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Abstract—Optical approaches to Al acceleration have gained
intense interest recently due to the potentially breakthrough
advantages of photonics: high bandwidth, low power consum-
ption, and efficient data movement. We overview leading
photonic Al platforms based on beamsplitter mesh networks,
weight banks, and photoelectric multiplication. While the
theoretical performance can be orders of magnitude beyond
current state of the art, practical issues of chip area, input /
output, and crosstalk paint a more nuanced near-term picture
of photonic Al acceleration. Both fundamental and near-term
limitations to energy efficiency are addressed, and bandwidth
limitations due to temporal crosstalk are analyzed.

L. INTRODUCTION

Artificial intelligence (AI) based on deep neural networks
(DNN?s) has revolutionized many disciplines in computing [1];
however, DNNs are compute- and energy-intensive [2], and
limits to available compute are what constrain Al applications
in practice. Since DNNs process large amounts of data in
regular patterns, special-purpose accelerators have significantly
improved the speed and energy consumption compared to CPU
or GPU implementations [2-4]. However, challenges with
energy consumption [5], the end of Dennard scaling [6], and the
looming end of Moore’s Law [7] may hinder further perfor-
mance gains in the long term. This has motivated research into
analog or hybrid digital-analog electronic Al accelerators [8-9].
Most accelerators are designed to optimize matrix-matrix mult-
iplication, the bottleneck step [10] in DNN inference (Fig. 1),
typically employing memristors and a crossbar array (Fig. 2).
Photonics has also emerged as a dark-horse candidate for Al
due to its distinct features that offer the possibility of a para-
digm shift—high bandwidth limited by optical frequencies, a
solution to the interconnect bottleneck [11], and the ability to
map linear algebra onto passive matrix multiplication [12]—
coupled with recent success at foundry-scale nanophotonic
integration [13].

II. MESH NETWORKS AND WEIGHT BANKS

The core concepts of analog optical computing [14] and
optical neural networks (ONNs) [15] are decades old, but only
in recent years has nanophotonics matured to the point that
performance competitive with electronics can be contemplated.
Like electronic accelerators, ONNs use optics primarily to
accelerate the matrix product. Two leading proposals are based
on mesh networks [16] and weight banks [17]. In a mesh
network, the matrix product is performed by optical interfer-

ence: signals are encoded in the optical fields entering or
leaving the mesh, while the weight matrix is decomposed into
a sequence of 2x2 unitary matrices (Fig. 3), implemented with
Mach-Zehnder interferometers and tunable phase shifters [12,
18]. In the weight-bank scheme, signals are encoded in the
wavelength channels of a single waveguide. This is fanned out
to an array of microring resonators that serve as tunable
wavelength-dependent splitters (“weight banks™), that separate-
ly weight the signal from each wavelength channel (Fig. 4).

Theoretically, the performance of such systems can be quite
high. Several factors constrain the system performance in prac-
tice. Typically some digital manipulation (e.g. pooling, batch
normalization [19]) must be performed on the output data,
necessitating A/D and D/A conversion on the inputs and
outputs (~1-10 pJ/channel [20]), which indicates large photonic
arrays will be required to see significant performance advan-
tages. Tunable photonic devices are quite large [21] ((10-
100um)? is typical, see Fig. 5); since an NXN array requires
O(N?) photonic devices, chip-area constraints will make scaling
to the necessary sizes very challenging. Although ONNs have
been applied to small, proof-of-principle problems, the goal of
a large-scale programmable ONN is as yet unrealized.

III. ONNS BASED ON COHERENT DETECTION

Recently we proposed an ONN architecture based on cohe-
rent detection [22]. The matrix product is decomposed into an
array of vector dot products, each of which can be computed
using a single homodyne detector (Fig. 6): if two pulse trains

encode vectors d and b, the integrated charge will be:

Q o [Re[E,(t)"E,(t)]dt o« ¥; a;b;. (1)

Fig. 7 shows how a matrix-matrix product can be obtained
by tiling dot products. For the product C = AB, each row of 4
(resp. column of B) is encoded as a pulse train and fanned out
via cylindrical optics to a row (resp. column) of the detector
array. This scheme leverages the complementary advantages
of free-space optics (spatial multiplexing, fan-out), nanopho-
tonics (large modulator arrays), and dense detector integration
[23]. Note that only O(N) photonic modulators are required for
each transmitter, significantly alleviating the chip-area const-
raint and enabling the very large arrays (>10° neurons, matrix
size N = 10°) needed for next-generation Al workloads.

As with other ONNSs, system-level performance of near-
term devices will be dominated by I/O costs. For a product of
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matrices of dimensions (mxk) and (kxn), the input cost
(modulator, DAC) is amortized by the fan-out factor of m (resp.
n), while the output cost (detector, ADC) is amortized by the
time-integration factor k. The energy per multiply-accumulate
(MAC) takes the form Ep. = (m™ P+ n DE;, + k™ E,,, .
Table 2 shows estimates of this energy given near-term techno-
logy [20, 24], emerging technology [11, 25], and the funda-
mental Standard Quantum Limit (SQL), which is set by photo-
detector shot noise (Fig. 8). Fig. 9 shows the theoretical E,uqc as
a function of array size, where a 10?-10° improvement vs. state-
of-the-art CMOS is expected with near-term technology. The
fact that the SQL dips below the Landauer limit [26] indicates
that sub-Landauer performance is in principle possible in ONNs
(this is not a contradiction since the Landauer limit only applies
to digital, irreversible systems).

IV. CROSSTALK

Unwanted crosstalk can degrade the performance of analog
optical systems. The mesh-network scheme experiences cross-
talk due to imperfect components, which places fairly stringent
manufacturing requirements for large systems [27, 28]. In the
weight-bank scheme, frequency and neuron count are limited
by the time-frequency uncertainty principle N f.., < B/S,

where B is the optical bandwidth and S > 1 is a safety factor.

In the coherent-detection scheme, spatial crosstalk arises
because of the close packing of pixels on the detector (Fig. 7).
Both diffraction and geometric aberrations contribute to this
crosstalk [22], but with appropriate optical engineering near-
diffraction-limited focusing is possible. In addition, temporal
crosstalk arises if the data rate is close to the modulator band-
width. Many emerging technologies [29, 30] allow for low-
power resonant modulators only with high Q factors and there-
fore low optical bandwidth (few GHz), so it is desirable to
operate as close to the modulator bandwidth as possible. Tem-
poral crosstalk replaces the dot product with a convolution:

i aib; = ¥k Xi—ra;by. 2

The nearest-neighbor crosstalk X; for return-to-zero or non-
return-to-zero modulation schemes (Fig. 10) is shown in Fig.
11. MNIST and ImageNet inference are simulated in the pres-
ence of crosstalk in Fig. 12. A crosstalk of 5-10% can be toler-
ated without significant performance degradation, suggesting
operation near the modulator’s 3-dB cutoff is feasible. Signal
pre-emphasis may mitigate crosstalk at higher data rates.

V. ISING MACHINES

Another compelling application to such hardware is for
certain combinatorial optimization problems. Most combina-
torial problems belong to the NP-hard complexity class and are
thus challenging to solve on conventional processors [31].
Many heuristics based on coupled differential equations, where
matrix products are the bottleneck step, show state-of-art perf-
ormance on such problems [32-34]. Recently we proposed and
demonstrated a proof-of-concept optical “Ising machine” based
on parametric oscillator networks [35], but with electrically
mediated spin-spin couplings (Fig. 13). On many benchmark

problems, the system outperforms sparsely connected quantum
annealers such as D-Wave (Fig. 14) [36]. Significant perfor-
mance gains may be possible if optical couplings based on
ONN hardware are utilized (Fig. 15) [37, 38].

VI. CONCLUSION

Photonics offers a new path to solve the compute problem
in deep learning. While component density will never rival
electronics, photonic systems benefit from high bandwidth,
low-loss propagation through dielectrics, and potentially very
low energy consumption. Approaches based on mesh networks
and weight banks show promise but suffer from chip-area
limitations. We have introduced an approach based on coherent
detection that solves the chip-area problem and promises
significant energy-efficiency benefits over the current state-of-
art. Crosstalk simulations show high data rates limited by
modulator speeds are possible. Beyond deep learning, such
accelerators find use in NP-hard optimization problems.
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Fig. 1. Breakdown of computational costs in typical deep
learning workloads. Matrix-matrix products (GEMM)
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Fig. 2. Crossbar architecture for
resistive memory-based analog
matrix-vector multiplication.

Fig. 3. Mesh-network ONN implementation
of matrix-vector product [12, 16].
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Fig. 4. Weight-bank ONN scheme [17].

Type Concept Company g?{:gi?fﬁ% (:j:]r;;}fg) Stage Challenges
Digital GPU Nvidia, AMD 8 10 Commer- Addressed. Very
ASIC Multiple 14 1 cial mature technology.
Analog Memristors Multiple > 1000 < 0.001 Proto- Updates, noise, etc.
electronics FPAA - > 100 0.01 type Chip area, variations
Photonics Mesh Lightmatter > 100 0.001-0.1 Proto- Area, matrix size
Weight bank  Luminous > 100 0.001-0.1 type # channels, size
This work | Homodyne n/a > 1000 0.001 Concept Unknown

Table. 1. Comparison of optical and electronic neural-network accelerator approaches.
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Fig. 5. Image of mesh network fabricated to represent 4x4
programmable matrix-vector product [16].
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Fig. 6. Vector dot product by coherent detection. Vectors encoded on
optical pulse trains using modulators. A 50:50 beamsplitter mixes the
signals. The integrated charge gives the product: Q o Y., X, Vn-
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Fig. 7. Schematic of optical matrix-product accelerator based on
coherent detection [22]. Integrated modulator arrays convert data to
optical pulse trains. Cylindrical lenses (not shown) provide fan-out

to rows / columns of detector array, which computes product.
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Table 2. ONN energy efficiency estimates for three benchmark
problems. Figures based on near-term technology (picojoule-scale
modulators, detectors, ADC) [24] and far-term technology (fem-

Fig. 9. Plot of limits to the energy consumption for coherent detec-
tion based ONN: O(pJ/neuron) bound for near-term I/O technology,
O(fJ/neuron) due to emerging technology, and quantum limit [22].
Most problems have matrix sizes 10? < N < 10* (shaded region).

tojoule-scale modulators / detectors) [25] are plotted against the SQL.
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Fig. 10. NRZ and RTZ modes of modulator
operation to reduce temporal crosstalk.
RC-limited case is shown.
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probabilities at SK benchmark problems [36].
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