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Abstract—Optical approaches to AI acceleration have gained 

intense interest recently due to the potentially breakthrough 

advantages of photonics: high bandwidth, low power consum-

ption, and efficient data movement.  We overview leading 

photonic AI platforms based on beamsplitter mesh networks, 

weight banks, and photoelectric multiplication.  While the 

theoretical performance can be orders of magnitude beyond 

current state of the art, practical issues of chip area, input / 

output, and crosstalk paint a more nuanced near-term picture 

of photonic AI acceleration.  Both fundamental and near-term 

limitations to energy efficiency are addressed, and bandwidth 

limitations due to temporal crosstalk are analyzed. 

I. INTRODUCTION 

Artificial intelligence (AI) based on deep neural networks 

(DNNs) has revolutionized many disciplines in computing [1]; 

however, DNNs are compute- and energy-intensive [2], and 

limits to available compute are what constrain AI applications 

in practice.  Since DNNs process large amounts of data in 

regular patterns, special-purpose accelerators have significantly 

improved the speed and energy consumption compared to CPU 

or GPU implementations [2-4].  However, challenges with 

energy consumption [5], the end of Dennard scaling [6], and the 

looming end of Moore’s Law [7] may hinder further perfor-

mance gains in the long term.  This has motivated research into 

analog or hybrid digital-analog electronic AI accelerators [8-9].  

Most accelerators are designed to optimize matrix-matrix mult-

iplication, the bottleneck step [10] in DNN inference (Fig. 1), 

typically employing memristors and a crossbar array (Fig. 2).  

Photonics has also emerged as a dark-horse candidate for AI 

due to its distinct features that offer the possibility of a para-

digm shift—high bandwidth limited by optical frequencies, a 

solution to the interconnect bottleneck [11], and the ability to 

map linear algebra onto passive matrix multiplication [12]—

coupled with recent success at foundry-scale nanophotonic 

integration [13]. 

II. MESH NETWORKS AND WEIGHT BANKS 

The core concepts of analog optical computing [14] and 

optical neural networks (ONNs) [15] are decades old, but only 

in recent years has nanophotonics matured to the point that 

performance competitive with electronics can be contemplated.  

Like electronic accelerators, ONNs use optics primarily to 

accelerate the matrix product.  Two leading proposals are based 

on mesh networks [16] and weight banks [17].  In a mesh 

network, the matrix product is performed by optical interfer-

ence: signals are encoded in the optical fields entering or 

leaving the mesh, while the weight matrix is decomposed into 

a sequence of 2×2 unitary matrices (Fig. 3), implemented with 

Mach-Zehnder interferometers and tunable phase shifters [12, 

18].  In the weight-bank scheme, signals are encoded in the 

wavelength channels of a single waveguide.  This is fanned out 

to an array of microring resonators that serve as tunable 

wavelength-dependent splitters (“weight banks”), that separate-

ly weight the signal from each wavelength channel (Fig. 4). 

Theoretically, the performance of such systems can be quite 

high.  Several factors constrain the system performance in prac-

tice.  Typically some digital manipulation (e.g. pooling, batch 

normalization [19]) must be performed on the output data, 

necessitating A/D and D/A conversion on the inputs and 

outputs (~1-10 pJ/channel [20]), which indicates large photonic 

arrays will be required to see significant performance advan-

tages.  Tunable photonic devices are quite large [21] ((10-

100µm)2 is typical, see Fig. 5); since an N×N array requires 

O(N2) photonic devices, chip-area constraints will make scaling 

to the necessary sizes very challenging.  Although ONNs have 

been applied to small, proof-of-principle problems, the goal of 

a large-scale programmable ONN is as yet unrealized. 

III. ONNS BASED ON COHERENT DETECTION 

Recently we proposed an ONN architecture based on cohe-

rent detection [22].  The matrix product is decomposed into an 

array of vector dot products, each of which can be computed 

using a single homodyne detector (Fig. 6): if two pulse trains 

encode vectors 𝑎⃗ and 𝑏⃗⃗, the integrated charge will be: 

 𝑄 ∝ ∫ 𝑅𝑒[𝐸𝑎(𝑡)∗𝐸𝑏(𝑡)]𝑑𝑡 ∝ ∑ 𝑎𝑖𝑏𝑖𝑖  () 

Fig. 7 shows how a matrix-matrix product can be obtained 

by tiling dot products.  For the product C = AB, each row of A 

(resp. column of B) is encoded as a pulse train and fanned out 

via cylindrical optics to a row (resp. column) of the detector 

array.  This scheme leverages the complementary advantages 

of free-space optics (spatial multiplexing, fan-out), nanopho-

tonics (large modulator arrays), and dense detector integration 

[23].  Note that only O(N) photonic modulators are required for 

each transmitter, significantly alleviating the chip-area const-

raint and enabling the very large arrays (>106 neurons, matrix 

size N = 103) needed for next-generation AI workloads. 

As with other ONNs, system-level performance of near-

term devices will be dominated by I/O costs.  For a product of 
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matrices of dimensions (m×k) and (k×n), the input cost 

(modulator, DAC) is amortized by the fan-out factor of m (resp. 

n), while the output cost (detector, ADC) is amortized by the 

time-integration factor k.  The energy per multiply-accumulate 

(MAC) takes the form 𝐸𝑚𝑎𝑐 = (𝑚−1 + 𝑛−1)𝐸𝑖𝑛 + 𝑘−1𝐸𝑜𝑢𝑡 .   

Table 2 shows estimates of this energy given near-term techno-

logy [20, 24], emerging technology [11, 25], and the funda-

mental Standard Quantum Limit (SQL), which is set by photo-

detector shot noise (Fig. 8).  Fig. 9 shows the theoretical Emac as 

a function of array size, where a 102-103 improvement vs. state-

of-the-art CMOS is expected with near-term technology.  The 

fact that the SQL dips below the Landauer limit [26] indicates 

that sub-Landauer performance is in principle possible in ONNs 

(this is not a contradiction since the Landauer limit only applies 

to digital, irreversible systems). 

IV. CROSSTALK 

Unwanted crosstalk can degrade the performance of analog 

optical systems.  The mesh-network scheme experiences cross-

talk due to imperfect components, which places fairly stringent 

manufacturing requirements for large systems [27, 28].  In the 

weight-bank scheme, frequency and neuron count are limited 

by the time-frequency uncertainty principle 𝑁 𝑓𝑟𝑒𝑝 < 𝐵/𝑆 , 

where B is the optical bandwidth and 𝑆 > 1 is a safety factor. 

In the coherent-detection scheme, spatial crosstalk arises 

because of the close packing of pixels on the detector (Fig. 7).  

Both diffraction and geometric aberrations contribute to this 

crosstalk [22], but with appropriate optical engineering near-

diffraction-limited focusing is possible.  In addition, temporal 

crosstalk arises if the data rate is close to the modulator band-

width.  Many emerging technologies [29, 30] allow for low-

power resonant modulators only with high Q factors and there-

fore low optical bandwidth (few GHz), so it is desirable to 

operate as close to the modulator bandwidth as possible.  Tem-

poral crosstalk replaces the dot product with a convolution: 

 ∑ 𝑎𝑖𝑏𝑖𝑖 → ∑ 𝑋𝑖−𝑘𝑎𝑖𝑏𝑘𝑖,𝑘  () 

The nearest-neighbor crosstalk X1 for return-to-zero or non-

return-to-zero modulation schemes (Fig. 10) is shown in Fig. 

11.  MNIST and ImageNet inference are simulated in the pres-

ence of crosstalk in Fig. 12.  A crosstalk of 5-10% can be toler-

ated without significant performance degradation, suggesting 

operation near the modulator’s 3-dB cutoff is feasible.  Signal 

pre-emphasis may mitigate crosstalk at higher data rates. 

V. ISING MACHINES 

Another compelling application to such hardware is for 

certain combinatorial optimization problems.  Most combina-

torial problems belong to the NP-hard complexity class and are 

thus challenging to solve on conventional processors [31].  

Many heuristics based on coupled differential equations, where 

matrix products are the bottleneck step, show state-of-art perf-

ormance on such problems [32-34].  Recently we proposed and 

demonstrated a proof-of-concept optical “Ising machine” based 

on parametric oscillator networks [35], but with electrically 

mediated spin-spin couplings (Fig. 13).  On many benchmark 

problems, the system outperforms sparsely connected quantum 

annealers such as D-Wave (Fig. 14) [36].  Significant perfor-

mance gains may be possible if optical couplings based on 

ONN hardware are utilized (Fig. 15) [37, 38]. 

VI. CONCLUSION 

Photonics offers a new path to solve the compute problem 

in deep learning.  While component density will never rival 

electronics, photonic systems benefit from high bandwidth, 

low-loss propagation through dielectrics, and potentially very 

low energy consumption.  Approaches based on mesh networks 

and weight banks show promise but suffer from chip-area 

limitations.  We have introduced an approach based on coherent 

detection that solves the chip-area problem and promises 

significant energy-efficiency benefits over the current state-of-

art.  Crosstalk simulations show high data rates limited by 

modulator speeds are possible.  Beyond deep learning, such 

accelerators find use in NP-hard optimization problems. 
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Fig. 1. Breakdown of computational costs in typical deep 

learning workloads.  Matrix-matrix products (GEMM) 

typically account for 80-90% of the total [10]. 

 
 

Fig. 2. Crossbar architecture for 

resistive memory-based analog 

matrix-vector multiplication. 

 
Fig. 3. Mesh-network ONN implementation 

of matrix-vector product [12, 16]. 

 
Fig. 4. Weight-bank ONN scheme [17]. 
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Table. 1. Comparison of optical and electronic neural-network accelerator approaches. 

 
 

Fig. 5. Image of mesh network fabricated to represent 4×4 

programmable matrix-vector product [16]. 

 
 

Fig. 6. Vector dot product by coherent detection.  Vectors encoded on 

optical pulse trains using modulators.  A 50:50 beamsplitter mixes the 

signals.  The integrated charge gives the product: 𝑄 ∝ ∑ 𝑥𝑛𝑦𝑛𝑛 . 

 
Fig. 7. Schematic of optical matrix-product accelerator based on 

coherent detection [22].  Integrated modulator arrays convert data to 

optical pulse trains.  Cylindrical lenses (not shown) provide fan-out 

to rows / columns of detector array, which computes product. 



 

 

 

 

 

 

 

 

 

 

 
Fig. 8. Effect of quantum noise on error rate of MLP100 neural 

network (MNIST, two N=100 inner layers) as a function of optical 

energy per MAC, showing the standard quantum limit (SQL) [22]. 

 
 

Table 2. ONN energy efficiency estimates for three benchmark 

problems.  Figures based on near-term technology (picojoule-scale 

modulators, detectors, ADC) [24] and far-term technology (fem-

tojoule-scale modulators / detectors) [25] are plotted against the SQL. 

 
Fig. 9. Plot of limits to the energy consumption for coherent detec-

tion based ONN: O(pJ/neuron) bound for near-term I/O technology, 

O(fJ/neuron) due to emerging technology, and quantum limit [22].  

Most problems have matrix sizes 102 < N < 104 (shaded region). 

 
Fig. 10. NRZ and RTZ modes of modulator 

operation to reduce temporal crosstalk.  

RC-limited case is shown. 

 
Fig. 11. Temporal crosstalk as a function of pulse 

spacing, normalized to modulator 3dB bandwidth. 

 
Fig. 12. ONN error in presence of temporal 

crosstalk (normalized to crosstalk-free case). 

 
 

Fig. 13. Annealing machines for Ising combina-

torial optimization.  Left: CIM-based LASOLV 

from NTT.  Right: D-Wave Systems 2000Q 

based on quantum annealing. 

 
Fig. 14. CIM and D-Wave 2000Q success 

probabilities at SK benchmark problems [36]. 

 
 

Fig. 15. Principle of photonic recurrent 

Ising sampler exploiting ONN matrix-

product accelerator [37-38]. 
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