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Abstract—The popular matching problem is of matching a
set of applicants to a set of posts, where each applicant has a
preference list, ranking a non-empty subset of posts in the order
of preference, possibly with ties. A matching M is popular if
there is no other matching M

′ such that more applicants prefer
M

′ to M . We give the first NC algorithm to solve the popular
matching problem without ties. We also give an NC algorithm
that solves the maximum-cardinality popular matching problem.
No NC or RNC algorithms were known for the matching problem
in preference systems prior to this work. Moreover, we give an NC
algorithm for a weaker version of the stable matching problem,
that is, the problem of finding the “next” stable matching given
a stable matching.

I. INTRODUCTION

The matching problem in preference systems is well-studied

in economics, mathematics and computer science, see for

example [1], [2], [3]. It models many important real-world

applications, including the allocation of medical residents to

hospitals [4] and families to government-owned housing [5].

The notion of a popular matching was first introduced in [6]

in the context of the stable marriage problem. We say that

a matching M is more popular than M ′ if the number of

nodes that prefer M to M ′ exceeds the number of nodes

that prefer M ′ to M . A matching M is popular if M is

optimal under the more popular than relation. Gupta et al.

[7] and Faenza et al. [8] recently showed that the popular

matching problem is NP-complete in the general roommate

setting. The popular matching problem we consider is from [9]

such that the preference system is only one-sided. Abraham

et al. [9] gave a linear-time algorithm for the problem in the

case of strictly-ordered preference lists and a polynomial-time

algorithm for the case of preference lists with ties. There are

other problems with other definitions of optimality such as

Pareto optimal matching [10], rank-maximal matching [11]

etc. We do not discuss them here.

The matching problem in the normal case, that is the

problem of checking if a given graph has a perfect matching,

and the corresponding search problem of finding a perfect

matching have received considerable attention in the field of

parallel computation. Tutte and Lovasz [12] observed that

there is an RNC algorithm for the decision problem. The

search version was shown to be in RNC by Karp, Upfal and

Wigderson [13] and subsequently by Mulmuley, Vazirani and

Vazirani using the celebrated Isolation Lemma [14]. We note

that no NC or RNC algorithms were known for the matching

problem in preference systems prior to this work. The problem

of finding an NC algorithm for the stable marriage problem

has been open for a long time. Mayr and Subramanian [15]

showed that the stable marriage problem is CC-complete.

Subramanian [16] defined the complexity class CC as the

set of problems log-space reducible to the comparator circuit

value problem (CCV). Cook et al. [17] conjectured that CC is

incomparable with the parallel class NC, which implies none

of the CC-complete problems has an efficient polylog time

parallel algorithm. Recently, Zheng and Garg [18] showed that

computing a Pareto optimal matching in the housing allocation

model is in CC and computing the core of a housing market

is CC-hard.

A. Our Contributions

1) We give NC algorithms for both the popular matching

problem and the maximum-cardinality popular matching

problem in the setting of strictly-ordered preference lists.

2) In the case that preference lists contain ties, we show that

maximum-cardinality bipartite matching is NC-reducible

to popular matching.

3) We also give an NC algorithm to find the “next” stable

matching if one stable matching is given. We will define

“next” in Section VI.

B. Organization of the paper

In Section II, we give the terminology and notation of

popular matchings and stable matchings. In Section III, we

give an NC algorithm for the popular matching problem

without ties. In Section IV, we give an NC algorithm for the

maximum-cardinality popular matching problem. In Section

VI, we give an NC algorithm for finding the “next” stable

matching. Finally, we give open problems related to our work.

II. PRELIMINARIES

A. Popular Matching Problem

Let A be a set of applicants and P be a set of posts, associ-

ated with each member of A is a preference list (possibly in-

volving ties) comprising a non-empty subset of the elements of

P . An instance of the popular matching problem is a bipartite

graph G = (A∪P , E) and a partition E = E1∪̇E2∪̇ · · · ∪̇Er

of the edge set. The partition E consists of all pairs (a, p)
such that post p appears in the preference list of applicant a
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and we say that each edge (a, p) ∈ Ei has a rank i if post p
is on the i-th position of the preference list of applicant a. If

(a, p) ∈ Ei and (a, p′) ∈ Ej with i < j, we say that a prefers

p to p′. If i = j, we say that a is indifferent between p and p′.
We say that preference lists are strictly ordered if no applicant

is indifferent between any two posts on his/her preference list.

Otherwise, we say that preference lists contain ties.

A matching M of G is a set of edges no two of which

share an endpoint. A node u ∈ A ∪ P is either unmatched

or matched to some node, denoted by M(u). We say that an

applicant a prefers matching M ′ to M if (i) a is matched in

M ′ and unmatched in M , or (ii) a is matched in both M ′

and M , and a prefers M ′(a) to M(a). Let M be the set of

matchings in G and let M,M ′ ∈ M. Let P (M,M ′) denote

the set of applicants who prefer M to M ′. Define a “more

popular than” relation ≻ on M as follows: if M,M ′ ∈ M,

then M ′ is more popular than M , denoted by M ′ ≻ M , if

|P (M ′,M)| > |P (M,M ′)|.

Definition 1. A matching M ∈ M is popular if there is no

matching M ′ such that M ′ ≻ M .

The popular matching problem is to determine if a given

instance admits a popular matching, and to find such a

matching, if one exists. Note that popular matchings may have

different sizes, a largest popular matching may be smaller

than a maximum-cardinality matching since no maximum-

cardinality matching needs to be popular. The maximum-

cardinality popular matching problem then is to determine

if a given instance admits a popular matching, and to find

a largest such matching, if one exists. Figure 1 shows an

example of a popular matching instance. The reader can check

that {(a1, p1), (a2, p2), (a3, p4), (a4, p3), (a5, p5), (a6, p7),
(a7, p8), (a8, p9)} is a popular matching.

a1 : p1 p4 p5 p2 p6

a2 : p4 p5 p7 p2 p8

a3 : p4 p1 p3 p8

a4 : p1 p7 p4 p3 p9

a5 : p5 p1 p7 p2 p6

a6 : p7 p6

a7 : p7 p4 p8 p2

a8 : p7 p4 p1 p5 p9 p3

Figure 1: A popular matching instance I

As in [9], we add a unique last resort post l(a) for each

applicant a and assign the edge (a, l(a)) higher rank than any

edge incident on a. In this way, we can assume that every

applicant is matched, since any unmatched applicant can be

matched to his/her unique last resort post. From now on, we

only focus on matchings that are applicant-complete, and the

size of a matching is the number of applicants not matched to

their last resort posts.

Definition 2. A matching M ∈ M is applicant-complete if

each applicant a ∈ A is matched to some post p ∈ P .

III. FINDING POPULAR MATCHING IN NC

A. Characterizing Popular Matchings

We restrict our attention to strictly-ordered preference lists.

For each applicant a, let f(a) denote the first-ranked post on

a’s preference list. We call any such post p an f -post, and

denote by f−1(p) the set of applicants a for which f(a) = p.

For each applicant a, let s(a) denote the first non-f -post on

a’s preference list (note that s(a) always exists, due to the

introduction of l(a)). We call any such post p an s-post, and

remark that f -posts are disjoint from s-posts. We also call any

last resort post p an l-post.

The following theorem, proved in [9], completely charac-

terizes popular matchings.

Theorem 1. A matching M is popular if and only if

(i) every f-post is matched in M , and

(ii) for each applicant a, M(a) ∈ {f(a), s(a)}.

Let G′ be the reduced graph of G that only includes f -

posts and s-posts. For a reduced graph G′, let M be a popular

matching, and let a be an applicant. Denote by OM (a) the post

on a’s reduced preference list to which a is not assigned in M .

Note that since G′ is a reduced graph of G, OM (a) is well-

defined. If a is matched to f(a) in M , then OM (a) = s(a),
whereas if a is matched to s(a) in M , then OM (a) = f(a).

B. Algorithmic Results

Now we show Algorithm 1 is an NC algorithm for the

popular matching problem with strictly-ordered preference

lists. First we construct the reduced graph G′ from G. Then

we find an applicant-complete matching M in G′. Hence for

each applicant a, M(a) ∈ {f(a), s(a)}. Then for any f -post

p that is unmatched in M , we match p with any applicant in

f−1(p).
The most non-trivial part is line 4 that determines an

applicant-complete matching M in the reduced graph G′.

Perfect matching in bipartite graph is in Quasi-NC [19], but we

do not know whether it is in NC. Recent results in [20] show

that perfect matching in planar graph is in NC. But the reduced

graph for popular matching problem is not necessarily planar.

It is easy to check that the reduced graph G′ may contain a

subgraph that is a subdivision of the complete bipartite graph

K3,3.

Algorithm 1: Popular Matching

1 Input: Graph G = (A ∪ P , E).
2 Output: A popular matching M or determine that no

such matching.

3 G′ := reduced graph of G;

4 if G′ admits an applicant-complete matching M then

5 for each f -post p unmatched in M in parallel do

6 let a be any applicant in f−1(p);
7 promote a to p in M ;

8 return M ;

9 else

10 return “no popular matching”;
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We first show how to construct the reduced graph G′ from

G in parallel (line 3). For each post p, we check if there

is any incident edge (a, p) ∈ E1. Let F be the set of such

posts, which corresponds to all f -posts. Then for each post

p ∈ F , we remove all incident edges (a, p) /∈ E1. After that,

for each applicant a, we find the highest ranked incident edge

(a, p) /∈ E1, which corresponds to s(a), and remove all other

incident edges. The remaining graph must be G′. It is clear that

each step can be done in logarithmic time with a polynomial

number of operations.

It remains to show how to find an applicant-complete

matching in G′ (line 4), or determine that no such matching

exists in NC. Now we explain Algorithm 2 that finds an

applicant-complete matching.

Algorithm 2: Applicant-Complete Matching

1 Input: Graph G′ = (A ∪ P , E′).
2 Output: An applicant-complete matching M or

determine that no such matching exists.

3 M := ∅;

4 while some post p has degree 1
5 Find all maximal paths that end at p;

6 for each edge (p′, a′) at an even distance from some

p in parallel do

7 M := M ∪ {(p′, a′)};

8 G′ := G′ − {p′, a′};

9 for each post p has degree 0 in parallel do

10 G′ := G′ − p
11 // Every post now has degree at least 2;

12 // Every applicant still has degree 2;

13 if |P| < |A| then

14 return “no applicant-complete matching”;

15 else

16 // G′ decomposes into a family of disjoint even cycles

17 M ′ := any perfect matching of G′;

18 return M ∪M ′;

The while loop (line 4) gradually matches applicants to posts

of degree 1 or 2 until there is no post of degree 1. Then,

either the remaining graph admits a perfect matching or we

can conclude that there is no applicant-complete matching. We

show the details below.

First, we identify all vertices of degree 2 in G′. Note that

all applicants have degree 2, but posts may have any degree.

We only need to identify posts of degree 2. Some of these

vertices might be connected to each other, in which case we

get paths formed by these vertices. We can extend these paths,

by the doubling trick in polylog time to find maximal paths

consisting of degree 2 vertices. Let the vertices of the path

be (v1, v2, · · · , vk). Further, let v0 be the vertex we would

get if we extended this path from v1 side and vk+1 be the

one we would get from vk side. Note that deg(vi) = 2 for

i = 1, · · · , k but not for i = 0, k + 1.

Then, in parallel, we consider each maximal path with at

least one of v0 and vk+1 of degree 1. W.l.o.g, let v0 be the

vertex of degree 1. For each such path, we add each edge at

an even distance from v0 to M (e.g. the edge (v0, v1) is at

zero distance from v0 and must be added to M ) and delete

v0, · · · , vk and their incident edges. Note that v0 and vk+1

can only be posts since all applicants have degree exactly 2.

Hence, any maximal path must have even length and vk+1

is not matched. In the case both end points have degree

1, we only consider this path once and choose v0 or vk+1

to be matched arbitrarily. After one round, there would be

some new vertices of degree 1 because the degree of vk+1

decreases by 1 for each maximal path that ends at vk+1. Run

the same process until there is no post that has degree 1. After

removing any isolated posts, we can conclude that either there

is no applicant-complete matching, or the remaining graph is

a family of disjoint even cycles.

1) Correctness: Algorithm 2 begins by repeatedly matching

maximal paths (v0, v1, · · · , vk+1) with deg(v0) = 1. After

first round, no subsequent augmenting path can include any

vertices vi for i = 0, 1, · · · , k since they are matched and any

alternating path that includes them must end at v0, which is

matched and has degree 1. So we can remove all matched

vertices from consideration. The same argument holds for

subsequent rounds. Also note that the while loop always

terminates because whenever we find a post of degree 1, we

match at least one edge (v0, v1) and remove at least two

vertices that are {v0, v1}.

Now we have a matching and we only need to match re-

maining posts and applicants. All remaining posts have degree

at least 2, while all remaining applicants still have degree

exactly 2. Now, if |P| < |A|, G′ cannot admit an applicant-

complete matching by Hall’s Marriage Theorem [21]. Oth-

erwise, we have that |P| ≥ |A|, and by a double counting

argument, we have 2|P| ≤
∑

p∈P deg(p) = 2|A|. Hence, it

must be that |P| = |A| and every post has degree exactly 2.

G′ becomes 2-regular bipartite graph and consists of disjoint

union of even cycles. By choosing any edge e in an even-length

cycle C, even distance (resp. odd distance) from e is well-

defined. Choosing all edges of even distance yields a perfect

matching in G′. Now we have an applicant-complete matching

in G′. Hence for each applicant a, M(a) ∈ {f(a), s(a)}. Then

for any f -post p that is unmatched in M , we match p with any

applicant in f−1(p). By Theorem 1, the resulting matching is

a popular matching.

2) Complexity: Lemma 2 proves that the while loop in

Algorithm 2 runs O(log(n)) number of times.

Lemma 2. The while loop (line 4) runs O(log(n)) number of

times.

Proof. For any vertex v of deg(v) ≥ 3 that is reduced to

degree of 1, it must be the end point of deg(v) − 1 maximal

paths. If in round r, s.t. r > 1, there are t vertices of degree

1 ( for some constant t), then we must have deleted at least

2t vertices in round r − 1. After round r, we have deleted at

least (2r − 1)t vertices. Hence, it is clear that the while loop

can be run at most ⌈log(n)⌉+ 1 times since the total number

of vertices is bounded by n.

Finding all maximal paths of degree 2 vertices and calcu-

lating the distance from v0 in the path can be done in polylog

time. Furthermore, the while loop runs at most a logarithmic
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number of times. Finding a prefect matching in a 2-regular

bipartite graph i.e. graph consisting of even-length cycles is

in NC. More generally, searching for a perfect matching in

regular bipartite graphs can be done in NC [22]. So, Algorithm

2 is in NC. The for loop in Algorithm 1 can be done in constant

time since for every f -post p, f−1(p) is disjoint from each

other.

We summarize the preceding discussion in the following

theorem.

Theorem 3. We can find a popular matching, or determine

that no such matching exists in NC.

C. Example of Popular Matchings

To illustrate Algorithm 2, we provide a detailed example.

Figure 1 shows the preference lists for a popular matching

instance I . The set of f -posts is {p1, p4, p5, p7} and the set

of s-posts is {p2, p3, p6, p8, p9}.

Figure 2 shows the reduced preference lists of I and reduced

graph G′.

a1 : p1 p2

a2 : p4 p2

a3 : p4 p3

a4 : p1 p3

a5 : p5 p2

a6 : p7 p6

a7 : p7 p8

a8 : p7 p9

(a) The reduced preference lists of I with popular matching M

denoted by underlining

a8

a7

a6

a5

a4

a3

a2

a1

p9

p8

p7

p6

p5

p4

p3

p2

p1

(b) The reduced graph G
′ of G

Figure 2: The reduced instance of I

In the while loop of Algorithm 2, pairs (a8, p9), (a6, p6)
, (a7, p8), (a5, p5) are matched. Figure 3 shows the

reduced graph after the while loop of Algorithm 2. The

graph consists of only even-length cycles. Choose one

perfect matching in the reduced graph such as pairs

(a1, p1), (a2, p2), (a3, p4), (a4, p3), we obtain an applicant-

complete matching. Note that one f -post p7 is not matched

in this applicant-complete matching. So we can promote

any applicant from {a6, a7, a8} to match with p7, e.g.

a6 is matched to p7. The resulting popular matching M is

{(a1, p1), (a2, p2), (a3, p4), (a4, p3), (a5, p5), (a6, p7), (a7, p8)
, (a8, p9)}.

a4

a3

a2

a1

p4

p3

p2

p1

Figure 3: The reduced graph after the while loop of Algorithm

2

IV. FINDING MAXIMUM-CARDINALITY POPULAR

MATCHING IN NC

We now consider the maximum-cardinality popular match-

ing problem. Let A1 be the set of all applicants a with

s(a) = l(a), and let A2 = A − A1. Our target matching

must satisfy conditions (i) and (ii) of Theorem 1, and among

all such matchings, allocate the fewest A1-applicants to their

last resort. To be able to find maximum-cardinality matching

in NC, we need another characterization of popular matching

problem called switching graph [23], a directed graph which

captures all the possible ways in which applicants may form

different popular matchings by switching between the two

posts on their reduced preference lists.

Given a popular matching M for an instance G = (A ∪
P , E), the switching graph GM of M is a directed graph

with a vertex for each post p, and a directed edge (pi, pj) for

each applicant a, where pi = M(a) and pj = OM (a). Then

each edge is labelled with the applicant that it represents. A

component of GM is any maximal weakly connected subgraph

of GM . An applicant (resp. post) is said to be in a component,

or path, or cycle of GM if the edge (resp. vertex) representing

it is in that component, path or cycle. The following lemma

in [23] gives some simple properties of switching graphs.

Lemma 4 ([23], Lemma 1). Let M be a popular matching for

an instance of G = (A ∪ P , E), GM be the switching graph

of M . Then

(i) Each vertex in GM has outdegree at most 1.

(ii) The sink vertices of GM are those vertices corresponding

to posts that are unmatched in M , and are all s-post

vertices.

(iii) Each component of GM contains either a single sink

vertex or a single cycle.

A component of a switching graph GM is called a cycle

component if it contains a cycle, and a tree component if it

contains a sink vertex. Each cycle in GM is called a switching

cycle. If T is a tree component of GM with sink vertex p, and

if q is another s-post vertex in T , the unique path from q to

p is called a switching path. Note that each cycle component

of GM has a unique switching cycle, but each tree component

may have zero or multiple switching paths; to be precise it

has one switching path for each s-post vertex it contains, other

than the sink vertex.

Figure 4 shows the switching graph GM for popular match-

ing M . There are one switching cycle and two switching paths

starting from p8 and p9 respectfully.



5

p1 p2

p3 p4

p5

p6

p7 p8

p9

a1

a2

a3

a4

a5

a6

a7

a8

Figure 4: The switching graph GM for popular matching M

Lemma 4 shows that the switching graph GM is indeed a

directed pseudoforest. Next we give several NC algorithms for

finding all switching cycles and switching paths in GM .

A. Finding Cycles in Pseudoforest in NC

Definition 3. A pseudoforest is an undirected graph in which

every connected component has at most one cycle. A pseu-

dotree is a connected pseudoforest. A directed pseudoforest

is a directed graph in which each vertex has at most one

outgoing edge, i.e., it has outdegree at most one. A directed

1-forest (most commonly called a functional graph, sometimes

maximal directed pseudoforest) is a directed graph in which

each vertex has outdegree exactly one.

It is easy to see that every weakly connected component in

a directed pseudoforest contains either a single sink vertex or

a single cycle.

We consider the problem of finding switching cycles in GM ,

later we will show that finding switching paths is as easy as

finding switching cycles.

Given a directed pseudoforest GP , we want to find each

unique cycle C in each component of GP . There could not be

any cycle in a component of GM if it is a tree component. The

first approach is based on transitive closure G∗
P of GP since

computing the transitive closure is in NC by Theorem 5. We

compute the transitive closure G∗
P and for any two vertices i

and j s.t. i 6= j in GP , if G∗
P (i, j) = 1 and G∗

P (j, i) = 1, then

both i and j are in the unique cycle C. Hence we can identify

the cycle C by checking each pair of vertices in parallel.

Theorem 5 ([24]). The transitive closure of a directed graph

with n vertices can be computed in O(log2 n) time, using

O(M(n) log n) operations on a CREW PRAM, where M(n)
is the best known sequential bound for multiplying two n×n
matrices over a ring.

We also give NC algorithms in the setting of undirected

graph in which transitive closure does not help. Given an undi-

rected pseudoforest GP , denote the incidence matrix of GP as

IGP
. Let cc(G) be the number of connected components in G.

The basic idea is that we remove any one edge e from GP , if

e ∈ C s.t. C is the unique cycle in GP , then cc(GP −{e}) =
cc(GP ); otherwise, cc(GP − {e}) = cc(GP ) + 1. There is a

direct connection between the rank of incidence matrix I of

G and the number of connected component cc(G) in G.

Lemma 6. If G is an undirected graph with k connected

components, then the rank of its incidence matrix IG is n−k.

So we can compute the rank of IGP
and for each e in GP ,

compute the rank of IGP−{e} in parallel. There are at most

|V | edges in GP .

Theorem 7 ([25]). The rank of a n × n matrix over an

arbitrary field can be computed in O(log2 n) time, using a

polynomial number of processors.

We can also compute the number of connected component

of GP directly by finding all connected components in GP .

Theorem 8 ([26]). The connected components of a graph

with n vertices and m edges can be computed in O(log n)
time, using O((m + n)α(m,n)/ logn) operations on an

ARBITRARY CRCW PRAM, where α(m,n) is the inverse

Ackermann function.

For any tree component T , there might be zero or multiple

switching paths. For each s-post p, we make a copy of T and

add one directed edge from the sink vertex to p and then find

the unique cycle in the new graph, which yields one switching

path in T .

B. Algorithmic Results

Now we are ready to give an NC algorithm to find a

maximum-cardinality popular matching.

Algorithm 3: Maximum-Cardinality Popular Matching

1 Input: Reduced graph G′ = (A ∪ P , E′) and a popular

matching M .

2 Output: A maximum-cardinality popular matching M ′.

3 GM := switching graph of M and G′.

4 Find all weakly connected components of GM ;

5 for each cycle component (resp. tree component) in

parallel do

6 Find the unique switching cycle (resp. each switching

path);

7 for each switching cycle (resp. switching path) in

parallel do

8 Compute the margin of applying this switching

cycle(resp. switching path);

9 for each cycle component (resp. tree component) in

parallel do

10 if the margin ∆ of switching cycle (resp. the largest

margin of switching paths) is positive

11 Apply this switching cycle (resp. switching path)

to M ;

12 // The resulting matching M ′ after applying such

switching cycles and switching paths is the

maximum-cardinality matching.

13 return M ′;

Given the reduced graph G′ and a popular matching M , we

construct the switching graph GM . After that, we identify the

unique switching cycle or each switching path in GM . Then
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we increase the size of popular matching locally according to

the margin ∆ of each component.

For each switching cycle C (resp. switching path P ), we

define the margin ∆ in Definition 4 as the difference of the

number of last resort posts after applying C (resp. P ) to

M . For each applicant a, the margin ∆ increases by 1 if a
promotes from l(a) to f(a) or decreases by 1 if a demotes

from f(a) to l(a), otherwise no change is made. The following

theorem gives a one-to-one correspondence between a popular

matching and a unique subset of the cycle components and the

tree components of GM , which is crucial to our algorithm for

maximum-cardinality popular matching.

Definition 4. Let ∆ be the margin of applying a switching

cycle C (resp. switching path P ) to M , i.e.

∆ =
∑

a∈C(resp.P ) 1M·C(a) − 1M(a)

where 1p is an indicator function of posts

s.t. 1p :=

{

1 if p is not l-post

0 if p is l-post

The following theorem is crucial for the correctness of

Algorithm 3.

Theorem 9 ([23], Corollary 1). Let G = (A ∪ P , E) be

an instance, and let M be an arbitrary popular matching

for G with switching graph GM . Let the tree components

of GM be T1, T2, · · · , Tk, and the cycle components of GM

be C1, C2, · · · , Cl. Then the set of popular matchings for G
consists of exactly those matchings obtained by applying at

most one switching path in Ti for each i(1 ≤ i ≤ k) and by

either applying or not applying the switching cycle in Ci for

each i(1 ≤ i ≤ l).

C. Correctness

Any popular matching can be obtained from M by applying

at most one switching cycle or switching path per component

of the switching graph GM . For any tree component T , we

apply the switching path in T with the largest positive margin.

Similarly, for any cycle component C, we apply the switching

cycle in C with positive margin. Then, we get the largest

possible total margin, which in turn implies the largest possible

number of l-posts we removed from M . Hence, we obtain the

maximum-cardinality popular matching. For any other popular

matching obtained by applying difference subset of switching

paths or switching cycles, it will have strictly less total margin

than the maximum-cardinality popular matching.

D. Complexity

It is clear that the switching graph GM can be constructed

from G′ and M in constant time in parallel. All weakly

connected components of GM can also be found in polylog

time by Theorem 8. Moreover, in Section IV-A, we showed

that all switching cycles and switching paths can be found in

polylog time. Each switching cycle and switching path can be

applied to matching M easily in parallel since they are vertex-

disjoint in GM . So, overall the complexity of Algorithm 3 is

O(log2 n).

We summarize the preceding discussion in the following

theorem.

Theorem 10. We can find a maximum-cardinality popular

matching, or determine that no such matching exists in NC.

E. Optimal Popular Matchings

It is natural to extend the popular matching problem to

a weighted version of the popular matching problem. If a

weight w(ai, pj) is defined for each applicant-post pair with pj
acceptable to ai, then the weight w(M) of a popular matching

M is
∑

(ai,pj)∈M w(ai, pj). A popular matching is optimal if

it is a maximum or minimum weight popular matching. It turns

out that maximum-cardinality popular matching is a special

case of maximum weight popular matching if we assign a

weight of 0 to each pair involving a last resort post and a

weight of 1 to all other pairs.

Kavitha et al. [27] considered other optimality criteria,

in terms of the so called profile of the matching. For a

popular matching instance with n1 applicants and n2 posts,

we define the profile ρ(M) of M to be the (n2 + 1) tuple

(x1, x2, · · · , xn2+1) such that for each i, 1 ≤ i ≤ n2 + 1,

xi is the number of applicants who are matched with their ith
ranked post. An applicant who is matched to his/her last resort

post is considered to be matched to his/her (n2 +1)th ranked

post, regardless of the length of his/her preference list.

Suppose that ρ = (x1, x2, · · · , xn2+1) and ρ′ = (y1, y2, · · ·
, yn2+1). We use ≻R denote the lexicographic order on pro-

files: ρ ≻R ρ′ if xi = yi for 1 ≤ i < k and xk > yk, for some

k. Similarly, we use ≺F to denote the lexicographic order on

profiles: ρ ≺F ρ′ if xi = yi for k < i ≤ n2 + 1 and xk < yk,

for some k.

A rank-maximal popular matching is a popular matching

whose profile is maximal with respect to ≻R. A fair popular

matching is a popular matching whose profile is minimal with

respect to ≺F . Note that a fair popular matching is always

a maximum-cardinality popular matching since the number

of last resort posts is minimized. It is easy to check these

two problems are equivalent to the optimal popular matching

problem with suitable weight assignments as follows.

• Rank-maximal popular matching: assign a weight of 0

to each pair involving a last resort post and a weight of

nn2−k+1
1 to each pair (ai, pj) where pj is kth ranked post

of ai, and find a maximum weight popular matching.

• Fair popular matching: assign a weight of nk
1 to each pair

(ai, pj) where pj is the kth ranked post of ai, and find a

minimum weight popular matching.

Now we are ready to give an NC algorithm for the optimal

popular matching problem. Given a popular matching instance

and a particular weight assignment, let M be a popular match-

ing, and Mopt be an optimal popular matching (maximum or

minimum weight, depends on the context). By Theorem 9,

Mopt can be obtained from M by applying a choice of at most

one switching cycle or switching path per component of the

switching graph GM . Similar to Algorithm 3, the algorithm for

computing Mopt will compute an arbitrary popular matching

M , and make an appropriate choice of switching cycles and

switching paths to apply in order to obtain an optimal popular
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matching. The only difference is the margin calculation. In

order to decide to apply a switching cycle C or not, we need

to compare
∑

a∈C w(a,M(a)) with
∑

a∈C w(a,M ·C(a)). In

the case of maximum-cardinality popular matching, the weight

assignment is either 0 or 1. While in rank-maximal popular

matching and fair popular matching, w is bounded by nn2+1
1 ,

which has Õ(n) bits. So
∑

a∈C w(a,M(a)) can be computed

in NC.

V. PREFERENCE LISTS WITH TIES

In this section, we consider the popular matching problem

such that preference lists are not strictly ordered, but contain

ties. Without the assumption of strictly ordered preference

lists, we show that the popular matching problem is at least as

hard as the maximum-cardinality bipartite matching problem

by showing that maximum-cardinality bipartite matching is

NC-reducible to popular matching. Note that whether bipartite

perfect matching is in NC is still open [19].

Now we show the following NC reduction.

Theorem 11. Maximum-cardinality Bipartite Matching ≤NC

Popular Matching.

Proof. Suppose we have access to a black box that can solve

Popular Matching in NC. Consider an arbitrary instance of

Maximum-cardinality Bipartite Matching, specified by a graph

G = (A∪B, E). We construct our Popular Matching instance

by giving all edges rank 1, i.e. each applicant has the same

preference over all acceptable posts. For convenience, we also

use G = (A ∪ B, E) as our instance of Popular Matching.

We do not add last resort posts at all. Lemma 12 and Lemma

13 show that popular matching always exists in G and any

popular matching M is also a maximum-cardinality matching

in G.

Lemma 12. Let M be a popular matching in G. Then M is

also a maximum-cardinality matching in G.

Proof. Suppose for a contradiction that M is not a maximum

matching of G. Then M admits an augmenting path Q with

respect to G. Since each edge in G has rank 1, after applying

augmenting path Q to M , we obtain a matching M ′ that

is more popular than M because M ′ has exactly one more

edge matched than M and all rest of applicants do not have

preference over M and M ′.

We know from Section III that popular matching may not

exist in an arbitrary popular matching instance. We show that

given the construction that each edge in G has rank 1, popular

matching always exists.

Lemma 13. Let M be a maximum-cardinality matching in G.

Then M is also a popular matching in G.

Proof. Consider any other matching M ′ in G. We only care

about the symmetric difference M∆M ′ since the rest of edges

do not have preference over M and M ′. Since all edges have

rank 1, then |P (M ′,M)| − |P (M,M ′)| = |M ′| − |M | ≤ 0.

Hence, no matching is more popular than M .

We conjecture that the following reduction is also true.

Conjecture 14. Popular Matching ≤NC Maximum-cardinality

Bipartite Matching.

VI. FINDING “NEXT” STABLE MATCHING IN NC

In this section, we consider the problem of finding “next”

stable matching. [28] mentioned that even if it is not possible

to find the first stable matching fast in parallel, perhaps,

after sufficient preprocessing, the stable matchings could be

enumerated in parallel, with small parallel time per matching.

Our results partially answer this question, given a stable

matching, we can enumerate the “next” stable matching in

the stable matching lattice in polylog time. This result can be

regarded as an application of the techniques used in IV, that is

to find cycles in pseudoforest in NC. The main result is given

by Theorem 16.

We give some useful definitions in the next section.

A. Stable Marriage Problem

Let A be a set of n men and B be a set of n women. For

any man m ∈ A, there is a strictly ordered preference list

containing all the women in B. For any woman w ∈ B, there

is a strictly ordered preference list containing all the men in

A. Person p prefers q to r, where q and r are of the opposite

sex to p, if and only if q precedes r on p’s preference list.

A matching M is one-to-one correspondence between the

men and the women. If man m and woman w are matched

in M , then m and w are called partners in M , written as

m = pM (w) and w = pM (m). A pair (m,w) is called a

blocking pair for M , if m and w are not partners in M , but

m prefers w to pM (m) and w prefers m to pM (w).

Definition 5. A matching M is stable if and only if there is

no blocking pair for M .

Definition 6 (Partial Order M). For a given stable marriage

instance, stable matching M is said to dominate stable match-

ing M ′, written M � M ′, if every man either prefers M to

M ′ or is indifferent between them. We use the term strictly

dominate, written M ≺ M ′, if M � M ′ and M 6= M ′. We

use the symbol M to represent the set of all stable matchings

for a stable marriage instance. Then the set M is a partial

order under the dominance relation, denoted by (M,�).

It is well-known that the partial order (M,�) forms a

distributive lattice. Hence, the unique minimal element in M
with respect to �, i.e. man-optimal stable matching (denoted

by M0), as well the unique maximal element, i.e. woman-

optimal stable matching (denoted by Mz) is well-defined.

Definition 7 (Rotation). Let k ≥ 2. A rotation ρ is an ordered

list of pairs

ρ = ((m0, w0), (m1, w1), · · · , (mk−1, wk−1))
that are matched in some stable matching M with the property

that for every i such that 0 ≤ i ≤ k− 1, woman wi+1 (where

i+1 is taken modulo k) is the highest ranked woman on mi’s

preference list satisfying:

(i) man mi prefers wi to wi+1, and

(ii) woman wi+1 prefers mi to mi+1.

In this case, we say ρ is exposed in M .
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Definition 8 (Elimination of a Rotation). Let ρ = ((m0, w0)
, (m1, w1), · · · , (mk−1, wk−1)) be a rotation exposed in a

stable matching M . The rotation ρ is eliminated from M by

matching mi to w(i+1) mod k for all 0 ≤ i ≤ k − 1, leaving

all other pairs in M unchanged, i.e. matching M is replaced

by matching M ′, where

M ′ := M\ρ ∪ {(m0, w1), (m1, w2), · · · , (mk−1, w0)}.

Note that the resulting matching M ′ is also stable.

Lemma 15 ([28], Theorem 2.5.1). If ρ is exposed in M ,

then M immediately dominates M\ρ, i.e. there is no stable

matching M ′ such that M ≺ M ′ and M ′ ≺ M\ρ.

Theorem 16. Given a stable matching M , there is an NC

algorithm that outputs stable matching M\ρ for each rotation

ρ exposed in M or determines M is the woman-optimal

matching.

B. Algorithmic Results

We describe the NC algorithm to find the “next” stable

matching in this section.

Algorithm 4: “next” Stable Matching

1 Input: Stable matching M and preference lists mp and

wp.

2 Output: M\ρ or determine M is the woman-optimal

matching.

3 Compute ranking matrices mr and wr; // constant steps

4 Compute reduced preference lists mp′ and wp′; //

logarithmic number of steps

5 Construct HM from mp′;
6 if HM is not empty then

7 Find all simple cycles(rotations) in HM ;

8 for each rotation ρ in HM in parallel do

9 return M\ρ;

10 else

11 return M is the woman-optimal matching;

Let M be a stable matching. For any man m, let sM (m)
denote the highest ranked woman on m’s preference list such

that w prefers m to pM (w). Let nextM (m) denote woman

sM (m)’s partner in M . Note that since M is stable, m prefers

pM (m) to sM (m).
Now let m be any man who has different partners in M

and Mz and let w be m’s partner in Mz . Since Mz is woman-

optimal, m prefers pM (m) to w and w prefers m to pM (w).
Hence, sM (m) exists. If sM (m) exists and m′ = nextM (m),
then sM (m′) exists as well. Otherwise, m′ and sM (m) are

partners in Mz, so m prefers sM (m) to his partner w in Mz

and sM (m) prefers m to her partner m′ in Mz , contradicting

the stability of Mz. Denote D the set of man who has

different partners in M and Mz , then for any man m ∈ D,

nextM (m) ∈ D. Later we will show that the algorithm does

need to know Mz .

Similar to the switching graph of popular matching, we

define the switching graph of stable matching M as a directed

graph HM with a vertex for each man in D and a directed edge

from the vertex for m to the vertex for nextM (m), which is

also in HM . Some simple properties of switching graph HM

is shown in the following lemma.

Lemma 17. Let M be a stable matching other than the

woman-optimal matching Mz , let HM be the switching graph

of M , then

(i) Each vertex in HM has outdegree exactly one.

(ii) Each component of HM contains a single simple cycle.

Proof. (i) is direct from the definition of a switching graph.

(ii) No vertex points to itself, so there is no self loop in

HM . If there is no cycle in one component, then there

exists at least one sink vertex (consider the topological sort

of HM ), contradicting (i). If there are two cycles in one

component, consider any path that connects these two cycles.

There must be a vertex with at least two outgoing edges again

contradicting (i).

From Definition 7, it is easy to see that any such simple

cycle defines the men in a rotation exposed in M , in the order

that they appear in the rotation. On the other hand, based on

the uniqueness of nextM (m) for each m ∈ D, if m belongs

to some rotation ρ, e.g. m = mi, then mi+1 is uniquely

determined, that is nextM (m). Hence the men in ρ must be

a simple cycle in HM .

We know from Section IV-A that every cycle in HM can be

found in NC. It is obvious that the elimination of a rotation

can be done in one parallel step. Thus, we are left to show

that HM can be constructed in NC.

Let us assume that a stable marriage instance is described

by the sets of preference lists, represented as matrices mp and

wp defined by

• mp[m, i] = w if woman w is ranked of i in m’s

preference list

• wp[w, i] = m if man m is ranked of i in w’s preference

list

We also define the ranking matrices mr and wr as below

• mr[m,w] = i if woman w is ranked of i in m’s

preference list

• wr[w,m] = i if man m is ranked of i in w’s preference

list

We need to identify sM (m) and nextM (m) for each man

m. Suppose for each woman w we delete all pairs (m′, w)
such that w prefers pM (w) to m′. In the resulting preference

lists, which we call reduced lists, pM (w) is the last entry in

w’s list, and pM (m) is the first entry in m’s list for if any

woman w′ remains above pM (m), then (m,w′) blocks M .

Moreover, sM (m) is the second entry in m’s list if exists, for

by definition, it is the highest ranked woman w on m’s list

such that w prefers m to pM (w). nextM (m) is simply the

partner in M of woman sM (m).
From the algorithmic aspect, for each entry (m,w) to be

deleted in parallel, we call the ranking matrix mr to obtain

woman w’s rank on m’s list. Then call the preference matrix

mp and use soft-deletion, i.e. mark the entry mp[m,mr[m,w]]
zero. After each entry is soft-deleted, we can compress the

preference list using parallel prefix sum technique. The result-

ing preference lists are reduced lists. Now we obtain all pairs

(m,nextM (m)) and it is easy to construct HM .
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C. Example of Stable Matchings

Figure 5 is an example of a stable marriage instance. The

reader can verify that the matching M denoted by underlining

is stable.

m1 : w5 w7 w1 w2 w6 w8 w4 w3

m2 : w2 w3 w7 w5 w4 w1 w8 w6

m3 : w8 w5 w1 w4 w6 w2 w3 w7

m4 : w3 w2 w7 w4 w1 w6 w8 w5

m5 : w7 w2 w5 w1 w3 w6 w8 w4

m6 : w1 w6 w7 w5 w8 w4 w2 w3

m7 : w2 w5 w7 w6 w3 w4 w8 w1

m8 : w3 w8 w4 w5 w7 w2 w6 w1

(a) Men’s preferences

w1 : m5 m3 m7 m6 m1 m2 m8 m4

w2 : m8 m6 m3 m5 m7 m2 m1 m4

w3 : m1 m5 m6 m2 m4 m8 m7 m3

w4 : m8 m7 m3 m2 m4 m1 m5 m6

w5 : m6 m4 m7 m3 m8 m1 m2 m5

w6 : m2 m8 m5 m3 m4 m6 m7 m1

w7 : m7 m5 m2 m1 m8 m6 m4 m3

w8 : m7 m4 m1 m5 m2 m3 m6 m8

(b) Women’s preferences

Figure 5: The stable marriage instance of size 8 and the stable

matching M denoted by underlining

Figure 6 shows the reduced lists of the men for the stable

matching M . The second column corresponds to sM (m) for

each m.

m1 : w8 w3

m2 : w3 w6

m3 : w5 w1 w6 w2

m4 : w6 w8 w5

m5 : w7 w2 w1 w3 w6

m6 : w1 w5 w2 w3

m7 : w2 w5 w7 w8 w1

m8 : w4 w2 w6

Figure 6: The reduced lists of the men for the stable matching

M

Finally we give the switching graph HM for the stable

matching M in Figure 7.

VII. SUMMARY AND OPEN PROBLEMS

This paper has established the result that the popular match-

ing problem without ties is in NC. The notion of pseudoforest

may have other applications for designing parallel algorithms.

We have shown that maximum-cardinality bipartite match-

ing is NC-reducible to popular matching. One open problem is

m1

m2 m3

m4

m5

m6

m7

m8

Figure 7: The switching graph HM

Conjecture 14. If it is true, then it means these two problems

are NC-equivalent. The other open problem is establishing

the NC reduction among several other matching problems in

preference systems such as Pareto-optimal matching and rank-

maximal matching. Another open problem is to determine if

there is an RNC algorithm for popular matching problem with

ties.
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[10] D. J. Abraham, K. Cechlárová, D. F. Manlove, and K. Mehlhorn, “Pareto
optimality in house allocation problems,” in International Symposium on
Algorithms and Computation. Springer, 2004, pp. 3–15.

[11] R. W. Irving, T. Kavitha, K. Mehlhorn, D. Michail, and K. Paluch,
“Rank-maximal matchings,” in Proceedings of the fifteenth annual ACM-

SIAM symposium on Discrete algorithms. Society for Industrial and
Applied Mathematics, 2004, pp. 68–75.

[12] L. Lovász, “On determinants, matchings, and random algorithms.” in
FCT, vol. 79, 1979, pp. 565–574.

[13] R. M. Karp, E. Upfal, and A. Wigderson, “Constructing a perfect
matching is in random nc,” Combinatorica, vol. 6, no. 1, pp. 35–48,
1986.

[14] K. Mulmuley, U. V. Vazirani, and V. V. Vazirani, “Matching is as easy
as matrix inversion,” Combinatorica, vol. 7, no. 1, pp. 105–113, 1987.

[15] E. W. Mayr and A. Subramanian, “The complexity of circuit value and
network stability,” Journal of Computer and System Sciences, vol. 44,
no. 2, pp. 302–323, 1992.



10

[16] A. Subramanian, “The computational complexity of the circuit value and
network stability problems.” 1991.

[17] S. A. Cook, Y. Filmus, and D. T. M. Le, “The complexity of the
comparator circuit value problem,” ACM Transactions on Computation

Theory (TOCT), vol. 6, no. 4, p. 15, 2014.
[18] X. Zheng and V. Garg, “Parallel and distributed algorithms for the

housing allocation problem,” arXiv preprint arXiv:1905.03111, 2019.
[19] S. Fenner, R. Gurjar, and T. Thierauf, “Bipartite perfect matching is in

quasi-nc,” in Proceedings of the forty-eighth annual ACM symposium
on Theory of Computing. ACM, 2016, pp. 754–763.

[20] N. Anari and V. V. Vazirani, “Planar graph perfect matching is in nc,”
in 2018 IEEE 59th Annual Symposium on Foundations of Computer

Science (FOCS). IEEE, 2018, pp. 650–661.
[21] P. Hall, “On representatives of subsets,” in Classic Papers in Combina-

torics. Springer, 2009, pp. 58–62.
[22] G. F. Lev, N. Pippenger, and L. G. Valiant, “A fast parallel algorithm

for routing in permutation networks,” IEEE transactions on Computers,
vol. 100, no. 2, pp. 93–100, 1981.

[23] E. McDermid and R. W. Irving, “Popular matchings: structure and
algorithms,” Journal of combinatorial optimization, vol. 22, no. 3, pp.
339–358, 2011.
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