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Abstract 
 
Here, we propose to apply the concept of electromagnetic 
invisibility/cloaking for decoupling two closely spaced 
antenna arrays operating at neighboring frequencies. Array 
elements used here are strip monopole antennas covered by 
previously designed conformal and confocal elliptical 
metasurface cloaks. We demonstrate that by cloaking two 
closely spaced antenna elements in strongly coupled 
antenna arrays enables to decouple the entire arrays in the 
near-field and in the far-field. The simulation results of two 
overlapping linear arrays operating at ଵ݂ = 2.95 GHz and ଶ݂ = 3.35 GHz are provided as examples.   
 
1. Introduction 
 
Electromagnetic invisibility has been an interesting 
application of engineered metamaterials and metasurfaces 
in recent years. To realize this concept, various methods 
have been proposed such as transformation optics [1], 
transmission-line networks [2], and plasmonic cloaking 
[3], among others. These techniques require bulky 
volumetric metamaterials, and thus, may not be suitable for 
antenna applications that rely on low-profile and thin 
metasurfaces. 
 
To surmount the aforementioned issue and meet the 
requirements of antenna applications, the concept of 
mantle cloaking has been proposed to reduce the scattering 
width of various objects [4]–[10] at microwave and low-
terahertz (THz) frequencies. In this approach, to make a 
given object with subwavelength dimensions cloaked for 
an impinging electromagnetic field, the object is wrapped 
by an ultrathin metasurface, which provides anti-phase 
surface currents resulting in the cancellation of the 
dominant scattering mode from the object.  
 
Mutual coupling between closely spaced antennas has been 
an issue which hinders antenna performance. To overcome 
this undesired effect, it has been proposed to utilize 
metamaterials to decouple antennas [11]. As a realization 
of this concept, the mantle cloaking method has been used 
for reduction of the mutual coupling between free-standing 
cylindrical dipole antennas [12]. The metasurface cloaks 
not only make it possible to reduce mutual coupling 

drastically but also restore the original radiation patterns of 
the isolated antennas [13]–[17], in such a way that the 
neighboring antennas do not sense the presence of each 
other. Very recently, this concept has been applied to 
wideband microstrip monopoles at microwave frequencies 
[18].  
 
In this paper, we introduce the concept of decoupling two 
closely spaced phased antenna arrays operating at 
neighboring frequencies, based on the idea of reducing the 
mutual coupling between two closely spaced antennas. The 
literally closely spaced arrays enable to use the same array 
size or aperture for two different arrays, which is 
traditionally used for only one array, and leads to a 
significant size and cost reduction in practical applications, 
and at the same time, helps to improve frequency diverse 
radar systems. To introduce this novel aspect, here we 
consider two strip monopole antenna arrays operating at ଵ݂ = 3.02  GHz and ଶ݂ = 3.33  GHz, with ߣଵ/10  spacing 
 between the elements of the (ଵ is the wavelength at ଵ݂ߣ)
two arrays. 
 
2. Decoupling Phased Antenna Arrays 
 
Elliptically shaped metasurface cloaks have shown 
potential for the efficient reduction of mutual coupling 
between two closely spaced strip dipole antennas in such a 
way that the antennas operate almost independently from 
each other, and are decoupled both in the near-field and in 
the far-field [15]. Considering the previously designed 
elliptical metasurface cloaks for these antennas with the 
design parameters given in [15], here we take into account 
the case of two closely spaced (overlapping) linear phased 
arrays made of 11 strip monopole antennas on an infinite 
ground plane shown in Fig. 1 (as the equivalents of the 
previously designed strip dipole antennas [15]) resonating 
at ଵ݂ = 2.95 GHz (Array I) and ଶ݂ = 3.35 GHz (Array II). 
The element spacing for each array is ݀ = 50 mm (which 
is 0.5ߣଵ	 or 0.56	ߣଶ ), and the inter-element deeply 
subwavelength spacing between the two arrays is 10 mm 
(which is ߣଵ/10.2		or ߣଶ/9).  
 
We consider two scenarios: (a) Array I is ON and Array II 
is OFF, (b) Array I is OFF and Array II is ON. The 
simulations are performed using CST MWS [19]. For the 
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former scenario, we have chosen two different scan angles 
of ߠ଴ = 30°  and ߠ଴ = 60°  and their respective realized 
gains are shown in Fig. 2. The elliptical metasurface cloaks 
provide restoration of the patterns of Array I in the presence 
of Array II even with such small spacing. Also, Fig. 3 
shows the total efficiency of Array I for ߠ଴ = 60°. It can 
be seen that the metasurfaces wrapped around the elements 
of Array II make it possible to retrieve the total efficiency 
of Array I at ଵ݂ = 2.95 GHz, and at the same time, the 
metasurfaces covering the elements of Array I make this 
array a poor radiator at the resonance frequency of Array 
II, and thus, decouple the entire arrays. 
 
For the latter scenario, we have chosen ߠ଴ = 25° . Its 
respective realized gain at ଶ݂ = 3.35  GHz and the total 
efficiency are shown in Fig. 4. Similar to the previous 
scenario, it can be seen that the metasurfaces recover the 
radiation characteristics of Array II although its elements 
are positioned with the deeply subwavelength distance 
from the elements of Array I.  

 
(a) 

 
(b) 

 
(c) 

Fig. 1.  Schematics of (a) isolated Array I, (b) uncloaked, and (c) cloaked 
linear phased arrays made of strip monopole antennas. 

 
(a) 

 

 
(b) 

Fig. 2.  (a) Realized gain of Array I for (a) ߠ଴ = 30° and (b) ߠ଴ = 60°, at ଵ݂ = 2.95 GHz. 

 

Fig. 3 The total efficiency of Array I for ߠ଴ = 60°. 
 

 
(a) 

 
(b) 

Fig. 4.  (a) Realized gain of Array II at ଶ݂ = 3.35 GHz and (b) the total 
efficiency for (a) ߠ଴ = 25°. 
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3. Conclusions 
 
In this paper, we have proposed the concept of mantle 
cloaking for decoupling two closely spaced linear phased 
antenna arrays operating at adjacent frequencies. The 
simulation results verify that by wrapping the engineered 
elliptical metasurfaces around the elements of Array I, 
makes it possible to recover the radiation properties of 
Array II, and vice versa, in such a way that the arrays 
operate independently and are almost isolated from each 
other. This design will lead to densely packed arrays 
occupying much less space compared to the conventional 
designs, and also, provide frequency diversity.  
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