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Abstract At‐many‐stations hydraulic geometry (AMHG), while useful for estimating river discharge
from satellite data, remains empirical and has yet to be reconciled with the at‐a‐station hydraulic
geometry (AHG) from which it was originally derived. Here we present evidence, using United States
Geological Survey field measurements of channel hydraulics for 155 rivers, that AMHG can be hydraulically
and geomorphically reconciled with AHG. Our results indicate that AMHG is rightly understood as an
expression of a river‐wide model of hydraulics driven by changes in slope imposed upon AHG physics.
The explanatory power of AHG and this river‐wide model combine to determine whether AMHG exists: if
both AHG and the river‐wide model adequately describe hydraulics, then we show that AMHG is a
necessary mathematical consequence of these two phenomena. We also orient these findings in the context
of river discharge estimation and other applications.

Plain Language Summary Hydraulic geometry (HG) is an empirical phenomenon that predicts
river width, depth, and velocity given river discharge and is fundamental to our ability to predict floods,
river habitats, and water availability for human and ecosystem use. Recently, a new form of HG was
discovered (at‐many‐stations HG, or AMHG), and it has been successfully deployed in a range of
applications and proven to exist in a wide variety of rivers. However, the novel phenomenon of AMHG
remains empirical with puzzling and seemingly contradictory links to other, traditional forms of HG, which
are well understood and have been studied since the 1950s. AMHG is also not manifested in all rivers, adding
to confusion as to its origin. Here, we show for the first time that we can reconcile AMHG with all other
traditional variants of HG and gain a complete understanding of how andwhen AMHG occurs in rivers. This
puts the most puzzling aspects of AMHG—why is it observed in some rivers but not others, and what
causes the phenomenon—to rest. We have fundamentally changed the conception of AMHG and suggest
this work as a basis for all future AMHG research.

1. Introduction

Fluvial geomorphology, the study of the form and process of rivers, plays a uniquely forward role in Earth
surface processes and sediment manipulation as facilitated by the hydraulics of a river channel. Hydraulic
geometry (HG), conceptualized in 1953, describes simple power law relationships between discharge (Q)
and channel width (W), depth (d) and velocity (V; Leopold & Maddock, 1953). These are defined as

w ¼ aQb (1)

d ¼ cQf (2)

v ¼ kQm (3)

Via continuity, ack= 1 and b+f+m= 1. The same principles have been expanded to drainage area and slope,
but equations (1)–(3) are the original HG equations. Table A1 in Appendix A gives nomenclature for all vari-
ables used in this study.

HG is divided into at‐a‐station HG (AHG), where equations (1)–(3) apply at a single cross section to describe
changing flows over time, and downstream HG (DHG), where equations (1)–(3) apply across multiple sta-
tions for a given characteristic flow (i.e., bankfull discharge) through space (Leopold & Maddock, 1953).
The widely adopted Leopold and Maddock publication used the same nomenclature for both AHG and
DHG, which can lead to confusion. AHG and DHG serve important roles for monitoring streamflow via
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rating curves, habitat risk assessments, minimum flow requirements for fish passage, remote sensing of sur-
face water, and many more applications (e.g., Ferguson, 1986; Gleason, 2015; Gleason & Smith, 2014;
Rosenfeld et al., 2007; Singh & Broeren, 1989; Smith & Pavelsky, 2008; Wiele & Smith, 1996). It has long been
debated whether the “discovery” of HG was a foundational development in assessing river form or not; HG's
impact on geomorphology, however, is irrefutably significant (Ferguson, 1986).

In a seminal paper on HG, Ferguson (1986) proved that channel cross‐sectional shape and velocity‐depth
relationships (e.g., Manning's or Chezy's relations) govern AHG below‐bankfull discharges. Ferguson ver-
ified that AHG is a result of a flow resistance law for depth and velocity imposed on a given channel cross‐
sectional geometry: reducing AHG to “hydraulics and geometry.” Based upon this conceptual model,
Dingman (2007) introduced physically based expressions for AHG coefficients and exponents by constrain-
ing channel geometry at bankfull flow (wb, db, vb, Qb) imposed on a channel shape parameter r (where r

defines the exponent in a width‐depth channel form as approximated by f
b . r = 1 is a triangle, r = 2 is a

parabola, and r represents an increasingly rectangular channel as it approaches infinity) to implicitly scale
at‐a‐station hydraulics within these boundary conditions, yielding equations (4)–(6).

w ¼ W
rþrp
δ

b d
−

1þp
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K is a roughness coefficient, S is bed slope, and κ, p, and q are fitted model parameters in the equation (7)
generalized flow relation, implemented in a later validation of equations (4)–(6) using river cross sections
from New Zealand (Dingman & Afshari, 2018):

v ¼ κdp;where κ ≅ KSq (7)

It has been repeatedly shown that q and p vary by station and take different values than assumed in either
Manning's or Chezy's relations and that AHG should change over long timescales with geologic changes in
S, despite the common use of a constant bed slope S in equations (4)–(6) as consistent with uniform flow
(e.g., Bjerklie et al., 2005; Dingman, 2007; Dingman & Sharma, 1997; Ferguson, 2010; Knighton, 1975). It
should be further noted that AHG is also not always strongly present at all stations of a river. This is
because its construction is too simple to adequately describe hydraulics at all stations. Richards (1973) first
raised this idea, showing that compound functions fit hydraulic data better than the simple power laws of
equations (1)–(3), and Ferguson (1986) later confirmed that the power law form of AHG is coincident with
specific channel geometries. Furthering this confirmation, Dingman (2007) added explicit controls on geo-
metry (equations (4)–(6)), and others have addressed a physical basis for AHG (e.g. Parker et al., 2007;
Singh, 2003).

A new form of HGwas recently discovered, termed AMHG or at‐many‐stations HG (Gleason & Smith, 2014).
AMHG asserts that calibrated AHG coefficients and exponents (equations (1)–(3)) can exhibit a strong log‐
linear relationship through space along the same river, thus spatially associating cross‐sectional hydraulic
variation at‐a‐station with other stations downstream. This would seem to suggest that the site‐specific
AHG is not in fact site specific as we know it to be. AMHG is defined by equations (8)–(10):

wc ¼ aiQ
bi
cw (8)

dc ¼ ciQ
fi
cd (9)

vc ¼ kiQmi
cv (10)

where subscript i refers to different stations in space along a river and subscript c refers to what are termed
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“congruent hydraulics,” the empirically fit parameters that define AMHG, and a, b, c, f, k, andm are identical
to equations (1)–(3) (Gleason & Wang, 2015). Barber and Gleason (2018) used United States Geological
Survey (USGS) measurements across the continental United States to show that 118/181 rivers in their data-
base exhibited strong AMHG (conceptually defined as the ability of AMHG to satisfactorily predict AHG
parameters with an r2 of equations (8)–(10) greater than 0.60: AMHG can explain 60% of the variance in
AHG parameters when it is strong by their definition).

The three pairs of congruent hydraulics (wc Qcw, dc Qcd, and vc,Qcv) in equations (8)–(10) are mathematically
defined by Gleason and Wang (2015) as single discharge‐width, discharge‐depth, and discharge‐velocity
tuples that exist in all AHG curves for that river. That is, if all AHG curves for a river are plotted on the same
axes, all will intersect at exactly one point, forming a “bow tie” in log‐log hydraulic coordinate space. These
intersection points are the congruent hydraulic pairs. Gleason andWang (2015) showedmathematically that
the degree of empirical clustering around these theoretical intersection points thus defines the strength of
AMHG as a geomorphic phenomenon (see Figure 1). The mathematical definition of AMHG and congruent
hydraulics is thus secure, yet the physical definition of these phenomena is an open research question. Shen
et al. (2016) proposed that width AMHG (equation (8)) is largely mathematical while depth and velocity
AMHG (equations (9) and (10)) represent distinct geomorphic phenomena with a physical basis that conve-
niently coincides with Gleason and Wang's (2015) mathematical definition. However, this was tested statis-
tically and yielded no further illumination on what this physical basis is or how AMHG is physically
associated to AHG.

In theory, AMHG and AHG should be reconcilable as AMHG fundamentally describes the intersection point
and degree of intersection of AHG curves in the same river. However, we do not know (1) why AHG curves
intersect in this manner, (2) whether AMHG is purely mathematical or is in fact a geomorphic phenomenon,
or (3) why some rivers exhibit AMHG and some do not. Here, we address these uncertainties by first analy-
tically reconciling AHG and AMHG, using the fullest expression of AHG possible (Dingman, 2007) as a basis
for our reconciliation. With this established, we then test the hypothesis that AMHG is a necessary conse-
quence of a systematic downstream variation in channel shape, roughness, and slope, as suggested by the

Figure 1. Individual AHG curves are shown in the left panels (with black dots highlighting dc, Qcd) and resulting AMHG
shown on the right panels. Gleason and Wang (2015) showed that the stronger an AMHG, the more that rivers formed
“bow tie” shapes in hydraulic space. Data are taken fromUnited States Geological Survey databases of field measurements
and are filtered consistent with the rest of the data in this paper. AHG = at‐a‐station hydraulic geometry; AMHG = at‐
many‐stations hydraulic geometry.
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results of our first analysis. Wemake this test by introducing a series of well‐established models of river‐wide
geomorphology that control these parameters into our newly derived analytical expressions for AMHG's
congruent hydraulics. What results is a new understanding of AMHG.

2. Data

To develop our theory, we required independent field measurements of river hydraulics, which we
derived from the USGS's collection of field‐measured quantities. We joined the Barber and Gleason
(2018) database of field‐measured w, v, and Q with the USGS's National Hydrography Data set
(Geological Survey, U. S, 2019), to assign an S and distance along the river l to each station in the data
set for later model calibration. V is the cross‐sectional average velocity in the data set measured using a
variety of field techniques, and d was derived as d = Q/wv. More details on our data set are in Text S1
in the supporting information but ultimately, we have field‐measured data (filtered for measurement
quality) for almost 1,600 cross sections across 155 rivers, covering an extensive array of AHG and
AMHG strengths (again defined by r2).

Next, we calculated station‐specific parameters for Dingman's (2007) expressions for AHG (equations (4)–
(6)). These are necessarily constrained by bankfull depth and width. Acknowledging that field studies have
shown Qb to be associated with a range of return periods given local geomorphology (Petit & Pauquet,
1997; Williams, 1978), we used a range of return periods to define bankfull conditions. The results were
not sensitive to these changes, so we chose the commonly accepted definition of a 2‐year return period
for Qb. Defining these bankfull flows allows us to obtain r for each cross section in conjunction with other
measurements of d and w, following Dingman (2007). Finally, to obtain K for each cross section, we fol-
lowed Dingman and Afshari (2018), solving explicitly for K by assuming q always approximates one half,
as in Manning's equation. More sophisticated treatment using variable exponent depth flow resistance (q)
introduces another free parameter that prevents our analysis here, despite our previous assertion that q
should vary. While a station (and time) varying q is desirable, application of the Manning's equation is
standard practice in most HG research and applications, and we lack data for more sophisticated expres-
sions of flow. More details on this process are outlined in Text S1.

3. Reconciling AMHG With Dingman's AHG Formulations

We first orient congruent hydraulics (i.e., AMHG) within physical expressions for AHG. Congruent hydrau-
lic pairs from AMHG (equations (8)–(10)) are substituted for the generalized hydraulic pairs in equa-
tions (4)–(6) and algebraic manipulation allows equations (4)–(6) to take the forms highlighted
in equations (11)–(13):

wδ
cQ

−1
cw ¼ Wrþrp

b d− 1þpð Þ
b
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AMHG's congruent hydraulics are now defined explicitly as some function of K, S, and r, with bankfull geo-
metry as boundary conditions that vary downstream. These equations have been created via substitution: we
have placed AMHG into an AHG context assuming they are reconcilable. To test whether these equations
are valid, we turn to our 155‐river data set. For each cross section, the left‐hand sides of equations (11)–
(13) predict a station varying quantity (out of algebraic necessity) built from river‐wide congruent hydrau-
lics, whereas the right‐hand sides have only site‐specific AHG parameters. If AMHG's congruent hydraulics
physically coexist with AHG, then the left‐ and right‐hand sides should be equivalent. We test this at our
approximately 1,600 cross sections in Figure 2, using empirically defined congruent hydraulics following
Gleason andWang (2015). We also calculated two One‐Sided t tests to determine if the equivalence between
the two sides of equations (11)–(13) are statistically significant across our data set (“control” in Table S2).
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Figure 2 shows that AMHG's congruent hydraulics are satisfyingly reconciled with AHG expressions across
our data set. This is corroborated by the equivalence tests, where all relations were statistically similar at p <
0.003 (“control” in Table S2). The agreement between left‐and‐right hand sides of equations (11)–(13)
increases with progressive filtering for AHG strength: the stronger AHG is at a cross section, the better
AHG and AMHG agree. Width, conversely, yields nearly perfect recovery regardless of AHG strength as it
is derived via continuity. This demonstrates that the congruent hydraulic pairs of wc and Qcw, vc and Qcv,
and dc and Qcd are physically viable hydraulic geometry relations (i.e., these quantities are physically realis-
tic), but this viability seems to be a function of how well AHG describes observed hydraulics (e.g., the nar-
rowing ranges in Figure 2 as AHG strength increases). Thus, we conclude that AMHG is compatible with
the physics that yield AHG. Further exploration of Figure 2 is given in Text S3, including a discussion on
why filtering for stronger AHG yields values in Figure 2 that fall within physically realistic ranges of the
values plotted on either axis of Figure 2 (i.e., the left‐ and right‐hand sides of equations (11)–(13)).

4. AMHG as a Function of River‐Wide Geomorphology

We have shown that AMHG can be reconciled with AHG, but we have not yet shown why we should expect
AMHG to exist in the first place. Equations (11)–(13) have numerous station‐varying terms on both sides of
the equation. If we are to discover the source of the constant‐in‐space‐and‐time congruent hydraulics that
define AMHG, equations (11)–(13) necessitate that some function of bed slope, bed roughness, and channel
shape is needed to produce congruent hydraulics anywhere along a river. AMHGwill only be fully explained
if this function holds everywhere in a river: the station varying parameters in equations (11)–(13) coexist
with river‐wide parameters, and these thus must “trade off” explicitly to produce congruent hydraulics.

Figure 2. At‐a‐station term (RHS) plotted against the river‐wide term (LHS) for equations (11)–(13). This progressive fil-
tering indicates the better that AHG describes at‐a‐station hydraulics, the better agreement between AHG and AMHG.
AHG strength is independently calculated on traditional AHG built from w, d, v, and Q without any river‐wide hydraulics
added. Axes were scaled to aid in visualization, and thus 19, 25, and 14 data points are not shown in the upper left, upper
right, and middle left panels, respectively. Width r2 is not shown, as width AHG and AMHG are derived by continuity and
agreement is artificially high. AHG = at‐a‐station hydraulic geometry; AMHG = at‐many‐stations hydraulic geometry.
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What phenomenon should guarantee this arrangement is not shown in Figure 2: we do not know why these
parameters trade‐off so precisely to allow AMHG‐AHG reconciliation. We posit that any well‐fit river‐wide
model of variation in cross‐sectional geomorphology as a function of slope will yield reconciled congruent
hydraulics. That is, AMHG and AHG can be reconciled only if (1) AHG adequately describes changes in
hydraulics at a station in time (per section 3), and (2) there is an additional geomorphic relationship driven
by changes in S that adequately describes at‐a‐station hydraulics through space. We introduce six well‐
known such additional relationships here (equations (14)–(19): “Graded Profile,” “Regime Theory,”
“Einstein’,” “Bjerklie,” “Bjerklie Global,” and “DHG”. Again, consult Table A1 in Appendix A for variable
nomenclature.

Graded Profile : S ¼ S0e
−αL (14)

Regime Theory : S ¼ 0:44D1:15
e Q−0:46

b (15)

Einstein : S ¼ D
u

� �1
t

(16)

Bjerklie : S ¼ Fb

x

� �1
y

(17)

Bjerklie Global : S ¼ Fb

2:85

� � 1
0:31

(18)

DHG : S ¼ eQg
b (19)

All these theories predict geomorphic relationships along a river, and all are driven by S. None are explicitly
designed for AMHG or AHG, but all are well known and frequently observed. Some of these theories have
globally constant parameters (Regime Theory, Bjerklie Global) and some require river or data set specific
calibration (DHG, Einstein, Graded Profile, Bjerklie). Model definitions are outlined in Table S1, with addi-
tional grain size calibration methods necessary for the Einstein model in Text S1. The Bjerklie models are
derived from Bjerklie et al. (2018), Graded Profile from Mackin (1948), and Regime Theory from
Henderson (1966).

We substituted these six river‐wide models (equations (14)–(19)) for the S term in equations (11)–(13), and
rearranging yields, for example, equations (20)–(25) for depth. Text S2 gives similar expressions for width
and velocity and also steps through all necessary algebra to arrive at equations (20)–(25).
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As before, we have isolated the congruent AMHG terms on the left‐hand side. Equations (20)–(25) are still
simply Dingman's AHG expressions at a station, now with both AMHG and a river‐wide slope model
imposed upon them.
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Figure 3. River‐wide models introduced into equations (11)–(13) via equations (20)–(25) for depth (left column) and via
equations (S6c)–(S11c) in supporting information Text S2 for velocity (right column) hold that agreement in these plots
indicates that a given model is a possible origin of AMHG in that river. Multiple successful models suggest that more than
one river‐wide geomorphic relation can yield AMHG. Axes limits were again set to aid visualization, resulting in 9–16
points used in error assessment not appearing across all plots. Agreement is stronger for velocity than depth. AMHG= at‐
many‐stations hydraulic geometry.

10.1029/2019GL084529Geophysical Research Letters

BRINKERHOFF ET AL. 9643



We can test agreement between the two sides of equations (20)–(25) for
depth in the samemanner as in section 4 when we compared the two sides
of equations (11)–(13). We also calculated two One‐Sided t tests and con-
firmed that the two sides of equations (20)–(25) are statistically significant
across our data set. These results are for depth and velocity as provided in
Figure 3, and width is not shown in Figure 3 as it exhibits near‐perfect
recovery across all models tested because we follow Dingman (2007) to
derive width AHG via continuity, as also anticipated by Shen et al.
(2016). Consult Text S2 for a velocity derivation and Text S3 and Figure
S1 for a more in‐depth explanation of the width phenomenon.

Figure 3 and the results of the equivalence tests (Table S2) confirm that
there are statistically significant similarities between the left‐ and right‐
hand sides of equations (20)–(25), and all tests are significant at p <
0.003. As noted previously, the width test is not appropriate and is artifi-
cially perfectly recovered, regardless of model. Our six models show a
range in strengths of recovery of congruent hydraulics, defined by their
r2. It logically follows that the better the river‐wide model describes at‐a‐
station hydraulics, the better it can explain the existence of AMHG. To
address this, in Figure 4 we consider the strength of fit of each river‐wide
model in the context of the agreement between the left‐ and right‐hand
sides of equations (20)–(25).

Figure 4 shows that when a river‐wide model better predicts cross‐
sectional hydraulics, AMHG is better recovered. Thus, AMHG appears
not to be an outcome of a specific river‐wide phenomenon, but rather is
a function of any model that accurately reflects the river's unique physics
along its longitudinal profile as predicted by changes in S. That is, if a river
is physically well‐represented by a river‐wide model that constrains AHG
hydraulics, then AMHG is more strongly reconciled than if the model was

poorly fit at that cross section. Thus, we conclude that AMHG could be a mathematical consequence of any
of these six river‐wide phenomena imposed on AHG physics provided the river‐wide model is strong.
Regime Theory is the strongest predictor, but this finding should hold for any river‐wide model so long as
it physically represents the river's downstream changes in slope, roughness, and/or channel shape.
AMHG is therefore driven by these larger geomorphic forces and manifests only when these conditions
are met. This explains both the origins of AMHG and also why it exists only in certain rivers.

5. Implications and Application

Our results suggest that AMHG arises from systematic downstream changes in hydraulics driven by geolo-
gical changes in S, which allows us to interrogate past AMHG research. Shen et al. (2016) suggested that
depth and velocity AMHG represented physical phenomena and that width AMHG was largely mathemati-
cal by forcing random perturbations through empirical AMHG and finding that width did not vary in
response. We find that the left‐ and right‐hand sides of equations (S5a)–(S10a) in supporting information
Text S2 agree perfectly for width (Figure S1), regardless of the goodness of fit of the river‐wide model or
AHG. We have thus corroborated Shen et al.'s (2016) findings using actual river physics across 155 rivers.
This highlights the role of continuity in HG research—it is difficult to solve for all three HG relations inde-
pendently. Text S3 also notes how our results bear on previous definitions of “sufficient variation” in AHG to
define AMHG.

Our new definition of AMHG and congruent hydraulics should be used in applications moving forward. The
above analysis suggests that width AMHG can continue to be reliably exploited to estimate discharge from
remote sensing on rivers that fit systematic models of downstream river geomorphology well, as proposed by
Gleason and Smith (2014), Gleason, et al. (2014), Hagemann et al. (2017), and others. Thus, an immediate
implication of this work is to shift applications research toward predicting which rivers exhibit strong
AMHG, now physically defined via equations (11)–(13) and equations (20)–(25), a priori. This in turn

Figure 4. Strength of fit (r2) between left‐ and right‐hand sides of equa-
tions (20)–(25) for depth (equations (S6c)–(S11c) in supporting
information Text S1 for velocity) from Figure 3 and the strength‐of‐fit of the
river‐wide models (r2) across all cross sections. For both variables, agree-
ment between the two sides of the equations (and thus AMHG strength)
increases as models better represent a cross section. We have added a linear
trend only for visualization purposes and do not propose that this relation-
ship is linear. AMHG = at‐many‐stations hydraulic geometry.
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provides a basis for when an AMHG‐based discharge estimation algorithm will prove useful: the better a
river‐wide model fits a river's observed hydraulics, the stronger AMHG‐AHG reconciliation will be and
the more likely discharge inversion is to be successful. As a start, researchers should begin by assuming
Regime Theory, but researchers seeking to estimate discharge via an AMHG‐based algorithm should con-
sider how to identify the degree of fit of river‐wide models to rivers in the context of remote sensing.
Further, we now have an explicit at‐a‐station expression (right‐hand side of equation (11)) which should
yield a physically viable (e.g.,) Qcw, wc hydraulic pair, scaled for each cross‐section. Because we now prove
that these are physically viable hydraulics, prior distributions can be built from training data by substituting

the distribution ofwδ
cQ

−1
cw for the resulting values of the right‐hand side of equation (11). This crucially opens

the door for developing physically based river classes for global rivers a priori, each with their own tailor‐

made wδ
cQ

−1
cw distributions for Bayesian inversion algorithms (e.g., Hagemann et al., 2017). These advances

should be incorporated into new discharge algorithms with new inversion physics.

We are unable to give more explicit definitions for congruent hydraulics beyond equations (20)–(25) and
equations (S5a)–(S10c) in Text S2. Ideally, we would build independent expressions where, for example, dc
and Qcd would appear as separate terms rather than the way they are formulated in equations (20)–(25).
However, this is not algebraically possible, which means we were unable to assess what physical quanti-
ties, if any, dc and Qcd specifically represent. However, our combined term still has merit as it places the
river‐wide and station‐varying terms in balance with one another, and future work should seek to further
this line of inquiry and perhaps develop explicit formulae for congruent hydraulics. Future AMHG
research should also address the reliance on Manning's relation (here necessitated by a lack of required
data) in the derivations of AMHG and AHG. That is, it is possible that our results are limited by
Manning's physics and measurement error and AMHG and AHG are more universal than our data allows
us to show.

Finally, we also note that Gleason and Smith (2014), Gleason and Wang (2015), Shen et al. (2016), and
Barber and Gleason (2018) all observed that the three Qc values were not equivalent. However, until now,
no satisfactory explanation as to why has been provided due to a lack of physical expressions for congruent
hydraulics. It is shown in Text S3 and Figure S2 that each pair of congruent hydraulics represents distinct
geometric conditions; that is, for a given cross‐sectional depth to equal dc, the associated width need not
be wc and so accompanying congruent discharges necessarily vary. To put this another way, we can confirm
that continuity does not hold on congruent discharges: Qc ≠ wc dc vc.

6. Conclusions

We have shown that AMHG's congruent hydraulics can be reconciled with AHG using measurements from
almost 1,600 cross sections across 155 rivers. We have redefined AMHG in the process: We suggest AMHG to
be a mathematical expression of any systematic downstream variation in roughness, slope, and channel
shape, expressed through AHG physics. This fundamentally alters previous definitions of AMHG and proves
that this empirical phenomenon is not at odds with classical AHG, which has played a pivotal role in river
geomorphology for decades. What results instead is a new understanding of AMHG, and why AMHG man-
ifests in some rivers but not others has been shown here as well. This has important implications for the use
of AMHG in estimating river discharge, and perhaps opens the door to its application in other
hydrologic arenas.

We began this paper by asking (1) why AHG curves intersect to yield AMHG, (2) whether AMHG is purely
mathematical or is in fact a geomorphic phenomenon, and (3) why some rivers exhibit AMHG and some
do not. We have put forth answers to each of these questions here. We propose that (1) AHG curves will
only intersect to yield AMHG if there is an underlying river‐wide slope function that well describes
hydraulics everywhere in a river, (2) we show that AMHG is a mathematical consequence of this larger
geomorphic phenomenon imposed on AHG physics, and (3) we now know that the conditions for
AMHG's presence in a river are strong AHG and a strong river‐wide slope function. AMHG research is
thus brought into line with more mainstream fluvial geomorphology concerned with these systematic
changes in slope and flow resistance along rivers, and AMHG applications are thus now soundly grounded
and can proceed with this new geomorphic basis at their core.
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Appendix A

Table A1 contains the variable nomenclature used throughout the study.
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Table A1
Table of Nomenclature Used in Study

Variable Definition

a Coefficient in width‐discharge relation [d] Qcw Congruent width discharge [l3/t]
b Exponent in width‐depth relation [d] Qcd Congruent depth discharge [l3/t]
c Coefficient in depth‐discharge relation [d] Qcv Congruent velocity discharge [l3/t]
d Cross‐sectional depth [l] r Channel shape factor [d]
D Grain size, per Einstein and Barbarossa (1952) [l] r2 Coefficient of Determination [d]
Db Bankfull depth [l] S Bed slope [d]
dc Congruent depth [l] S0 Most upstream bed slope [d]
De Minimum grain size not entrained, per Henderson (1966) [l] t Exponent in Fb‐S relation [d]
e Coefficient in slope‐bankfull discharge relation [d] u Coefficient in Fb‐S relation [d]
F Exponent in depth‐discharge relation [d] v Cross‐sectional velocity [l/t]
Fb Froude number [d] vc Congruent velocity [l/t]
g Exponent in slope‐bankfull discharge relation [d] w Cross‐sectional width [l]
k Coefficient in velocity‐discharge relation [d] Wb Bankfull width [l]
K Generalized roughness coefficient [d] wc Congruent width [l]
l Distance Downstream [l] x Coefficient in D‐S relation [d]
m Exponent in velocity‐discharge relation [d] y Exponent in D‐S relation [d]
p Exponent in velocity‐depth relation [d] α Diminution coefficient, per Graded Profile (Lane, 1955; Mackin, 1948) [d]
q Exponent in depth‐velocity relation [d] κ Coefficient in velocity‐depth relation [d]
Q Instantaneous discharge [l3/t] δ 1 + r + rp
Qb Bankfull discharge [l3/t]

Note. Units in brackets. [d] denotes dimensionless values, [l] denotes length values, and [t] denotes time values.
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Erratum

In the originally published version of this article, equations (12) and (13) were published incorrectly. These

of record.
errors have since been corrected, and the present version may be considered the authoritative version
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