactions might occur with **6** under these conditions. Based on our previous synthesis of amicetose by lipase-catalyzed transesterification, ²² we subjected **6** to Amano PS-30 lipase in wet THF and observed clean deprotection to give desmethylpyranopyran **5** in 92% yield.

The syntheses illustrated in Schemes 1 and 2 are amenable for the preparation of structural analogues with different substitutions at the crucial C-6 position on the pyranopyran scaffold. As an example, we were able to carry out chemoselective hydration of the nitrile functional group in 4 to obtain pyranopyran amide 7. Hydrations of nitriles to amides are often carried out under acidic or basic conditions that might affect the dense functionality in 4, so we sought a catalytic method that would proceed under neutral conditions. Kiss and Hell reported the use of a copper (II) catalyst supported on molecular sieves in the presence of acetaldoxime for this conversion. ¹⁴ We substituted *tert*-butanol for methanol as the solvent in their procedure in order to avoid possible conjugate addition of methanol to the unsaturated lactone. Crystalline pyranopyran amide 7 was prepared by this method (Scheme 3). X-ray crystallographic analysis of 7 revealed that it

Scheme 3. Synthesis of Pyranopyran Amide 6

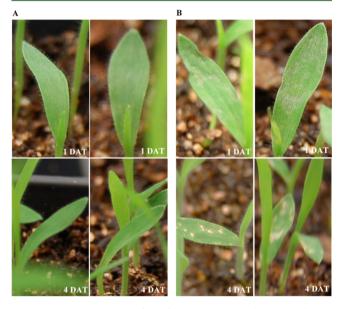
adopts a similar conformation in both rings to the nitrile but with intermolecular hydrogen bonds between amide groups on adjacent molecules in the crystal lattice. ²³

Early indications that these novel pyranopyrans may possess herbicidal activity were observed by a leaf puncture assay using tomato leaves as described by Evidente and co-workers in their study of afritoxinones A and B obtained from *Diplodia africana*. The data, shown in Figure 3, for compounds 2, 3, 4, 5, and 6 show necrotic lesions that are produced after exposure for 3 days to these compounds at a concentration of 1 mg/mL. All five compounds were phytotoxic in this assay, although not to the same extent. These results encouraged us to undertake a broader biological evaluation of the

pyranopyrans. Bioassay results for compounds 2, 3, and 4 as antibacterials against catfish pathogens in aquaculture and against *L. paucicostata* (L.) Helgelm (duckweed) were reported in our previous study. In this previous study, only nitrile 4 was significantly phytotoxic in the duckweek bioassay. Compound 4 was the most promising compound in the antibacterial assays against catfish pathogens. A minimum inhibitory concentration (MIC) of 0.002 mg/L against *E. ictaluri* indicated approximately 100 times greater potency than that of the antibiotic florfenicol used commercially for this disease. Further results of the biological testing of nitrile 4 for phytotoxic activity in bioassays including a greenhouse study and test results for the new analogues 5, 6, 7, and 8 in both phytotoxicity and antibacterial assays are described below.

Micro-bioassays for phytotoxicity are needed when the amount of test compound is limited. The phytotoxicity bioassays that we used in this study have been routinely used by the USDA NPURU laboratory, for example, in Favaretto et al.²⁴ Phytotoxic activity of compounds 4–8 against monocots represented by bentgrass (*A. stolonifera*) and dicots by lettuce (*L. sativa*) was evaluated in a primary ranking bioassay (Table 1). Bentgrass and lettuce are frequently used

Table 1. Evaluation of Phytotoxic Activity of Pyranopyprans in Primary and Secondary Bioassays^a


		ranking		$IC_{50} \pm SE$
#	sample ID	lettuce	bentgrass	duckweed (µM)
4	pyranopyran nitrile	4	1	<3 [ref 4]
7	pyranopyran amide	0	0	>1000
8	pyranopyran alkyne	3	4	38.1
6	desmethyldiplopyrone acetate	0	1	>1000
5	desmethyldiplopyrone	0	2	>1000

^aThe primary bioassay tests the pre-emergence effect of treatment on lettuce and bentgrass and is based on the scale from 0 to 5 (0 = no effect and 5 = complete inhibition of germination). The half maximal inhibitory concentration (IC_{50}) values from the growth change rate of duckweed fronds.

by numerous laboratories in preliminary tests of herbicidal activity of chemicals. Fast germination of both species (in 2-3 days) enables us to complete these tests within 7 days. Moreover, as described in the Materials and Methods section, we use only 200 μ L of the solution containing the compound per replicate. Such a minimalization enables the fast and efficient analysis of phytotoxic properties of tested compounds. Additionally, simultaneous testing of bentgrass and lettuce lets a very rapid identification of compounds with selective properties against monocots or dicots. In this pre-emergence test, seeds are placed in 1000 μM solution of the compound and incubated in a growth chamber for 7 days. Two compounds demonstrated significant phytotoxic potential against lettuce: pyranopyran nitrile 4 and pyranopyran alkyne 8 were ranked 4 and 3, respectively. All tested pyranopyrans had a range of activity against monocot species. Interestingly, 4 is less active than 8 as a pre-emergence agent against the monocot bentgrass, while based on IC50 values of postemergence bioassay on the monocot duckweed, their herbicidal effect is reversed. As reported previously, neither (-)-diplopyrone 2 nor its acetate derivative 3 was active in the phytotoxicity assay against duckweed. In this study, a similar lack of activity was observed for the corresponding desmethyl compounds 5 and 6. However, the alkyne analogue 8 showed

potent activity in this assay. The calculated IC $_{50}$ for the alkyne analogue reached 38.1 μ M, and it is the most phytotoxic compound after the nitrile.

Good results from our micro-bioassays are generally followed up by greenhouse assessments of effects on potted plants. The pyranopyran nitrile 4 was evaluated in a greenhouse study with four plant species velvetleaf (A. theophrasti), field bindweed (C. arvensis), crabgrass (D. sanguinalis), and barnyardgrass (Echinochloa crusgalli). Leaf tissue of both monocot species crabgrass and barnyardgrass developed signs of injuries as soon as 24 h after application (1 DAT). Results for crabgrass are shown in Figure 4; similar

Figure 4. Postemergence effect of pyranopyran nitrile **4** on crabgrass **1** and **4** DAT. Pictures present examples of treated seedlings (A) and control (B) pyranopyran nitrile—1 kg a. l. ha^{-1} . The crabgrass seedlings exposed to **4** developed necrosis.

results for barnyardgrass are not shown. Later, these light gray spots turned into necrotic brown lesions (4 DAT) (Figure 4). Leaves of dicot species showed little or no signs of damage. Nevertheless, the treated pool grew new leaves that are healthy and in size comparable to the control group (data not shown). The necrosis spots are the result of direct contact of plant tissue with droplets of sprayed solution. Both this evidence and the lack of translocation signs suggest that pyranopyran nitrile acts as a contact herbicide.

Summarizing phytotoxic properties of tested pyranopyran analogues: only compounds 4 and 8 showed significant phytotoxic activity, while 5–7 were not phytotoxic. Both pyranopyran nitrile (4) and pyranopyran alkyne (8) efficiently inhibit growth of *L. paucicostata*, while 8 demonstrates more universal pre- and postemergence potential against monocot species.

Among the four diplopyrone analogues evaluated for antibacterial activity in this study, pyranopyran alkyne 8 was the most active against *E. ictaluri* S02-1039 based on MIC results of 1.8 mg/L (Table 2). Compound 8 had the best MIC RDCF value of 4.9, also indicating the strongest activity of the four analogues when compared to the drug control florfenicol. Although compound 4, as reported in a previous study, 4 had a lower MIC (0.002 mg/L) than 8, the 24 h IC₅₀ (7.7 mg/L) of 4 was greater than the MIC by more than 3 orders of

Table 2. Results of Bioassay Evaluations of Diplopyrone Derivatives for Antibacterial Activity Against E. ictaluri S02-1039^a

				MIC^a	24 h IC ₅₀ ^b
test material	MIC^b	24 h IC ₅₀ ^c	MTT 24 h IC ₅₀ ^d	$RDCF^e$	$RDCF^e$
florfenicol	0.36	0.18			
5	18.2 (0)	48.2 (2.7)	14.7 (9.0)	50.6 (0)	358.5 (33.5)
6	22.4 (0)	39.2 (1.1)	35.8 (4.5)	62.2 (0)	290.5 (2.5)
7	19.5 (0)	20.5 (2.9)	16.6 (8.8)	54.2 (0)	135.8 (10.5)
8	1.8 (0)	22.0 (2.6)	6.2 (0.2)	4.9 (0)	181.2 (42.9)

[&]quot;Numbers in parentheses are the standard error of the means. b MIC = Minimum inhibitory concentration in mg/L. c 24 h IC₅₀ = 50% inhibition concentration in mg/L. d 24 h IC₅₀ (mg/L) as measurement of cell viability using the tetrazolium bromide dye MTT. e RDCF = Relative-to-drug-control florfenicol; values closer to 1.0 indicate higher antibacterial activity compared to florfenicol.

Table 3. Results of Bioassay Evaluations of Diplopyrone Derivatives for Antibacterial Activity against Flavobacterium columnare ALM-00-173^a

test material	MIC^b	24 h IC ₅₀ °	MTT 24 h IC ₅₀ ^d	MIC^b RDCF^e	24 h IC ₅₀ ^c RDCF ^e
florfenicol	0.36	0.69			
5	182.0 (0)	76.4 (3.6)	79.2 (2.7)	505.6 (0)	109.1 (2.1)
6	224.0 (0)	>224.0	>224.0	622.2 (0)	>329.4
7	107.3 (87.8)	54.6 (2.0)	75.1 (1.0)	297.9 (243.8)	38.5 (31.7)
8	176.0 (0)	43.1 (7.9)	59.0 (2.6)	488.9 (0)	63.0 (8.0)

[&]quot;Numbers in parentheses are the standard error of the means. b MIC = Minimum inhibitory concentration in mg/L. c 24 h IC₅₀ = 50% inhibition concentration in mg/L. d 24 h IC₅₀ (mg/L) as measurement of cell viability using the tetrazolium bromide dye MTT. "RDCF = Relative-to-drug-control florfenicol; values closer to 1.0 indicate higher antibacterial activity compared to florfenicol.

magnitude, which overall indicated significant sensitivity of E. *ictaluri* S02-1039 to 4, while higher amounts were required for 50% inhibition. Compound 8 had an IC₅₀ of 22.0 mg/L which was approximately 1 order of magnitude less active than 4.

None of the four diplopyrone analogues were highly active against F. columnare ALM-00-173 based on MIC results (Table 3). Compound 7 had the most activity against F. columnare ALM-00-173, with an MIC of 107.3 mg/L. Compound 8 had the lowest 24 h IC₅₀ results of 43.1 mg/L. These results are similar to the lack of strong activity by the other diplopyrone compounds reported in the first study.⁴

Challenge studies using channel catfish would determine the efficacy of compounds 4 and 8 in the potential management of ESC. Because these two compounds were not very toxic against *F. columnare*, they do not appear to possess broadspectrum toxicity against Gram-negative bacteria in general. Bioassay evaluation of natural and natural product-based compounds is the first step in the discovery of novel compounds that could be used to manage common diseases of cultured catfish. These discoveries involve novel compounds, and the exact modes of antibacterial actions against specific bacteria are unknown. Additional research may lead to the synthesis of more active compounds as structure—activity relationships are determined.

The synthesis of the four new pyranopyrans based on the core structure of diplopyrone has been achieved using carbohydrate starting materials and *C*-glycosides as key intermediates.

The synthesis of pyranopyrans 5, 6, and 7 was carried out in seven or eight steps from carbohydrates; no stereoisomers are produced at any stage. The most promising of these new compounds in terms of its biological activity is pyranopyran alkyne 8, which was synthesized in eight steps from tri-O-acetyl-D-galactal. Compound 8 possesses potent antibacterial activity against the bacterial pathogen *E. ictaluri* that causes enteric septicemia (ESC) in catfish and herbicidal activity in

bioassay with monocots A. stolonifera (bentgrass), L. sativa (lettuce), and L. paucicostata (L.) Helgelm (duckweed). Further tests of herbicidal activity in greenhouse studies with pyranopyran nitrile 4 showed potential against four plant species. Both the nitrile 4 and the alkyne 8 were active against monocots. The biological activities of pyranopyrans 4 and 8 demonstrate the potential of these compounds as antibacterials and herbicides. The bioassay results of 4 and 8 show an intriguing structure-activity relationship for the C-6 position on the pyranopyran scaffold. Amide 7 was synthesized to provide a compound that would have greater polarity and aqueous solubility, yet it proved to be much less active than either 4 or 8. An intriguing aspect of pyranopyran 8 is the possibility of exploiting the alkyne functional group in azidealkyne cycloadditions to obtain triazole analogues.²⁶ Bioassay results suggest an interplay between the pyranopyran ring system and the C-6 substituent. Further studies are required to speculate on the specific role of substituents at the crucial C-6 position, and additional analogues would be useful in this regard. Additionally, studies of the mechanisms of action and off-target effects of these compounds will need to be conducted to determine their safety and potential applications.

ASSOCIATED CONTENT

Solution Supporting Information

The Supporting Information is available free of charge at https://pubs.acs.org/doi/10.1021/acs.jafc.0c02564.

NMR spectra for compounds 5, 6, 8, 10, 11, 12, 14, 15, 17, 18, 19, and 20 (PDF)

AUTHOR INFORMATION

Corresponding Author

1

Robert M. Giuliano – Department of Chemistry, Villanova University, Villanova, Pennsylvania 19085, United States; orcid.org/0000-0001-9639-7222; Email: robert.giuliano@villanova.edu

Authors

Jack H. Roireau — Department of Chemistry, Villanova University, Villanova, Pennsylvania 19085, United States Robert J. Rosano — Department of Chemistry, Villanova University, Villanova, Pennsylvania 19085, United States

Nicholas C. Lazzara – Department of Chemistry, Villanova University, Villanova, Pennsylvania 19085, United States

Thomas Chen – Department of Chemistry, Villanova University, Villanova, Pennsylvania 19085, United States

Joanna Bajsa-Hirschel — Natural Products Utilization Research Unit, Agricultural Research Service, United States Department of Agriculture, University, Mississippi 38677, United States

Kevin K. Schrader – Warmwater Aquaculture Research Unit, Agricultural Research Service, U.S. Department of Agriculture, University, Mississippi 38677, United States

Stephen O. Duke — Natural Products Utilization Research Unit, Agricultural Research Service, United States Department of Agriculture, University, Mississippi 38677, United States; orcid.org/0000-0001-7210-5168

Dennis Wykoff – Department of Biology, Villanova University, Villanova, Pennsylvania 19085, United States

Complete contact information is available at: https://pubs.acs.org/10.1021/acs.jafc.0c02564

Notes

The authors declare no competing financial interest.

ACKNOWLEDGMENTS

This work was funded by a Major Research Instrumentation grant from the National Science Foundation (CHE-1827930). J.H.R. thanks Villanova University for a Graduate Research Fellowship.

REFERENCES

- (1) Cimmino, A.; Masi, M.; Evidente, M.; Superchi, S.; Evidente, A. Fungal Phytotoxins with Potential Herbicidal Activity: Chemical and Biological Characterization. *Nat. Prod. Rep.* **2015**, *32*, 1629–1653.
- (2) Meepagala, K. M.; Johnson, R. D.; Duke, S. O. Curvularin and Dehydrocurvularin as Phytotoxic Constituents from Curvularia intermedia Infecting Pannanus amaryllifolius. *J. Agric. Chem. Environ.* **2016**, *05*, 12–22.
- (3) Duke, S. O.; Owens, D. K.; Dayan, F. E. Natural product-based chemical herbicides. In *Weed Control: Sustainability, Hazards and Risks in Cropping Systems Worldwide*; Korres, N. E., Burgos, N. R., Duke, S. O., Eds; CRC Press: Boca Raton, FL, 2019; pp 153–165.
- (4) Lazzara, N. C.; Rosano, R. J.; Vagadia, P. P.; Giovine, M. T.; Bezpalko, M. W.; Piro, N. A.; Kassel, W. S.; Boyko, W. J.; Zubris, D. L.; Schrader, K. K.; Wedge, D. E.; Duke, S. O.; Giuliano, R. M. Synthesis and Biological Evaluation of 6-[(1R)-1-Hydroxyethyl]-2,4a(R),6(S),8a(R)-tetrahydropyrano-[3,2-b]-pyran-2-one and Structural Analogues of the Putative Structure of Diplopyrone. *J. Org. Chem.* 2019, 84, 666–678.
- (5) Giuliano, R. Synthesis of Pyranopyrans from Carbohydrates. Curr. Org. Chem. 2014, 18, 1686–1700.
- (6) Choi, H.-w.; Demeke, D.; Kang, F.-A.; Kishi, Y.; Nakajima, K.; Nowak, P.; Wan, Z.-K.; Xie, C. Synthetic studies on the marine natural product halichondrins. *Pure Appl. Chem.* **2003**, *75*, 1–17.
- (7) Evidente, A.; Maddau, L.; Spanu, E.; Franceschini, A.; Lazzaroni, S.; Motta, A. Diplopyrone, a New Phytotoxic Tetrahydropyranpyran-2-one Produced byDiplodia mutila, a Fungus Pathogen of Cork Oak. *J. Nat. Prod.* **2003**, *66*, 313–315.

- (8) Giorgio, E.; Maddau, L.; Spanu, E.; Evidente, A.; Rosini, C. Assignment of the Absolute Configuration of (+)-Diplopyrone, the Main Phytotoxin Produced by Diplodia mutila, the Pathogen of the Cork Oak Decline, by a Nonempirical Analysis of Its Chiroptical Properties. J. Org. Chem. 2005, 70, 7–13.
- (9) Fusè, M.; Mazzeo, G.; Longhi, G.; Abbate, S.; Masi, M.; Evidente, A.; Puzzarini, C.; Barone, V. Unbiased Determination of Absolute Configurations by vis-à-vis Comparison of Experimental and Simulated Spectra: The Challenging Case of Diplopyrone. *J. Phys. Chem. B* **2019**, *123*, 9230–9237.
- (10) Schrader, K. K. Compounds with Inhibitory Activity against the Channel Catfish PathogensEdwardsiella ictaluriandFlavobacterium columnare. *N. Am. J. Aquacult.* **2008**, *70*, 147–153.
- (11) Yamada, H.; Adachi, M.; Nishikawa, T. Stereocontrolled synthesis of the oxathiabicyclo[3.3.1]nonane core structure of tagetitoxin. *Chem. Commun.* **2013**, 49, 11221–11223.
- (12) Ferrier, R. J. Modified Synthesis if 1-Deoxyald-1-enopyranose (2-Hydroxyglycal) Esters. In *Methods in Carbohydrate Chemistry VI*; Whistler, R. L., BeMiller, J. N., Eds.; Academic Press: New York, 1972; pp 307–311.
- (13) Chang, W.-C.; Isobe, M. Diastereoselective cobalt-assisted Ferrier-type rearrangement to construct chiral alkynyl cyclohexanones. *Tetrahedron* **2014**, *70*, 8324–8333.
- (14) Kiss, Á.; Hell, Z. A heterogeneous catalytic method for the conversion of nitriles into amides using molecular sieves modified with copper(II). *Tetrahedron Lett.* **2011**, 52, 6021–6023.
- (15) Evidente, A.; Masi, M.; Linaldeddu, B. T.; Franceschini, A.; Scanu, B.; Cimmino, A.; Andolfi, A.; Motta, A.; Maddau, L. Afritoxinones A and B, dihydrofuropyran-2-ones produced by Diplodia africana the causal agent of branch dieback on Juniperus phoenicea. *Phytochemistry* **2012**, *77*, 245–250.
- (16) Decostere, A.; Henckaerts, K.; Ducatelle, R.; Haesebrouck, F. An alternative model to study the association of rainbow trout (Oncorhynchus mykiss L.) pathogens with the gill tissue. *Lab. Anim.* **2002**, *36*, 396–402.
- (17) Schrader, K. K.; Harries, M. D. A rapid bioassay for bactericides against the catfish pathogens Edwardsiella ictaluri and Flavobacterium columnare. *Aquacult. Res.* **2006**, *37*, 928–937.
- (18) Parikh, J. R.; Doering, W. v. E. Sulfur Trioxide in the Oxidation of Alcohols by Dimethyl Sulfoxide. *J. Am. Chem. Soc.* **1967**, *89*, 5505–5507
- (19) Valverde, S.; Martin-Lomas, M.; Herradon, B.; Garcia-Ochoa, S. The reaction of carbohydrate-derived alkoxyaldehydes with methoxycarbonylmethylenetriphenylphosphorane: stereoselective synthesis of β -unsaturated esters. *Tetrahedron* **1987**, 43, 1895–1901.
- (20) Forman, G. S.; McConnell, A. E.; Tooze, R. P.; Janse van Rensburg, W.; Meyer, W. H.; Kirk, M. M.; Dwyer, C. L.; Serfontein, D. W. A Convenient System for Improving the Efficiency of First-Generation Ruthenium Olefin Metathesis Catalysts. *Organometallics* **2005**, *24*, 4528–4542.
- (21) Thiem, J.; Elvers, J. Eine neue Darstellung von Methyl- α -L-mycarosid. *Chem. Ber.* **1978**, *111*, 3514–3515.
- (22) Noecker, L. A.; Martino, J. A.; Foley, P. J.; Rush, D. M.; Giuliano, R. M.; Villani, F. J., Jr Synthesis of Amicetose by Three Enantioselective Methods. *Tetrahedron: Asymmetry* **1998**, *9*, 203–212.
- (23) Greene, J.; Kopplin, N.; Roireau, J.; Bezpalko, M.; Kassel, S.; Giuliano, M. W.; Giuliano, R. Synthesis and crystal structure of (2S,4aR,8aR)-6-oxo-2,4a,6,8a-tetrahydropyrano[3,2-b]pyran-2-carboxamide. *Acta Crystallogr., Sect. E: Crystallogr. Commun.* **2020**, 76, 761
- (24) Favaretto, A.; Cantrell, C. L.; Fronczek, F. R.; Duke, S. O.; Wedge, D. E.; Ali, A.; Scheffer-Basso, S. M. New Phytotoxic Cassane-like Diterpenoids from Eragrostis plana. *J. Agric. Food Chem.* **2019**, *67*, 1973–1981.
- (25) Travaini, M. L.; Sosa, G. M.; Ceccarelli, E. A.; Walter, H.; Cantrell, C. L.; Carrillo, N. J.; Dayan, F. E.; Meegapala, K. M.; Duke, S. O. Khellin and Visnagin, Furanochromones from Ammi visnaga (L.) Lam., as Potential Bioherbicides. *J. Agric. Food Chem.* **2016**, *64*, 9475–9487.

(26) Kolb, H. C.; Finn, M. G.; Sharpless, K. B. Click Chemistry: Diverse Chemical Function from a Few Good Reactions. *Angew. Chem., Int. Ed. Engl.* **2001**, *40*, 2004–2021.