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Abstract

We propose parallel and distributed algorithms for the housing allocation problem. In this

problem, there is a set of agents and a set of houses. Each agent has a strict preference list for

a subset of houses. We need to find a matching for agents to houses such that some criterion

is optimized. One such criterion which has attracted much attention is Pareto Optimality. A

matching is Pareto optimal if no coalition of agents can be strictly better off by exchanging

houses among themselves. We also study the housing market problem, a variant of the housing

allocation problem, where each agent initially owns a house. In addition to Pareto optimality,

we are also interested in finding the core of a housing market. A matching is in the core if there

is no coalition of agents that can be better off by breaking away from other agents and switching

houses only among themselves in the initial allocation.

In the first part of this work, we show that computing a Pareto optimal matching of a house

allocation is in CC and computing the core of a housing market is CC-hard, where CC is the

class of problems logspace reducible to the comparator circuit value problem. Given a matching

of agents to houses, we show that verifying whether it is Pareto optimal is in NC. We also

show that verifying whether it is in the core can be done in NC. We then give an algorithm to

show that computing a maximum cardinality Pareto optimal matching for the housing allocation

problem is in RNC2 and quasi-NC2.

In the second part of this work, we present a distributed version of the top trading cycle

algorithm for finding the core of a housing market. To that end, we first present two algorithms for

finding all the disjoint cycles in a functional graph. The first algorithm is a Las Vegas algorithm

which terminates in O(log l) rounds with high probability, where l is the length of the longest

cycle. The second algorithm is a deterministic algorithm which terminates in O(log∗ n log l)

rounds, where n is the number of nodes in the graph. Both algorithms work in the synchronous

distributed model and use messages of size O(log n). By applying these two algorithms for finding

cycles in a functional graph, we give the distributed top trading cycle algorithm which terminates

in O(n) rounds and requires O(n2) messages.
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1 Introduction

Matching is a fundamental problem in computer science with numerous applications. The

housing allocation problem [10, 22, 1] is an instance of matching problem with one-sided

preferences. In this problem, we need to allocate a set H of houses among a set A of

agents and monetary compensations are not allowed. Each agent ai ∈ A ranks in order of

preference a subset of H (the acceptable houses for ai). The variant in which there is an

initial endowment of houses to agents is known as the housing market problem [19, 18, 17].

For both the housing market and the housing allocation problem, we need to construct a

matching of agents to houses such that it is optimal with respect to some criterion. One

criterion usually considered is Pareto Optimality [1, 3, 19]. A matching M is Pareto optimal

if there is no other matching M ′ such that no agent strictly prefer M to M ′, and at least

one agent strictly prefer M ′ to M . For example, a matching M is not Pareto optimal if a

group of agents could improve by exchanging the houses that they are assigned to in M .

Possible applications of the housing allocation problem and the housing market problem

include: assigning virtual machines to servers in cloud computers, allocating graduates to

trainee positions, professors to offices, and students to roommates. Yuan [21] also describes

a large-scale application of housing allocation in the allocation of families to government-

subsidized housing in China. Also, the paper [13] describes applications of algorithms for the

stable marriage problem for mapping clients to server clusters in a content delivery network

in Akamai. When only one side preference is considered, housing allocation algorithms can

be applied.

For the housing allocation problem, there is a simple greedy algorithm, known as the

serial dictatorship mechanism [1] to compute a Pareto optimal matching. The serial dic-

tatorship mechanism works as follows. Arbitrate a total ordering on all the agents. Let all

agents pick their top choice of the remaining houses one by one following the total order.

This algorithm is sequential and takes O(n2) computation steps. Also, it does not necessarily

give a maximum cardinality Pareto optimal matching. The paper [3] studies the problem of

finding a maximum cardinality Pareto optimal matching for the housing allocation problem

in the sequential setting. Their algorithm first computes a maximum cardinality matching

of the bipartite graph formed by agents and houses and then improves the matching to be

Pareto optimal. Their algorithm runs in O(
√

nm) sequential time, where n is the number of

agents plus the number of houses, and m is the number of edges of the agent-house bipartite

graph. They also show that any improvement to the complexity of their algorithm would

imply an improved algorithm for finding a maximum matching in a bipartite graph.

For the housing market problem, Shapley and Scarf [19] prove that there exists at least

one matching in the core of any housing market and present the well-known top trading

cycle (TTC) mechanism, which they attribute to David Gale. This mechanism works by

repeatedly finding the top preference cycles and exchanging houses along those cycles. It

takes O(n2) sequential steps. Ma [12] shows that the TTC mechanism is the only individually

rational, Pareto-efficient, and strategy-proof mechanism. Roth and Postlewaite [18] show

that there is exactly one core for each housing market instance. Note that the matching

obtained by the TTC mechanism is not only a Pareto optimal maching, but also the unique

core.

The parallel complexity of both these problems has not been studied in the literature.

The housing allocation problem is a variant of the stable marriage problem with only one

sided preferences. The decision version of the stable marriage problem, i.e, given a pair of

man and woman, to decide whether they are matched in the man-optimal stable matching,
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is CC-complete [14]. The CC class [14] is the set of problems logspace reducible to the

comparator circuit value problem. Currently, there are no efficient parallel algorithms for

this class of problems. It is conjectured that CC is incomparable with NC [6, 14], the class

of problems computable in polylog parallel time. In this work, we show that finding the

core of a housing market is CC-hard, which can be taken as evidence that this problem

is not parallelizable. Although finding the core is hard, we show that given a matching, it

can be verified in NC whether it is the core. On the other hand, finding a Pareto optimal

matching is easier than finding the core. We show that finding a maximum cardinality

Pareto optimal matching can be done in RNC2 and quasi-NC2, where RNC2 represents

the problems which have uniform circuits of polynomial size and O(log2 n) depth and quasi-

NC2 represents the problems which have uniform circuits of quasi-polynomial size nO(log n)

, and O(log2 n) depth.

In this paper, we also study the housing market problem in the distributed setting. Spe-

cifically, we give a symmetric distributed algorithm for the TTC mechanism. By symmetric,

we mean that each agent performs the same role.

In summary, this paper makes the following contributions:

We prove that computing the core of a housing market is CC-hard, by giving a logspace

reduction from the lexicographically first maximal matching problem, which is a CC-

complete problem, to the housing market problem.

We show that computing a maximum cadinality Pareto optimal matching for the housing

allocation problem is in RNC2 and quasi-NC2.

We give a symmetric distributed TTC algorithm for computing the core of a housing

market, which runs in O(n) rounds and require O(n2) messages.

The paper is organized as follows. Section 2 gives preliminaries for the housing alloc-

ation and the housing market problem. Section 3 studies the parallel complexity of the

housing market problem. Section 4 presents a parallel algorithm for computing a maximum

cardinality Pareto optimal matching for the housing allocation. Section 5 presents a distrib-

uted algorithm for computing the core of a housing market. Finally, section 6 present the

conclusions and future work.

2 Preliminaries

The housing allocation problem deals with assigning indivisible houses to agents who have

preferences over these houses. In general, a housing allocation instance (A, H, P ) consists of

(1) a set of agents A = {a1, a2, ..., an},

(2) a set of indivisible houses H = {h1, h2, ..., hm},

(3) a preference profile P = {≺a1
, ≺a2

, ..., ≺an
}, where ≺ai

defines a strict preference of

agent ai on a subset of houses.

We restrict our attention to strict preference profiles where each agent defines a strict total

order over a subset of houses. Let N(i) denote the subset of acceptable houses for agent i.

The goal of the housing allocation problem is to find a Pareto optimal matching of agents

to houses. For a matching µ and an agent i, let µ(i) denotes the house matched to agent

i. We use h ≺i h′ to denote that agent i prefers house h to house h′. For two matchings µ

and ν, µ ≺i ν denotes that agent i prefer µ(i) to ν(i). The definitions of Pareto Domination

and Pareto Optimality [19] are given as below.

I Definition 1. (Pareto Domination). Suppose µ, ν are matchings. Then µ Pareto domin-

ates ν if and only if

CVIT 2016
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(1) µ �i ν for all i ∈ A,

(2) µ ≺j ν for some j ∈ A.

We use µ ≺ ν to denote that matching µ Pareto dominates matching ν.

I Definition 2. (Pareto Optimality). Suppose µ is a matching. Then µ is Pareto optimal

if and only if it is not Pareto dominated by any other matching ν.

The housing market problem is a variant of the housing allocation problem, where there

is an initial endowment of houses to agents and we have the same number of agents and

houses. Let µ0 be a matching denoting the initial endowment of houses to agents. Let

(A, H, P, µ0) denote an instance of a housing market. In the housing market problem, in

addition to Pareto optimality, we also want a matching to be individually rational [2] defined

as follows.

I Definition 3. (Individually Rational). Suppose µ is a matching of agents to houses in a

housing market. Then µ is individually rational if µ(a) �a µ0(a) for all a ∈ A.

Individual rationality means an agent is willing to give up its initially assigned house

only when it can get a better house. To define the core of a housing market, let us first

define the concept of coalition. Informally, given a matching µ, a coalition w.r.t µ is a set of

agents A′ ∈ A such that, by only switching houses within themselves, each agent in A′ can

get a house at least as good as its house in µ and at least one agent gets a strictly better

house.

I Definition 4. (Coalition). Given a housing market (A, H, P, µ0) and a matching µ, a set

of agents A′ ⊆ A form a coalition w.r.t µ if there exists a matching ν such that

(1) ν(a) ∈ {µ0(b) | b ∈ A′}, ∀a ∈ A′

(2) ν(a) �a µ(a) ∀a ∈ A′

(3) ∃ a ∈ A′ such that ν(a) ≺a µ(a)

Condition (1) says that to get matching ν from µ0, the agents in A′ only switch houses

within themselves. Condition (2) means that in matching ν each agent in A′ is matched to

a house at least as good as the house it gets matched to in µ. Condition (3) means that

at least one agent is matched to a better house in matching ν. The core [19] of a housing

market is defined as follows.

I Definition 5. (Housing Market Core). The core of a housing market problem is a set of

matchings M such that matching µ ∈ M if and only if there does not exist any coalition A′

w.r.t µ.

Essentially, a matching is in the core of a housing market if there does not exist a set of

agents such that they can match to better houses by breaking away from other agents and

exchanging houses within themselves. An individually rational and Pareto optimal matching

is not necessarily a core matching, whereas a core matching must be individually rational

and Pareto optimal. An example to illustrate the difference between a core matching and

an individually rational Pareto optimal matching is given in Fig. 1.

It is easy to see that both M1 and M2 are individually rational and Pareto optimal

matchings. M2 is the core matching but M1 is not. In M1, agents a1 and a2 can form a

coalition within themselves and swap houses. Suppose a1 and a2 break away from other

agents and switch houses with each other. Then, a1 gets house h2, which is the same as the

house it gets in M1, and a2 gets house h1, which is strictly better than the house it gets in
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a1 : h2, h3, h1

a2 : h1, h3, h2

a3 : h1, h2, h3

Preference Profile

a1 : h1

a2 : h2

a3 : h3

Initial Endowment

a1 : h2

a2 : h3

a3 : h1

M1

a1 : h2

a2 : h1

a3 : h3

M2

Figure 1 An Example

M1. Thus, M1 is not the core. On the other hand, in M2, there does not exist two agents

such that at least one will be strictly better off by forming a coalition and swapping houses

among themselves.

The following result is well-known.

I Lemma 6 ([18]). There is exactly one unique matching in the core of a housing market

instance.

Since the core of a housing market has one unique matching, we use the core to mean this

unique matching henceforth. The TTC algorithm given by Shapley and Scarf [19] computes

the unique core of a housing market. This algorithm works in stages. At each stage, it has

the following steps:

Step 1. Construct the top choice directed graph Gt = (A, E) on the set of agents as

follows. Add an arc from agent i ∈ A to agent j ∈ A if j holds the current top house of i.

Step 2. Since each node has exactly one outgoing edge in Gt, there must be at least one

cycle, which could be a self-loop. All cycles are node disjoint. Find all the cycles in the top

trading graph and implement the trade indicated by the cycles, i.e, each agent which is in

any cycle gets its current top house.

Step 3. Remove all agents which get their current top houses and remove all houses

which are assigned to some agent from the preference list of remaining agents.

The above steps are repeated until each agent is assigned a house. At each stage, at least

one agent is assigned a final house. Thus, this algorithm takes O(n) stages in the worse case

and needs O(n2) computational steps.

3 Parallel Algorithms for Housing allocation and Housing Market

In this section, we study the parallel complexity of the housing allocation and housing

market problem. The parallel computation model we use here is the CREW PRAM model

[11]. First, we show that computing a Pareto optimal matching in a housing allocation

is CC by reducing this problem to the lexicographically first maximal matching problem

(LFMM), which is a CC-complete problem [14]. In the LFMM problem, we are given a graph

G(V, E, ≺) where ≺ denotes a total ordering on the edges. If e1 ≺ e2, we say that e1 precedes

e2. The total order ≺ allows us to regard a matching M as a sequence SM = (e1, e2, ...) of

edges in ascending order, i.e, j < k =⇒ ej ≺ ek. Given two matchings M and N , we say

M ≺ N if SM lexicographically precedes SN . The relation ≺ defines a total order over all

maximal matchings. The minimum element, Mlex, of this order is call the lex-first maximal

matching of G(V, E, ≺). We need to decide whether a given edge e is in the lex-first maximal

matching of the graph. Then, we show that computing the unique core of a housing market

is CC-hard, by giving a logspace reduction from the LFMM problem to the housing market

problem. We say a problem is CC-hard if every problem in CC reduces to it.

CVIT 2016
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I Theorem 7. Computing a Pareto optimal matching for a housing allocation is in CC.

Proof. We reduce the problem of computing a Pareto optimal matching to the LFMM prob-

lem. Given a housing allocation instance (A, H, P ), we construct an agent-house bipartite

graph G = (A∪H, E, ≺) where ≺ denotes a total ordering of edges. There is an edge from an

agent u ∈ A to a house v ∈ H if v is acceptable to u. For each agent u, let ru : H → [|N(u)|]
denote its rank function, i.e, ru(v) denote the rank of house v at agent u’s preference list. We

assign an arbitrary unique ordering to all the agents, i.e, a one-to-one function f : A → [n],

where n = |A|. For each edge (u, v), we associate the tuple < f(u), ru(v) > with it. We

define the total order ≺ on edges as the lexicographical ordering of the tuples associated with

them. Clearly, ≺ defines a total ordering on all edges. We claim that the lex-first maximal

matching Mlex of this graph corresponds to a Pareto optimal matching. Suppose not, then

there exists another maximal matching M ′ which dominates M . There must exist an agent

u ∈ A such that u prefers M ′(u) to M(u). We have that ru(M ′(u)) < ru(M(u)), which

means that (u, M ′(u)) ≺ (u, M(u)), contradicting the fact that M is the lex-first maximal

matching. J

I Corollary 8. There is a Õ(
√

|E|) time parallel algorithm which uses O(|E|) processors to

compute a Pareto optimal matching, where is |E| is the number of acceptable agent-house

pairs.

Proof. Follows from the fact that there is a Õ(
√

|E|) time parallel algorithm for the LFMM

problem [14]. J

I Corollary 9. There is a O(
√

n) round distributed algorithm in the congest clique model

for computing a Pareto optimal matching, where is n is the number of agents and houses.

Proof. The paper [4] gives a O(
√

n) distributed algorithm for the weighted stable marriage

problem. The LFMM problem is simply a subcase of the weighted stable marriage problem.

Thus, the same algorithm can be applied here. J

I Remark. In the housing market problem, an individual rational and Pareto optimal match-

ing must be a perfect matching of houses to agents. Thus, the reduction given in Theorem 7

cannot be applied. Instead, the problem of computing a individual rational and Pareto op-

timal matching can be reduced to the problem of lex-first perfect matching. Unfortunately,

the complexity of this problem is unknown.

In a housing market (A, H, P, µ0), the weighted agent-house bipartite graph G = (A ∪
H, E, w) is defined as follows. There is an edge between agent ai ∈ A and house hj ∈ H

if either hj = µ0(ai) or ai prefers hj to I(ai). The weight of the edge is defined as the the

rank of hj in ai’s preference list. To compute an individual rational and Pareto optimal

matching for a housing market, we first observe the following lemma from [7].

I Lemma 10 ([7]). A minimum weight perfect matching of the weighted agent-house bipartite

graph is an individual rational and Pareto optimal matching.

Proof. Let u be a minimum perfecting matching of the agent-house bipartite graph. Suppose

u is not Pareto optimal. Then there must be another perfect matching v such that v Pareto

dominates u. By the definition of Pareto domination, we can easily argue that v has smaller

weight than u, contradiction. J

Combining with the results from [9] and [16], we have the following result.
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I Theorem 11 ([7, 9, 16]). There is a RNC2 algorithm and a quasi-NC2 algorithm for

computing a individually rational and Pareto optimal matching of a housing market, which

require O(n3 · m) and nO(log n) parallel processors, respectively.

Proof. By Lemma 10, to compute an individually rational and Pareto optimal matching,

we can find a minimum weight perfect matching of the agent-house bipartite graph. By the

results of [16] and [9], computing the minimum weight perfect matching of a bipartite graph

is in RNC2 and quasi-NC2. J

Now we show that computing the core of a housing market is CC-hard.

I Theorem 12. Computing the core of a housing market is CC-hard.

Proof. We reduce the LFMM problem to the housing market problem. Let G = (V, E, ≺)

be an instance of a LFMM problem, where ≺ represents the total ordering on the edges. Let

Mlex denote the lex-first maximal matching of G. We construct an instance for the housing

market problem as follows. For each node v ∈ V , we create an agent av and a house hv. So,

we have |A| = |H| = |V |. Each agent av is initially assigned house hv. The preference list for

each agent is constructed based on the total ordering of edges in E. Note that to compute

the core of a housing market, the preference list of an agent below its initial assigned house

is irrelevant, since the core must be individually rational. So for each agent, we only need

to specify the part of the preference list above its initial assigned house. For each pair of

agents au and av, if edge (u, v) exists in graph G, then agent au prefers the house hv of

agent av to its own house hu . Otherwise, agent au prefers its own house hu to hv. In other

words, for each edge (u, v) ∈ E, agent au prefers house hv of agent av to its own house hu.

The preference list of an agent au is defined based on the order of edges incident to vertex u,

i.e, agent au prefers the house hv of agent av to the house hw of agent aw if (u, v) ≺ (u, w).

Since all edges are totally ordered, the preference list for each agent is strict. Fig. 2 shows

an example of reduction above. Clearly, the above reduction can be done in logarithmic

space.

u1

u2

v1

v2

3

2
1 4

5

LFMM Instance Housing Market Instance

av2
: hu1

, hv1
, hu2

, hv2

av1
: hu1

, hv2
, hv1

, −

au2
: hu1

, hv2
, hu2

, −

au1
: hu2

, hv2
, hv1

, hu1

Figure 2 Constructing a Housing Market Instance from a LFMM Instance. At stage 0, edge

(u1, u2) is added into Mlex by the greedy algorithm and vertices u1 and u2 are removed from the

graph. In the TTC algorithm, the top choice graph only has one top trading cycle formed by agent

au1
and au2

. Thus, agent au1
and au2

switch their houses and their houses are removed from the

preference list of remaining agents. At stage 1, edge (v1, v2) is added into Mlex by the greedy

algorithm. Agents av1
and av2

form a top trading cycle and switch houses with each other in the

TTC algorithm.

We claim that an edge e = (u, v) ∈ E is in Mlex if and only if agent au and av switch

houses with each other in the core of the housing market instance. We say that an edge

is minimum in its neighborhood if it is smaller than all its neighboring edges. Recall that

the greedy algorithm for LFMM works as follows. Add each edge which is minimum in

CVIT 2016
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its neighborhood in the current graph into Mlex and remove all incident edges of the two

endpoints of each such edge. Repeat the above procedure until the graph is empty. Since

the greedy algorithm computes the unique lex-first maximal matching of a LFMM instance

and the TTC algorithm computes the unique core of a housing market, it suffices to show

that the TTC algorithm on the housing market instance simulates the greedy algorithm on

G.

Let Gi = (V i, Ei) denote the reduced graph at the beginning of stage i of the greedy

algorithm. G0 = G. Let Ri denote the set of edges in Ei added into Mlex by the greedy

algorithm at stage i, i.e, the set of edges which are minimum in their neighborhoods in

Gi. Let M i
lex denote the set of edges in Mlex at the end of stage i. Let Gi

t denote the top

choice graph formed by remaining agents at stage i of the TTC algorithm. We now show by

induction on stages that an edge (u, v) is added into Mlex at stage i of the greedy algorithm

iff the corresponding agents au and av switches houses at stage i of the TTC algorithm.

Base case: stage 0. Consider an edge e = (u, v) ∈ R0. In the housing market, two agents

au and av correspond to this edge. Since e is the minimum in its neighborhood, agent au

and agent av are the top choice of each other. Thus, they form a top trading cycle of length

2 in G0
t and switch houses with each other in the TTC algorithm. Therefore, all edges in

R0 correspond to the top trading cycles in G0
t .

Induction case: assume the claim holds for stage i. Consider stage i+1 of both algorithms.

At the end of stage i, in the greedy algorithm, all edges incident to edges in Ri are removed

from the graph. In the TTC algorithm, all houses involved in the top trading cycles are

removed from the preference list of remaining agents. We claim for each edge e = (u, v) ∈
Ri+1, the two corresponding agents au and av in the housing market form a top trading

cycle of length 2 in Gi+1
t . Suppose not. Let e′ = (u′, v′) ∈ Ri+1 be an edge such that agent

au′ and agent av′ do not form a top trading cycle in Gi+1
t . We must have that either house

hv′ is not the top choice of agent au or house hu′ is not the top choice of agent av′ or both.

Without loss of generality, assume house hv′ is not the top choice of agent au′ . We have two

cases.

Case 1: house hv′ is not available for agent au′ . Then, agent av′ participates in a certain top

trading cycle before stage i + 1. By induction assumption, this means that there exists one

edge ev′ incident to vertex v′ which is added into Mlex at a stage before i + 1, contradicting

the fact that edge (u′, v′) exists in Ei+1.

Case 2: house hv′ is available for agent au′ but is not the current top choice for au′ . Then,

there exists another agent aw′ such that agent au′ prefers the house hw′ of aw′ to the house

of agent av′ . The existence of agent aw′ indicates that it is not involved in any top trading

cycle before stage i + 1. By induction assumption, there does not exist any edge ew′ in

M i
lex which is incident to vertex w′. Thus, we have (u′, w′) ∈ Ei+1. The fact that agent

au′ prefers the house of agent aw′ to the house of av′ indicates that (u′, w′) ≺ (u′, v′) which

contradicts the fact that (u′, v′) is minimum in its neighborhood.

J

Even though we do not know any NC algorithm for either computing an individual

rational and Pareto optimal matching or computing the core of a housing market, given a

matching, we can verify whether it is an individual rational and Pareto optimal matching

and whether it is the core in NC.

I Theorem 13. Given a matching µ of houses to agents in a housing market (A, H, P, µ0),

the following two tasks can be performed in NC.
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1) Verifying whether µ is individual rational and Pareto optimal. 2) Verifying whether

µ is the unique core.

Proof. 1). Given a matching µ, to check whether it is individual rational, we just need to

check whether we have µ ≺a µ0 for each agent a ∈ A. Observe that if µ is individually

rational, it must be a perfect matching. Then, to verify whether it is Pareto optimal, we

construct a directed graph G = (A, E) as follows. There is an arc < u, v > from agent u to

v if agent u prefers µ(v) to µ(u). We claim that µ is Pareto optimal iff G is cycle-free.

(⇒). Suppose G is not cycle-free. Then there exists a directed cycle in G. Since each

arc < u, v > in G represents the fact that agent u prefers the house of agent v in matching

µ. Switching houses following the cycle gives better houses for all agents in the cycle, which

gives a new matching ν and ν ≺ µ, contradiction to the fact that µ is Pareto optimal.

(⇐). Suppose that µ is not Pareto optimal. Then there exists another matching ν such

that ν ≺ µ. The difference between ν and µ is a set of disjoint cycles. Since each agent in ν

is matched to a house at least as good in µ, each such cycle must be a directed cycle in G.

Checking whether G is cycle-free can be done in NC by first computing the transitive

closure TC of G and for each vertex u, checking whether there exists a vertex v such that

TC(u, v) = 1 and TC(v, u) = 1. Thus, verifying whether a given matching is individual

rational and Pareto optimal can be done in NC.

2). Given a matching µ, to verify whether it is the core, we construct a different directed

graph G′(V ′, E′) as follows. V ′ represents the set of agents. There are two types of arcs:

solid arcs and dashed arcs. There is a solid arc from agent u to agent v if µ(u) = µ0(v), i.e,

agent u is assigned the house owned by agent v. Hence, the solid arcs represent how agents

switch houses to get matching µ from the initial matching µ0. Thus, all solid arcs form a set

of disjoint directed cycles. There is a dashed arc from agent u to agent v if µ0(v) ≺u µ(u).

We claim that µ is the core iff there is no directed cycle which contains dashed arcs in

G. We show that any directed cycle with at least one dashed arc represents a coalition,

w.r.t µ. Let C be such a cycle in G. If we switch houses following the cycle C, i.e, for each

arc < u, v > in C, agent u matches to house µ0(v). For each solid arc < u, v >∈ C, we

have µ(u) = µ0(v) by the definition of solid arc. Thus, each agent with a solid outgoing arc

matches to the same house as in µ. For each dashed arc < u, v >∈ C, we have µ0(v) ≺u µ(u),

thus each agent with a dashed outgoing arc matches to a house strictly better than its house

in µ. Thus, each directed cycle with at least one dashed edge represents a coalition of agents,

w.r.t µ. Since a matching µ is in the core iff there is no coalition with respect to µ and each

directed cycle with dashed arcs represent a coalition, we get our desired claim.

To check whether there exists a directed cycle with at least one dashed arc in G′, we

first compute the transitive closure TC ′ of G′. For each dashed arc < u, v >, check in

parallel whether TC ′(v, u) = 1. Thus verifying whether a matching is the core can be done

in NC. J

a1 a2

a3

Figure 3 To verify whether matching M1 in the example given in Fig. 1 is the core. The solid

arcs represents how agents switch houses to get matching M1. In M1, a2 prefers house h1 which is

the initial house of a1, thus there is dashed arc from a2 to a1. a1 and a2 form a coalition w.r.t M1.
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3.1 A Parallel Algorithm for Maximum Pareto Optimal Matching

In the housing allocation problem, a Pareto optimal matching does not necessarily have

maximum cardinality, i.e, with maximum number of agents matched to a house. To find a

maximum cardinality Pareto optimal matching, we adapt the sequential algorithm in [3] to

be a parallel algorithm. The sequential algorithm in [3] has three steps. To ensure that the

final matching has maximum cardinality, step 1 computes a maximum cardinality matching.

After step 1, all unmatched agents are removed from consideration. At step 2, the algorithm

improves the matching obtained from step 1 to be trade-in-free. A matching M is trade-in-

free if there is no (agent,house) pair (ai, hj) such that ai is matched in M , hj is unmatched

in M , and ai prefers hj to M(ai). That is, step 2 ensures that no matched agents prefers

an unmatched house to its current matched house. After step 2, all unmatched houses are

removed from consideration, since no matched agents prefer any of those houses to their

matched houses. The final step is to improve the matching obtained from step 2 to be

Pareto optimal, which is achieved by directly applying the TTC mechanism on all matched

agents.

Our parallel algorithm, shown in Fig. 4 has only two steps. At step 1, we compute

the maximum cardinality matching, which can be reduced to compute a minimum weight

perfect matching of a new graph. Let M ′ be the maximum cardinality matching obtained

at step 1. Let A′ be the set of matched agents. After step 1, all the unmatched agents are

removed from consideration. At step 2, we improve the matching obtained from step 1 to

be Pareto optimal. In contrast to [3], we do not first make our matching trade-in-free and

then Coalition-free. Instead, we directly compute a Pareto optimal matching by computing

a minimum weight perfect matching of a graph G′ constructed as follows. We create a set of

virtual agents B′ to ensure the number of agents is equal to the number of houses. Add an

edge with weight 0 between each virtual agent and each house. For each real agent ai ∈ A′

and each house hj ∈ H, add an edge between ai and hj if hj is ai’s partner at the end of

step 1 or ai prefers hj to its partner. The weight of edge (ai, hj) is equal to the rank of hj

in ai’s preference list.

Let G′(A′ ∪ B′ ∪ H, E′, w′) be the graph constructed at Step 2. The following lemma

shows the correctness of algorithm 5.

I Lemma 14. The matching output by algorithm 5 is a maximum cardinality Pareto optimal

matching for a housing allocation.

Proof. Let M ′ be the minimum weight perfect matching of G′. Let M∗ be the matching

output by algorithm 5, which is the induced submatching of M ′ on the set of matched agents

A′ after step 1. Step 1 ensures that M∗ is a maximum cardinality matching. It remains to

show that M∗ is Pareto optimal. Suppose for contradiction that M∗ is not Pareto optimal.

Then there exists some other matching M ′′ 6= M∗ on real agents such that M ′′ ≺ M∗. By

definition of Pareto optimality, each agent in M ′′ should be matched to a house at least as

good as the house in M∗ and at least one agent is matched to a strictly better house in M ′′.

Since M∗ is a maximum cardinality matching, M ′′ must also be a maximum cardinality

matching which matches the same set of agents as M∗. Since the weight of an edge (ai, hj)

is defined as the rank of hj at ai’s preference list, we have w′(M ′′) < w′(M∗). Since each

virtual agent has incident edges of weight 0 in G′, there exists another perfect matching

formed by edges in M ′′ and some edges incident to virtual agents such that the total weight

is smaller than M
′

, contradicting the fact that M ′ is the minimum perfect matching of

G′. J
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Find a Maximum Cardinality Pareto Optimal Matching:

Step 1:

Let G = (A ∪ H, E) denote the agent-house bipartite graph.

Compute a maximum cardinality matching of G, denoted as M .

Step 2:

Let A′ denote the set of matched agents in M .

Create a set of virtual agents B′ such that |A′| + |B′| = |H|
Let E′ denote the edge set

Add an edge with weight 0 into E′ between each agent in B′ and each house in H

forall ai ∈ A′, hj ∈ H in parallel:

if M(ai) = hj ∨ M(ai) ≺ai
hj .

E′ := E′ ∪ (ai, hj);

w′(ai, hj) := rank of hj in ai’s preference list

endfor

G′ = (A′ ∪ B′ ∪ H, E′, w′)

Compute a minimum weight perfect matching of G′, denoted as M
′

Output M∗ := {(ai, hj) ∈ M
′ | ai ∈ A′}

Figure 4 Algorithm 5: Pareto Optimal Matching for housing allocation

Now, we can state our main result for the housing allocation problem.

I Theorem 15. There is a RNC2 and quasi-NC2 algorithm for finding a maximum car-

dinality Pareto optimal matching for the housing allocation problem.

Proof. By Lemma 14, the matching obtained by algorithm 5 is a maximum cardinality

Pareto optimal matching. The time complexity of algorithm 5 is dominated by the com-

plexity of a minimum weight perfect matching of a graph. By [16] and [9], this step can be

done in RNC2 and quasi-NC2. J

4 Distributed Algorithms for Housing markets

In this section, we present a symmetric distributed algorithm to implement the TTC mech-

anism in a distributed setting. We assume a distributed message passing model with n pro-

cesses, p1, . . . , pn, which form a completely connected topology. The system is synchronous,

which means that there is an upper bound on the time for a message to reach its destination.

We require that at each round, a node can only send a same message of O(log n) size to

any other node in the network. Since the graph is fully connected, this model is also known

as the congest clique model in the literature. Actually, our proposed distributed algorithm

fits in a more restricted model called the broadcast congest clique model [8], since at round

each node only sends the same message to all other nodes in the network. This model is

in contrast to the unicast congest clique model [8] which allows each node to send different

messages to different nodes in each round.

To implement the top trading cycle algorithm in a fully distributed way, we need efficient

distributed algorithms for finding the top trading cycle. Observe that the graph formed by

the top choice of each agent is a functional graph since each node has only one outgoing

edge. Hence there is only one unique cycle in each connected component of this graph.

We present two distributed algorithms for finding all the top trading cycles in a functional

graph.
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4.1 A Las Vegas Algorithm for Finding Cycles in Functional Graphs

In this section, we give a Las Vegas algorithm, shown in Fig. 5, for finding all the disjoint

cycles in a functional graph. The primary gradient of the algorithm is a pointer jumping

technique. A similar technique is used in [15, 20] to solve the list ranking problem.

Code for Pi:

active := true

succ: successor of Pi //Pi’s next active node

children: set of nodes that Pi traversed

inCycle: whether Pi is in the cycle, initially false

while active := true

Coin-flip Step:

Flip a coin, let myCoin denote the result

Let succCoin be the coin result of succ

if myCoin = head && succCoin = tail

active := false

Explore Step:

if active := true

Let succActive be the active status of succ

while succActive = false

children := children ∪ succ

Let j be the successor of succ, set succ := j

Let succActive be the active status of succ

endwhile

if succ = i /* now succ is also active /*

active := false

endwhile

Notify Step:

if succ = i

Send ("cycle") to children

On receiving ("cycle"):

inCycle := true

Send ("cycle") to all children

Figure 5 Algorithm 1: Randomized Algorithm for Finding the Cycles

In this algorithm, each node has a variable active, which is initially true. A node ter-

minates the code when active becomes false. Each node uses the variable succ to record its

current successor node, which initially is its outgoing neighbor. Our algorithm will build a

tree. The children variable denotes the current children of a node, which is essentially all

the nodes that have been its successor. The inCycle variable denotes whether a node is in

the cycle or not. The algorithm is composed of iterations and each node keeps executing

an iteration until active becomes false. Each iteration includes two steps: a Coin-flip step

and a Explore step. In the Coin-flip step, each active node flips a coin. If a node flips head

and its successor node flips tail, it becomes inactive. This step is used to reduce the active

nodes by a constant fraction. In the Explore step, each active node traverses along the path

formed by the successor pointer of all nodes and tries to update its successor pointer to be

next active node in the path. It also adds all inactive node encountered into its children set.

When such a active node is found, it checks whether such a node is actually itself, if that is

the case, a cycle is detected. After a node determines that it is in the cycle (we will show

that there is a unique such node), it broadcasts a cycle message along the tree formed by

the child relationship (Notify step). We will prove that the set of nodes in the tree rooted

at such a node and formed by the child relation is exactly the set of cycle nodes. For the
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purpose of analysis, we assume the functional graph we consider only has one component,

which also means it only has one cycle. Our algorithm works for functional graph with

multiple components, since the executions on different components are independent.

We now show that at the end of algorithm 1 each node correctly knows whether it is in

the cycle or not. Let succ[i] denote the value of succ for Pi. First, we can easily get the

following lemma from the code.

I Lemma 16. At the end of algorithm 1, there is exactly one node i which has succ[i] = i

for each disjoint cycle in the functional graph.

Proof. For node i, if succ[i] = j at some point, then there exists a directed path from node

i to node j. Let us consider a single connected component of the functional graph. For

any non-cycle node, its succ cannot be itself since it does have a directed path to itself.

Hence, it is sufficient to consider only cycle nodes. We first show there is at least one node

i with succ[i] = i. We claim that there is at least one active cycle node remaining after

the Coin-flip step of each iteration. To become inactive, a node has to flip head and its

successor has to flip tail. This implies that two consecutive active nodes cannot become

inactive simultaneously. Hence, at the end of the algorithm at least one cycle node i with

succ[i] = i. Also, it is obvious that at most one cycle node i can have succ[i] = i at the

end of the algorithm. Therefore, there is exactly one node i which has succ[i] = i for each

disjoint cycle in the functional graph. J

Let i be the node with succ[i] = i at the end of the algorithm. Let T be the tree rooted at

node i and constructed from the child relation at the end of the algorithm. Let VT denote

the set of nodes in tree T . Let C denote the set of nodes in the cycle.

I Lemma 17. C = VT

Proof. We prove C ⊆ VT and VT ⊆ C. Suppose node i runs for L iterations. Let Ar denote

the set of active cycle nodes at round r, 1 ≤ r ≤ L. To prove C ⊆ VT , we show by induction

that each node in Ar is in tree T for all r.

Base case, r = L. AL = {i}. Node i is the root of T .

Induction case: Suppose each node in Ak is in T . We need to show that each node in

Ak−1 is in T . It is sufficient to show that the nodes in Ak−1 which become inactive at round

k are in T . Since all active cycle nodes at each round still form a cycle, Ak divides Ak−1

into multiple directed paths. For any path P of form vi, vi+1, ..., vj , only the two end nodes

vi and vj are in Ak. From the code we know that node vi continues to find active nodes

along P at round k, and it stops until it reaches node vj . Thus, all nodes in path P between

vi and vj become the children of node vi. So, all nodes in path P are in T . Hence, all nodes

in Ak−1 are in T . Therefore, we have Ar is in T for any 1 ≤ r ≤ L. Since A1 is exactly the

set of cycles nodes, we have all cycles nodes are in T . Thus, C ⊆ VT .

To prove VT ⊆ C, we show that the any non cycle node is not in tree T . For any non cycle

node j, suppose j ∈ VT . Then j must be a descendant of root node i. From the algorithm

we know that the children relation is formed by next relation in the original graph. Thus,

there must be a directed path from node i to node j in the original graph. This means j

must be in the unique cycle, a contradiction. J

I Theorem 18. Algorithm 1 computes all the cycles of a functional graph G. It has round

complexity of O(log l) and message complexity of O(n log l), w.h.p, where l is the length of

the longest cycle in G.
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Proof. Since the cycle message only traverses through tree T , from Lemma 17, we know

that each cycle node receives the cycle message and each non cycle node does not receive

the cycle message.

Since the number of active nodes in any cycle reduces by a constant fraction in expect-

ation at each iteration and each iteration takes constant number of rounds, by Chernoff

bound, algorithm 1 takes O(log l) rounds w.h.p. Each round of the algorithm takes at most

O(n) messages, which results in O(n log l) messages in total. J

4.2 A Deterministic Algorithm for Finding Cycles in Functional Graphs

In this section, we present a deterministic algorithm for finding all the disjoint cycles in a

functional graph, shown in Fig. 6. This algorithm is similar to the las vegas algorithm in the

previous section, with only one key difference. We replace the Coin-flip step in algorithm

1 to the Coloring step. Observe that in algorithm 1 the primary purpose of the Coin-

flip step is to reduce the number of active nodes by a constant factor while ensuring that

any two consecutive active cycle nodes cannot become inactive at the same time. Graph

coloring techniques can also serve this purpose. Hence, we simply replace the coin-flip step

in algorithm 1 to be a Coloring step, which is an invocation of the 6-coloring algorithm due

to [5]. After the Coloring step, each node compares its color with the color of its successor.

If a node has a smaller color than its successor, it becomes inactive. Then all remaining

active nodes perform the Explore step as in algorithm 1.

Code for Pi:

/* Variables are the same as algorithm 1 */

while active := true

Coloring Step:

6-coloring of active nodes using coloring algorithm from [5]

Request the color of succ, denoted as c′

if c < c′ /* If my color is less than the color of my successor, becomes inactive

*/

active := false

Execute Explore Step of Algorithm 1

endwhile

Figure 6 Algorithm 2: Deterministic Algorithm for Finding Cycles

We can observe that after the coloring step at each iteration, the node with the largest

color remains active in each disjoint cycle. By similar argument, we can show that Lemma

16 and Lemma 17 still hold.

I Theorem 19. Algorithm 2 computes all the disjoint cycles in a functional graph and takes

O(log∗ n log l) rounds and O(n log∗ n log l) messages.

Proof. Since no more than 5 consecutive active nodes become inactive at each iteration by

the property of 6-coloring, the Explore Step still takes constant rounds. The coloring step

introduces an additional O(log∗ n) factor. Thus, algorithm 2 terminates in O(log∗ n log l)

rounds and takes O(n log∗ n log l) messages. J

4.3 Distributed Top Trading Cycle Algorithm

We now present a distributed version of the top trading cycle algorithm. As in the sequential

setting, we assume that each node knows which nodes are holding the houses in its preference
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list. Indeed, every node can broadcast its house to all. This only requires one round and

O(n2) messages.

Code for Pi:

/* Variables */

nexti: the node which holds current top

choice of Pi

assignedi: whether be assigned final house

hi: the house Pi holds

succi: successor of Pi, same as algorithm 1

prefi: mapping from a house to the node

which holds the house.

One Stage:

succi = nexti

Execute Algorithm 1 or 2 to find out

cycle nodes

if Pi in cycle

Let hj denote the house of nexti

hi := hj

assigned := true

Broadcast remove(hi) to all

if Pi has no children

Send ok to its parent

On receiving ok from all children:

if Pi is the root of the tree

Broadcast nextStage to all

else

Send ok to its parent

On receiving nextStage:

if assignedi := false

active := true

Let Topi denote the next available

top choice

nexti := prefi[Topi]

Start next stage

On receiving remove(hj) from j:

Remove hj from prefi

Figure 7 Algorithm 3: Distributed Version of Top Trading Cycle

The distributed algorithm is shown in Fig. 7. The basic idea is using the cycle finding

algorithms presented above to simulate each stage of the top trading cycle algorithm. During

a stage, all nodes first build the top choice functional graph, i.e, update their succ variable to

be the node which holds their current top choice. Then, all nodes execute algorithm 1 or 2 to

find out whether they are in a cycle or not. After that, a cycle node gets assigned its current

top choice and broadcasts a remove message which contains the assigned house to all nodes.

When node Pi receives remove messages from other nodes, it deletes the houses contained

in the messages from the preference list, i.e, from prefi. When executing algorithm 1 or 2,

nodes might terminate at different rounds. Thus, we need to coordinate the execution of

each stage. In order to achieve this, we use a convergecast step using the tree built in the

execution of algorithm 1 or 2. When a node completes broadcasting its remove message to

all, it sends a ok message to its parent in the tree if it is a leaf node in the tree. For non-leaf

nodes, they send an ok message to their parents only when they receive ok messages from

all children. For the root node, when it receives ok from all its children, which means all

nodes have updated their preference list, it broadcasts a nextStage message to all to notify

all nodes to start the next stage of the algorithm.

Since each stage of algorithm 3 simulates each iteration of the TTC mechanism. The

correctness of algorithm 3 follows from the correctness of TTC. We now look at the round

and message complexity.

I Theorem 20. Algorithm 3 computes the core of a housing market in O(n) rounds and

takes O(n2) messages.
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Proof. We just analyze the complexity of adopting the Las Vagas algorithm as a subroutine.

The complexity of the deterministic algorithm just has an additional log∗ n factor. Let li
denote the length of the cycle at stage i of algorithm 3. At stage i, both finding the

cycle and convergecast along the tree need O(log li) rounds, w.h.p. Finding the cycle takes

O(n log li) messages and convergecast takes O(li) messages. Thus, each stage takes O(log li)

randomized rounds and O(n log li) messages. Therefore, since
∑

li = n, algorithm 3 takes

O(n) rounds and O(n2) messages in the worst case. J

5 Conclusion

We conclude with two open problems. We have shown that computing a Pareto optimal

matching for a housing allocation is in CC, which yields a linear time and linear work

parallel algorithm. Computing an individual Pareto optimal matching for a housing market

seems harder. It is interesting to know the relationship between this problem and the CC

class. It is unlikely to be CC-complete, since this would imply a RNC2 and a quasi-NC2

algorithm for the CC class. We also show that computing the core of a housing market is

CC-hard by giving a logspace reduction from the LFMM problem. It is interesting to know

whether this problem is CC-complete. Or can we show that it is P-complete?
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