arXiv:1910.13386v2 [cs.DS] 20 Dec 2019

NC Algorithms for Popular Matchings in One-Sided
Preference Systems and Related Problems

Changyong Hu, Vijay K. Garg
Department of Electrical and Computer Engineering
University of Texas at Austin
colinhu9 @utexas.edu, garg@ece.utexas.edu

Abstract—The popular matching problem is of matching a
set of applicants to a set of posts, where each applicant has a
preference list, ranking a non-empty subset of posts in the order
of preference, possibly with ties. A matching M is popular if
there is no other matching M’ such that more applicants prefer
M’ to M. We give the first NC algorithm to solve the popular
matching problem without ties. We also give an NC algorithm
that solves the maximum-cardinality popular matching problem.
No NC or RNC algorithms were known for the matching problem
in preference systems prior to this work. Moreover, we give an NC
algorithm for a weaker version of the stable matching problem,
that is, the problem of finding the ‘“next” stable matching given
a stable matching.

I. INTRODUCTION

The matching problem in preference systems is well-studied
in economics, mathematics and computer science, see for
example [1], [2], [3]. It models many important real-world
applications, including the allocation of medical residents to
hospitals [4] and families to government-owned housing [5].
The notion of a popular matching was first introduced in [6]
in the context of the stable marriage problem. We say that
a matching M is more popular than M’ if the number of
nodes that prefer M to M’ exceeds the number of nodes
that prefer M’ to M. A matching M is popular if M is
optimal under the more popular than relation. Gupta et al.
[7] and Faenza et al. [8] recently showed that the popular
matching problem is NP-complete in the general roommate
setting. The popular matching problem we consider is from [9]
such that the preference system is only one-sided. Abraham
et al. [9] gave a linear-time algorithm for the problem in the
case of strictly-ordered preference lists and a polynomial-time
algorithm for the case of preference lists with ties. There are
other problems with other definitions of optimality such as
Pareto optimal matching [10], rank-maximal matching [11]
etc. We do not discuss them here.

The matching problem in the normal case, that is the
problem of checking if a given graph has a perfect matching,
and the corresponding search problem of finding a perfect
matching have received considerable attention in the field of
parallel computation. Tutte and Lovasz [12] observed that
there is an RNC algorithm for the decision problem. The
search version was shown to be in RNC by Karp, Upfal and
Wigderson [13] and subsequently by Mulmuley, Vazirani and
Vazirani using the celebrated Isolation Lemma [14]. We note
that no NC or RNC algorithms were known for the matching

problem in preference systems prior to this work. The problem
of finding an NC algorithm for the stable marriage problem
has been open for a long time. Mayr and Subramanian [15]
showed that the stable marriage problem is CC-complete.
Subramanian [16] defined the complexity class CC as the
set of problems log-space reducible to the comparator circuit
value problem (CCV). Cook et al. [17] conjectured that CC is
incomparable with the parallel class NC, which implies none
of the CC-complete problems has an efficient polylog time
parallel algorithm. Recently, Zheng and Garg [18] showed that
computing a Pareto optimal matching in the housing allocation
model is in CC and computing the core of a housing market
is CC-hard.

A. Our Contributions

1) We give NC algorithms for both the popular matching
problem and the maximum-cardinality popular matching
problem in the setting of strictly-ordered preference lists.

2) In the case that preference lists contain ties, we show that
maximum-cardinality bipartite matching is NC-reducible
to popular matching.

3) We also give an NC algorithm to find the “next” stable
matching if one stable matching is given. We will define
“next” in Section VI

B. Organization of the paper

In Section II, we give the terminology and notation of
popular matchings and stable matchings. In Section III, we
give an NC algorithm for the popular matching problem
without ties. In Section IV, we give an NC algorithm for the
maximum-cardinality popular matching problem. In Section
VI, we give an NC algorithm for finding the “next” stable
matching. Finally, we give open problems related to our work.

II. PRELIMINARIES
A. Popular Matching Problem

Let A be a set of applicants and P be a set of posts, associ-
ated with each member of A is a preference list (possibly in-
volving ties) comprising a non-empty subset of the elements of
‘P. An instance of the popular matching problem is a bipartite
graph G = (AU P, F) and a partition £ = E;UE,U---UE,
of the edge set. The partition E consists of all pairs (a,p)
such that post p appears in the preference list of applicant a

and we say that each edge (a,p) € E; has a rank ¢ if post p
is on the ¢-th position of the preference list of applicant a. If
(a,p) € E; and (a,p’) € E; with i < j, we say that a prefers
pto p'. If i = j, we say that a is indifferent between p and p’.
We say that preference lists are strictly ordered if no applicant
is indifferent between any two posts on his/her preference list.
Otherwise, we say that preference lists contain ties.

A matching M of G is a set of edges no two of which
share an endpoint. A node v € AU P is either unmatched
or matched to some node, denoted by M (u). We say that an
applicant a prefers matching M’ to M if (i) a is matched in
M’ and unmatched in M, or (ii) a is matched in both M’
and M, and a prefers M’'(a) to M(a). Let M be the set of
matchings in G and let M, M’ € M. Let P(M, M') denote
the set of applicants who prefer M to M’'. Define a “more
popular than” relation > on M as follows: if M, M’ € M,
then M’ is more popular than M, denoted by M’ = M, if
|[P(M',M)| > |P(M, M")|.

Definition 1. A matching M € M is popular if there is no
matching M’ such that M' = M.

The popular matching problem is to determine if a given
instance admits a popular matching, and to find such a
matching, if one exists. Note that popular matchings may have
different sizes, a largest popular matching may be smaller
than a maximum-cardinality matching since no maximum-
cardinality matching needs to be popular. The maximum-
cardinality popular matching problem then is to determine
if a given instance admits a popular matching, and to find
a largest such matching, if one exists. Figure 1 shows an
example of a popular matching instance. The reader can check
that {(a1,p1), (a2, p2), (a3, pa), (a4, p3), (as, ps), (as, p7),
(a7, ps), (as,pg)} is a popular matching.

air: p1 P4 P5 P2 Pe
az: P4 P5s P7 P2 P8
as: ps P1 P3 P8

aq: p1 Pr P4 P3 P9
as: Ps P1 P7 P2 DPe
ae : P71 D¢

ar: pr P4 Ps P2

ag: Pr P4 P1 P5 P9 D3

Figure 1: A popular matching instance

As in [9], we add a unique last resort post l(a) for each
applicant a and assign the edge (a,l(a)) higher rank than any
edge incident on a. In this way, we can assume that every
applicant is matched, since any unmatched applicant can be
matched to his/her unique last resort post. From now on, we
only focus on matchings that are applicant-complete, and the
size of a matching is the number of applicants not matched to
their last resort posts.

Definition 2. A matching M € M is applicant-complete if
each applicant a € A is matched to some post p € P.

ITI. FINDING POPULAR MATCHING IN NC
A. Characterizing Popular Matchings

We restrict our attention to strictly-ordered preference lists.
For each applicant a, let f(a) denote the first-ranked post on
a’s preference list. We call any such post p an f-post, and
denote by f~1(p) the set of applicants a for which f(a) = p.
For each applicant a, let s(a) denote the first non-f-post on
a’s preference list (note that s(a) always exists, due to the
introduction of /(a)). We call any such post p an s-post, and
remark that f-posts are disjoint from s-posts. We also call any
last resort post p an [-post.

The following theorem, proved in [9], completely charac-
terizes popular matchings.

Theorem 1. A matching M is popular if and only if

(i) every f-post is matched in M, and
(ii) for each applicant a, M (a) € {f(a),s(a)}.

Let G’ be the reduced graph of G that only includes f-
posts and s-posts. For a reduced graph G, let M be a popular
matching, and let a be an applicant. Denote by O (a) the post
on a’s reduced preference list to which a is not assigned in M.
Note that since G’ is a reduced graph of G, Oy/(a) is well-
defined. If @ is matched to f(a) in M, then Op(a) = s(a),
whereas if a is matched to s(a) in M, then Ops(a) = f(a).

B. Algorithmic Results

Now we show Algorithm 1 is an NC algorithm for the
popular matching problem with strictly-ordered preference
lists. First we construct the reduced graph G’ from G. Then
we find an applicant-complete matching M in G’. Hence for
each applicant a, M (a) € {f(a), s(a)}. Then for any f-post
p that is unmatched in M, we match p with any applicant in
=)

The most non-trivial part is line 4 that determines an
applicant-complete matching M in the reduced graph G’.
Perfect matching in bipartite graph is in Quasi-NC [19], but we
do not know whether it is in NC. Recent results in [20] show
that perfect matching in planar graph is in NC. But the reduced
graph for popular matching problem is not necessarily planar.
It is easy to check that the reduced graph G’ may contain a
subgraph that is a subdivision of the complete bipartite graph
K. 3,3-

Algorithm 1: Popular Matching

1 Input: Graph G = (AUP,E).
2 Output: A popular matching M or determine that no
such matching.
G’ := reduced graph of G;
if G’ admits an applicant-complete matching M then
for each f-post p unmatched in M in parallel do
let a be any applicant in f~*(p);
promote a to p in M;
return M,
else
10 return “no popular matching”;

o X N Bt AW

We first show how to construct the reduced graph G’ from
G in parallel (line 3). For each post p, we check if there
is any incident edge (a,p) € E;. Let F be the set of such
posts, which corresponds to all f-posts. Then for each post
p € F, we remove all incident edges (a,p) ¢ E1. After that,
for each applicant a, we find the highest ranked incident edge
(a,p) ¢ E1, which corresponds to s(a), and remove all other
incident edges. The remaining graph must be G'. It is clear that
each step can be done in logarithmic time with a polynomial
number of operations.

It remains to show how to find an applicant-complete
matching in G’ (line 4), or determine that no such matching
exists in NC. Now we explain Algorithm 2 that finds an
applicant-complete matching.

Algorithm 2: Applicant-Complete Matching

1t Input: Graph G’ = (AU P, E’).
2 Output: An applicant-complete matching M or
determine that no such matching exists.

3 M =0

4 while some post p has degree 1

5 Find all maximal paths that end at p;

6 for each edge (p’,d’) at an even distance from some
p in parallel do

7 M:=MuU{(p,a)};

8 G =G —-{p,d};

9 for each post p has degree 0 in parallel do

10 G =G —-p

11 // Every post now has degree at least 2;

12 // Every applicant still has degree 2;

13 if |P| < |A] then

14 return “no applicant-complete matching”;

15 else

16 /I G’ decomposes into a family of disjoint even cycles

17 M’ := any perfect matching of G’;

18 return M U M’;

The while loop (line 4) gradually matches applicants to posts
of degree 1 or 2 until there is no post of degree 1. Then,
either the remaining graph admits a perfect matching or we
can conclude that there is no applicant-complete matching. We
show the details below.

First, we identify all vertices of degree 2 in G’. Note that
all applicants have degree 2, but posts may have any degree.
We only need to identify posts of degree 2. Some of these
vertices might be connected to each other, in which case we
get paths formed by these vertices. We can extend these paths,
by the doubling trick in polylog time to find maximal paths
consisting of degree 2 vertices. Let the vertices of the path
be (v1,ve, - ,vk). Further, let vy be the vertex we would
get if we extended this path from v; side and vg4; be the
one we would get from vy, side. Note that deg(v;) = 2 for
i=1,---,k but not fori =0,k + 1.

Then, in parallel, we consider each maximal path with at
least one of vy and vg41 of degree 1. W.l.o.g, let vy be the
vertex of degree 1. For each such path, we add each edge at
an even distance from vy to M (e.g. the edge (vg,v1) is at

zero distance from vy and must be added to M) and delete
vg, - -,V and their incident edges. Note that vy and vy
can only be posts since all applicants have degree exactly 2.
Hence, any maximal path must have even length and v
is not matched. In the case both end points have degree
1, we only consider this path once and choose vy or vg41
to be matched arbitrarily. After one round, there would be
some new vertices of degree 1 because the degree of vy
decreases by 1 for each maximal path that ends at vi11. Run
the same process until there is no post that has degree 1. After
removing any isolated posts, we can conclude that either there
is no applicant-complete matching, or the remaining graph is
a family of disjoint even cycles.

1) Correctness: Algorithm 2 begins by repeatedly matching
maximal paths (vg,v1,- - ,vp+1) with deg(vg) = 1. After
first round, no subsequent augmenting path can include any
vertices v; for i = 0,1, --- , k since they are matched and any
alternating path that includes them must end at vy, which is
matched and has degree 1. So we can remove all matched
vertices from consideration. The same argument holds for
subsequent rounds. Also note that the while loop always
terminates because whenever we find a post of degree 1, we
match at least one edge (vp,v1) and remove at least two
vertices that are {vg,v1}.

Now we have a matching and we only need to match re-
maining posts and applicants. All remaining posts have degree
at least 2, while all remaining applicants still have degree
exactly 2. Now, if |P| < |A|, G’ cannot admit an applicant-
complete matching by Hall’s Marriage Theorem [21]. Oth-
erwise, we have that |P| > |A|, and by a double counting
argument, we have 2|P| < > 5 deg(p) = 2|A|. Hence, it
must be that |P| = |A| and every post has degree exactly 2.
G’ becomes 2-regular bipartite graph and consists of disjoint
union of even cycles. By choosing any edge e in an even-length
cycle C, even distance (resp. odd distance) from e is well-
defined. Choosing all edges of even distance yields a perfect
matching in G’. Now we have an applicant-complete matching
in G’. Hence for each applicant a, M (a) € {f(a), s(a)}. Then
for any f-post p that is unmatched in M, we match p with any
applicant in f~1(p). By Theorem 1, the resulting matching is
a popular matching.

2) Complexity: Lemma 2 proves that the while loop in
Algorithm 2 runs O(log(n)) number of times.

Lemma 2. The while loop (line 4) runs O(log(n)) number of
times.

Proof. For any vertex v of deg(v) > 3 that is reduced to
degree of 1, it must be the end point of deg(v) — 1 maximal
paths. If in round r, s.t. » > 1, there are ¢ vertices of degree
1 (for some constant t), then we must have deleted at least
2t vertices in round r — 1. After round r, we have deleted at
least (2" — 1)t vertices. Hence, it is clear that the while loop
can be run at most [log(n)] + 1 times since the total number
of vertices is bounded by n. O

Finding all maximal paths of degree 2 vertices and calcu-
lating the distance from vg in the path can be done in polylog
time. Furthermore, the while loop runs at most a logarithmic

number of times. Finding a prefect matching in a 2-regular
bipartite graph i.e. graph consisting of even-length cycles is
in NC. More generally, searching for a perfect matching in
regular bipartite graphs can be done in NC [22]. So, Algorithm
2 is in NC. The for loop in Algorithm 1 can be done in constant
time since for every f-post p, f~!(p) is disjoint from each
other.

We summarize the preceding discussion in the following
theorem.

Theorem 3. We can find a popular matching, or determine
that no such matching exists in NC.

C. Example of Popular Matchings

To illustrate Algorithm 2, we provide a detailed example.
Figure 1 shows the preference lists for a popular matching
instance I. The set of f-posts is {p1,p4, ps,p7} and the set
of s-posts is {p2,p3, 6, Ps, P9 }-

Figure 2 shows the reduced preference lists of I and reduced
graph G'.

air: p1 P2
az @ pa P2
as: ps P3
a4 p1 p3
as: pPs P2
as : P7 Do
ar: pr ps
asg: pr po

(a) The reduced preference lists of I with popular matching M
denoted by underlining

a b1
az b2
as p3
a4 P4
as Ps
Qe Pe
ar pr
as ps

Po

(b) The reduced graph G’ of G

Figure 2: The reduced instance of 1

In the while loop of Algorithm 2, pairs (as,p9), (as, Ps)
,(a7,p8), (a5,p5) are matched. Figure 3 shows the
reduced graph after the while loop of Algorithm 2. The
graph consists of only even-length cycles. Choose one
perfect matching in the reduced graph such as pairs
(a1,p1), (az,p2), (a3, ps), (a4, p3), we obtain an applicant-
complete matching. Note that one f-post p7 is not matched
in this applicant-complete matching. So we can promote
any applicant from {ag,a7,as} to match with pr, e.g.
ag is matched to py. The resulting popular matching M is

{(alvpl)v (ag,pg), (ag,p4), (a4,p3), (a5,p5), (%;P?)a (a7ap8)
, (as,p9)}.

ai p1
a2 b2
as ps3
ay4 P4

Figure 3: The reduced graph after the while loop of Algorithm
2

IV. FINDING MAXIMUM-CARDINALITY POPULAR
MATCHING IN NC

We now consider the maximum-cardinality popular match-
ing problem. Let 4; be the set of all applicants a with
s(a) = l(a), and let A» = A — A;. Our target matching
must satisfy conditions (i) and (ii) of Theorem 1, and among
all such matchings, allocate the fewest .4;-applicants to their
last resort. To be able to find maximum-cardinality matching
in NC, we need another characterization of popular matching
problem called switching graph [23], a directed graph which
captures all the possible ways in which applicants may form
different popular matchings by switching between the two
posts on their reduced preference lists.

Given a popular matching M for an instance G = (A U
P, E), the switching graph Gj; of M is a directed graph
with a vertex for each post p, and a directed edge (p;, p;) for
each applicant a, where p; = M (a) and p; = Ops(a). Then
each edge is labelled with the applicant that it represents. A
component of G is any maximal weakly connected subgraph
of Gps. An applicant (resp. post) is said to be in a component,
or path, or cycle of G if the edge (resp. vertex) representing
it is in that component, path or cycle. The following lemma
in [23] gives some simple properties of switching graphs.

Lemma 4 ([23], Lemma 1). Let M be a popular matching for
an instance of G = (AU P, E), Gur be the switching graph
of M. Then

(i) Each vertex in Gy has outdegree at most 1.

(ii) The sink vertices of G 1 are those vertices corresponding
to posts that are unmatched in M, and are all s-post
vertices.

(iii) Each component of Gy contains either a single sink
vertex or a single cycle.

A component of a switching graph Gy is called a cycle
component if it contains a cycle, and a tree component if it
contains a sink vertex. Each cycle in Gy is called a switching
cycle. If T is a tree component of GGy with sink vertex p, and
if ¢ is another s-post vertex in 7', the unique path from ¢ to
p is called a switching path. Note that each cycle component
of G has a unique switching cycle, but each tree component
may have zero or multiple switching paths; to be precise it
has one switching path for each s-post vertex it contains, other
than the sink vertex.

Figure 4 shows the switching graph G, for popular match-
ing M. There are one switching cycle and two switching paths
starting from pg and pg respectfully.

ai as
ar
a a

4 2
ae as
=) @ ()
Figure 4: The switching graph G, for popular matching M

Lemma 4 shows that the switching graph G, is indeed a
directed pseudoforest. Next we give several NC algorithms for
finding all switching cycles and switching paths in G-

A. Finding Cycles in Pseudoforest in NC

Definition 3. A pseudoforest is an undirected graph in which
every connected component has at most one cycle. A pseu-
dotree is a connected pseudoforest. A directed pseudoforest
is a directed graph in which each vertex has at most one
outgoing edge, i.e., it has outdegree at most one. A directed
1-forest (most commonly called a functional graph, sometimes
maximal directed pseudoforest) is a directed graph in which
each vertex has outdegree exactly one.

It is easy to see that every weakly connected component in
a directed pseudoforest contains either a single sink vertex or
a single cycle.

We consider the problem of finding switching cycles in Gy,
later we will show that finding switching paths is as easy as
finding switching cycles.

Given a directed pseudoforest Gp, we want to find each
unique cycle C' in each component of Gp. There could not be
any cycle in a component of G, if it is a tree component. The
first approach is based on transitive closure G of G p since
computing the transitive closure is in NC by Theorem 5. We
compute the transitive closure G and for any two vertices 4
and j s.t. ¢ # j in Gp, if Gp(i,j) = 1 and G (j,7) = 1, then
both i and j are in the unique cycle C. Hence we can identify
the cycle C' by checking each pair of vertices in parallel.

Theorem 5 ([24]). The transitive closure of a directed graph
with n vertices can be computed in O(log2 n) time, using
O(M (n)logn) operations on a CREW PRAM, where M (n)
is the best known sequential bound for multiplying two n X n
matrices over a ring.

We also give NC algorithms in the setting of undirected
graph in which transitive closure does not help. Given an undi-
rected pseudoforest G p, denote the incidence matrix of Gp as
I¢, . Let cc(G) be the number of connected components in G.
The basic idea is that we remove any one edge e from Gp, if
e € C s.t. C is the unique cycle in Gp, then cc(Gp —{e}) =
cc(Gp); otherwise, cc(Gp — {e}) = cc(Gp) + 1. There is a
direct connection between the rank of incidence matrix I of
G and the number of connected component cc(G) in G.

Lemma 6. If G is an undirected graph with k connected
components, then the rank of its incidence matrix I is n — k.

So we can compute the rank of /5, and for each e in Gp,
compute the rank of /g, (.} in parallel. There are at most
|V| edges in Gp.

Theorem 7 ([25]). The rank of a n X n matrix over an
arbitrary field can be computed in O(log®n) time, using a
polynomial number of processors.

We can also compute the number of connected component
of G p directly by finding all connected components in G p.

Theorem 8 ([26]). The connected components of a graph
with n vertices and m edges can be computed in O(logn)
time, using O((m + n)a(m,n)/logn) operations on an
ARBITRARY CRCW PRAM, where a(m,n) is the inverse
Ackermann function.

For any tree component 7', there might be zero or multiple
switching paths. For each s-post p, we make a copy of T" and
add one directed edge from the sink vertex to p and then find
the unique cycle in the new graph, which yields one switching
path in 7.

B. Algorithmic Results

Now we are ready to give an NC algorithm to find a
maximum-cardinality popular matching.

Algorithm 3: Maximum-Cardinality Popular Matching

1 Input: Reduced graph G’ = (AU P, E’) and a popular
matching M.

2 Output: A maximum-cardinality popular matching M’.

3 Gy = switching graph of M and G’.

4

5

Find all weakly connected components of Gjy;
for each cycle component (resp. tree component) in
parallel do
6 Find the unique switching cycle (resp. each switching
path);
7 for each switching cycle (resp. switching path) in
parallel do
8 Compute the margin of applying this switching
cycle(resp. switching path);
9 for each cycle component (resp. tree component) in
parallel do

10 if the margin A of switching cycle (resp. the largest
margin of switching paths) is positive

11 Apply this switching cycle (resp. switching path)
to M;

12 // The resulting matching M’ after applying such
switching cycles and switching paths is the
maximum-cardinality matching.

13 return M’;

Given the reduced graph G’ and a popular matching M, we
construct the switching graph G;. After that, we identify the
unique switching cycle or each switching path in Gjs. Then

we increase the size of popular matching locally according to
the margin A of each component.

For each switching cycle C' (resp. switching path P), we
define the margin A in Definition 4 as the difference of the
number of last resort posts after applying C' (resp. P) to
M. For each applicant a, the margin A increases by 1 if a
promotes from I(a) to f(a) or decreases by 1 if a demotes
from f(a) to I(a), otherwise no change is made. The following
theorem gives a one-to-one correspondence between a popular
matching and a unique subset of the cycle components and the
tree components of Gy, which is crucial to our algorithm for
maximum-cardinality popular matching.

Definition 4. Let A be the margin of applying a switching
cycle C' (resp. switching path P) to M, i.e.
A= ZaGC(rexp.P)]]-1\{~C(a) -]]-I\r{(a)
where 1, is an indicator function of posts
1 if p is not l-post
s.t 1, = S
0 if pis l-post

The following theorem is crucial for the correctness of
Algorithm 3.

Theorem 9 ([23], Corollary 1). Let G = (AU P,E) be
an instance, and let M be an arbitrary popular matching
for G with switching graph Gpy. Let the tree components
of Gpr be Ty, Ts, -+ Tk, and the cycle components of Gy
be C1,Cs,--- ,Cy. Then the set of popular matchings for G
consists of exactly those matchings obtained by applying at
most one switching path in T; for each i(1 < i < k) and by
either applying or not applying the switching cycle in C; for
each i(1 <i<I).

C. Correctness

Any popular matching can be obtained from M by applying
at most one switching cycle or switching path per component
of the switching graph Gjs. For any tree component 7', we
apply the switching path in 7" with the largest positive margin.
Similarly, for any cycle component C', we apply the switching
cycle in C' with positive margin. Then, we get the largest
possible total margin, which in turn implies the largest possible
number of [-posts we removed from M. Hence, we obtain the
maximum-cardinality popular matching. For any other popular
matching obtained by applying difference subset of switching
paths or switching cycles, it will have strictly less total margin
than the maximum-cardinality popular matching.

D. Complexity

It is clear that the switching graph G s can be constructed
from G’ and M in constant time in parallel. All weakly
connected components of Gj; can also be found in polylog
time by Theorem 8. Moreover, in Section IV-A, we showed
that all switching cycles and switching paths can be found in
polylog time. Each switching cycle and switching path can be
applied to matching M easily in parallel since they are vertex-
disjoint in G'ps. So, overall the complexity of Algorithm 3 is
O(log? n).

We summarize the preceding discussion in the following
theorem.

Theorem 10. We can find a maximum-cardinality popular
matching, or determine that no such matching exists in NC.

E. Optimal Popular Matchings

It is natural to extend the popular matching problem to
a weighted version of the popular matching problem. If a
weight w(a;, p;) is defined for each applicant-post pair with p;
acceptable to a;, then the weight w(M) of a popular matching
M is Z(a.i,pj)EM w(.al-., pj)- A popular matching is optimal if
it is a maximum or minimum weight popular matching. It turns
out that maximum-cardinality popular matching is a special
case of maximum weight popular matching if we assign a
weight of 0 to each pair involving a last resort post and a
weight of 1 to all other pairs.

Kavitha et al. [27] considered other optimality criteria,
in terms of the so called profile of the matching. For a
popular matching instance with n; applicants and ng posts,
we define the profile p(M) of M to be the (ny + 1) tuple
(x1,22, "+ ,&n,+1) such that for each 4,1 < i < ng + 1,
x; is the number of applicants who are matched with their ith
ranked post. An applicant who is matched to his/her last resort
post is considered to be matched to his/her (ng + 1)th ranked
post, regardless of the length of his/her preference list.

Suppose that p = (21,22, , Ty 41) and p' = (y1, Yz, -
,Uno+1). We use =g denote the lexicographic order on pro-
files: p =g p' if x; = y; for 1 <i < k and xp > yg, for some
k. Similarly, we use < to denote the lexicographic order on
profiles: p <p p' if x; = y; for k < i <no +1 and z < ys,
for some k.

A rank-maximal popular matching is a popular matching
whose profile is maximal with respect to >pr. A fair popular
matching is a popular matching whose profile is minimal with
respect to <p. Note that a fair popular matching is always
a maximum-cardinality popular matching since the number
of last resort posts is minimized. It is easy to check these
two problems are equivalent to the optimal popular matching
problem with suitable weight assignments as follows.

o Rank-maximal popular matching: assign a weight of 0
to each pair involving a last resort post and a weight of
n"2~**+1 1o each pair (a;, p;) where p; is kth ranked post
of a;, and find a maximum weight popular matching.

« Fair popular matching: assign a weight of n¥ to each pair
(@i, pj) where p; is the kth ranked post of a;, and find a
minimum weight popular matching.

Now we are ready to give an NC algorithm for the optimal
popular matching problem. Given a popular matching instance
and a particular weight assignment, let M/ be a popular match-
ing, and M,,; be an optimal popular matching (maximum or
minimum weight, depends on the context). By Theorem 9,
M, can be obtained from M by applying a choice of at most
one switching cycle or switching path per component of the
switching graph G ;. Similar to Algorithm 3, the algorithm for
computing M,,; will compute an arbitrary popular matching
M, and make an appropriate choice of switching cycles and
switching paths to apply in order to obtain an optimal popular

matching. The only difference is the margin calculation. In
order to decide to apply a switching cycle C' or not, we need
to compare) .~ w(a, M(a)) with 3 .~ w(a, M-C(a)). In
the case of maximum-cardinality popular matching, the weight
assignment is either 0 or 1. While in rank-maximal popular
matching and fair popular matching, w is bounded by n’fﬁl,
which has O(n) bits. So > wcc w(a, M(a)) can be computed
in NC.

V. PREFERENCE LISTS WITH TIES

In this section, we consider the popular matching problem
such that preference lists are not strictly ordered, but contain
ties. Without the assumption of strictly ordered preference
lists, we show that the popular matching problem is at least as
hard as the maximum-cardinality bipartite matching problem
by showing that maximum-cardinality bipartite matching is
NC-reducible to popular matching. Note that whether bipartite
perfect matching is in NC is still open [19].

Now we show the following NC reduction.

Theorem 11. Maximum-cardinality Bipartite Matching <nc¢
Popular Matching.

Proof. Suppose we have access to a black box that can solve
Popular Matching in NC. Consider an arbitrary instance of
Maximum-cardinality Bipartite Matching, specified by a graph
G = (AUB, E). We construct our Popular Matching instance
by giving all edges rank 1, i.e. each applicant has the same
preference over all acceptable posts. For convenience, we also
use G = (AU B, E) as our instance of Popular Matching.
We do not add last resort posts at all. Lemma 12 and Lemma
13 show that popular matching always exists in G and any
popular matching M is also a maximum-cardinality matching
in G. (|

Lemma 12. Let M be a popular matching in G. Then M is
also a maximum-cardinality matching in G.

Proof. Suppose for a contradiction that A/ is not a maximum
matching of G. Then M admits an augmenting path () with
respect to G. Since each edge in G has rank 1, after applying
augmenting path Q to M, we obtain a matching M’ that
is more popular than M because M’ has exactly one more
edge matched than M and all rest of applicants do not have
preference over M and M’. O

We know from Section III that popular matching may not
exist in an arbitrary popular matching instance. We show that
given the construction that each edge in G has rank 1, popular
matching always exists.

Lemma 13. Let M be a maximum-cardinality matching in G.
Then M is also a popular matching in G.

Proof. Consider any other matching M’ in G. We only care
about the symmetric difference M AM’ since the rest of edges
do not have preference over M and M’. Since all edges have
rank 1, then |P(M’', M)| — |P(M,M’)| = |M’| — |M| < 0.
Hence, no matching is more popular than M. [l

We conjecture that the following reduction is also true.

Conjecture 14. Popular Matching < c Maximum-cardinality
Bipartite Matching.

VI. FINDING “NEXT” STABLE MATCHING IN NC

In this section, we consider the problem of finding “next”
stable matching. [28] mentioned that even if it is not possible
to find the first stable matching fast in parallel, perhaps,
after sufficient preprocessing, the stable matchings could be
enumerated in parallel, with small parallel time per matching.
Our results partially answer this question, given a stable
matching, we can enumerate the “next” stable matching in
the stable matching lattice in polylog time. This result can be
regarded as an application of the techniques used in IV, that is
to find cycles in pseudoforest in NC. The main result is given
by Theorem 16.

We give some useful definitions in the next section.

A. Stable Marriage Problem

Let A be a set of n men and 53 be a set of n women. For
any man m € A, there is a strictly ordered preference list
containing all the women in B. For any woman w € B, there
is a strictly ordered preference list containing all the men in
A. Person p prefers g to r, where ¢ and r are of the opposite
sex to p, if and only if ¢ precedes r on p’s preference list.

A matching M is one-to-one correspondence between the
men and the women. If man m and woman w are matched
in M, then m and w are called partners in M, written as
m = py(w) and w = ppr(m). A pair (m,w) is called a
blocking pair for M, if m and w are not partners in M, but
m prefers w to ppr(m) and w prefers m to pas(w).

Definition 5. A matching M is stable if and only if there is
no blocking pair for M.

Definition 6 (Partial Order M). For a given stable marriage
instance, stable matching M is said to dominate stable match-
ing M', written M < M’, if every man either prefers M to
M’ or is indifferent between them. We use the term strictly
dominate, written M < M', if M < M' and M # M’'. We
use the symbol M to represent the set of all stable matchings
for a stable marriage instance. Then the set M is a partial
order under the dominance relation, denoted by (M, <).

It is well-known that the partial order (M, <) forms a
distributive lattice. Hence, the unique minimal element in M
with respect to =<, i.e. man-optimal stable matching (denoted
by My), as well the unique maximal element, i.e. woman-
optimal stable matching (denoted by M) is well-defined.

Definition 7 (Rotation). Let k > 2. A rotation p is an ordered
list of pairs
p= ((mOv wo), (mlv wl)v M) (mkflvwkfl))

that are matched in some stable matching M with the property
that for every i such that 0 < i < k — 1, woman w;+1 (Where
i+ 1 is taken modulo k) is the highest ranked woman on m;’s
preference list satisfying:

(i) man m; prefers w; to w;41, and

(ii) woman w;y1 prefers m; to Mjyq.

In this case, we say p is exposed in M.

Definition 8 (Elimination of a Rotation). Let p = ((mq, wo)
,(my,w1), -+, (Mr—1,wg—1)) be a rotation exposed in a
stable matching M. The rotation p is eliminated from M by
matching m; 10 W(;y1) mod k Jor all 0 < i < k — 1, leaving
all other pairs in M unchanged, i.e. matching M is replaced
by matching M’, where
M’ = M\p U {(mog,w1), (m1,ws), -+, (Mr—1,wo)}

Note that the resulting matching M’ is also stable.

Lemma 15 ([28], Theorem 2.5.1). If p is exposed in M,
then M immediately dominates M\p, i.e. there is no stable
matching M’ such that M < M’ and M' < M\p.

Theorem 16. Given a stable matching M, there is an NC
algorithm that outputs stable matching M\ p for each rotation
p exposed in M or determines M is the woman-optimal
matching.

B. Algorithmic Results

We describe the NC algorithm to find the “next” stable
matching in this section.

Algorithm 4: “next” Stable Matching

1 Input: Stable matching M and preference lists mp and
wp.
2 Output: M\p or determine M is the woman-optimal
matching.
3 Compute ranking matrices mr and wr; // constant steps
4 Compute reduced preference lists mp’ and wp’; //
logarithmic number of steps
Construct Hy; from mp’;
if H), is not empty then
Find all simple cycles(rotations) in Hy;
for each rotation p in Hj; in parallel do
return M\ p;

o X N »n

10 else
1 return M is the woman-optimal matching;

Let M be a stable matching. For any man m, let sy;(m)
denote the highest ranked woman on m’s preference list such
that w prefers m to pps(w). Let nextys(m) denote woman
sy (m)’s partner in M. Note that since M is stable, m prefers
pau(m) to spr(m).

Now let m be any man who has different partners in M
and M, and let w be m’s partner in M. Since M, is woman-
optimal, m prefers pys(m) to w and w prefers m to pys(w).
Hence, sps(m) exists. If spr(m) exists and m’ = nexty(m),
then sps(m’) exists as well. Otherwise, m’ and sp;(m) are
partners in M, so m prefers sps(m) to his partner w in M,
and sy (m) prefers m to her partner m’ in M., contradicting
the stability of M,. Denote D the set of man who has
different partners in M and M., then for any man m € D,
nexty (m) € D. Later we will show that the algorithm does
need to know M.

Similar to the switching graph of popular matching, we
define the switching graph of stable matching M as a directed
graph H)s with a vertex for each man in D and a directed edge
from the vertex for m to the vertex for nexts(m), which is

also in Hjs. Some simple properties of switching graph H s
is shown in the following lemma.

Lemma 17. Let M be a stable matching other than the
woman-optimal matching M, let H)ys be the switching graph
of M, then

(i) Each vertex in Hyr has outdegree exactly one.

(ii) Each component of Hp; contains a single simple cycle.

Proof. (i) is direct from the definition of a switching graph.
(i) No vertex points to itself, so there is no self loop in
Hy. If there is no cycle in one component, then there
exists at least one sink vertex (consider the topological sort
of H)s), contradicting (i). If there are two cycles in one
component, consider any path that connects these two cycles.
There must be a vertex with at least two outgoing edges again
contradicting (i). O

From Definition 7, it is easy to see that any such simple
cycle defines the men in a rotation exposed in M, in the order
that they appear in the rotation. On the other hand, based on
the uniqueness of next(m) for each m € D, if m belongs
to some rotation p, e.g. m = my;, then m;y; is uniquely
determined, that is nexty;(m). Hence the men in p must be
a simple cycle in Hyy.

We know from Section IV-A that every cycle in Hj, can be
found in NC. It is obvious that the elimination of a rotation
can be done in one parallel step. Thus, we are left to show
that Hj; can be constructed in NC.

Let us assume that a stable marriage instance is described
by the sets of preference lists, represented as matrices mp and
wp defined by

e mp[m,i] = w if woman w is ranked of ¢ in m’s

preference list

o wplw,i] = m if man m is ranked of ¢ in w’s preference

list

We also define the ranking matrices mr and wr as below

e mr[m,w] = ¢ if woman w is ranked of ¢ in m’s
preference list

o wr{w,m] =i if man m is ranked of ¢ in w’s preference

list

We need to identify sps(m) and nextys (m) for each man
m. Suppose for each woman w we delete all pairs (m’, w)
such that w prefers pps(w) to m'. In the resulting preference
lists, which we call reduced lists, pps(w) is the last entry in
w’s list, and ppr(m) is the first entry in m’s list for if any
woman w’ remains above pys(m), then (m,w’) blocks M.
Moreover, sps(m) is the second entry in m’s list if exists, for
by definition, it is the highest ranked woman w on m’s list
such that w prefers m to py(w). nexty(m) is simply the
partner in M of woman sy (m).

From the algorithmic aspect, for each entry (m,w) to be
deleted in parallel, we call the ranking matrix mr to obtain
woman w’s rank on m’s list. Then call the preference matrix
mp and use soft-deletion, i.e. mark the entry mp[m, mr[m, w]]
zero. After each entry is soft-deleted, we can compress the
preference list using parallel prefix sum technique. The result-
ing preference lists are reduced lists. Now we obtain all pairs
(m,nextpr(m)) and it is easy to construct H ;.

C. Example of Stable Matchings

Figure 5 is an example of a stable marriage instance. The
reader can verify that the matching M denoted by underlining
is stable.

mp: Ws Wy W1 W2 We Wg W4 W3
ma : Wy W3 W7 W5 W4 W1 W We

ms: ws % w1, Wg We W2 W3 Wy
myg: W3 W2 Wy W4 W1 W Wg Ws
ms: Wy W2 W5 W1 W3 We Wg W4
me: W1 We Wy W5 Wg W4 W2 W3
my . W2 Ws; Wy W W3 Wq4 Wg W1
mg: W3 Wg W4 W5 W7 W2 We W1

(a) Men’s preferences

wy: My M3 My Mg M1 M2 Mg 14
W2 Mg Mg M3 M5 My Mz M1 My
w3 Mmp Mms Me M2 M4 Mg My M3
Wyq : Mg M7 M3 M2 Mg M1 M5 Mg
W5 Me Mg M7 M3 Mg M1 M2 Ms
We : M2 Mg M5 M3 My Me My My
wr: M7 M5 Mz M1 Mg Me My M3
wg: M7 Mg M1 M5 M2 M3 Mg Mg

(b) Women’s preferences

Figure 5: The stable marriage instance of size 8 and the stable
matching M denoted by underlining

Figure 6 shows the reduced lists of the men for the stable
matching M. The second column corresponds to ss(m) for
each m.

my % w3

ma: W3 We

m3: Wy W1 Weg W2
my @ We Wg Ws

ms : ﬂ W2 W1 W3 We
me: W1 Ws W2 W3
mrz: W2 Ws Wy wWg Wi
ms : % W2 We

Figure 6: The reduced lists of the men for the stable matching
M

Finally we give the switching graph Hj; for the stable
matching M in Figure 7.

VII. SUMMARY AND OPEN PROBLEMS

This paper has established the result that the popular match-
ing problem without ties is in NC. The notion of pseudoforest
may have other applications for designing parallel algorithms.

We have shown that maximum-cardinality bipartite match-
ing is NC-reducible to popular matching. One open problem is

Figure 7: The switching graph H s

Conjecture 14. If it is true, then it means these two problems
are NC-equivalent. The other open problem is establishing
the NC reduction among several other matching problems in
preference systems such as Pareto-optimal matching and rank-
maximal matching. Another open problem is to determine if
there is an RNC algorithm for popular matching problem with
ties.

REFERENCES

[11 A. E. Roth and A. Postlewaite, “Weak versus strong domination in a
market with indivisible goods,” Journal of Mathematical Economics,
vol. 4, no. 2, pp. 131-137, 1977.

[2] L. Zhou, “On a conjecture by gale about one-sided matching problems,”
Journal of Economic Theory, vol. 52, no. 1, pp. 123-135, 1990.

[3] D. Gale and L. S. Shapley, “College admissions and the stability of
marriage,” The American Mathematical Monthly, vol. 69, no. 1, pp. 9-
15, 1962.

[4] A. E. Roth, “The evolution of the labor market for medical interns and
residents: a case study in game theory,” Journal of political Economy,
vol. 92, no. 6, pp. 991-1016, 1984.

[5] A. Abdulkadiroglu and T. Sonmez, “Random serial dictatorship and
the core from random endowments in house allocation problems,”
Econometrica, vol. 66, no. 3, p. 689, 1998.

[6] P. Girdenfors, “Match making: assignments based on bilateral prefer-
ences,” Behavioral Science, vol. 20, no. 3, pp. 166—173, 1975.

[71 S. Gupta, P. Misra, S. Saurabh, and M. Zehavi, “Popular matching in
roommates setting is NP-hard,” in Proceedings of the Thirtieth Annual
ACM-SIAM Symposium on Discrete Algorithms. SIAM, 2019, pp.
2810-2822.

[8] Y. Faenza, T. Kavitha, V. Powers, and X. Zhang, “Popular matchings and
limits to tractability,” in Proceedings of the Thirtieth Annual ACM-SIAM
Symposium on Discrete Algorithms. SIAM, 2019, pp. 2790-2809.

[9]1 D. J. Abraham, R. W. Irving, T. Kavitha, and K. Mehlhorn, ‘“Popular
matchings,” SIAM Journal on Computing, vol. 37, no. 4, pp. 1030-1045,
2007.

[10] D.J. Abraham, K. Cechlarova, D. F. Manlove, and K. Mehlhorn, “Pareto
optimality in house allocation problems,” in International Symposium on
Algorithms and Computation. Springer, 2004, pp. 3—15.

[11] R. W. Irving, T. Kavitha, K. Mehlhorn, D. Michail, and K. Paluch,
“Rank-maximal matchings,” in Proceedings of the fifteenth annual ACM-
SIAM symposium on Discrete algorithms. Society for Industrial and
Applied Mathematics, 2004, pp. 68-75.

[12] L. Lovdsz, “On determinants, matchings, and random algorithms.” in
FCT, vol. 79, 1979, pp. 565-574.

[13] R. M. Karp, E. Upfal, and A. Wigderson, “Constructing a perfect
matching is in random nc,” Combinatorica, vol. 6, no. 1, pp. 35-48,
1986.

[14] K. Mulmuley, U. V. Vazirani, and V. V. Vazirani, “Matching is as easy
as matrix inversion,” Combinatorica, vol. 7, no. 1, pp. 105-113, 1987.

[15] E. W. Mayr and A. Subramanian, “The complexity of circuit value and
network stability,” Journal of Computer and System Sciences, vol. 44,
no. 2, pp. 302-323, 1992.

[16]

(17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]
[25]

[26]

[27]

(28]

A. Subramanian, “The computational complexity of the circuit value and
network stability problems.” 1991.

S. A. Cook, Y. Filmus, and D. T. M. Le, “The complexity of the
comparator circuit value problem,” ACM Transactions on Computation
Theory (TOCT), vol. 6, no. 4, p. 15, 2014.

X. Zheng and V. Garg, “Parallel and distributed algorithms for the
housing allocation problem,” arXiv preprint arXiv:1905.03111, 2019.
S. Fenner, R. Gurjar, and T. Thierauf, “Bipartite perfect matching is in
quasi-nc,” in Proceedings of the forty-eighth annual ACM symposium
on Theory of Computing. ACM, 2016, pp. 754-763.

N. Anari and V. V. Vazirani, “Planar graph perfect matching is in nc,”
in 2018 IEEE 59th Annual Symposium on Foundations of Computer
Science (FOCS). IEEE, 2018, pp. 650-661.

P. Hall, “On representatives of subsets,” in Classic Papers in Combina-
torics. Springer, 2009, pp. 58—62.

G. F. Lev, N. Pippenger, and L. G. Valiant, “A fast parallel algorithm
for routing in permutation networks,” IEEE transactions on Computers,
vol. 100, no. 2, pp. 93-100, 1981.

E. McDermid and R. W. Irving, “Popular matchings: structure and
algorithms,” Journal of combinatorial optimization, vol. 22, no. 3, pp.
339-358, 2011.

J. JaJa, An introduction to parallel algorithms. Addison-Wesley
Reading, 1992, vol. 17.

K. Mulmuley, “A fast parallel algorithm to compute the rank of a matrix
over an arbitrary field,” Combinatorica, vol. 7, no. 1, pp. 101-104, 1987.
R. Cole and U. Vishkin, “Approximate and exact parallel scheduling with
applications to list, tree and graph problems,” in 27th Annual Symposium
on Foundations of Computer Science (sfcs 1986). 1EEE, 1986, pp. 478—
491.

T. Kavitha and M. Nasre, “Optimal popular matchings,” Discrete Applied
Mathematics, vol. 157, no. 14, pp. 3181-3186, 2009.

D. Gusfield and R. W. Irving, The stable marriage problem: structure
and algorithms. MIT press, 1989.

10

	I Introduction
	I-A Our Contributions
	I-B Organization of the paper

	II Preliminaries
	II-A Popular Matching Problem

	III Finding Popular Matching in NC
	III-A Characterizing Popular Matchings
	III-B Algorithmic Results
	III-B1 Correctness
	III-B2 Complexity

	III-C Example of Popular Matchings

	IV Finding Maximum-Cardinality Popular Matching in NC
	IV-A Finding Cycles in Pseudoforest in NC
	IV-B Algorithmic Results
	IV-C Correctness
	IV-D Complexity
	IV-E Optimal Popular Matchings

	V Preference Lists with Ties
	VI Finding ``next" Stable Matching in NC
	VI-A Stable Marriage Problem
	VI-B Algorithmic Results
	VI-C Example of Stable Matchings

	VII Summary and Open Problems
	References

