
Symbolic Execution for Importance Analysis and

Adversarial Generation in Neural Networks

Divya Gopinath∗, Mengshi Zhang†, Kaiyuan Wang†, İsmet Burak Kadron‡, Corina S. Păsăreanu∗, Sarfraz Khurshid†

∗ Carnegie Mellon University and NASA Ames

Email: divgml@gmail.com, corina.pasareanu@west.cmu.edu
† University of Texas at Austin

Email: mengshi0617@gmail.com, wangkaiyuanzz@gmail.com, khurshid@ece.utexas.edu
‡ University of California, Santa Barbara

Email: kadron@cs.ucsb.com

Abstract—Deep Neural Networks (DNN) are increasingly used
in a variety of applications, many of them with serious safety
and security concerns. This paper describes DeepCheck, a new
approach for validating DNNs based on core ideas from pro-
gram analysis, specifically from symbolic execution. DeepCheck
implements novel techniques for lightweight symbolic analysis
of DNNs and applies them to address two challenging problems
in DNN analysis: 1) identification of important input features
and 2) leveraging those features to create adversarial inputs. Ex-
perimental results with an MNIST image classification network
and a sentiment network for textual data show that DeepCheck
promises to be a valuable tool for DNN analysis.

Index Terms—

I. INTRODUCTION

Deep Neural Networks (DNN) are increasingly used in a

variety of applications, many of them with substantial safety

and security concerns [20]. Our focus in this paper is on clas-

sifiers: DNNs that take in complex, high dimensional input,

pass it through multiple layers of transformations, and finally

assign to it a specific output label. Such networks are now

being integrated into the perception modules of autonomous

or semi-autonomous vehicles, at major car companies such as

Tesla, BMW, Ford, and others. It is expected that this trend

will continue and intensify.

Owing to the increasing trend of employing neural networks

in safety critical applications which require high assurance

guarantees, the traditional emphasis on obtaining high accu-

racy for DNNs is being augmented with safety and security

goals [16]. However, validating DNNs is complex and chal-

lenging, due to the nature of the learning techniques that create

these models. For example, it is not well understood why

a DNN, say an image classifier, gives a particular output.

This inability to explain the DNN decisions hinders their

application in safety critical domains, such as autonomy.

Furthermore, evaluating the robustness of a network against

conceptually simple yet effective attacks is a hard technical

problem, due to the huge input space of such networks.

This paper presents an approach for the analysis of deep

neural networks based on symbolic execution [7], [19]. Sym-

bolic execution is a well-known program analysis technique

that has seen many advances in recent years [3], [4], [12],

[18], [27] and applications in various domains, such as se-

curity [6], [8], smartphone apps [1], operating systems [36],

and databases [10]. The technique executes the program on

symbolic inputs and systematically collects symbolic mathe-

matical constraints based on the branching conditions in the

code. These constraints are solved with off-the-shelf solvers

to obtain new inputs that execute feasible program paths.

We note that neural networks that employ piecewise linear

activation functions can be seen as imperative programs, which

makes them amenable to program analysis techniques. A pop-

ular class of neural networks use rectified linear units (ReLUs)

activation functions and max pooling operations (convolutional

neural networks). Such networks can be naturally translated

into a branching structure , whereby a path through the neural

network can conceptually be viewed as a path through the

translated program. This enables the application of symbolic

execution to build path conditions for paths through the net-

work. We apply symbolic execution to select program paths of

interest, e.g., paths taken by specific inputs from the network’s

training dataset.

However, just building the path condition for even one path,

using a straightforward application of concolic (or dynamic

symbolic) execution [3], [4], [12], [27], can take considerable

amount of time, and solving a path condition with just one

symbolic variable can stress modern constraint solvers. We

perform a lightweight analysis (without any constraint solving)

to determine inputs that have the most impact on the classi-

fication decision and perform a directed symbolic execution

approach for generating adversarial inputs for the evaluation

of network robustness with minimal constraint solving.

This paper makes the following contributions:

• Idea. We propose a symbolic execution analysis frame-

work for neural networks which focuses on identifying

important input features and using them to guide the

symbolic execution for adversarial attack generation.

• Approach. We describe the DeepCheck approach, that

is embodied by two techniques: DeepCheckImp, which

applies symbolic execution for identifying important in-

put features that intuitively provide explanations for the

Authorized licensed use limited to: University of Texas at Austin. Downloaded on September 03,2020 at 03:52:04 UTC from IEEE Xplore. Restrictions apply.

network’s decisions; and DeepCheckattack, which applies

symbolic execution to create adversarial attacks.

• Evaluation. We present an experimental evaluation on

an image classification network using the widely studied

MNIST dataset, and on a sentiment network that operates

on textual data. The results highlight the feasibility of

using symbolic execution to identify important input

features and to create attacks, and also show that the iden-

tified important features enable a more scalable method

for generating adversarial examples. To the best of our

knowledge, this is one of the first approaches to generate

meaningful adversaries for textual analysis applications

in an efficient manner.

• Robustness guarantees. Although the adversarial attacks

generated for the image classification network are simple

and have been studied before [30], we make the surprising

observation that neural networks can be vulnerable to

such attacks even along the paths that follow the same

activation patterns as validly classified inputs. Such at-

tacks went unnoticed with previous testing techniques

[26], [31], [34], which focused on generating tests that

increase the coverage of activated neurons, and hence did

not check for attacks along the same path. Furthermore,

if such attacks are not found, our tool then is able to

provide formal guarantees that the network is behaving

as expected.

II. BACKGROUND:

A. Neural Networks

A neural network defines a function F : IRn → IRm

mapping an input vector of real values X ∈ IRn to an output

vector Y ∈ IRm. For a classification network, the output

typically defines a score (or probability) across m classes,

and the class with the highest score is typically the predicted

class. A feed forward network is organized as a sequence of

layers starting with the input layer. Each intermediate layer

consists of computation units called neurons. Each neuron

consumes a linear combination of the outputs of neurons in

the previous layer, applies a non-linear activation function to

it, and propagates the output to the next layer. The output

vector Y is a linear combination of the outputs of neurons

in the final layer. For instance, in a Rectified Linear Unit

(ReLU) network, each neuron applies the activation function

ReLU(x) = max(0, x). Thus, the output of each neuron is of

the form ReLU(w1 ·v1+ . . .+wp ·vp+b) where v1, . . . vp are

the outputs of the neurons from the previous layer, w1, . . . , wp

are the weight parameters, and b is the bias parameter of the

neuron.1

B. Symbolic Execution

Traditional symbolic execution executes programs on sym-

bolic, instead of concrete inputs and systematically explores

1Most classification networks based on ReLUs typically apply a softmax
function at the output layer to convert the output to a probability distribution.
We express such networks as F :=softmax(G), where G is a pure ReLU
network, and then focus our analysis on the network G.

(a) (b) (c) (d) (e)

Fig. 1: (a) Example image with predicted label 3. (b) Top-5%
important pixels (highlighted in green) identified by DeepCheckImp.
(c) Top-10% important pixels (green) identified by DeepCheckImp.
(d) 1-pixel attack (highlighted in red) identified by DeepCheckattack;
changing the red-pixel to black changes the predicted label to 8. (e) 2-
pixel attack (red) that does include an attackable pixel for 1-pixel
attack.

the program paths (up to a given depth bound). For each path

explored, it builds path conditions, i.e., constraints on program

inputs that execute that path based on the conditional branches

in the code. To illustrate, when a conditional statement, say

“if(c)...” is executed, each of the two conditional branches is

individually explored, and the path condition PC is updated to

PC∧c for the then branch and to PC∧¬c for the else branch.

The feasibility of the path conditions is checked using off-the-

shelf constraint solvers, such as satisfiability modulo theories

(SMT) solvers [2], [9], as branch conditions are encountered

during symbolic execution to detect and avoid infeasible paths

(if possible) and to generate test inputs that execute feasible

paths (as desired). Overall, the program effects are computed

as functions over the symbolic inputs.

III. THE DEEPCHECK APPROACH

This section gives an illustrative overview of our approach

on an image classification network, trained on the MNIST

dataset, which is one of our case-study subjects. Figure 1(a)

shows an example image from the standard MNIST training

data, which has the predicted label of 3 (which is the same

as its true label). Our technique performs the following three

steps:

val := 0 // Initilaization

for j in range(0, nh−1): // Linear layer

val := val + wh−1
j,i × sh−1

j

val := val + bi
if val > 0: // ReLU layer

shi := val
else:

shi := 0

Fig. 2: Node
h
i (S

h−1) is an imperative function representing the
branching transformation for neuron i at layer h.

A. Translation (DeepCheckτ)

We translate the trained model into an imperative program.A

typical neural network structure does not have any branching.

However, observe that in the case of rectified linear units

(ReLU), the activation function f(x) = max(0, x) can be

naturally translated into a branching instruction, if (x > 0)
then return x; else return 0;. Thus, a path through a neural

Authorized licensed use limited to: University of Texas at Austin. Downloaded on September 03,2020 at 03:52:04 UTC from IEEE Xplore. Restrictions apply.

network can be seen as a path through the translated program,

where each executed branch corresponds to the respective

ReLU node being activated or not. For simplicity, we discuss

here only ReLU networks but our approach applies to other

piecewise linear networks.

Consider a network N with input vector X =
〈x0, ..., xn−1〉, output vector Y = 〈y0, ..., ym−1〉 and l layers.

Any layer h has nh ReLU nodes and produces an output

vector, V h = 〈vh0 , ..., v
h
nh−1〉, which feeds as input to the

subsequent layer. Each neuron consumes a linear combination

of the outputs of neurons in the previous layer, applies a non-

linear activation function to it (in our case max), and propa-

gates the output to the next layer. The goal of DeepCheckτ is

to convert this model into a semantically equivalent program

P , s.t. for any input x, N (x) ≡ P(x).

Let us consider the input state of P to be Sinp, which

is ↔ X , output state as Sop and the outputs of the hidden

layer nodes represented as the intermediate states Sh =
〈sh0 , ..., s

h
nh−1〉. Any ReLU node i at layer h applies a function

hW,b(V
h−1) to produce output vhi . W is the weight matrix and

b is the bias term (wh−1
j,i is the weight of the edge connecting

node j of layer h−1 with node i of layer h and bh−1
i is the bias

term added for node i at layer h). The imperative code function

corresponding to a ReLU node i at layer h (Nodehi (S
h−1))

is shown in Fig. 2. Invoking this function nh times, produces

the list of states, Sh = 〈sh0 , ..., s
h
nh−1〉 which is equivalent to

the outputs of the intermediate layer h of the neural network,

V h = 〈vh0 , ..., v
h
nh−1〉. Application of the same process for

every layer until softmax, produces the set of output states

Sop, which is ≡ Y , the output of the network.

B. Important input identification (DeepCheckImp)

This step aims at identifying the input variables that impact

the decision of the network the most. We execute the program

P on an input I and obtain the mathematical characterization

of every output variable in terms of the input variables (784

pixels in the case of MNIST).

The output of any hidden neuron can be expressed in terms

of the input variables. Let us consider the neuron i at the

second hidden layer of a fully connected network. The output

of the neuron before the application of the ReLU function can

be expressed as follows: w1
0,i · (w

0
0,0 · x0 + w0

1,0 · x1 + ... +
w0

n−1,0 ·xn−1+b00)+w1
1,i ·(w

0
0,1 ·x0+w0

1,1 ·x1+ ...+w0
n−1,1 ·

xn−1+b01)...+w1
n1−1,i ·(w

0
0,n1−1 ·x0+...+w0

n−1,n1−1 ·xn−1+

b0n1−1) + b1i . Therefore by induction each output element, yi,
could be expressed as

yi = Ci,0 · x0 + Ci,1 · x1 + ...+ Ci,n−1 · xn−1 +Bi

where Bi is a constant term, and Ci,j is the coefficient (signed)

of the linear polynomial, that can be calculated in terms of the

weights of the non-zero edges from xj to yi as shown below;

Ci,j =
∑

p∈Paths(i,j)

(
∏

e∈Edgesp

w(e)) (1)

where Paths(i,j) denotes the set of paths from input node xj

to output node yi, Edgesp denotes the set of edges on path

p, and w(e) denotes the weight of edge e.

Note that the coefficient term Ci,j precisely corresponds to

the respective partial derivative of the output variable yi w.r.t

the input variable xj (dyi/dxj). Therefore, we use the value

of the coefficient of the input variable to determine its impact

on the output variable, akin to gradient based approaches that

use the partial derivative to determine the impact of each input

variable. Note that we can employ any of the existing gradient

based approaches to identify the important input variables.

The DeepCheck technique is built on a symbolic execution

framework for attack generation and the coefficients are a by-

product of the application of symbolic execution. Therefore

we use them for importance analysis.

We use the coefficients of the input variables in the expres-

sion corresponding to the predicted label (3 in the example),

to assign importance scores for every input variable. An

input variable x1 is considered more important than another

x2, if the classification decision is impacted more by x1

than x2. DeepCheckImp employs three importance metrics:

abs(absolute value of coeff), co(actual signed value of coeff),

coi(actual value of coeff × input value). The input variables

(pixels) are then sorted in the descending order of their scores

and those which are in the top threshold % of this ordered

list are identified as being important. The rationale being that

a small change to the image with respect to the important

pixels, such as changing the value of just one important pixel

can have a high impact on the classification decision, and may

lead to the discovery of adversarial examples – the new image

differs from the original image by the value of just one pixel

but this makes the network incorrectly assign a different label

to this image.

Figure 1(b) illustrates the top-5%, i.e., 39, important pixels

highlighted in green. Note, how the important pixels trace

the shape of the digit 3 and do not point to areas of the

image irrelevant to the digit being identified as 3 such as

the background or the edges. Figure 1(c) illustrates the top-

10%, i.e., 78, important pixels highlighted in green. These

important pixels form a denser pattern that traces the shape of

the digit 3. This highlights that short-listing pixels based on

their coefficient based importance scores can help explain the

classification decision.

C. Adversarial attack generation (DeepCheckattack)

Our adversarial attack generation algorithm,

DeepCheckattack, aims to create a new input that differs

from the original input at t input variables, and has (1) the

same activation pattern as the original but (2) a different

label. For a given input image I, with t input variables

symbolic, the path condition over program P till output layer

Y , is a conjunction of inequalities (introduced by the ReLU

function) of the form PC =
A
∧

j=1

(Bj +
t
∑

i=1

Cj,i · Xi γ 0),

where j represents the jth activation function defined by

the computation order, A is the total number of activation

Authorized licensed use limited to: University of Texas at Austin. Downloaded on September 03,2020 at 03:52:04 UTC from IEEE Xplore. Restrictions apply.

functions. Bj is the bias term of the output value of the jth

hidden neuron; Cj,i and Xi are the ith coefficient of the

jth hidden neuron and the ith symbolic value respectively.

γ ∈ {>,≤} and is determined by the activeness of the jth

hidden neuron. In practice, the number of conjunct clauses

is smaller than A because sometimes all coefficients of the

symbolic values (Cj,i) are 0 in which case the entire conjunct

clause evaluates to true.

The output value of the jth neuron in the output layer

Y is a function of the symbolic variables X of the form

fj(X) = Bj +
t
∑

i=1

Cj,i ·Xi. Assume that the network predicts

label l (0 to n-1) for the input I, then DeepCheckattack add

constraints AC =
n
∧

j=1,j �=l′
fj(X) < fl′(X) to require the

network to predict a label l′ where l
= l′. DeepCheckattack

invokes a constraint solver with constraints PC ∧ AC to

solve for concrete values for all Xi. If a solution is found,

DeepCheckattack succeeds in an adversarial attack by setting

X with the concrete values the solver returns and the network

predicts label l′ which is different from the original predicted

label l with the same neuron activation pattern. If no solution

is found, this is a proof of the robustness of the network to ad-

versarial perturbations involving t input features or variables.

Figure 1(d) shows a 1-pixel attack identified by our ap-

proach for image I; changing the red pixel to black changes

the predicted label of the image to 8. This attackable pixel

actually lies in the top-5% (top 39) important pixels for I
identified by DeepCheckImp. The rank order of this attackable

pixel in descending order of importance is 21. Hence, focusing

the 1-pixel attack on important pixels can allow finding an at-

tack much quicker than checking every pixel for attackability.

In fact, this image only has one 1-pixel attack. A linear search

that starts at the first image pixel (top-left corner) and scans

left-to-right takes 346 attempts to find this attack pixel, which

is over 16X the attackable pixel’s rank-order (21). We believe

important pixels can provide a practical heuristic for a more

scalable approach to create attacks.

To create 2-pixel attacks, we focus DeepCheckattack on the

important pixels identified by DeepCheckImp, specifically on

the top-5% important pixels. We make
(

39
2

)

= 741 unordered

pairs of the selected important pixels, and for each pair, we

make the two corresponding variables symbolic, so each path

condition created by symbolic execution contains exactly two

symbolic variables. Applying DeepCheckattack to the 741

pairs results in 93 unique potential 2-pixel attacks. 38 of

the 2-pixel attack pairs contain as an element the pixel that

was earlier identified for the 1-pixel attack, whereas 55 of

the pairs contain only pixels that are not 1-pixel attackable;

Figure 1(e) shows one such pair in red. The important pixels

identified by DeepCheckImp play a key role in focusing

DeepCheckattack to find a 2-pixel attack. The first attack found

by DeepCheckattack for this example, includes the 2 of the 3

top-most important pixels. Thus, the search for a 2-pixel attack

for this example requires checking no more than just
(

3
2

)

= 3

pairs. These results illustrate the potential of using symbolic

execution in identifying important pixels and creating 1-pixel

and 2-pixel attacks, as well as the value of important pixels

in finding attackable pixels and pixel-pairs.

IV. EVALUATION

In this section we present two case-studies of applying

DeepCheck on two networks; an image classification network

for the MNIST dataset and on a sentiment network for textual

data. DeepCheck has been implemented in Java (using the Z3

solver) and also has a Python version (using pulp) to facilitate

easy interface with TensorFlow.

The image network is a fully connected network with the

following configuration, 784×10×10×10×10. It was trained

on 60,000 images of the MNIST dataset [22], and has an

accuracy of 92%. The textual network consists of one convo-

lutional layer (3×30, 64 filters) and one dense layer (1792×1),

where the first layer uses ReLU activation and last layer uses

a sigmoid activation. This network was trained on the IMDB

movie reviews dataset with size 50000. Half of the dataset is

used for training and the other half for testing. For the training,

only top 10000 words are kept and each text is padded or

pruned to 30 words long (for any input longer than 30 words,

we use the last 30 words). We used embeddings with size 30

trained with word2vec algorithm, and it has an accuracy of

76%. Although the accuracy of the networks is below state-

of-the-art, the simplicity of the networks make them amenable

to analysis with our implementation.

We seek to address the following research questions as part

of our evaluation.

1) RQ1: Are the input features identified by DeepCheckImp

useful in explaining the classification decision?

2) RQ2: How effective is the attack generation technique,

DeepCheckattack, in generating adversarial inputs?

3) RQ3: Are the important input features identified by

DeepCheckImp sensitive to adversarial perturbations and

do they help in faster generation of attacks?

4) RQ4: How do the importance metrics (abs, co, coi)

compare in terms of accurately identifying input features

that impact the network decision?

5) RQ5: How does DeepCheck compare with another ad-

versarial attack generation approach?

A. Image Classification Network

We first present the results of applying our technique on

the MNIST network for important pixel identification and

adversarial attack generation.

1) Important pixel identification: We used 10 images from

the data set (covering all ten labels). For each image, we

applied DeepCheckImp to compute a ranked list of pixels

according to their relative importance based on the three

metrics: abs, co, coi. Table I shows the results produced by

DeepCheckImp for the three metrics for top-5%, top-10% and

top-30% of important pixels. For each image (digit), the pixel

values in the original image are shown in white and black,

while the green color highlights the pixels that are identified

important.

Authorized licensed use limited to: University of Texas at Austin. Downloaded on September 03,2020 at 03:52:04 UTC from IEEE Xplore. Restrictions apply.

digit
5%(39) 10%(78) 30%(235)

abs co coi abs co coi abs co coi

0

1

2

3

4

5

6

7

8

9

TABLE I: Top-5%, top-10% and top-30% of important pixels (green) identified by DeepCheckImp for abs, co, and coi.

digit

1-pixel attack 2-pixel attack

ap # ap # ap-new

ordered shortlist-5% shortlist-10% shortlist-30% shortlist-5%

baseline abs co coi abs co coi abs co coi coi

0 25 3 7 16 7 11 17 20 16 17 548 60

1 4 0 1 3 1 2 4 3 4 4 198 87

2 1 0 0 1 0 1 1 1 1 1 48 10

3 1 0 0 1 0 0 1 0 1 1 93 55

4 6 4 3 4 4 3 4 6 4 4 260 114

5 36 1 2 11 3 2 18 14 11 19 463 100

6 1 1 1 1 1 1 1 1 1 1 287 186

7 47 8 7 18 14 11 22 22 18 22 651 75

8 2 0 0 2 0 0 2 2 2 2 111 36

9 3 0 0 2 0 0 2 2 2 2 171 96

TABLE II: # Attackable pixels detected by the different versions of DeepCheckattack (baseline,ordered,shortlist5%,shortlist10%,shortlist30%
for 1-pixel attacks, shortlist5% for 2-pixel attacks.)

For the top-5% and top-10% images, it can be observed that

each metric marks pixels in the central part of the image as

the most important, while the top-30% images seem to spread

out towards the edges. The central part of an MNIST image

houses the digit. This highlights that the importance metric

does correctly point to the part of the image that aids the

network to make the classification decision, with the precision

decreasing as the threshold % increases. Further, the abs and

Authorized licensed use limited to: University of Texas at Austin. Downloaded on September 03,2020 at 03:52:04 UTC from IEEE Xplore. Restrictions apply.

digit

1-pixel attack 2-pixel attack

baseline
ordered shortlist-5%

abs co coi coi

0 244 7 5 1 2

1 489 60 23 6 2

2 516 119 66 19 19

3 346 254 169 21 3

4 71 3 1 1 2

5 103 6 1 1 2

6 486 2 2 2 2

7 156 4 2 1 2

8 211 142 86 19 4

9 240 169 98 13 2

TABLE III: Number of pixels (out of 784) that had to be tried by the different versions of DeepCheckattack before discovery of the first
attack.

ID Target input Lorig LNW LenImp LenRand

1 “one on his plate he almost seemed to know this wasn’t going to work out and

his performance was quite <UNK> so all you madison fans give this a miss"

NEG POS 4 26

2 “some might even say bizarre this is worth the time br br unfortunately it’s very

difficult to find in video stores you may have to buy it off the internet"

POS POS 13 27

3 “any era that lets its guard down and is overwhelmed by <UNK> it’s a fascinating

film even a charming one in its macabre way but its message is no joke"

POS POS 9 21

4 “can hardly see what is being filmed as an audience we are <UNK> involved

with the actions on the screen so then why the hell can’t we have night vision"

NEG NEG 6 24

5 “shut about details but please try this game it’ll be worth it br br story 9 9 action

10 1 it’s that good <UNK> 10 attention <UNK> 10 average 10"

POS POS 17 9

6 “should at least be put back on the channel this movie doesn’t deserve a cheap

<UNK> it deserves the real thing i’m them now this movie will be on dvd"

POS NEG 5 3

7 “words in each sentence and delivers them in an almost irritating manner its not

funny ever but its meant to be bing and joan have done much better than this"

NEG NEG 2 5

8 “in this genre few of them come up to alexander <UNK> original thief of

<UNK> almost any other <UNK> nights film is superior to this one though it’s

a loser"

NEG POS 5 2

9 “good film i highly recommend watching this in <UNK> with the first and then

<UNK> for how good the series could have been had it continued under burton

and keaton"

POS POS 3 14

10 “providing plenty of laughs and chuckles along the way as well as a good deal

of suspense br br for <UNK> of black comedy this one is guaranteed to please"

POS POS 7 5

11 “<UNK> series now they are <UNK> 1 and i don’t even think i will watch it

oh who am i kidding i probably will and probably will be disappointed again"

NEG NEG 3 22

TABLE IV: Attacks generated using DeepCheckattackon the sentiment analysis network over a set of input sentences. Note that <UNK> is
a placeholder word for rare words, which do not have a corresponding embedding vector in the vocabulary. Lorig and LNW are the label
of the input in the dataset and label that the trained network assigns. LenImp and LenRand represent the number of words changed from
original sentence for a valid attack using importance selection and random selection respectively.

co metrics show similar patterns in the central region, while the

coi metric most closely follows the digit’s shape. Specifically,

the coi metric for top-10% pixels forms a dense pattern tracing

the shape of the digit.

2) Adversarial generation: We evaluate the following ver-

sions of DeepCheckattack.

• Baseline: An exhaustive search of the image is per-

formed, one pixel at a time, starting from the top-left

(0) to bottom-right (783). We apply DeepCheckattack to

check each pixel for attackability. An attackable pixel

(ap) can be given a different value to change the image’s

predicted label while preserving activation patterns of all

the neurons in the path. All possible attackable pixels (1-

pixel adversarial attacks) are identified for every image.

• Ordered: The pixels are ordered based on the im-

portance scores assigned by DeepCheckImp. We apply

DeepCheckattack one pixel at a time on this ordered

list and identify all attackable pixels (1-pixel adversarial

Authorized licensed use limited to: University of Texas at Austin. Downloaded on September 03,2020 at 03:52:04 UTC from IEEE Xplore. Restrictions apply.

(a)

(b)

Fig. 3: Attackable pixels for 1-pixel (a) and 2-pixel attacks (b)
highlighted in red.

attacks).

• Short-list-threshold%: We apply DeepCheckattack on a

shorter version of the ordered list: for instance, short-

list-5% applies DeepCheckattack on the top 5% of the

pixels ordered based on the importance scores assigned

by DeepCheckImp. We used this technique to find all

1-pixel attacks and 2-pixel attacks within the short list.

a) 1-pixel attacks: We applied the baseline, ordered,

and short-list-threshold% (thresholds 5, 10, 30) versions of

DeepCheckattack to identify 1-pixel attacks in the 10 images.

Figure 3(a) highlights, for each digit, each attackable pixel

(in red) for a 1-pixel attack. The attackable pixels lie on or

are very close to the shape of the corresponding digit. Some

images, e.g., digit 2, contain one attackable pixel out of 784

pixels, whereas some others contain multiple, e.g., 47 for

digit 7. All images except digit 6 when attacked get a unique

incorrect label. Digit 6 has 2 attacks leading to incorrect labels

5 and 8 respectively, both using the same pixel.

Table II shows the number of attackable pixels discovered

by all the techniques. The baseline and ordered versions of

DeepCheckattack detect all possible attackable pixels (# ap)

for 1-pixel attacks. However, use of the ordered list helps

discover attacks faster. Table III shows the number of pixels

that needed to be tried before discovering the first attack. For

all metrics and all images, no more than top one-third of the

important pixels need to be checked by the ordered version,

to find an attackable pixel. Moreover, for all metrics, less than

10 pixels needed to be checked to discover an attackable pixel

for at least half of the images. The coi metric requires the least

number of attempts (a maximum of 21 pixels to be checked

across all the images), and for 4 images, the top most important

pixel identified by coi is an attackable pixel. This highlights

that ordering pixels based on their importance scores definitely

helps reduce the time to find attacks.

In the short-list-threshold% versions of DeepCheckattack,

Fig. 4: Adversary generated using FGSM technique.

we consider only the top 39 (5%), 78 (10%), and 235 (30%)

pixels respectively for the generation of attacks. Table II shows

that for half of the images, use of the top 10% pixels suffices

to cover all possible 1-pixel attacks. Even for the remaining

images, short-list-10% discovers half of the total number of

attacks. Digits 7 and 5 have are the most vulnerable to 1-

pixel attacks. We find that DeepCheckImp helps in catching

subtle adversarial attacks: i.e. on images that the network is

mostly robust to adversaries (such as digits 3 and 6 with just

1 attackable pixel), the importance score helps identify the

pixels that are sensitive to adversarial perturbations.

b) 2-pixel attacks: It is not scalable to apply the baseline

or ordered versions of DeepCheckattack to check for all possi-

ble 2-pixel attacks. Therefore, we applied short-list-5% using

a list ordered by the coi metric. For each image, we selected

all
(

39
2

)

= 741 unordered pairs that can be formed using the

short-listed pixels. We then evaluated each pair to determine

if they generated an attack. For each digit, Figure 3(b) shows

the union of all pixels in any 2-pixel attack and displays

their location. These pixels lie on or are very close to the

shape of the corresponding digit. Table II shows the number

of attackable pixels (# ap) comprising 2-pixel attacks identified

by DeepCheckattack, and of those attacks the number that does

not include any attackable pixel for a 1-pixel attack (# ap-new).

As expected, many 2-pixel attacks consist of a pixel that was

1-pixel attackable. However, several new attack pairs that do

not include any pixel that is attackable for 1-pixel attack are

found. 4 out of 10 digits can be attacked to create multiple

incorrect labels, e.g., digit 8 can be attacked using 3 different

2-pixel attacks to make the network incorrectly classify it as

1, 2, or 3.

Table III presents the number of important pixels to explore

to find the first 2-pixel attack for each image (digit). The worst

case is for digit 2, where top-19 important pixels must be

considered to find a 2-pixel attack. The best case happens for

7 out of 10 digits, where the top-2 important pixels allow

DeepCheckattackto create a 2-pixel attack.

B. Sentiment Analysis Network

The inputs to the sentiment analysis network are sequences

of words rather than images. Each word is represented by a

vector called word embedding that tries to capture the semantic

relation between words. The words used in similar contexts

in this vector space have similar embeddings and that can

help with learning natural language processing (NLP) tasks

[21]. This brings a challenge where identifying importance or

getting attacks on single values does not mean much as the

words are represented as vectors, therefore we need to identify

the important vectors and get attacks on vectors.

Authorized licensed use limited to: University of Texas at Austin. Downloaded on September 03,2020 at 03:52:04 UTC from IEEE Xplore. Restrictions apply.

To overcome this challenge we had to modify the im-

portance calculation. We calculated the importance score for

each element on the vector similar to the importance score

calculation for pixels (Section III). However, we then sum

these scores over the word embedding vector to get the

importance score for a word. We then rank the words based

on their importance scores, make all the elements of the

embedding vectors for the top-k words symbolic, and apply

the DeepCheckattack algorithm to find a feasible attack.

We use the Python version of DeepCheckattack, imple-

mented using the Python LP solver library called puLP, for

scalability. The solution returned by the solver is a set of values

assigned to each of the elements made symbolic. However

these values may not represent valid embeddings for words.

Therefore, we find the nearest valid word embedding (from

a vocabulary of word embeddings) for each vector in our

solution (using the L2 distance metric). We then replace the

words corresponding to those vectors in the original sentence

with the corresponding nearest words and test that this new

sentence indeed represents a valid attack on the network by

changing the sentiment.

We compare attack generation based on importance se-

lection to attack generation based on random selection over

example inputs to see whether selecting words based on

importance helps us generate shorter attacks. Shorter attacks

are preferable since they involve replacing fewer number of

words in the original sentence such that some meaning of the

original sentence is retained. Therefore, the sentence used for

attack has semantical similarity to the original sentence and

therefore should ideally be assigned the same sentiment by the

network. Let us consider sentence 7 (Table IV), with a negative

sentiment as an example. The importance analysis determined

‘irritating’ and ‘this’ to be the first two most important words.

We made the embedding vectors for these two words symbolic

and were able to obtain a solution that the network marks

with a positive sentiment. The closest valid embeddings to this

solution were the words ‘stupid’ and ‘mode’ for ‘irritating’ and

‘this’ respectively. We generated a new sentence replacing the

two words, which still represented a negative sentiment, but

was classified as being a positive sentiment by the network. If

we select the words to be replaced randomly instead, we can

find an attack by replacing 5 words on an average.

Let us consider another example, for sentence 9 (Table IV),

we are able to obtain an attack by replacing the 3 most impor-

tant words ‘good’ with ‘breakdown’, ‘film’ with ‘confronts’

and ‘highly’ with ‘terrific’. The attack makes the first part

of the sentence a bit nonsensical with ‘breakdown confronts’

but the positive sentiment is still in the text but the network

classifies this sentence as negative instead. In comparison,

without importance selection we are able to obtain an attack

by changing 14 words, nearly half of the whole input text.

This experiment highlights the fact that importance analysis

can help us generate more focused attacks with less changes

compared to random selection.

Note that we used only solutions that lead to attacks on

the network after replacement of the sentence with the valid

words closest to the respective solutions. For both approaches,

there were cases where the solutions when replaced with

the corresponding nearest valid words did not change the

sentiment. We attribute this behavior to sparseness of words in

this vector space which may affect the distance of the nearest

word, and changes in activation patterns when the solution

gets replaced by these word. The results of our experiments

are displayed in Table IV.

C. Discussion:

In this section, we address the research questions based on

our experimental results.

1) RQ1: For the image classification network, based on our

observations (Table I) we can infer that DeepCheckImp

is able to identify input pixels that define the shape

of the input digit. The identified pixels can thus be

considered responsible for the classification decision. We

observe based on the results from the textual model, that

DeepCheckImp helps identify important input features

such as words, which impact the decision of the network

the most.

2) RQ2: The results in Table II show that we were able to

generate 126 1-pixel attacks and discovered 819 attack-

able pixels for 2-pixel attacks for the image classification

network. We were also able to successfully generate

attacks on the textual model (Table IV) which is more

complex than merely modifying pixels in an image. Thus

we were able to use DeepCheckattack to generate attacks

on networks of significant size and on a real datasets.

3) RQ3: The important pixels identified by DeepCheckImp

do correspond to those that are sensitive to adversarial

perturbations, as can be observed in Table II. Exploring

just top 10% of the important pixels helps generate all

possible 1-pixel attacks. Use of DeepCheckImp makes

it feasible to generate 2-pixel attacks which would oth-

erwise require considering
(

784
2

)

= 306946 potentially

attackable pairs. The experiment on the textual model

highlights that choosing the important words identified

by DeepCheckImp increases the chances to discovering

semantically meaningful attacks more efficiently than a

random selection of words. Overall, it can be inferred that

the use of DeepCheckImp makes the attack generation

process scalable and helps identify subtle adversaries.

4) RQ4: The importance metric coi seems to perform the

best in terms of identifying pixels that impact the classi-

fication decision and are also vulnerable to attacks. For

the MNIST images, this seems a little obvious since

the background is always black (pixels have value zero).

However, even on the textual model we observed that the

coi metric consistently identified attackable words better

than co and abs.

5) RQ5: The Fast Gradient Sign Method (FGSM) [13] is

an existing popular approach to generate adversaries for

MNIST images. In this technique, potential adversaries

are generated by modifying the intensity of multiple

pixels simultaneously such that the model’s loss function

Authorized licensed use limited to: University of Texas at Austin. Downloaded on September 03,2020 at 03:52:04 UTC from IEEE Xplore. Restrictions apply.

reduces. We used this method to generate an adversary

(Figure 4) for the image of digit 3 in Figure 1(a)). We

observed that in order to generate this adversary using

FGSM, the value of almost every pixel on the shape

of digit 3 had to be perturbed. On the other hand, we

were able to generate attacks on the same image which

involved the modification of just 1 pixel using DeepCheck

(Figure 1(d)). Further, we also observed that the activation

patterns or the path traced by the adversary generated us-

ing FGSM, differed a lot for the original validly labelled

input. However, by construction the attack generated by

DeepCheck preserves the activation patterns. The benefit

of using semantic information from the model helps gen-

erate adversaries that the network views similarly as the

original image but gives a different classification. Such

an adversary could be useful in debugging the network

and repairing the network. For example, a possible way

to defend against such attacks would be a more focussed

adversarial training; re-training the network with more

inputs that follow the same path through the network.

V. RELATED WORK

Recent independent work, developed concurrently with

ours, proposes concolic testing for deep neural networks [31].

However their focus is on defining and achieving test cov-

erage requirements, although their approach also produces

adversarial images. In contrast we use symbolic execution for

identifying important pixels and for specific 1-pixel and 2-

pixel attacks, which target the same activation pattern as the

original image; furthermore we use important pixels to focus

the search for attackable pixels.

Other related recent techniques include formal meth-

ods [16], [17] and testing [26], [34] for deep neural networks.

However none of previous work uses formal methods for

important pixel identification, or more generally for explain-

ability in neural networks. Furthermore, they do not check for

attacks along the same activation patterns.

In our work, we used Z3 as the off-the-shelf constraint

solver, which we inherited from a software analysis tool [25].

We note that other constraint solvers can be plugged in

our analysis. For example, a good option is Reluplex [16],

[17], which has been optimized specifically for the analysis

of neural networks with ReLU activations. However, our

methodology is general and can be in principle applied to

other networks with linear units, such as Convolutional Neural

Networks, which can not be handled by Reluplex. Another

option is to use linear programming as in [31], since for a

fixed activation pattern, the problem to be solved becomes

linear. However linear solvers may behave unexpectedly when

no solution exists, and can give unsound results due to

overflow [35].

To our knowledge, existing approaches for testing, formal

verification and attribution have not been applied to textual

models. The rest of this section describes existing techniques

related to attribution or explainability in neural networks and

also existing techniques for adversarial example generation.

A. Techniques for Attribution

Despite the wide-spread adoption of neural networks, most

deep neural network classifiers are black-boxes. It is crucial

to understand the reasons behind the predictions of these

classifiers in order to build trust in the model. Therefore, a

number of techniques have been explored in the area of gen-

erating explanations for predictions. Attribution is a specific

class of approaches, mostly applicable to image classification

applications, where the technique attempts to assign "rele-

vance", "contribution" to each input feature or pixel towards

the classification decision. We describe below broad categories

of attribution approaches.

Perturbation-based approaches alter the value of every input

feature individually by a specific amount [37], re-run the

network on the input and then measure the difference in the

output value. However, these techniques tend to be slow and

the computation time increases with the number of features.

Gradient-based approaches [28]) compute the attributions of

every feature in a single forward and backward pass of the

network on a given input. They compute the signed partial

derivative of the output w.r.t each input variable and multiple it

by the input value to determine the impact of that variable on

the output. Integrated-gradients [32]) proposed an approach

that take an average of the attributions calculate along a

linear path from a baseline (user-defined) until the given input.

Saliency maps [29] consider the absolute value of the partial

derivatives of the output w.r.t each input variable in order to

identify pixels that can perturbed the least to observe a sizable

change in the output value.

B. Techniques for adversarial attack generation

It has been observed that state-of-the-art networks are highly

vulnerable to adversarial perturbations: given a correctly-

classified input x, it is possible to find a new input x′ that is

very similar to x but is assigned a different label [33]. Good-

fellow et al. [14] introduced the Fast Gradient Sign Method

for crafting adversarial perturbations using the derivative of the

model’s loss function with respect to the input feature vector.

They show that NNs trained for the MNIST and CIFAR-10

classification tasks can be fooled with a high success rate.

An extension of this approach applies the technique in an

iterative manner [11]. Jacobian-based Saliency Map Attack

(JSMA) [24] proposed a method for targeted misclassification

by exploiting the forward derivative of a NN to find an

adversarial perturbation that will force the model to misclas-

sify into a specific target class. Carlini et. al. [5] recently

proposed an approach that could not be resisted by state-

of-the-art networks such as those using defensive distillation.

Their optimization algorithm uses better loss functions and

parameters (empirically determined) and uses three different

distance metrics.

The DeepFool [23] technique simplifies the domain by

considering the network to be completely linear. They compute

adversarial inputs on the tangent plane (orthogonal projection)

of a point on the classifier function. They then introduce

non-linearity to the model, and repeat this process until a

Authorized licensed use limited to: University of Texas at Austin. Downloaded on September 03,2020 at 03:52:04 UTC from IEEE Xplore. Restrictions apply.

true adversarial example is found. Deep Learning Verification

(DLV) [16] is an approach that defines a region of safety

around a known input and applies SMT solving for checking

robustness. They consider the input space to be discretized

and alter the input using manipulations until it is at a minimal

distance from the original, to generate possibly-adversarial

inputs. DeepSafe [15] is an approach that first applies a label-

guided clustering algorithm on inputs with known labels to

identify input regions that can be expected to be consistently

labeled. It then employs the Reluplex solver [17] to verify

that the all possible inputs within a given region are assigned

the same label by the network. DeepRoad [38] introduces an

unsupervised learning technique based on DNNs themselves

for validating DNN-based autonomous drivers.

VI. CONCLUSION

We described a symbolic execution approach for the anal-

ysis of neural networks. Two analyses were presented: 1) to

identify important inputs that can explain the classification

decisions made by a neural network; and 2) to create attacks

by constraint solving, guided by important inputs. The two

analyses apply in synergy and provide a more scalable ap-

proach to finding attacks. An experimental evaluation using

a MNIST model and a textual model demonstrates that the

usefulness of the approach. For the future, we plan to evaluate

our technique on larger networks that have higher accuracy;

we are working on optimizing our tools to achieve this goal.

ACKNOWLEDGMENTS

This work was partially supported by National Science

Foundation NSF grant nos. CCF-1704790 and CCF-1718903.

REFERENCES

[1] S. Anand, M. Naik, M. J. Harrold, and H. Yang, “Automated concolic
testing of smartphone apps,” in SIGSOFT FSE. ACM, 2012, p. 59.

[2] C. Barrett, C. L. Conway, M. Deters, L. Hadarean, D. Jovanovi’c,
T. King, A. Reynolds, and C. Tinelli, “CVC4,” in CAV, Jul. 2011.

[3] C. Cadar, D. Dunbar, and D. R. Engler, “KLEE: Unassisted and auto-
matic generation of high-coverage tests for complex systems programs,”
in OSDI, 2008.

[4] C. Cadar and D. R. Engler, “Execution generated test cases: How to
make systems code crash itself,” in SPIN, 2005.

[5] N. Carlini and D. Wagner, “Towards evaluating the robustness of neural
networks,” in IEEE S&P, 2017.

[6] S. K. Cha, T. Avgerinos, A. Rebert, and D. Brumley, “Unleashing
Mayhem on binary code,” in IEEE S&P, 2012, pp. 380–394.

[7] L. A. Clarke, “A system to generate test data and symbolically execute
programs,” IEEE TSE, vol. 2, no. 3, 1976.

[8] D. Davidson, B. Moench, T. Ristenpart, and S. Jha, “FIE on firmware:
Finding vulnerabilities in embedded systems using symbolic execution,”
in USENIX Security, 2013.

[9] L. de Moura and N. Bjorner, “Z3: An efficient SMT solver,” in TACAS,
2008.

[10] M. Emmi, R. Majumdar, and K. Sen, “Dynamic test input generation
for database applications,” in ISSTA, 2007.

[11] R. Feinman, R. R. Curtin, S. Shintre, and A. B. Gardner, “Adversarial
machine learning at scale,” 2016, technical Report. http://arxiv.org/abs/
1611.01236.

[12] P. Godefroid, N. Klarlund, and K. Sen, “DART: Directed automated
random testing,” in PLDI, 2005.

[13] I. J. Goodfellow, J. Shlens, and C. Szegedy, “Explaining and harnessing
adversarial examples,” arXiv preprint arXiv:1412.6572, 2014.

[14] ——, “Explaining and harnessing adversarial examples,” 2014, technical
Report. http://arxiv.org/abs/1412.6572.

[15] D. Gopinath, G. Katz, C. S. Pasareanu, and C. Barrett, “DeepSafe:
A data-driven approach for checking adversarial robustness in neural
networks,” 2017, https://arxiv.org/abs/1710.00486.

[16] X. Huang, M. Kwiatkowska, S. Wang, and M. Wu, “Safety verification
of deep neural networks,” in CAV, 2017.

[17] G. Katz, C. Barrett, D. Dill, K. Julian, and M. Kochenderfer, “Reluplex:
An efficient SMT solver for verifying deep neural networks,” in CAV,
2017.

[18] S. Khurshid, C. Pasareanu, and W. Visser, “Generalized symbolic
execution for model checking and testing,” in TACAS, 2003.

[19] J. C. King, “Symbolic execution and program testing,” CACM, vol. 19,
no. 7, 1976.

[20] Y. LeCun, Y. Bengio, and G. E. Hinton, “Deep learning,” Nature, vol.
521, no. 7553, 2015.

[21] T. Mikolov, I. Sutskever, K. Chen, G. S. Corrado, and J. Dean,
“Distributed representations of words and phrases and their composi-
tionality,” in Advances in neural information processing systems, 2013,
pp. 3111–3119.

[22] “The MNIST database of handwritten digits Home Page,” http://yann.
lecun.com/exdb/mnist/.

[23] S. Moosavi-Dezfooli, A. Fawzi, and P. Frossard, “DeepFool: A simple
and accurate method to fool deep neural networks,” in CVPR, 2016.

[24] N. Papernot, P. D. McDaniel, S. Jha, M. Fredrikson, Z. B. Celik, and
A. Swami, “The limitations of deep learning in adversarial settings,” in
EuroS&P, 2016.

[25] C. S. Pasareanu, W. Visser, D. H. Bushnell, J. Geldenhuys, P. C.
Mehlitz, and N. Rungta, “Symbolic pathfinder: integrating symbolic
execution with model checking for java bytecode analysis,” Autom.

Softw. Eng., vol. 20, no. 3, pp. 391–425, 2013. [Online]. Available:
https://doi.org/10.1007/s10515-013-0122-2

[26] K. Pei, Y. Cao, J. Yang, and S. Jana, “DeepXplore: Automated whitebox
testing of deep learning systems,” in SOSP, 2017.

[27] K. Sen, D. Marinov, and G. Agha, “CUTE: A concolic unit testing
engine for C,” in ESEC/SIGSOFT FSE, 2005.

[28] A. Shrikumar, P. Greenside, A. Shcherbina, and A. Kundaje, “Not just
a black box: Learning important features through propagating activation
differences,” CoRR, 2016.

[29] K. Simonyan, A. Vedaldi, and A. Zisserman, “Deep inside convolutional
networks: Visualising image classification models and saliency maps,”
CoRR, 2013.

[30] J. Su, D. V. Vargas, and S. Kouichi, “One pixel attack for fooling deep
neural networks,” CoRR, vol. abs/1710.08864, 2017.

[31] Y. Sun, M. Wu, W. Ruan, X. Huang, M. Kwiatkowska, and D. Kroen-
ing, “Concolic testing for deep neural networks,” arXiv preprint

arXiv:1805.00089, 2018.
[32] M. Sundararajan, A. Taly, and Q. Yan, “Axiomatic attribution for deep

networks,” in ICML, 2017.
[33] C. Szegedy, W. Zaremba, I. Sutskever, J. Bruna, D. Erhan, I. Goodfel-

low, and R. Fergus, “Intriguing properties of neural networks,” 2013,
technical Report. http://arxiv.org/abs/1312.6199.

[34] Y. Tian, K. Pei, S. Jana, and B. Ray, “DeepTest: Automated testing
of deep-neural-network-driven autonomous cars,” in Proceedings of the

40th International Conference on Software Engineering (ICSE). ACM,
2018, pp. 303–314.

[35] Y. Vizel, A. Nadel, and S. Malik, “Solving linear arithmetic with sat-
based model checking,” in 2017 Formal Methods in Computer Aided

Design, FMCAD 2017, Vienna, Austria, October 2-6, 2017, 2017, pp.
47–54.

[36] J. Yang, C. Sar, P. Twohey, C. Cadar, and D. Engler, “Automatically
generating malicious disks using symbolic execution,” in IEEE S&P,
2006.

[37] M. D. Zeiler and R. Fergus, “Visualizing and understanding convolu-
tional networks,” in ECCV, 2014.

[38] M. Zhang, Y. Zhang, L. Zhang, C. Liu, and S. Khurshid, “DeepRoad:
GAN-based metamorphic testing and input validation framework for
autonomous driving systems,” in 33rd IEEE/ACM International Confer-

ence on Automated Software Engineering (ASE), 2018.

Authorized licensed use limited to: University of Texas at Austin. Downloaded on September 03,2020 at 03:52:04 UTC from IEEE Xplore. Restrictions apply.

