Predicate Detection to Solve Combinatorial Optimization
Problems

Vijay K. Garg
The University of Texas at Austin
Austin, Texas, USA
garg@ece.utexas.edu

ABSTRACT

We present a method to design parallel algorithms for constrained
combinatorial optimization problems. Our method solves and gen-
eralizes many classical combinatorial optimization problems includ-
ing the stable marriage problem, the shortest path problem and the
market clearing price problem. These three problems are solved in
the literature using Gale-Shapley algorithm, Dijkstra’s algorithm,
and Demange, Gale, Sotomayor algorithm. Our method solves all
these problems by casting them as searching for an element that
satisfies an appropriate predicate in a distributive lattice. Moreover,
it solves generalizations of all these problems — namely finding
the optimal solution satisfying additional constraints called lattice-
linear predicates. For stable marriage problems, an example of such
a constraint is that Peter’s regret is less than that of Paul. For short-
est path problems, an example of such a constraint is that cost of
reaching vertex vy is at least the cost of reaching vertex v,. For the
market clearing price problem, an example of such a constraint is
that item; is priced at least as much as itemy. Our algorithm, called
Lattice-Linear Predicate Detection (LLP) can be implemented in
parallel without any locks or compare-and-set instructions. It just
assumes atomicity of reads and writes.

CCS CONCEPTS
« Theory of computation — Parallel algorithms;

KEYWORDS

distributive lattices; predicate detection; optimization problems

ACM Reference Format:

Vijay K. Garg. 2020. Predicate Detection to Solve Combinatorial Optimiza-
tion Problems. In Proceedings of the 32nd ACM Symposium on Parallelism in
Algorithms and Architectures (SPAA °20), July 15-17, 2020, Virtual Event, USA.
ACM, New York, NY, USA, 11 pages. https://doi.org/10.1145/3350755.3400235

1 INTRODUCTION

We present a method called lattice-linear predicate detection that
can solve many combinatorial optimization problems. We use this
method to solve generalizations of three of the most fundamen-
tal problems in combinatorial optimization — the stable marriage
problem [11], the shortest path problem [9], and the assignment

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

SPAA 20, July 15-17, 2020, Virtual Event, USA

© 2020 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-6935-0/20/07...$15.00
https://doi.org/10.1145/3350755.3400235

problem [18]. The classical algorithms to solve these problems are
Gale-Shapley algorithm for the stable marriage problem [11], Di-
jkstra’s algorithm for the shortest path problem [9], and Kuhn’s
Hungarian method to solve the assignment problem [18] (or equiv-
alently, Demange-Gale-Sotomayor auction-based algorithm [7] for
market clearing prices). Could there be a single efficient parallel
algorithm that solves all of these problems?

In this paper, we describe a technique that solves not only these
problems but more general versions of each of the above problems.
We seek the optimal solution for these problems that satisfy addi-
tional constraints modeled using a lattice-linear predicate [4]. When
the set of constraints is empty, we get back the classical problems.
Our technique requires the underlying search space to be viewed
as a distributive lattice [3, 6, 12]. Common to all these seemingly
disparate combinatorial optimization problems is the structure of
the feasible solution space. The set of all stable matchings, the set
of all feasible rooted trees for the shortest path problem, and the set
of all market clearing prices are all closed under the meet operation
of the lattice. If the order is appropriately defined, then finding
the optimal solution (the man-optimal stable marriage, the short-
est path cost vector, the minimum market clearing price vector) is
equivalent to finding the infimum of all feasible solutions in the
lattice.

We note here that it is well-known that the set of stable match-
ing and the set of market clearing price vectors form distributive
lattices. The claim that the set of stable matchings forms a distribu-
tive lattice is given in [16] where this observation is attributed
to Conway. The set of market clearing price vectors forms a dis-
tributive lattice is given in [19]. However, the algorithms to find
the man-optimal stable matching and the minimum market clear-
ing price vectors are not derived from the lattice property. In our
method, once the lattice-linearity of the feasible solution space
is established, the algorithm to find the optimal solution falls out
as a consequence. To the best of our knowledge, this is the first
paper to derive Gale-Shapley’s algorithm, Dijkstra’s algorithm and
Demange-Gale-Sotomayor’s algorithm from a single algorithm by
exploiting a lattice property. In fact, we derive parallel version of
all these algorithms. Our algorithms do not use any synchroniza-
tion (locks, compare-and-sets, or barriers) assuming read-write
atomicity of memory locations.

The lattice-linear predicate detection method to solve the com-
binatorial optimization problem is as follows. The first step is to
define a lattice of vectors L such that each vector is assigned a point
in the search space. For the stable matching problem, the vector
corresponds to the assignment of men to women (or equivalently,
the choice number for each man). The second step in our method
is to define a boolean predicate B that models feasibility of the

vector. For the stable matching problem, an assignment is feasible
iff it is a matching and there is no blocking pair. The third step is
to show that the feasibility predicate is a lattice-linear predicate
[4]. Lattice-linearity allows one to search for a feasible solution
efficiently. If any point in the search space is not feasible, it allows
one to make progress towards the optimal feasible solution with-
out any need for exploring multiple paths in the lattice. Moreover,
multiple processes can make progress towards the feasible solution
independently. This property of lattice-linearity allows the search
algorithm to be parallel.

In summary, this paper makes the following contributions to the
constrained combinatorial optimization problem. First, we present
a unifying framework and the lattice-linear predicate detection
algorithm (LLP) for such problems. By applying the lattice-linear
predicate detection algorithm to unconstrained problems, we get
parallel versions of Gale-Shapley algorithm for the stable matching
problem, Dijkstra’s algorithm and Bellman-Ford algorithm [1, 10]
for the shortest path problem and Demange, Gale, Sotomayor’s
algorithm for the minimum market clearing price.

Note that our technique does not necessarily lead to the most-
efficient parallel algorithm. Additional techniques may be necessary
to optimize the algorithm further. It does provide a unifying frame-
work for analyzing a large class of algorithms. In a rough sense,
our framework is similar to Linear Programming [2] formulations.
Most problems discussed in the paper can also be formulated as
(integer) linear programs but those formulations may not result in
most efficient algorithms.

Second, we get solutions for the constrained version of each
of these problems, whenever the constraints are lattice-linear. We
solve the Constrained Stable Matching Problem where in addition to
men’s preferences and women’s preferences, there may be a set of
lattice-linear constraints. For example, we may require that Peter’s
regret [14] should be less than that of Paul, where the regret of a man
in a matching is the choice number he is assigned. We note here that
some special cases of the constrained stable marriage problems have
been studied. Dias et al [5, 8] study the stable marriage problem
with restricted pairs. A restricted pair is either a forced pair which
is required to be in the matching, or a forbidden pair which must
not be in the matching. Both of these constraints are lattice-linear
and therefore can be modeled in our system.

Third, by applying a constructive version of Birkhoff’s theorem
on finite distributive lattices [3, 6, 12, 17], we give an algorithm
that outputs a succinct representation of all feasible solutions. In
particular, the join-irreducible elements [6] of the feasible sublat-
tice can be determined efficiently (in polynomial time). For the
constrained stable matching problem, we get a concise represen-
tation of all stable matchings that satisfy given constraints. Thus,
our method yields a more general version of rotation posets [14] to
represent all constrained stable matchings. Analogously, we get a
concise representation of all constrained integral market clearing
price vectors.

The paper is organized as follows. Section 2 gives the definition
of Lattice-Linear predicates and the LLP algorithm for detecting
such predicates. The LLP Algorithm is a parallel algorithm that
can be applied to all the problems mentioned earlier. Section 3
shows lattice-linearity of stability in the stable matching and gives
a parallel algorithm for the constrained stable matching problem.

Gale-Shapley algorithm can be viewed as a special case of this algo-
rithm. Section 4 shows how Bellman-Ford, Dijkstra and Johnson’s
algorithm [15] can be viewed as special cases of LLP algorithm.
Section 6 shows how Gale-Demange-Sotomayor algorithm for the
assignment problem can be viewed as a special case of LLP algo-
rithm. Section 8 compares this work with the related work. Finally,
Section 9 presents conclusions and future work.

2 LATTICE-LINEAR PREDICATES

Let L be the lattice of all n-dimensional vectors of reals greater than
or equal to zero vector and less than or equal to a given vector T
where the order on the vectors is defined by the component-wise
natural <. The lattice is used to model the search space of the com-
binatorial optimization problem. The combinatorial optimization
problem is modeled as finding the minimum element in L that sat-
isfies a boolean predicate B, where B models feasible (or acceptable
solutions). We are interested in parallel algorithms to solve the com-
binatorial optimization problem with n processes. We will assume
that the system maintains as its state the current candidate vector
G € L in the search lattice, where G[i] is maintained at process i.
We call G, the global state, and G[i], the state of process i.

Finding an element in a lattice that satisfies the given predicate
B, is called the predicate detection problem. Finding the minimum
element that satisfies B (whenever it exists) is the combinatorial
optimization problem. We now define lattice-linearity which enables
efficient computation of this minimum element. Lattice-linearity is
first defined in [4] in the context of detecting global conditions in a
distributed system where it is simply called linearity. We use the
term lattice-linearity to avoid confusion with the standard usage of
linearity.

A key concept in deriving an efficient predicate detection algo-
rithm is that of a forbidden state. Given a predicate B, and a vector
G € L, a state G[i] is forbidden (or equivalently, the index i is for-
bidden) if for any vector H € L, where G < H, if H[i] equals G[i],
then B is false for H. Formally,

Definition 2.1 (Forbidden State [4]). Given any distributive lattice
L of n-dimensional vectors of R, and a predicate B, we define
forbidden(G, i,B) = VH € L : G < H : (G[i] = H[i]) = —B(H).

We define a predicate B to be lattice-linear with respect to a
lattice L if for any global state G, B is false in G implies that G
contains a forbidden state. Formally,

Definition 2.2 (lattice-linear Predicate [4]). A boolean predicate
B is lattice-linear with respect to a lattice L iff VG € L : =B(G) =
(Fi : forbidden(G, i, B)).

We now give some examples of lattice-linear predicates.

(1) Job Scheduling Problem: Our first example relates to sched-
uling of n jobs. Each job j requires time ¢; for completion
and has a set of prerequisite jobs, denoted by pre(j), such
that it can be started only after all its prerequisite jobs have
been completed. Our goal is to find the minimum comple-
tion time for each job. We let our lattice L be the set of all
possible completion times. A completion vector G € L is
feasible iff Bjops(G) holds where Bjops(G) = Vj : (Glj] 2
tj) A (Vi € pre(j) : Gj] = G[i] + t}). Bjops is lattice-linear
because if it is false, then there exists j such that either

G[j] < tj or Ji € pre(j) : G[j] < G[i] + tj. We claim that

forbidden(G, i, Bj,p)- Indeed, any vector H > G cannot be

feasible with G[j] equal to H[j]. The minimum of all vectors
that satisfy feasibility corresponds to the minimum comple-
tion time.

Shortest Path Problem: We are given a weighted directed

graph and a fixed vertex s. We are required to find the cost

of the shortest path from s to all vertices. Let the input be
specified as wl[i, j] as the cost of going from i to j. Here our
objective is to output maximum G[j] subject to constraints
that G[j] is less than or equal to G[i] + w[i,j] for all i €
pre(j). One can view G[j] as an upper bound on the cost
of reaching j. We assume that there are no negative cycles
and thus G[s] equals zero. For this problem, the order on
the underlying lattice is inverted. The lattice is defined on
the value of G[j] for all vertices except the source vertex.

The minimum element is the vector with all components as

0. It is easy to check that the predicate G[j] < min{G[i] +

wli, j] | i € pre(j)} is lattice-linear. If G[j] > G[i] + wli, j] for

some (i, j) then it will continue to hold until G is advanced

on j, i.e., the value of G[j] is reduced at least to G[i] + wl[i, j].

(3) Continuous Optimization Problem: We are required to
find minimum nonnegative x and y such that B = (x >
2y? +5) A (y = x — 4). We view this problem as finding
minimum (x, y) pair such that B holds. It is easy to verify
that B is lattice-linear. If the first conjunct is false, then x is
forbidden. Unless x is increased the predicate cannot become
true, even if other variables (y for this example) increase. If
the second conjunct is false, then y is forbidden.

(4) A Non Lattice-Linear Predicate As an example of a pred-
icate that is not lattice-linear, consider the predicate B =
2.j Gljl > 1 defined on the space of two dimensional vectors.
Consider the vector G equal to (0, 0). The vector G does not
satisfy B. For B to be lattice-linear either the first index or
the second index should be forbidden. However, none of the
indices are forbidden in (0, 0). The index 0 is not forbidden
because the vector H = (0, 1) is greater than G, has H[0]
equal to G[0] but it still satisfies B. The index 1 is also not
forbidden because H = (1,0) is greater than G, has H[1]
equal to G[1] but it satisfies B.

@

~

The following Lemma is useful in proving lattice-linearity of
predicates.

LEMMA 2.3. Let B be any boolean predicate defined on a lattice L
of vectors.
(a) Let f : L — Ry be any monotone function defined on the lattice
L of vectors of Rx»o. Consider the predicate B = G[i] > f(G) for some
fixed i. Then, B is lattice-linear.
(b) Let L be the subset of the lattice L of the elements that satisfy B.
Then, B is lattice-linear iff Lg is closed under meets.
(c) If B1 and By are lattice-linear then By A By is also lattice-linear.

ProoF. (a) Suppose Bis false for G. This implies that G[i] < f(G).
Consider any vector H > G such that H[i] is equal to G[i]. Since
Gli] < f(G), we get that H[i] < f(G). The monotonicity of f
implies that H[i] < f(H) which shows that —B(H).

(b) This is shown in [4]. Assume that B is not lattice-linear. This

implies that there exists a global state G such that —B(G), and
Vi:3H; > G : (Gli] = H;[i]) and B(H;). Consider Y = U; {H;}. All
elements of Y € Lg. However, inf Y which is equal to G is not an
element of Lg. This implies that L is not closed under the meet
operation. Conversely, let Y = {Hj, Hy, ..., Hi } be any subset of
Lp such that its meet G does not belong to Lg. Since G is the meet
of Y, for any i, there exists j € {1...k} such that G[i] = Hji].
Since B(Hj) is true for all j, it follows that there exists a G for which
lattice-linearity does not hold.

(c) Follows from the equivalence of meet-closed predicates with
lattice-linearity and that meet-closed predicates are closed under
conjunction. For a more direct proof, suppose that —(B; A Bz). This
implies that one of the conjuncts is false and therefore from the
lattice-linearity of that conjunct, a forbidden state exists. O

For the job scheduling example, we can define B; as G[j] >
max(tj, max{G[i]+t;j | i € pre(j)}). Since f;(G) = max(tj, max{Gl[i]+
tj |i € pre(j)}) is a monotone function, it follows from Lemma 2.3(a)
that B; is lattice-linear. The predicate Bj,ps = Vj : B; is lattice-
linear due to Lemma 2.3(c). Also note that the problem of finding the
minimum vector that satisfies Bjop is well-defined due to Lemma
2.3(b).

We now discuss detection of lattice-linear predicates which re-
quires an additional assumption called the efficient advancement
property [4] — there exists an efficient (polynomial time) algorithm
to determine the forbidden state. This property holds for all the
problems considered in this paper. Once we determine j such that
forbidden(G, j, B), we also need to determine how to advance along
index j. To that end, we extend the definition of forbidden as follows.

Definition 2.4 (a-forbidden). Let B be any boolean predicate on
the lattice L of all assignment vectors. For any G, j and a positive
real @ > G[j], we define forbidden(G, j,B,¢) if VH € L : H > G :
(H[j] < @) = —B(H).

Given any lattice-linear predicate B, suppose —B(G). This means
that G must be advanced on all indices j such that forbidden(G, j, B).
We use a function «(G, j, B) such that forbidden(G, j, B, «(G, j, B))
holds whenever forbidden(G, j, B) is true. With the notion of a(G, j, B),
we have the algorithm LLP shown in Fig. 1. The algorithm LLP has
two inputs — the predicate B and the top element of the lattice T.
It returns the least vector G which is less than or equal to T and
satisfies B (if it exists). Whenever B is not true in the current vector
G, the algorithm advances on all forbidden indices j in parallel.
This simple parallel algorithm can be used to solve a large variety
of combinatorial optimization problems by instantiating different
forbidden(G, j, B) and «(G, j, B).

We note here that LLP algorithm has a single variable G. Suppose
that we maintain G[j] on a separate thread for all j. Then, all these
threads can evaluate forbidden(G, j, B) in parallel and also advance
G[j] to a(G, Jj, B) in parallel. Since only thread j can update G[j],
there cannot be any write-write conflict. Moreover, assuming that
we have linearizable reads and writes, if one thread j is updating
G[j] and thread i reads the value of G[j] and gets the old value of
G[j], the algorithm continues to behave correctly. In other words,
LLP algorithm does not require any locks. We do assume that any
update to G is eventually visible to all threads and that the algorithm
terminates only when G does not have any forbidden component.

vector function getLeastFeasible(T: vector, B: predicate)

var G: vector of reals initially Vi : G[i] = 0;

while 3j : forbidden(G, j, B) do

for all j such that forbidden(G, j, B) in parallel:

if («(G, j, B) > T[j]) then return null;
else G[j] := a(G, j, B);

endwhile;

return G; // the optimal solution

Figure 1: Parallel Algorithm LLP to find the minimum vector
less than or equal to T that satisfies B

THEOREM 2.5. Suppose there exists a fixed constant § > 0 such that
a(G, j, B) — G[j] = 6 whenever forbidden(G, j, B). Then, the parallel
algorithm LLP finds the least vector G < T that satisfies B, if one
exists.

ProoF. Since G[j] increases by at least § for at least one forbid-
den j in every iteration of the while loop, the algorithm terminates
in at most };[T[i]/8] number of steps.

We show that the algorithm maintains the invariant (I1) that for
all indices j, any vector V such that V[j] is less than G[j] cannot
satisfy B. Formally, the invariant (I1) is

Vj: (YV € L: (V[j] < G[j]) = —B(V)).

Initially, the invariant holds trivially because G is initialized to 0.
Suppose forbidden(G, j, B). Then, we increase G[j] to a(G, j, B). We
need to show that this change maintains the invariant. Pick any V
such that V[j] < (G, j, B). We now do a case analysis. If V > G,
then —B(V) holds from the definition of a(G, j, B). Otherwise, there
exists some k such that V[k] < G[k]. In this case =B(V') holds due
to (I1).

We now show Theorem 2.5 using the invariant. First, suppose
that the algorithm LLP terminates because a(G, j, B) > T[j]. In this
case, there is no feasible vector in L due to the invariant (because
the predicate B is false for all values of G[j]). Now suppose that
the algorithm terminates because there does not exist any j such
that forbidden(G, j, B). This implies that G satisfies B due to lattice-
linearity of B. It is also the least vector that satisfies B due to the
invariant (I1). O

2.1 Simple Examples
We now derive parallel algorithms for some simple examples.

(1) Job Scheduling: For the job scheduling example, we get a
parallel algorithm to find the minimum completion time by
using forbidden(G, j, Bjops) = (Glj] < tj) V (3i € pre()) :
Glj] < G[i] + tj), and a(G, j, Bjops) = max{tj, max{G[i] +
tli € pre(i)}}.

The resulting algorithm is shown in Fig. 2. Instead of initializ-
ing G[j] with 0, we initialize it with #; to simplify the forbid-
den predicate. The program returns the least G that satisfies
the predicate Bj,ps. Any j that does satisfies forbidden(j)
triggers the advance section. Each thread can evaluate whether
it is forbidden (possibly using stale values of other compo-
nents) in parallel and then advance itself. Computation of
the forbidden predicate at node j takes time proportional to

Pj: Code for thread j
// common declaration for all the programs below
shared var G: array[1..n] of 0..maxint;
job-scheduling:
input: ¢[j] : int, pre(j): list of 1..n;
init: G[j] := ¢t[j];
forbidden: G[j] < max{G[i] + t[j] | i € pre(j)};
advance: G[j] := max{Gl[i] + t[j] | i € pre(j)};

shortest path from node s: Parallel Bellman-Ford

input: pre(j): list of 1..n; w[i, j]: int for all i € pre(j)
init: if (j = s) then G[j] := 0 else G[j] := maxint;
forbidden: G[j] > min{G[i] + w[i, j] | i € pre(j)}
advance: G[j] := min{G[i] + w[i, j] | i € pre(j)}

Figure 2: LLP Parallel Program for the job scheduling and
the shortest path problems

the size of pre(j). If all threads evaluate forbidden in parallel,
the number of iterations required equals the length of the
critical path in the prerequisite graph.

Shortest Path Problem: Parallel Bellman-Ford: For this prob-
lem our goal is to maximize G[j] subject to constraints that
Glj] is less than or equal to G[i] + w[i, j] for all i € pre(j).
The variable G[i] is initialized to oo for all indices except for
the source vertex which is initialized to 0. Since the predicate
G[j] < min{G[i] + w[i,j] | i € pre(j)} is lattice-linear, the
program returns the optimal cost vector. Each thread evalu-
ates whether it is forbidden in G in parallel and advances in
a manner similar to the job scheduling problem.

In this example, G[j] corresponds to an upper-bound on the
cost of the shortest path from the source to node j. This
is the standard method of edge-relaxation algorithms for
shortest paths. In section 4, we discuss LLP algorithms based
on maintaining lower bounds instead of the upper bounds.

—
S
~

We now show, on account of Lemma 2.3(c), that if we have a
parallel algorithm for a problem, then we also have one for the
constrained version of that problem.

LEMMA 2.6. Let LLP be the parallel algorithm to find the least
vector G that satisfies By if one exists. Then, LLP can be adapted to
find the least vector G that satisfies B1 A By for any lattice-linear
predicate By.

Proor. The algorithm LLP can be used with the following changes:
forbidden(G, j, B A By) = forbidden(G, j, B1) V forbidden(G, j, By),
and «(G, j, B1 A By) = max{a(G,j, By), a(G, j, B2)}.

m}

For example, suppose that we want the minimum completion
time of jobs with the additional lattice-linear constraint that B2(G) =
(G[1] = GJ2]). By is lattice-linear with forbidden(G, 1, B2) = (G[1] <
G[2]) and forbidden(G, 2, B2) = (G[2] < G[1]). By applying, Lemma
2.6, we get a parallel algorithm for the constrained version.

3 CONSTRAINED STABLE MATCHING
PROBLEM

In this problem, we are given as input n men and n women. We are
also given a list of men preferences as mpre f where mpre f[i][k]
denotes k" top choice of man i. The women preferences are more
convenient to express as a rank array where rank[i][j] is the rank
of man j by woman i. A matching between man and woman is stable
if there is no blocking pair, i.e., a pair of woman and man such that
they are not matched and prefer each other to their spouses.

The underlying lattice for this example is the set of all n dimen-
sional vectors of 1..n. We let G[i] be the choice number that man i
has proposed to. Initially, G[i] is 1 for all men. For convenience, let
p(G, i) denote the woman mpre f[i][Gli]].

Definition 3.1. An assignment G is feasible for the stable marriage
problem if (1) it corresponds to a perfect matching (all men are
paired with different women) and (2) it has no blocking pairs.

We show that the predicate “G is a stable marriage” is a lattice-
linear predicate.

LEMMA 3.2. The predicate that a vector G corresponds to a stable
marriage is lattice-linear.

ProOF. Let z be p(G, j), the woman that corresponds to choice
G[j] for man j. We define j to be forbidden in G if there exists a man
i such that z prefers man i to man j and either man i has also been
assigned z in G or he prefers z to his current choice, i.e., man i and
woman z would form a blocking pair in G. Formally, forbidden(G, j)
is defined as (3i : 3k < G[i] : (z = mpreflil[k]) A (rank[z][i] <
rank(z][j]))-

It is easy to see that G is not a stable marriage iff 3j : forbidden(G, j).

If G is not a perfect matching then there must be at least one woman
who is assigned to two men. In that case, the less preferred man
is forbidden. If G is a perfect matching but has a blocking pair,
then the partner of the woman in the blocking pair is forbidden.
Conversely, forbidden(G, j) implies that either G is not a perfect
matching or has a blocking pair.

We only need to show that if forbidden(G, j) holds, then there
is no proposal vector H such that (H > G) and (G[j] = H[j]) and
H is a stable marriage.

Consider any H such that (H > G) and (G[j] = H[j]). We show
that H is not a stable marriage. Since G[j] is equal to H[j], p(G, j) is
equal to p(H, j). Let i be such that 3k < G[i] : (z = mpref[i][k]) A
(rank[z][i] < rank[z][j])). Since G < H, G[i] < H[i], we get that
Ik < HIi] : (z = mprefl[i][k]) A (rank[z][i] < rank[z][j])). Hence,
forbidden(H, i) also holds.

O

The parallel LLP algorithm is shown in Fig. 3. The always section
defines variables which are derived from G. These variables can
be viewed as macros. For example, in the stable marriage problem,
for any thread z = mpre f[j][G[j]]. This means that whenever G[j]
changes, so does z (just like a formula in a spreadsheet).

If man j is forbidden, it is clear that any vector in which man j is
matched with z and man i is matched with his current or a worse
choice can never be a stable marriage. Thus, it is safe for man j to
advance to the next choice.

Pj: Code for thread j

Man-optimal stable marriage
input: mpref|[i, k]: int for all i, k; rank[k][i]: int for all k, i;
init: G[j] := 1;
always: z = mpref[jl[G[j]];

forbidden: (3i : 3k < Gli] : (z = mprefli][k])
A(rank|z][i] < rank[z][j]))
advance: G[j] := G[j] + 1;

Figure 3: A Parallel LLP Algorithm for Stable Matching

The LLP algorithm has a single variable G. Any thread j (sim-
ulating code for man j), can only change its own component G[j]
although it can read G[i] for any i. When thread i is updating its
own component, and thread j reads that component, we assume
that it either gets the old value of G[i] or the new value of G[i].
Assuming such read-write atomicity for a single entry of the array
G, there is no lock required in the algorithm shown in Fig. 3. Thus,
we have

THEOREM 3.3. Assuming read-write atomicity, there exists a par-
allel algorithm to solve the stable matching problem with n threads
that does not use any synchronization.

Observe that with n cores, the function forbidden(G, j) can be
computed in O(1) time. Since each component can be advanced at
most O(n) times, LLP algorithm may take O(n?) time in the worst
case (when exactly one man can advance in every time step). Our
goal is not to come up with the most efficient parallel algorithm
but a unifying framework for designing parallel algorithms.

Another subtle issue is the trigger for evaluation of forbidden
predicates. If forbidden(G, j) holds for some G, then unless G[j]
is advanced, it will continue to hold. However, if forbidden(G, j)
is false, it can become true when G advances on other compo-
nents. One possibility is for thread j to signal all threads i to evalu-
ate forbidden(G, i) whenever G[j] is advanced and p(G, j) equals
p(G,).

One can easily derive an efficient sequential LLP algorithm from
the parallel LLP algorithm in Fig. 3. We can maintain the list of men
that are forbidden at the current value of G. At each iteration, we
remove a man from this list and advance him to his next choice. If
advancing this man makes some other man forbidden, then he is
added to the list. Doing this efficiently, requires us to maintain cur-
rent partners for all women. The algorithm derived in this manner
is identical to Gale-Shapley deferred acceptance algorithm.

3.1 Properties of the LLP Algorithm

We note here some useful properties of the LLP algorithm. These
properties are applicable to all the problems in this paper.

(1) Nondeterminism in Evaluation of Forbidden Predicate:
Given a global state G, there may be multiple indices j for
which G[j] is forbidden. The LLP algorithm is correct irre-
spective of the order in which these indices are updated. The
efficiency of the algorithms may differ depending upon the
order in which these indices are updated, but the correctness
is independent of the order. In the stable marriage problem,

the final answer returned is independent of the order in
which men propose.

@

~

Suppose that G is shared among different threads such that
thread j is responsible for evaluating forbidden(G, j). While
this thread is evaluating this predicate other threads may
have advanced on other indices, i.e., thread j may have old
information of G[i] for i # j. However, this would still keep
the algorithm correct. In the stable marriage problem, men
can propose to women in parallel. In the shortest path al-
gorithm, multiple vertices can update the estimate G[i] in
parallel.

(3) No Lookahead Required for evaluation of Forbidden
Predicate: The LLP algorithm determines whether an index
Jj is forbidden depending upon only the current global state
G (and the history). This means that these algorithms are ap-
plicable in online settings where the future part of the lattice
is revealed only when a forbidden index needs to advance.
In the stable marriage problem, when we are computing the
man-optimal stable marriage, a man may not reveal his pref-
erence list. Only when he is rejected (his state is forbidden),
he needs to advance on his choices and therefore reveal the
next woman on his list.

3.2 Additional Constraints on Stable Matchings

We now present an algorithm to find stable marriages that satisfy
additional constraints. Due to Lemma 2.6, we can use LLP algorithm
to find the least stable marriage satisfying these constraints. The
following lemma proves lattice-linearity of many such constraints.

LEmMA 3.4. The following constraints are lattice-linear.

(1) The regret of man i is at most that of the regret of man j.
(2) Man i cannot be married to woman j.

(3) The regret of man i is equal to that of man j.

PRrOOF. Let B be the predicate that G is a stable marriage and it

satisfies the corresponding additional constraint.

(1) Suppose that G is a stable marriage but it does not satisfy B.
This means that regret of man i is more than the regret of
man j. In this case, we have forbidden(G, j), because unless
G[j] is advanced, the predicate cannot become true.

(2) If p(G, i) = j, then forbidden(G, i) holds.

(3) This condition is a conjunction of two lattice-linear condi-
tions of type in part (1).

|

4 CONSTRAINED SINGLE SOURCE
SHORTEST PATH ALGORITHM

Consider a weighted directed graph with n vertices numbered 0 to
n — 1. We assume that all edge weights are strictly positive. We are
required to find the minimum cost of a path from a distinguished
source vertex vy to all other vertices where the cost of a path is
defined as the sum of edge weights along that path. For any vertex
v, let pre(v) be the set of vertices u such that (u, v) is an edge in
the graph. To avoid trivialities, assume that every vertex v (except
possibly the source vertex vp) has nonempty pre(v) and that all
nodes in the graph are reachable from the source vertex.

Parallel Evaluation of Forbidden Predicate without locks:

As the first step of the predicate detection algorithm, we define
the lattice for the search space. We assign to each vertex v;, G[i] €
R>(with the interpretation that G[i] is the cost of reaching vertex
v;. We call G, the assignment vector. The invariant maintained by
our algorithm is: for all i, the cost of any path from vy to v; is
greater than or equal to G[i]. The vector G only gives the lower
bound on the cost of a path and there may not be any path to vertex
v; with cost G[i]. To capture that an assignment is feasible, we
define feasibility which requires the notion of a parent. We say that
v; is a parent of v; in G (denoted by the predicate parent(j, i, G)) iff
there is a direct edge from v; to vj and G[j] is at least (G[i] + wl[i, j]),
ie, (i € pre(j)) A (Glj] = Gli] + w[i, j]). A node may have multiple
parents.

2 5

NGNS

(@) (b)

()

Figure 4: (a) A Weighted Directed Graph (b) The parent
structure for G = (0,2,3,5,8) (c) The parent structure for
G = (0,10, 3, 14, 8). Since every non-source node has at least

one parent, G is feasible.
In Fig. 4, let G be the vector (0, 2, 3, 5, 8). Then, vy is a parent of

v because G[2] is greater than G[0] plus w([0, 2](i.e.,3 > 0 + 2).
Similarly, vy is a parent of v4 because G[4] > G[1] + 2. A node may
have multiple parents. The node v; is also a parent of v4 because
G[4] = G[2] + 5.

Since w[i, j] are strictly positive, there cannot be a cycle in the
parent relation. Now, feasibility can be defined as follows.

Definition 4.1 (Feasible for paths). An assignment G is feasible for
paths iff every node except the source node has a parent. Formally,
Bparn(G) =Vj # 0 (3i : parent(j, i, G)).

Hence, an assignment G is feasible iff one can go from any non-
source node to the source node by following any of the parent
edges. We now show that feasibility satisfies lattice-linearity.

LEMMA 4.2. For any assignment vector G that is not feasible, 3j :
forbidden(G, j, Bpath(G))~

Proor. Suppose G is not feasible. Then, there exists j # 0 such
that v; does not have a parent, i.e., Vi € pre(j) : G[j] < G[i]+wl[i, j].
We show that forbidden(G, j, Bya;,(G)) holds. Pick any H such that
H > G. Since for any i € pre(j), H[i] > Gli], G[j] < G[i] + wli, j]
implies that G[j] < H[i] + w[i, j]. Therefore, whenever H[j] = G[j],
v;j does not have a parent. O

Since By 4, is a lattice-linear predicate, it follows from Lemma
2.3(c), that the set of feasible assignment vectors are closed under
meets (the component-wise min operation). Hence, we can use LLP
algorithm with (G, j, Bpasp) = min{G[i] + w[i, j] | i € pre(j)}.

For an unweighted graph (i.e., each edge has weight equal to 1),
the above parallel algorithm requires time equal to the distance of
the farthest node from the root. The LLP algorithm derived from
Bpath, however, may take time that depends on the weights because
the advancement along a forbidden process may be small.

We now give an alternative feasible predicate that results in an
algorithm that takes bigger steps. We first define a node j to be fixed
in G if either it is the source node or it has a parent that is a fixed
node, i.e., fixed(j,G) = (j = 0) V (3i : parent(j,i,G) A fixed(i, G)).

Observe that node vy is always fixed. Any node v; such that one
can reach from v; to vy using parent relation is also fixed. We now
define another feasible predicate called B, yoted> 85 Broored(G) =
Vj: fixed(j, G).

Even though it may first seem that the predicate B, ,ozeq is
strictly stronger than By, the following Lemma shows otherwise.

LEMMA 4.3. Bpath(G) i Brooted(G)-

Proor. If G satisfies B, oozeq, then every node other than vy
has at least one parent by definition of fixed, hence B, 4 (G).
Conversely, suppose that every node except vy has a parent. Since
parent edges cannot form a cycle, by following the parent edges,
we can go from any node to vy. O

It follows that the predicate B, ,oz¢q is also lattice-linear. Then,
the following threshold f(G) is well-defined whenever the set of
edges from the fixed vertices to non-fixed vertices is nonempty.

B(G)= min {G[i] + wli,j] | fixed(i,G), = fixed(j, G)}.

(i,j):iepre(j)
If the set of such edges is empty then no non-fixed vertex is reach-
able from the source. We call these set of edges Heap (because we
would need the minimum of this set for advancement).

We now have the following result in advancement of G.

LEMMA 4.4. Suppose =B, ored(G).
Then, = fixed(j, G) = forbidden(G, j, Byoored> f(G)).

Proor. Consider any assignment vector H such that H > G and
H[j] < B(G). We show that H is not B,.,ys¢4- In particular, we show
that j is not fixed in H. Suppose j is fixed in H. This implies that
there is a path W from vy to v; such that all nodes in that path
are fixed. Let the path be the sequence of vertices wo, w1, . .. Wp—1,
where wg = vg and wiy—1 = vj. Let w; = vj be the first node in
the path that is not fixed in G. Such a node exists because wy,—1 is
not fixed in G. Since wy is fixed, we know that 1 < < m — 1. The
predecessor of w; in that path, w;_; is well-defined because [> 1.
Let w;_; = v;.

We show that H[k] > S(G) which contradicts H[j] < B(G)
because H[k] < H[j] as the cost can only increase going from k
to j along the path W. We have H[k] > H[i] + w[i, k] because i
is a parent of k in H. Therefore, H[k] > G[i] + w[i, k] because
H[i] > Gli]. Since i is fixed in G and k is not fixed in G, from
the definition of (G), we get that f(G) < Gl[i] + w[i, k]. Hence,
H[k] = B(G). O

By using the advancement Lemma 4.4, we get the algorithm
ShortestPath shown in Fig. 5. In this algorithm, in every itera-
tion we find all nodes that are forbidden (not fixed) and advance
them. All nodes are advanced to a(G, j) that combines f(G) with
min{G[i]+w[i, j] | i € pre(j)}. Note that if a node is fixed, its parent
is fixed and therefore any algorithm that advances G[j] only for
non-fixed nodes j maintains that once a node becomes fixed it stays
fixed.

THEOREM 4.5. Assuming read-write atomicity, there exists a par-
allel algorithm to solve the shortest path problem with one thread per
node of the graph which does not use any synchronization.

We remark here that the parallel algorithm assumes that the
variables in always section are maintained using G and therefore
is not work efficient.

By removing certain steps, we get Dijkstra’s algorithm from the
algorithm ShortestPath. It is clear that the algorithm stays correct if
a(G, j) uses just f(G) instead of max{f(G), min{G[i] + w[i,j] | i €
pre(j)}}. Secondly, the algorithm stays correct if we advance G
only on the node j such that (i, j) are in Heap edges and the node
Jj minimizes G[i] + w[i, j]. Finally, to determine such a node and
B(G), it is sufficient to maintain a min-heap of all non-fixed nodes j,
along with the label that equals min;ep¢(j), fixed(i,6) Glil + wli, jl.
On making all these changes to ShortestPath, we get Dijkstra’s
algorithm (modified to run with a heap).

It is illustrative to compare the algorithm ShortestPath with Di-
jkstra’s algorithm. In Dijkstra’s algorithm, the nodes become fixed
in the order of the cost of the shortest path to them. In the proposed
algorithm, a node may become fixed even when nodes with shorter
cost have not been discovered. In Fig. 4, node v; becomes fixed
earlier than nodes v3 and vy. This feature is especially useful when
we are interested in finding the shortest path to a single destination
and that destination becomes fixed sooner than it would have been
in Dijkstra’s algorithm.

Dijkstra’s algorithm maintains a distance vector dist such that
it is always feasible, i.e., for any vertex v there exists a path from
source to v with cost less than or equal to dist[v]. We maintain the
invariant that the cost of the shortest path from source to v is guar-
anteed to be at least G[v]. Therefore, in Dijkstra’s algorithm, dist[v]
is initialized to co whereas we initialize G to 0. Dijkstra’s algorithm
and indeed many algorithms for combinatorial optimization, such
as simplex, start with a feasible solution and march towards the op-
timal solution, our algorithm starts with an extremal point in search
space (even if it is infeasible) and marches towards feasibility. Also
note that in Dijkstra’s algorithm, dist[v] can only decrease during
execution. In our algorithm, G can only increase with execution.

The ShortestPath algorithm and indeed all the algorithms in this
paper have a single variable G. All other predicates and functions
are defined using this variable. This is because the goal of the
paper is to show effectiveness of using lattice-linear predicates and
deriving work efficient algorithms is out of the scope of the paper.

4.1 Closure under Meets and Joins

We get the following structural result on the assignment vectors
that are feasible.

Shortest path from node s: LLP algorithm

input: pre(j): list of 1..n; w[i, j]: positive int for all i € pre(j)

init: G[j] := 0;

always: parent(j, i] = (i € pre(j)) A (G[j] = G[i] + wl[i, j]);
fixed[j] = (j =s)V(3i:parent[j, i] A fixed[i])
Heap = {(G[i] + w[i, k])|(i € pre(k)) A fixed(i) A =fixed(k)};

forbidden: —fixed|j]
advance: (GLj] = max (min Heap, min{(Gli] + wli. j| | 1 € pre(j)})

Shortest path from node s: a variant of Dijkstra’s algorithm

same as above except
advance: G[j] := min Heap

Figure 5: Algorithm ShortestPath and Dijkstra’s Algorithm to
find the minimum cost assignment vector less than or equal
toT.

LEMMA 4.6. Let G and H be two assignment vectors such that they
satisfy Byooted> then min(G, H) also satisfies B, goted-

Proor. Follows directly from Lemma 2.3, because B, pseq is @
lattice-linear predicate. O

The set of feasible assignment vectors is not closed under the join
operation. In Fig. 4, the vectors (0, 10, 3, 14, 8) and (0, 9, 10, 12, 11)
are feasible, but their join (0, 10, 10, 14, 11) is not feasible.

4.2 Constrained Shortest Path Algorithm

We now consider the generalization of the shortest path algorithm
with constraints. We assume that all constraints specified are lattice-
linear. For example, consider the constraint that the cost of vertex i
is at most cost of vertex j. The predicate B = G[j] > G[i] is easily
seen to be lattice-linear. If any cost vector G violates B, then the
component j is forbidden (with «(G, j) equal to G[i]). The predicate
(Gli] = G[j]) is also lattice-linear because it can be written as
a conjunction of two lattice-linear predicates (G[i] > G[j]) and
(Glj] = Gli]). The predicate B = (G[i] > k) = (G[j] = m) is also
lattice-linear. If any cost vector violates B, then we have (G[i] >
k) A (G[j] < m). In this case, the component j is forbidden with
a(G, j) equal to m. Again, from Lemma 2.6, the algorithm LLP can be
used to solve the constrained shortest path algorithm by combining
forbidden and « for constraints with B, ,,s¢4. An application of the
constrained shortest path problem is as follows. Suppose that there
are n dispatch trucks that start from the source vertex at time 0. Let
wli, j] denote the time it takes for a truck to go from node i to node
Jj. An assignment vector G is feasible if it is possible to design a
tree rooted at the source vertex such that the path from the source
vertex to vertex i takes G[i] units of time and G satisfies specified
constraints. In Fig. 4, the vector (0,9, 2, 8, 7) is feasible, but does not
satisfy the constraint that G[1] equals G[2]. The least vector that
satisfies this additional constraint is (0, 9,9, 12, 11). LLP algorithm
can be used to find this vector. When the set of additional constraints
is empty, we get back the standard shortest path problem.

An example of a predicate that is not lattice-linear is B = G[i] +
G[j] = k.If the predicate is false for G, then we have G[i]+G[j] < k.
However, neither i nor j may be forbidden. The component i is not

forbidden because if G[i] is fixed but G[j] is increased, the predicate
B can become true. Similarly, j is also not forbidden.

5 GRAPHS WITH NEGATIVE WEIGHTS:
JOHNSON’S ALGORITHM

We now consider directed graphs which have zero or negative
weight edges. We assume that even though there are edges with
negative costs, there are no negative cost cycles. We show how a
parallel version of Johnson’s algorithm can be derived using lattice-
linear predicates. Our strategy for finding the shortest path in such
a graph X is to convert it into another graph Y on the same set of
vertices such that Y has all strictly positive edges and it preserves
all shortest paths, i.e., a path is shortest in X iff it is also a shortest
path in Y. The graph Y has the same set of vertices and edges as X.
The weight of any edge (i, j) is updated as follows:

w'[i, j] = wli, j] + Glj] - Gli] (1)

where G is a price vector associated with vertices. A price vector G
is a non-negative vector such that when we compute new costs of
edges, called reduced costs, we get that the new cost of every edge
is at least 0. The advantage of updating weights using Equation 1
is that it preserves shortest paths.

LEMMA 5.1. Let s and t be any two vertices in the graphs. The
weight of any path in the graph Y equals the weight in the graph X
plus (G[t] — G[s]).

Since the cost of all paths between s and ¢ are changed by the
same amount, it follows that any shortest path in X is a shortest
path in Y and vice-versa. Now our task is reduced to finding a
price vector such that w'[i,] is at least 0 for all edges. We use
LLP algorithm to find such a vector. Our feasibility predicate B for
pricing vector is

V(i,j) € E:wli,j] + G[j] - G[i] > 0

Furthermore, we require G[i] > 0 for all i. We first show that B is
lattice linear.

LEMMA 5.2. Let X be any graph such that the edge (i, j) has weight
wli, j] and every vertex i has price G[i]. Consider the lattice of all
non-negative price vectors. Then, the predicate

B=V(i,j) € E:wl[i,j] +G[j]-G[i]>0

is lattice linear.

Proor. Since lattice linearity is closed under conjunction, it is
sufficient to show that B, = w[i,j] + G[j] — G[i] = 0 is lattice
linear for arbitrary edge e = (i, j). B¢ can be rewritten as G[j] >
Gli] — wli, j]. The right hand side of this inequality is a monotone
function on G and hence from the Lemma 2.3 of lattice-linearity,
we get that B, is lattice linear. O

By applying LLP algorithm, we get the parallel algorithm in Fig.
6 to find the price vector.

The algorithm obtained is same as the parallel version of John-
son’s algorithm.

Graph Transformation: Johnson’s algorithm
input: pre(j): list of 1..n; w(i, j]: int for all i € pre(j)
init: G[j] := 0;
forbidden: G[j] < max{G[i] — w[i, j] | i € pre(j)}
advance: G[j] := max{G[i] — w[i, j] | i € pre(j)}

Figure 6: Algorithm Pricej, to find the minimum price vector.

6 CONSTRAINED MARKET CLEARING PRICE

In this section, we apply our technique to the problem of finding a
market clearing price with constraints. This problem is equivalent
to the heavily studied problem of weighted bipartite matching. Let
I be a set of n indivisible items, and U, a set of n bidders. Every
item i € I is given a valuation vy, ; by each bidder b € U. The
valuation of any item i is a number between 0 and T[i]. Each item
i is given a price G[i] which is also a number between 0 and T/[i].
We are assuming integral costs for simplicity — the algorithm is
easily extensible to real costs.

Given a price vector G, we define the bipartite graph (I, U, E(G))
as

(,b) € E(G) = Vi: (vp j — Glj]) = (vp,; — Glil).

Informally, an edge exists between item i and bidder b if the payoff
for the bidder (the bid minus the price) is maximized with that
item. Given any set U’ C U, let N(U’, G) denote all the items that
are adjacent to the vertices in U’ in the graph (I, U, E(G)). A price
vector G is a market clearing price, denoted by Bejearingprice(G)
if the bipartite graph (I, U, E(G)) has a perfect matching. We now
generalize the problem of finding a market clearing price to that
of finding a constrained market clearing price. For example, the
constraint G[i] > G[j] is lattice-linear. Given any set of valuations,
and a boolean predicate B that is a conjunction of lattice-linear
constraints, a price vector G is a constrained market clearing price,
denoted by constrainedClearing(G) iff clearing(G) A B(G). From
Lemma 2.6, it is sufficient to give an algorithm for clearing(G).

We now claim that

LEMMA 6.1. The predicate Bcjearingprice(G) is a lattice-linear
predicate on the lattice of price vectors.

Proor. Let J be a minimal over-demanded set in G. If J is a
singleton, then it is clear that unless price on j is advanced it will
stay over-demanded. Now suppose that J is not singleton. We show
that each of the elements in J is forbidden. Let j € J. We set Iy = {j}.
Consider any H that is greater than G such that G[j] = H[j]. Let
bidders(G, j) be the set of bidders for item j at the price vector
G. If bidders(G, j) is a singleton, then J cannot be the minimal
overDemanded set because we can remove j from J and the resulting
set is also over-demanded as exactly one bidder is eliminated. Since
bidders(G, j) have items assigned in H, and at most one of them
could be assigned item j, the remaining items must be assigned
to bidders from J. Since these bidders preferred item j in G and
the price of j has not changed, we get that these assigned items
must be most preferred in G as well. The price of these items could
not have increased in H; otherwise, these bidders will not prefer
these items to j. Hence, all items that bidders(G, j) are assigned in

Pj: Code for thread j
shared var G: array[1..n] of 0..maxint;
Market Clearing Prices: Demange Gale Sotomayor algorithm

input: v[b, i]: int for all b, i

init: G[j] := 0;

always:

E ={(k,b) | Vi: (v[b, k] - G[k]) > (v[b, i] - G[i]);

demand(U’) = {k | 3b € U’ : (k,b) € E};

overDemanded(J) = AU’ C U : (demand(U’) = J) A (IJ| < |U’|)

forbidden: (3minimal J : OverDemanded(]) A (j € J)
advance: G[j] := G[j] + 1;

Figure 7: Algorithm ConstrainedMarketClearingPrice to
find the minimum cost assignment vector

H cannot have their price changed. Let us call this set of items, I;.

We now repeat this procedure armed with the knowledge that price

of I; is same in G and H. We consider bidders(G, I1). If this set has
the same size as I; then by removing I; from J we get a smaller
over-demanded set than J. Otherwise, we get I C J such that I,
has same price in G and H and I is bigger than I;. By repeating
this procedure, we must either find a smaller over-demanded set
than J or find that none of the items in J has any price change in
H. In the former case we get a contradiction to minimality of J and
in the latter case we get a contradiction to H being a clearing price
because the size of bidders(H, J) is greater than J. O

It follows that the set of constrained market clearing price vec-
tors is closed under meets. By applying the lattice-linear predicate
detection, we get an algorithm to compute the least constrained
market clearing price shown in Fig. 7. In conjunction with Lemma
2.6, we get a generalization of Demange, Gale and Sotomayor’s ex-
act auction mechanism [7] to incorporate lattice-linear constraints
on the market clearing price. In Fig. 7, we have used «(G,) as
simply one unit of price. For any item j that is part of a minimal
over-demanded set of items, we can increase its price by the mini-
mum amount to ensure that some bidder b can switch to her second
most preferred item.

7 DUAL OF LATTICE-LINEARITY

Just as a lattice-linear predicate allows us to start with the bottom

element of the lattice and advance in the forward direction, its dual
allows us to start with the top element and advance in the backward
direction.

Given any distributive lattice L of n-dimensional vectors, and
any predicate B, we say reverse-forbidden(G,i,B)=VH € L: H <
G : (G[i] = H[i]) = —B(H). We define a predicate B to be dual-
lattice-linear if for any G € L, B is false in G implies that G contains
a reverse-forbidden component.

It can be shown that Byarriage is not only lattice-linear but also
dual-lattice-linear.

This property allows us to find the man-pessimal stable matching.

We start with G such that G[i] equals the last choice proposal for P;.

If G is a stable matching, we are done. Otherwise, we can find i such
that unless G[i] goes backward, there cannot be any stable matching.

These i can be found in parallel. By repeating this procedure, we
get the man-pessimal stable matching.

Since stable matching is a dual-lattice-linear predicate, from
the dual of Lemma 2.3(b) it follows that the feasible set, the set
of assignments satisfying Bmarriage, is also closed under joins.
Therefore, the feasible set forms a sublattice of the lattice of all
assignments. A similar result holds for Bjearingprice (but not for
Bpath)~

Since a sublattice of a distributive lattice is also distributive, the
set of assignments that satisfy (constrained) stable marriage forms a
finite distributive lattice. From Birkhoff’s theorem [6] we know that
a finite distributive lattice can be equivalently represented using
the poset of its join-irreducible elements.

The set of all elements of L satisfying B can be generated as the
ideals of the poset ({J(B,e)le € E}, C) where J(B,e) is the least
ideal of (E, —) that satisfies B and contains e. It can be verified that
J(B, e) is a join-irreducible element and that every join-irreducible
element is of this form.

To determine J(B, e) it is sufficient to use the algorithm for de-
tecting a lattice-linear predicate by using the following predicate
for every e: B¢(G) = B(G) A (e € G). Since Be is a conjunction
of two lattice-linear predicates, it is also lattice-linear. Therefore,
by using the LLP algorithm, we also get an algorithm to compute
the poset that generates all ideals that satisfy B. For stable mar-
riage, this would be equivalent to rotation poset [14]. However, we
can now also generate posets for constrained stable marriages or
constrained price vectors.

8 RELATED WORK

In this section, we compare LLP Algorithm to other related tech-
niques. We note here that a preliminary version of this work ap-
peared in [13].

8.1 Linear Programming

Linear programming can also be viewed as a search for an optimal
feasible solution. However, there are many important differences.
First, the underlying space in linear programming is the set of real
valued vectors whereas the underlying space in the lattice-linear
predicate detection method is a distributive lattice. In the domain of
distributive lattices, we do not have addition or the scalar multipli-
cation as in vector spaces. All of lattice-linear predicate algorithms
use the following two operations: meet of the underlying lattice and
the “advance” operation. The advance operation maps an element of
the lattice to a bigger element in the lattice. In linear programming,
the feasible space is characterized by a polyhedron (or the set of
vectors x such that Ax < 0 for some matrix A). There is no lattice
structure required on the feasible space. It is not guaranteed that
if two vectors are feasible, then their component-wise minimum
vector is also feasible. Lattice-linear predicate detection requires
the feasible space to be closed under meets. Finally, even though
many problems studied in this paper can also be solved via linear
programming, the algorithms derived in that manner are not as
efficient or parallel as the LLP algorithm.

8.2 Relationship with Knaster-Tarski’s
Theorem

The algorithm in Fig. 1 can also be viewed as repeated iteration of
a monotone function on the bottom element of a lattice similar to a
constructive version of Knaster-Tarski’s theorem [20]. Our work
differs from such earlier work in many respects. First, B may not
have the form Vi : G; > f;(G); instead we only require B to be
closed under meets. Second, Knaster-Tarski’s fixed point theorem
(and many variants) requires the function to be from the lattice L
to itself. In that case, the solution to the equation x > f(x) always
exists for a complete lattice because T > f(T). We do not assume
that the range of the function is the lattice itself. Therefore, there
is no guarantee of the existence of the fixed point. Indeed, for
the job scheduling example, if the prerequisites have a cycle and
weights are positive, then there is no solution and the algorithm LLP
returns null. Third, the goal of this paper is to develop techniques
to reach the fixed point with an efficient parallel algorithm and to
show that many standard and non-standard parallel algorithms for
combinatorial optimization can be derived in this framework.

8.3 Relationship with Predicate Detection in
Distributed Systems

Although the notion of forbidden and detection of lattice-linear
predicates is from [4], there are many important differences from
their work. The focus of their work in [4] is for detecting a global
condition is a distributed system. Our work is focused on develop-
ing parallel algorithms for the optimization problems. The pred-
icates used in [4] are simple conjunction of local predicates in a
distributed system (or monotonic channel predicates). The predi-
cates discussed in this paper are more general and motivated by
optimization problems.

9 CONCLUSIONS AND FUTURE WORK

We have shown that many discrete optimization problems can be
cast as searching for an element satisfying a lattice-linear predicate
in a distributive lattice. The algorithms that can be derived using this
framework include Gale-Shapley algorithm, Dijkstra’s algorithm,
Gale-Demange-Sotomayor algorithm, Bellman-Ford algorithm, and
Johnson’s algorithm. All of these algorithms have a single vector
as the variable of the program and assuming read-write atomicity,
the proposed algorithm uses different threads to update different
components of the vector without use of any lock.

All of our examples include problems in class P. Are there tech-
niques to find approximation algorithms for problems that are not
in P based on lattice-linearity? We have exploited lattice linearity
of the predicate in LLP algorithm. What if the problem requires
searching an element that satisfies a condition which is not lattice-
linear?

ACKNOWLEDGEMENTS.

I would like to thank David Alves, Rohan Garg, Changyong Hu,
Calvin Ly, and Xiong Zheng for discussions on this topic and anony-
mous reviewers for useful comments. This work was supported
in parts by the National Science Foundation Grants CNS-1812349,
CNS-1563544, and the Cullen Trust Endowed Professorship.

REFERENCES

(1]

[2

—

==

Richard Bellman. 1958. On a routing problem. Quarterly of applied mathematics
16, 1 (1958), 87-90.

Dimitris Bertsimas and John N Tsitsiklis. 1997. Introduction to linear optimization.
Vol. 6. Athena Scientific Belmont, MA.

G. Birkhoff. 1967. Lattice Theory. Providence, R.I. third edition.

Craig M Chase and Vijay K Garg. 1998. Detection of global predicates: Techniques
and their limitations. Distributed Computing 11, 4 (1998), 191-201.

Agnes Cseh and David F. Manlove. 2016. Stable Marriage and Roommates prob-
lems with restricted edges: Complexity and approximability. Discrete Optimization
20 (2016), 62 — 89.

B. A.Davey and H. A. Priestley. 1990. Introduction to Lattices and Order. Cambridge
University Press, Cambridge, UK.

Gabrielle Demange, David Gale, and Marilda Sotomayor. 1986. Multi-item auc-
tions. Journal of Political Economy 94, 4 (1986), 863-872.

Vénia M.F. Dias, Guilherme D. da Fonseca, Celina M.H. de Figueiredo, and Jayme L.
Szwarcfiter. 2003. The stable marriage problem with restricted pairs. Theoretical
Computer Science 306, 1 (2003), 391 — 405.

E. W. Dijkstra. 1959. A note on two problems in connexion with graphs. Numer.
Math. 1,1 (01 Dec 1959), 269-271. https://doi.org/10.1007/BF01386390

L. A. Ford. 1956. Network Flow Theory. Technical Report.

[11
[12

(13

[14

[15

(17

[18

[19

[20

David Gale and Lloyd S Shapley. 1962. College admissions and the stability of
marriage. The American Mathematical Monthly 69, 1 (1962), 9-15.

Vijay K Garg. 2015. Lattice Theory with Computer Science Applications. Wiley,
New York, NY.

Vijay K. Garg. 2018. Applying Predicate Detection to the Constrained Op-
timization Problems. CoRR abs/1812.10431 (2018). arXiv:1812.10431 http:
//arxiv.org/abs/1812.10431

Dan Gusfield and Robert W Irving. 1989. The stable marriage problem: structure
and algorithms. MIT press.

Donald B Johnson. 1977. Efficient algorithms for shortest paths in sparse networks.
Journal of the ACM (JACM) 24, 1 (1977), 1-13.

Donald Ervin Knuth. 1997. Stable marriage and its relation to other combinatorial
problems: An introduction to the mathematical analysis of algorithms. Vol. 10.
American Mathematical Soc.

Neeraj Mittal and Vijay K Garg. 2001. Computation slicing: Techniques and
theory. In International Symposium on Distributed Computing. Springer, 78-92.
James Munkres. 1957. Algorithms for the assignment and transportation prob-
lems. Journal of the society for industrial and applied mathematics 5, 1 (1957),
32-38.

Lloyd S Shapley and Martin Shubik. 1971. The assignment game I: The core.
International Journal of game theory 1, 1 (1971), 111-130.

Alfred Tarski. 1955. A Lattice-Theoretic Fixed Point Theorem and its Applications.
Pacific Math 5 (1955), 285-309.

	Abstract
	1 Introduction
	2 Lattice-Linear Predicates
	2.1 Simple Examples

	3 Constrained Stable Matching Problem
	3.1 Properties of the LLP Algorithm
	3.2 Additional Constraints on Stable Matchings

	4 Constrained Single Source Shortest Path Algorithm
	4.1 Closure under Meets and Joins
	4.2 Constrained Shortest Path Algorithm

	5 Graphs with Negative Weights: Johnson's Algorithm
	6 Constrained Market Clearing Price
	7 Dual of Lattice-Linearity
	8 Related Work
	8.1 Linear Programming
	8.2 Relationship with Knaster-Tarski's Theorem
	8.3 Relationship with Predicate Detection in Distributed Systems

	9 Conclusions and Future Work
	References

