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Abstract
Shapley value is a classic notion from game the-
ory, historically used to quantify the contributions
of individuals within groups, and more recently
applied to assign values to data points when train-
ing machine learning models. Despite its founda-
tional role, a key limitation of the data Shapley
framework is that it only provides valuations for
points within a fixed data set. It does not account
for statistical aspects of the data and does not give
a way to reason about points outside the data set.
To address these limitations, we propose a novel
framework – distributional Shapley – where the
value of a point is defined in the context of an
underlying data distribution. We prove that distri-
butional Shapley has several desirable statistical
properties; for example, the values are stable un-
der perturbations to the data points themselves
and to the underlying data distribution. We lever-
age these properties to develop a new algorithm
for estimating values from data, which comes
with formal guarantees and runs two orders of
magnitude faster than state-of-the-art algorithms
for computing the (non-distributional) data Shap-
ley values. We apply distributional Shapley to
diverse data sets and demonstrate its utility in a
data market setting.

1. Introduction
As data becomes an essential driver of innovation and ser-
vice, how to quantify the value of data is an increasingly
important topic of inquiry with policy, economic, and ma-
chine learning (ML) implications. In the policy arena, recent
proposals, such as the Dashboard Act in the U.S. Senate,
stipulate that large companies quantify the value of data
they collect. In the global economy, the business model of
many companies involves buying and selling data. For ML
engineering, it is often beneficial to know which type of
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training data is most valuable and, hence, most deserving of
resources towards collection and annotation. As such, a prin-
cipled framework for data valuation would be tremendously
useful in all of these domains.

Recent works initiated a formal study of data valuation in
ML (Ghorbani & Zou, 2019; Jia et al., 2019b). In a typical
setting, a data set B = {zi} is used to train a ML model,
which achieves certain performance, say classification ac-
curacy 0.9. The data valuation problem is to assign credit
amongst the training set, so that each point gets an “equi-
table” share for its contribution towards achieving the 0.9
accuracy. Most works have focused on leveraging Shapley
value as the metric to quantify the contribution of individual
zi. The focus on Shapley value is in large part due to the fact
that Shapley uniquely satisfies basic properties for equitable
credit allocation (Shapley, 1953). Empirical experiments
also show that data Shapley is very effective – more so than
leave-one-out scores – at identifying points whose addition
or removal substantially impacts learning (Ghorbani et al.,
2017; Ghorbani & Zou, 2019).

At a high-level, prior works on data Shapley require three
ingredients: (1) a fixed training data set of m points; (2) a
learning algorithm; and (3) a performance metric that mea-
sures the overall value of a trained model. The goal of this
work is to significantly reduce the dependency on the first in-
gredient. While convenient, formulating the value based on
a fixed data set disregards crucial statistical considerations
and, thus, poses significant practical limitations.

In standard settings, we imagine that data is sampled from a
distribution D; measuring the Shapley value with respect to
a fixed data set ignores this underlying distribution. It also
means that the value of a data point computed within one
data set may not make sense when the point is transferred
to a new data set. If we actually want to buy and sell data,
then it is important that the value of a given data point
represents some intrinsic quality of the datum within the
distribution. For example, a data seller might determine that
z has high value based on their data set Bs and sell z to
a buyer at a high price. Even if the buyer’s data set Bb is
drawn from a similar distribution as Bs, the existing data
Shapley framework provides no guarantee of consistency
between the value of z computed within Bs and within Bb.
This inconsistency may be especially pronounced in the case
when the buyer has significantly less data than the seller.
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OUR CONTRIBUTIONS.

Conceptual: Extending prior works on data Shapley, we
formulate and develop a notion of distributional Shapley
value in Section 2. We define the distributional variant in
terms of the original data Shapley: the distributional Shap-
ley value is taken to be the expected data Shapley value,
where the data set is drawn i.i.d. from the underlying data
distribution. Reformulating this notion of value as a statisti-
cal quantity allows us to prove that the notion is stable with
respect to perturbations to the inputs as well as the under-
lying data distribution. Further, we show a mathematical
identity that gives an equivalent definition of distributional
Shapley as an expected marginal performance increase by
adding the point, suggesting an unbiased estimator.

Algorithmic: In Section 3, we develop this estimator into
a novel sampling-based algorithm, D-SHAPLEY. In con-
trast to prior estimation heuristics, D-SHAPLEY comes with
strong formal approximation guarantees. Leveraging the
stability properties of distributional Shapley value and the
simple nature of our algorithm, we develop theoretically-
principled optimizations to D-SHAPLEY. In our experi-
ments across diverse tasks, the optimizations lead to order-
of-magnitude reductions in computational costs while main-
taining the quality of estimations.

Empirical: Finally, in Section 4, we present a data pric-
ing case study that demonstrates the consistency of values
produced by D-SHAPLEY. In particular, we show that a
data broker can list distributional Shapley values as “prices,”
which a collection of buyers all agree are fair (i.e. the data
gives each buyer as much value as the seller claims). In
all, our results demonstrate that the distributional Shapley
framework represents a significant step towards the practical
viability of the Shapley-based approaches to data valuation.

Related works. Shapley value, introduced in (Shapley,
1953), has been studied extensively in the literature on co-
operative games and economics (Shapley et al., 1988), and
has traditionally been used in the valuation of private infor-
mation and data markets (Kleinberg et al., 2001; Agarwal
et al., 2019).

Our work follows recent works that apply Shapley value
to the data valuation problem. (Ghorbani & Zou, 2019)
developed the notion of “Data Shapley” and provided two
algorithms to efficiently estimate values. Specifically, lever-
aging the permutation-based characterization of Shapley
value, they developed a “truncated Monte Carlo” sampling
scheme (referred to as TMC-SHAPLEY), demonstrating em-
pirical effectiveness across various ML tasks. (Jia et al.,
2019b) gave several additional methods for efficient approx-
imation of Shapley values for training data; subsequently,
(Jia et al., 2019a) provided an exact algorithm for computa-
tion of Shapley values for nearest neighbor classifiers.

Beyond data valuation, the Shapley framework has been
used in a variety of ML applications, e.g. as a measure of fea-
ture importance (Cohen et al., 2007; Kononenko et al., 2010;
Datta et al., 2016; Lundberg & Lee, 2017; Chen et al., 2018).
The idea of a distributional Shapley value bears resemblance
to the Aumann-Shapley value (Aumann & Shapley, 1974),
a measure-theoretic variant of Shapley that quantifies the
value of individuals within a continuous “infinite game.”
Our distributional Shapley value focuses on the tangible
setting of finite data sets drawn from a (possibly continuous)
distribution.

2. Distributional Data Valuation
Preliminaries.

Let D denote a data distribution supported on a universe Z .
For supervised learning problems, we often think of Z =
X × Y where X ⊆ Rd and Y is the output, which can be
discrete or continuous. Form ∈ N, let S ∼ Dm a collection
of k data points sampled i.i.d. from D. Throughout, we use
the shorthand [m] = {1, . . . ,m} and let k ∼ [m] denote a
uniform random sample from [m].

We denote by U : Z∗ → [0, 1] a potential function1 or
performance metric, where for any S ⊆ Z , U(S) represents
abstractly the value of the subset. While our analysis applies
broadly, in our context, we think of U as capturing both the
learning algorithm and the evaluation metric. For instance,
in the context of training a logistic regression model, we
might think of U(S) as returning the population accuracy
of the empirical risk minimizer when S is the training set.

2.1. Distributional Shapley Value

Our starting point is the data Shapley value, proposed in
(Ghorbani & Zou, 2019; Jia et al., 2019b) as a way to valuate
training data equitably.

Definition 2.1 (Data Shapley Value). Given a potential
function U and data set B ⊆ Z where |B| = m, the data
Shapley value of a point z ∈ B is defined as

φ(z;U,B) ,
1

m

m∑
k=1

1(
m−1
k−1

) ∑
S⊆B\{z}:
|S|=k−1

(U(S ∪ {z})− U(S)) .

In words, the data Shapley value of a point z ∈ B is a
weighted empirical average over subsets S ⊆ B of the
marginal potential contribution of z to each S; the weight-
ing is such that each possible cardinality |S| = k ∈
{0, . . . ,m− 1} is weighted equally. The data Shapley value
satisfies a number of desirable properties; indeed, it is the

1We use Z∗ =
⋃

n∈N Z
n to indicates any finite Cartesian

product of Z with itself; thus, U is well-defined on the any natural
number of inputs from Z .
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unique valuation function that satisfies the Shapley axioms2.
Note that as the data set size grows, the absolute magnitude
of individual data points’ values typically scales inversely.

While data Shapley value is a natural solution concept for
data valuation, its formulation leads to several limitations.
In particular, the values may be very sensitive to the exact
choice of B; given another B′ 6= B where z ∈ B ∩B′, the
value φ(z;U,B) might be quite different from φ(z;U,B′).
At the extreme, if a new point z′ 6∈ B is added to B, then in
principle, we would have to rerun the procedure to compute
the data Shapley values for all points in B ∪ {z′}.

In settings where our data are drawn from an underlying dis-
tributionD, a natural extension to the data Shapley approach
would parameterize the valuation function by D, rather than
the specific draw of the data set. Such a distributional Shap-
ley value should be more stable, by removing the explicit
dependence on the draw of the training data set.
Definition 2.2 (Distributional Shapley Value). Given a po-
tential function U : Z∗ → [0, 1], a distributionD supported
on Z , and some m ∈ N, the distributional Shapley value of
a point z ∈ Z is the expected data Shapley value over data
sets of size m containing x.

ν(z;U,D,m) , E
B∼Dm−1

[φ (z;U,B ∪ {z})]

In other words, we can think of the data Shapley value
as a random variable that depends on the specific draw
of data from D. Taking the distributional Shapley value
ν(z;U,D,m) to be the expectation of this random variable
eliminates instability caused by the variance of φ(z;U,B).
While distributional Shapley is simple to state based on the
original Shapley value, to the best of our knowledge, the
concept is novel to this work.

We note that, while more stable, the distributional Shapley
value inherits many of the desirable properties of Shapley,
including the Shapley axioms and an expected efficiency
property; we cover these in Appendix A. Importantly, dis-
tributional Shapley also has a clean characterization as the
expected gain in potential by adding z ∈ Z to a random
data set (of random size).
Theorem 2.3. Fixing U and D, for all z ∈ Z and m ∈ N,

ν(z;U,D,m) = E
k∼[m]

S∼Dk−1

[U(S ∪ {z})− U(S)]

That is, the distributional Shapley value of a point is its
expected marginal contribution in U to a set of i.i.d. samples
from D of uniform random cardinality.

The identity holds as a consequence of the definition of data
Shapley value and linearity of expectation.

2For completeness, the axioms – symmetry, null player, addi-
tivity, and efficiency – are reviewed in Appendix A.

Proof.

ν(z;U,D,m) = E
D∼Dm−1

[φ(z;U,D ∪ {z})]

= E
D∼Dm−1

 1

m

m∑
k=1

1(
m−1
k−1

) ∑
S⊆D:
|S|=k−1

(U(S ∪ {z})− U(S))



=
1

m

m∑
k=1

1(
m−1
k−1

) E
D∼Dm−1

 ∑
S⊆D:
|S|=k−1

(U(S ∪ {z})− U(S))


=

1

m

m∑
k=1

E
S∼Dk−1

[U(S ∪ {z})− U(S)] (1)

= E
k∼[m]

S∼Dk−1

[U(S ∪ {z})− U(S)]

where (1) follows by the fact that D ∼ Dm−1 consists of
i.i.d. samples, so each S ⊆ D with |S| = k−1 is identically
distributed according to Dk−1.

Example: mean estimation. Leveraging this characteri-
zation, for well-structured problems, it is possible to give
analytic expressions for the distributional Shapley values.
For instance, consider estimating the mean µ of a distribu-
tion D supported on Rd. For a finite subset S ⊆ Rd, we
take a potential U(S) based on the empirical estimator µ̂S .

Uµ(S) = E
s∼D

[
‖s− µ‖2

]
− ‖µ̂S − µ‖2

Proposition 2.4. Suppose D has bounded second moments.
Then for z ∈ Z and m ∈ N, ν(z;Uµ,D,m) for mean
estimation over D is given by

ES∼Dm [U(S)]

m
+
Cm
m
·
(

E
s∼D

[
‖s− µ‖2

]
− ‖z − µ‖2

)
for an explicit constant Cm = Θ(1) determined by m.

Intuitively, this proposition (proved in Appendix B) high-
lights some desirable properties of distributional Shapley:
the expected value for a random z ∼ D is an uniform share
of the potential for a randomly drawn data set S ∼ Dm;
further, a point has above-average value when it is closer to
µ than expected. In general, analytically deriving the distri-
butional Shapley value may not be possible. In Section 3,
we show how the characterization of Theorem 2.3 leads to
an efficient algorithm for estimating values.

2.2. Stability of distributional Shapley values

Before presenting our algorithm, we discuss stability proper-
ties of distributional Shapley, which are interesting in their
own right, but also have algorithmic implications. We show
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that when the potential function U satisfies a natural stabil-
ity property, the corresponding distributional Shapley value
inherits stability under perturbations to the data points and
the underlying data distribution. First, we recall a standard
notion of deletion stability, often studied in the context of
generalization of learning algorithms (Bousquet & Elisseeff,
2002).
Definition 2.5 (Deletion Stability). For potentialU : Z∗ →
[0, 1] and non-increasing β : N→ [0, 1], U is β(k)-deletion
stable if for all k ∈ N and S ∈ Zk−1, for all z ∈ Z

|U(S ∪ {z})− U(S)| ≤ β(k).

We can similarly discuss the idea of replacement stability,
where we bound |U(S ∪ {z})− U(S ∪ {z′})|; note that by
the triangle inequality, β(k)-deletion stability of U implies
2β(k)-replacement stability. To analyze the properties of
distributional Shapley, a natural strengthening of replace-
ment stability will be useful, which we call Lipschitz sta-
bility. Lipschitz stability is parameterized by a metric d,
requires the degree of robustness under replacement of z
with z′ to scale according to the distance d(z, z′).
Definition 2.6 (Lipschitz Stability). Let (Z, d) be a metric
space. For potential U : Z∗ → [0, 1] and non-increasing
β : N→ [0, 1], U is β(k)-Lipschitz stable with respect to d
if for all k ∈ N, S ∈ Zk−1, and all z, z′ ∈ Z ,

|U(S ∪ {z})− U(S ∪ {z′})| ≤ β(k) · d(z, z′).

By taking d to be the trivial metric, where d(z, z′) = 1
if z 6= z′, we see that Lipschitz-stability generalizes the
idea of replacement stability; still, there are natural learning
algorithms that satisfy Lipschitz stability for nontrivial met-
rics. As one example, we show that Regularized empirical
risk minimization over a Reproducing Kernel Hilbert Space
(RKHS) – a prototypical example of a replacement stable
learning algorithm – also satisfies this stronger notion of
Lipschitz stability. We include a formal statement and proof
in Appendix C.

Similar distributions yield similar value functions.
The distributional Shapley value is naturally parameterized
by the underlying data distribution D. For two distributions
Ds andDt, given the value ν(z;U,Ds,m), what can we say
about the value ν(z;U,Dt,m)? Intuitively, if Ds and Dt
are similar under an appropriate metric, we’d expect that the
values should not change too much. Indeed, we can formally
quantify how the distributional Shapley value is stable under
distributional shift under the Wasserstein distance.3

Theorem 2.7. Fix a metric space (Z, d) and let U : Z∗ →
[0, 1] be β(k)-Lipschitz stable with respect to d. SupposeDs

3Fixing a metric d over Z , the Wasserstein distance over two
distributions Ds,Dt is the infimum over all couplings γ ∈ Γst of
the expected distance between (s, t) ∼ γ.

and Dt are two distributions over Z . Then, for all m ∈ N
and all z ∈ Z ,

|ν(z;U,Ds,m)− ν(z;U,Dt,m)|

≤ 2

m

m−1∑
k=1

kβ(k) ·W1(Ds,Dt).

The proof of Theorem 2.7 is included in Appendix C. Note
that the theorem bounds the difference in values under shifts
in distribution holding the potential U fixed. Often in ap-
plications, we will take the potential function to depend on
the underlying data distribution. For instance, we may take
UD(S) = Ez∼D [`S(z)] to be a measure of population accu-
racy, where `S(z) is the loss on a point z ∈ Z achieved by a
model trained on the data set S ⊆ Z . In the case where we
only have access to samples from Ds, we still may want to
guarantee that ν(z;UDs

,Ds,m) and ν(z;UDt
,Dt,m) are

close. Thankfully, such a result follows by showing that
UDs is close to UDt . For completeness, we formalize this
argument in Appendix C.

Similar points receive similar values. As discussed, a
key limitation with the data Shapley approach for fixed
data set B is that we can only ascribe values to z ∈ B.
Intuitively, however, we would hope that if two points z and
z′ are similar according to some appropriate metric, then
they would receive similar Shapley values. We confirm this
intuition for distributional Shapley values when the potential
function U satisfies Lipschitz stability.

Theorem 2.8. Fix a metric space (Z, d) and a distribution
D over Z; let U : Z∗ → [0, 1] be β(k)-Lipschitz stable
with respect to d. Then for all m ∈ N, for all z, z′ ∈ Z ,

|ν(z;U,D,m)− ν(z′;U,D,m)| ≤ E
k∼[m]

[β(k)] · d(z, z′).

Proof. For any data set size m ∈ N, we expand
ν(z′;U,D,m) to express it in terms of ν(z;U,D,m).

ν(z′;U,D,m) = E
k∼[m]

S∼Dk−1

[U(S ∪ {z′})− U(S)]

= E
k∼[m]

S∼Dk−1

[U(S ∪ {z})− U(S)]

+ E
k∼[m]

S∼Dk−1

[U(S ∪ {z′})− U(S ∪ {z})]

≤ ν(z;U,D,m) + E
k∼[m]

[β(k)] · d(z, z′) (2)

where (2) follows by the assumption that U is β(k)-
Lipschitz stable and linearity of expectation.

Theorem 2.8 suggests that in many settings of interest, the
distributional Shapley value will be Lipschitz in z. This
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Lipschitz property also suggests that, given the values of a
(sufficiently-diverse) set of points Z, we may be able to infer
the values of unseen points z′ 6∈ Z through interpolation.
Concretely, in Section 3.1, we leverage this observation
to give an order of magnitude speedup over our baseline
estimation algorithm.

3. Efficiently Estimating Distributional
Shapley Values

Here, we describe an estimation procedure, D-SHAPLEY,
for computing distributional Shapley values. To begin, we
assume that we can actually sample from the underlying D.
Then, in Section 3.1, we propose techniques to speed up the
estimation and look into the practical issues of obtaining
samples from the distribution. The result of these consid-
erations is a practically-motivated variant of the estimation
procedure, FAST-D-SHAPLEY. In Section 3.2, we investi-
gate how these optimizations perform empirically; we show
that the strategies provide a way to smoothly trade-off the
precision of the valuation for computational cost.

Obtaining unbiased estimates. The formulation from
Theorem 2.3 suggests a natural algorithm for estimating the
distributional Shapley values of a set of points. In particular,
the distributional Shapley value ν(z;U,D,m) is the expec-
tation of the marginal contribution of z to S ⊆ Z on U ,
drawn from a specific distribution over data sets. Thus, the
change in performance when we add a point z to a data set
S drawn from the correct distribution will be an unbiased
estimate of the distributional Shapley value. Consider the
Algorithm 1, D-SHAPLEY, which given a subset Z0 ⊆ Z
of data, maintains for each z ∈ Z0 a running average of
U(S ∪ {z})− U(S) over randomly drawn S.

Algorithm 1 D-SHAPLEY

Fix: potential U : Z∗ → [0, 1]; distribution D; m ∈ N
Given: data set Z ⊆ Z to valuate; # iterations T ∈ N

for z ∈ Z do
ν1(z)← 0 // initialize estimates

end for
for t = 1, . . . , T do

Sample St ∼ Dk−1 for k ∼ [m]
for z ∈ Z do

∆zU(St)← U(St ∪ {z})− U(St)
νt+1(z)← 1

t ·∆zU(St) + t−1
t · νt(z)

// update unbiased estimate
end for

end for
return {(z, νT (z)) : z ∈ Z}

In each iteration, Algorithm 1 uses a fixed sample St to
estimate the marginal contribution to U(St ∪ {z})− U(St)
for each z ∈ Z. This reuse correlates the estimation errors

between points in Z, but provides computational savings.
Recall that each evaluation of U(S) requires training a ML
model using the points in S; thus, using the same S for each
z ∈ Z reduces the number of models to be trained by |Z| per
iteration. In cases where the U(S ∪{z}) can be derived effi-
ciently from U(S), the savings may be even more dramatic;
for instance, given a machine-learned model trained on S, it
may be significantly cheaper to derive a model trained on
S ∪ {z} than retraining from scratch (Ginart et al., 2019).

The running time of Algorithm 1 can naively be upper
bounded by the product of the number of iterations before
termination T , the cardinality |Z| of the points to valuate,
and the expected time to evaluate U on data sets of size
k ∼ [m]. We analyze the iteration complexity necessary to
achieve ε-approximations of ν(z;U,D,m) for each z ∈ Z.

Theorem 3.1. Fixing a potential U and distribution D, and
Z ⊆ Z , suppose T ≥ Ω

(
log(|Z|/δ)

ε2

)
. Algorithm 1 pro-

duces unbiased estimates and with probability at least 1− δ,
|ν(z;U,D,m)− νT (z)| ≤ ε. for all z ∈ Z.

Remark. When understanding this (and future) formal ap-
proximation guarantees, it is important to note that we
take ε to be an absolute additive error. Recall, however,
that ν(z;U,D,m) is normalized by m; thus, as we take m
larger, the relative error incurred by a fixed ε error grows.
In this sense, ε should typically scale inversely as O(1/m).

The claim follows by proving uniform convergence of the
estimates for each z ∈ Z. Importantly, while the samples in
each iteration are correlated across z, z′ ∈ Z, fixing z ∈ Z,
the samples ∆zU(St) are independent across iterations. We
include a formal analysis in Appendix D.

3.1. Speeding up D-Shapley: theoretical and practical
considerations

Next, we propose two principled ways to speed up the base-
line estimation algorithm. Under stability assumptions, the
strategies maintain strong formal guarantees on the quality
of the learned valuation. We also develop some guiding
theory addressing practical issues that arise from the need
to sample from D. Somewhat counterintuitively, we argue
that given only a fixed finite data set B ∼ DM , we can still
estimate values ν(z;U,D,m) to high accuracy, for M that
grows modestly with m.

Subsampling data and interpolation. Theorem 2.8
shows that for sufficiently stable potentials U , similar points
have similar distributional Shapley values. This property of
distributional Shapley values is not only useful for inferring
the values of points z ∈ Z that were not in our original
data set, but also suggests an approach for speeding up the
computations of values for a fixed Z ⊆ Z . In particular, to
estimate the values for z ∈ Z (with respect to a sufficiently
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Lipschitz-stable potential U ) to O(ε)-precision, it suffices
to estimate the values for an ε-cover of Z, and interpolate
(e.g. via nearest neighbor search). Standard arguments show
that random sampling is an effective way to construct an
ε-cover (Har-Peled, 2011).

As our first optimization, in Algorithm 2, we reduce the
number of points to valuate through subsampling. Given
a data set Z to valuate, we first choose a random subset
Zp ⊆ Z (where each z ∈ Z is subsampled intoZp i.i.d. with
some probability p); then, we run our estimation procedure
on the points in Zp; finally, we train a regression model
on (z, νT (z)) pairs from Zp to predict the values of the
points from Z \ Zp. By varying the choice of p ∈ [0, 1], we
can trade-off running time for quality of estimation: p ≈ 1
recovers the original D-SHAPLEY scheme, whereas p ≈ 0
will be very fast but likely produce noisy valuations.

Importance sampling for smaller data sets. To under-
stand the running time of Algorithm 1 further, we denote
the time to evaluate U on a set of cardinality k ∈ N by
R(k).4 As such, we can express the asymptotic expected
running time as |Z| · T · Ek∼[m] [R(k)]. Note that when
U(S) corresponds to the accuracy of a model trained on S,
the complexity of evaluating U(S) may grow significantly
with |S|. At the same time, as the data set size k grows, the
marginal effect of adding z ∈ Z to the training set tends
to decrease; thus, we should need fewer large samples to
accurately estimate the marginal effects. Taken together,
intuitively, biasing the sampling of k ∈ [m] towards smaller
training sets could result in a faster estimation procedure
with similar approximation guarantees.

Concretely, rather than sampling k ∼ [m] uniformly, we
can importance sample each k proportional to some non-
uniform weights {wk : k ∈ [m]}, where the weights de-
crease for larger k. More formally, we weight the draw
of k based on the stability of U . Algorithm 2 takes as in-
put a set of importance weights w = {wk} and samples
k proportionally; without loss of generality, we assume∑
k wk = 1 and let k ∼ [m]w denote a sample drawn such

that Pr[k] = wk. We show that for the right choice of
weights w, sampling k ∼ [m]w improves the overall run-
ning time, while maintaining ε-accurate unbiased estimates
of the values ν(z;U,D,m).

Theorem 3.2 (Informal). Suppose U is O(1/k)-deletion
stable and can be evaluated on sets of cardinality k in time
R(k) ≥ Ω(k). For p ∈ [0, 1] and w = {wk ∝ 1/k}, Algo-
rithm 2 produces estimates that with probability 1− δ, are

4We assume that the running time to evaluate U(S) is a func-
tion of the cardinality of S (and not other auxiliary parameters).

ε-accurate for all z ∈ Zp and runs in expected time

RTw(m) ≤ Õ
(
p · |Z| · log(|Z| /δ) ·R(m)

ε2m2

)
.

To interpret this result, note that if the subsampling prob-
ability p is large enough that Zp will ε-cover Z, then us-
ing a nearest-neighbor predictor as R will produce O(ε)-
estimates for all z ∈ Z. Further, if we imagine ε = Θ(1/k),
then the computational cost grows as the time it takes to
train a model on m points scaled by a factor logarithmic
in |Z| and the failure probability. In fact, Theorem 3.2 is
a special case of a more general theorem that provides a
recipe for devising an appropriate sampling scheme based
on the stability of the potential U . In particular, the general
theorem (stated and proved in Appendix D) shows that the
more stable the potential, the more we can bias sampling in
favor of smaller sample sizes.

Estimating distributional Shapley from data. Estimat-
ing distributional Shapley values ν(z;U,D,m) requires
samples from the distribution D. In practice, we often
want evaluate the values with respect to a distribution D
for which we only have some database B ∼ DM for some
large (but finite) M ∈ N. In such a setting, we need to be
careful; indeed, avoiding artifacts from a single draw of data
is the principle motivation for introducing the distributional
Shapley framework. In fact, the analysis of Theorem 3.2
also reveals an upper bound on how big the database should
be in order to obtain accurate estimates with respect to D.
As a concrete bound, if U is O(1/k)-deletion stable and we
take ε = Θ(1/m) error, then the database need only be

M ≤ Õ (m · log(|Z| /δ)) .

In other words, for a sufficiently stable potential U , the data
complexity grows modestly with m. Note that, again, this
bound leverages the fact that in every iteration, we reuse the
same sample St ∼ Dk for each z ∈ Z. See Appendix D for
a more detailed analysis.

In practice, we find that sampling subsets of data from the
database with replacement works well; we describe the full
procedure in Algorithm 2, where we denote an i.i.d. sample
of k points drawn uniformly from the database as S ∼ Bk.
Finally, we note that ideally, m should be close to the size
of the training sets that model developers to use; in practice,
these data set sizes may vary widely. One appealing aspect
of both D-SHAPLEY algorithms is that when we estimate
values with respect to m, the samples we obtain also allow
us to simultaneously estimate ν(z;U,D,m′) for any m′ ≤
m. Indeed, we can simply truncate our estimates to only
include samples corresponding to St with |St| ≤ m′.
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Algorithm 2 FAST-D-SHAPLEY

Fix: potential U : Z∗ → [0, 1]; distribution D; m ∈ N
Given: valuation set Z ⊆ Z; database B ∼ DM ; # it-
erations T ∈ N; subsampling rate p ∈ [0, 1]; importance
weights {wk}; regression algorithmR

Subsample Zp ⊆ Z s.t. z ∈ Zp w.p. p for all z ∈ Z
for z ∈ Zp do
ν1(z)← 0 // initialize estimates

end for
for t = 1, . . . , T do

Sample St ∼ Bk−1 for k ∼ [m]w
for z ∈ Zp do

∆zU(St)← U(St ∪ {z})− U(St)

νt+1(z)← 1
t ·

∆zU(St)
wkm

+ t−1
t · νt(z)

// update unbiased estimate
end for

end for
h← R ({(z, νT (z)) : z ∈ Zp})

// regress on (z,val(z)) pairs
return {(z, h(z)) : z ∈ Z}

3.2. Empirical performance

We investigate the empirical effectiveness of the distribu-
tional Shapley framework by running experiments in three
settings on large real-world data sets.5 The first setting uses
the UK Biobank data set, containing the genotypic and phe-
notypic data of individuals in the UK (Sudlow et al., 2015);
we evaluate a task of predicting whether the patient will be
diagnosed with breast cancer using 120 features. Overall,
our data has 10K patients (5K diagnosed positively); we use
9K patients as our database (B), and take classification ac-
curacy on a hold-out set of 500 patients as the performance
metric (U ). The second data set is Adult Income where the
task is to predict whether income exceeds $50K/yr given 14
personal features (Dua & Graff, 2017). With 50K individ-
uals total, we use 40K as our database, and classification
accuracy on 5K individuals as our performance metric. In
these two experiments, we take the maximum data set size
m = 1K and m = 5K, respectively.

For both settings, we first run D-SHAPLEY without opti-
mizations as a baseline. As a point of comparison, in these
settings the computational cost of this baseline is on the
same order as running the TMC-SHAPLEY algorithm of
(Ghorbani & Zou, 2019) that computes the data Shapley
values φ(z;U,B) for each z in the data set B.

We evaluate the effectiveness of the proposed optimizations,
using importance sampling and interpolation (separately),
for different levels of computational savings, by varying

5Code is available on Github at https://github.com/
amiratag/DistributionalShapley
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Alg. 1

Figure 1. Point removal performance. Given a data set and task,
we iteratively a point, retrain the model, and evaluate its perfor-
mance. Each curve corresponds to a different point removal order,
based on the estimated distributional Shapley values (compared to
random). For example, the 10% curve correspond to estimating
values with 10% of the baseline computation of Algorithm 1. We
plot classification accuracy vs. fraction of data points removed
from the training set, for each task and each optimization method.

the weights {wk} and subsampling probability p. All algo-
rithms are truncated when the average absolute change in
value in the past 100 iterations is less than 1%.

To evaluate the quality of the distributional Shapley esti-
mates, we perform a point removal experiment, as proposed
by (Ghorbani & Zou, 2019), where given a training set, we
iteratively remove points, retrain the model, and observe
how the performance changes. In particular, we remove
points from most to least valuable (according to our esti-
mates), and compare to the baseline of removing random
points. Intuitively, removing high value data points should
result in a more significant drop in the model’s performance.
We report the results of this point removal experiment using
the values determined using the baseline Algorithm 1, as
well as various factor speed-ups (where t% refers to the
computational cost compared to baseline).

As Figure 1 demonstrates, when training a logistic regres-
sion model, removing the high distributional Shapley valued
points causes a sharp decrease in accuracy on both tasks,
even when using the most aggressive weighted sampling and
interpolation optimizations. Appendix E reports the results
for various other models. As a finer point of investigation,
we report the correlation between the estimated values with-

https://github.com/amiratag/DistributionalShapley
https://github.com/amiratag/DistributionalShapley
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Figure 2. Smooth trade-off between computation and recovery.
For each task, we plot the R2 coefficient between the values com-
puted using Algorithm 1 vs. the relative computational cost (as
in Figure 1). The results show that there is a smooth trade-off
between the recovery precision of the distributional Shapley values
and the cost, across a wide range of learning algorithms.

out optimizations and with various levels of computational
savings, for a handful of prediction models. Figure 2 plots
the R2 curves and shows that the optimizations provide a
smooth interpolation between computational cost and recov-
ery, across every model type. It is especially interesting that
these trade-offs are consistently smooth across a variety of
models using the 01-loss, which do not necessarily induce a
potential U with formal guarantees of stability.

In our final setting, we push the limits of what types of data
can be valuated. Specifically, by combining both weighted
sampling and interpolation (resulting in a 500× speed-up),
we estimate the values of 50K images from the CIFAR10
data set; valuating this data set would be prohibitively ex-
pensive using prior Shapley-based techniques. To obtain
accurate estimates for each point, TMC-SHAPLEY would
require an unreasonably large number of Monte Carlo it-
erations due to the sheer size of the data base to valuate.
We valuate points based on an image classification task,
and demonstrate that the estimates identify highly valuable
points in the Appendix E.

4. Case Study: Consistently Pricing Data
Next, we consider a natural setting where a data broker
wishes to sell data to various buyers. Each buyer could
already own some private data. In particular, suppose the

500 Points 100 Points

Diabetes130 Diabetes130
(a)

(b)

Figure 3. Consistent Pricing. Each buyer holds a data set B; the
seller sells a data set S, where |B| = |S| = m. We compare the
values estimated by the seller ν(z;U,D,m) and φ(z;U,B ∪ S).
(a) For various data sets and two data set sizes (m = 100 and
m = 500): in blue, we plot the average rank correlation between
ν(z) and φ(z) for z ∈ S; in red, we plot the average absolute
percentage error between the seller’s and buyer’s estimates.
(b) Points from S are added to B in three different orders: accord-
ing to ν (D-Shapley), according to φ (TMC), and randomly. The
plot shows the change in the accuracy of the model, relative to
its performance using the buyer’s initial dataset, as the points are
added; shading indicates standard error of the mean.

broker plans to sell the set S and a buyer holds a private data
set B; in this case, the relevant values are the data Shapley
values φ(z;U,B ∪ S) for each z ∈ S. Within the original
data Shapley framework, computing these values requires
a single party to hold both B and S. For a multitude of
financial and legal concerns, neither party may be willing to
send their data to the other before agreeing to the purchase.
Such a scenario represents a fundamental limitation of the
non-distributional Shapley framework that seemed to jeop-
ardize its practical viability. We argue that the distributional
Shapley framework largely resolves this particular issue:
without exchanging data up front, the broker simply esti-
mates the values ν(z;U,D,m); in expectation, these values
will accurately reflect the value to a buyer with a private
data set B drawn from a distribution close to D.

We report the results of this case study on four large dif-
ferent data sets in Figure 3, whose details are included in
Appendix F. For each data set, a set of buyers holds a small
data set B (100 or 500 points), and the broker sells them
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a data set S of the same size; the buyers then valuate the
points in S by running the TMC-SHAPLEY algorithm of
(Ghorbani & Zou, 2019) on B ∪ S. In Figure 3(a), we show
that the rank correlation between the broker’s distributional
estimates ν(z;U,D,m) and the buyer’s observed values
φ(z;U,B ∪ S) is generally high. Even when the rank corre-
lation is a bit lower (≈ 0.6), the broker and buyer agree on
the value of the set as a whole. Specifically, we observe that
the seller’s estimates are approximately unbiased, and the
absolute percentage error is low, where

APE =

∣∣∑
z∈S ν(z;U,D,m)− φ(z;U,B ∪ S)

∣∣∑
z∈S ν(z;U,D,m)

.

In Figure 3(b), we show the results of a point addition exper-
iment for the Diabetes130 data set. Here, we consider the
effect of adding the points of S toB under three different or-
derings: according to the broker’s estimates ν(z;U,D,m),
according to the buyer’s estimates φ(z;U,B ∪ S), and un-
der a random ordering. We observe that the performance
(classification accuracy) increase by adding the points ac-
cording to ν(z) and according to φ(z) track one another
well; after the addition of all of S, the resulting models
achieve essentially the same performance and considerably
outperforming random. We report results for the other data
sets in Appendix F.

5. Discussion
The present work makes significant progress on understand-
ing statistical aspects in determining the value of data. In
particular, by reformulating the data Shapley value as a dis-
tributional quantity, we obtain a valuation function that does
not depend on a fixed data set; reducing the dependence
on the specific draw of data eliminates inconsistencies in
valuation that can arise to sampling artifacts. Further, we
demonstrate that the distributional Shapley framework pro-
vides an avenue to valuate data across a wide variety of
tasks, providing stronger theoretical guarantees and orders
of magnitude speed-ups over prior estimation schemes. In
particular, the stability results that we prove for distribu-
tional Shapley (Theorems 2.8 and 2.7) are not generally true
for the original data Shapley due to its dependence on a
fixed dataset.

One outstanding limitation of the present work is the re-
liance on a known task, algorithm, and performance metric
(i.e. taking the potential U to be fixed). We propose reduc-
ing the dependence on these assumptions as a direction for
future investigations; indeed, very recent work has started
to chip away at the assumption that the learning algorithm
is fixed in advance (Yona et al., 2019).

The distributional Shapley perspective also raises the
thought-provoking research question of whether we can
valuate data while protecting the privacy of individuals who
contribute their data. One severe limitation of the data Shap-

ley framework, is that the value of every point depends
nontrivially on every other point in the data set. In a sense,
this makes the data Shapley value an inherently non-private
value: the estimate of φ(z;U,B) for a point z ∈ B reveals
information about the other points in B. By marginalizing
the dependence on the data set, the distributional Shapley
framework opens the door for to estimating data valuations
while satisfying strong notions of privacy, such as differ-
ential privacy (Dwork et al., 2006). Such an estimation
scheme could serve as a powerful tool amidst increasing
calls to ensure the privacy of and compensate individuals
for their personal data (Ligett et al., 2019).
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N. M., Li, B., Zhang, C., Song, D., and Spanos, C. J.
Towards efficient data valuation based on the shapley
value. In The 22nd International Conference on Artificial
Intelligence and Statistics, pp. 1167–1176, 2019b.

Kleinberg, J., Papadimitriou, C. H., and Raghavan, P. On
the value of private information. In Theoretical Aspects
Of Rationality And Knowledge: Proceedings of the 8
th conference on Theoretical aspects of rationality and
knowledge, volume 8, pp. 249–257. Citeseer, 2001.

Kononenko, I. et al. An efficient explanation of individual
classifications using game theory. Journal of Machine
Learning Research, 11(Jan):1–18, 2010.

Ligett, K., Nissim, K., and Gordon-Tapiero, A. Data co-ops.
https://csrcl.huji.ac.il/book/data-co-ops, 2019.

Lundberg, S. M. and Lee, S.-I. A unified approach to in-
terpreting model predictions. In Advances in Neural
Information Processing Systems, pp. 4765–4774, 2017.

Shapley, L. S. A value for n-person games. Contributions
to the Theory of Games, 2(28):307–317, 1953.

Shapley, L. S., Roth, A. E., et al. The Shapley value: essays
in honor of Lloyd S. Shapley. Cambridge University Press,
1988.

Sudlow, C., Gallacher, J., Allen, N., Beral, V., Burton, P.,
Danesh, J., Downey, P., Elliott, P., Green, J., Landray, M.,
et al. Uk biobank: an open access resource for identifying
the causes of a wide range of complex diseases of middle
and old age. PLoS medicine, 12(3):e1001779, 2015.

Yona, G., Ghorbani, A., and Zou, J. Who’s responsible?
jointly quantifying the contribution of the learning algo-
rithm and training data. arXiv preprint arXiv:1910.04214,
2019.

http://archive.ics.uci.edu/ml

