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Abstract—Hand hygiene is crucial in preventing the spread of
infections and diseases. Lack of hand hygiene is one of the major
reasons for healthcare associated infections (HAIs) in hospitals.
Adherence to hand hygiene compliance by the workers in the food
business is very important for preventing food-borne illness. In
addition to healthcare settings and food businesses, hand washing
is also vital for personal well-being. Despite the importance of
hand hygiene, people often do not wash hands when necessary.
Automatic detection of hand washing activity can facilitate just-
in-time alerts when a person forgets to wash hands. Monitoring
hand washing practices is also essential in ensuring accountability
and providing personalized feedback, particularly in hospitals
and food businesses. Inertial sensors available in smart wrist
devices can capture hand movements, and so it is feasible to detect
hand washing using these devices. However, it is challenging to
detect hand washing using wrist wearable sensors since hand
movements are associated with a wide range of activities. In this
paper, we present HAWAD, a robust solution for hand washing
detection using wrist wearable inertial sensors. We leverage the
distribution of penultimate layer output of a neural network to
detect hand washing from a wide range of activities. Our method
reduces false positives by 77% and improves F1-score by 30%
compared to the baseline method.

Index Terms—Hand washing, inertial sensor, smartwatch,
accelerometer, smartwatch

I. INTRODUCTION

Hand hygiene is extremely important for personal well-
being as well as in healthcare settings and food businesses.
Lack of hand hygiene is one of the major reasons for health-
care associated infections (HAIs) in hospitals [1], [2]. HAIs
result in deaths of patients and high costs to the hospitals
[3]. Adherence to hand hygiene compliance by workers in the
food business is essential to avoid food contamination and thus
the outbreaks of food-borne illness [4]. Hand hygiene is also
crucial for personal well-being. It plays a vital role in avoiding
sickness due to germs and preventing the spread of contagious
diseases. Despite the importance of hand hygiene, people
often forget to wash their hands when necessary. Automatic
detection of hand washing activity can facilitate just-in-time
alerts when a person forgets to wash hands. Monitoring hand
washing practices is also essential in ensuring accountability
and providing personalized feedback, particularly in hospitals
and food businesses. In this paper, we present HAWAD, a ro-
bust solution for hand washing detection using wrist wearable
inertial sensors. Wrist wearable devices like smartwatches and
fitness trackers are used widely. In contrast to in-situ sensors

or cameras, wearable devices are ubiquitous and not limited
in a specific location or context. In addition to hand washing
detection, a wrist device can be used for context recognition
and providing alerts to the user when necessary.

Inertial sensors available in smart wrist devices can capture
hand movements, and so it is feasible to detect hand washing
using these devices. However, it is challenging to detect hand
washing using wrist wearable sensors since hand movements
are associated with a wide range of activities. We refer
any activity other than hand washing a NULL activity. It is
nearly impossible to enumerate, let alone collect data for, all
possible human activities. State-of-the-art solutions for activity
recognition are mostly data-driven, and so the performance of
the solutions largely depends on the data used to develop the
models. The activity recognition models are usually developed
and evaluated using data from a limited number of NULL
activities, often in lab settings. Consequently, the models might
perform poorly in the free-living context where many other
NULL activities could be present. We illustrate the problem
in Figure 1 using an example where data are available for
hand washing (H) and three other NULL activities (A, B and
C). There are no data available for activities D and E that are
also NULL activities. If we train a classification model using
data for hand washing (H) and available NULL activities (A,
B, C), the decision boundary of the model would be based
on these data, and consequently, activity E might be detected
with very high probability as hand washing. Such solutions
perform poorly in real-world context where users can perform
many activities for which data are not available to train the
classification model.

Most of the state of the art solutions for activity recognition,
including those for hand washing detection [5]–[7], do not
address the problem of NULL activities. These solutions
mainly focus on feature engineering, parameter tuning, and/or
the classification methods. Recently, neural networks are being
used widely for activity recognition [8]–[11] due to their effec-
tiveness over classical machine learning techniques like Ran-
dom Forest and Support Vector Machine. These solutions also
suffer from the problem of NULL activities. In this paper, we
present a novel solution for addressing the problem of NULL
activities and have evaluated the solution for hand washing
detection. We mitigate the problem of NULL activities by
leveraging the distribution of the penultimate layer of a neural



Fig. 1. Activity space

network. Our solution detects out-of-distribution samples that
mostly come from unseen activities. We collected a dataset
that contains data from hand washing as well as several other
activities. We trained a neural network model using our dataset
and then tested the robustness and effectiveness of our solution
using WISDM [12], a publicly available dataset that does
not contain any data for hand washing. This dataset has data
for 18 different activities, many of which are not present in
our dataset. Our method reduces the false positives from the
WISDM dataset by 77% and improves F1-score by 30% than
the baseline method [6].

The major contribution of this paper are:
• We present a novel solution for hand washing detection

that addresses the problem of NULL activities.
• We developed a dataset for hand washing detection using

wrist wearable sensor and evaluated our solution using
the dataset along with a public dataset.

• Our method reduces the false positives by about 77%
and improves overall F1-score by 30% compared to the
baseline method.

II. METHOD

As mentioned earlier, neural network based methods are
usually more effective than classical machine learning tech-
niques, like Random Forest and Support Vector Machine, in
recognizing human activities. We also use a neural network
for hand washing detection but additionally leverage the
distributions of the penultimate layer outputs of the network
to detect NULL activities. Each layer of a neural network
transforms its input features to another feature space. The
outputs at the penultimate layer of the network represent
the final features that are usually classified by a Sigmoid or
Softmax function. Figure 2 shows an example of a feedforward
neural network with three hidden layers and one output node.
The input features (Fi) are sequentially transformed to final
features (F3) where instances from the same classes come
closer and from different classes moves further compared
to the features from earlier layers. Figure 3 shows some
instances from hand washing and other activities at different
layers of the feedforward neural network. There are 64 nodes
in each of the hidden layers of the network, and we have

Fig. 2. Example of a Feedforward Neural Network. Instead of connecting a
node directly with the nodes in the following layer, we put a connector in
between to better show the input and embedded features.

used the t-SNE [13] method to embed the outputs of each
layer into 2-dimension for visualization. As illustrated in the
figure, the instances are better separable over the layers. It
should be noted that the decision boundary of the network is
computed using the output of the penultimate layer (Figure 2).
We have drawn a hypothetical decision boundary in Figure
3(d) just for illustration purposes. The instances from hand
washing are clustered in a limited area, but any instances
left to the boundary will be classified as hand washing. Let
assume that instances in the area X and Y are from unseen
NULL activities, i.e., from activities for which there was no
data available during training the classification model. Though
the instances from Y are correctly classified as negative by
the model, instances from X are falsely classified as hand
washing. Here, the instances of X are out of the distribution
of the hand washing instances. We leverage the distribution of
the penultimate layer to detect unseen NULL activities even
though the instances are classified as hand washing by the
neural network.

We use class conditional Gaussian distribution of the penul-
timate features to detect the out-of-distribution (OOD) in-
stances. Similar to the method proposed by Kimin et al. [14],
our method is not confined to networks with a specific archi-
tecture. We use a pre-trained network and get the penultimate
features for a set of hand washing instances, referred to as
Representative Set. For a set of representative instances {x1,
x2, . . . , xN}, the mean and covariance are computed as:

µ̂ =
1

N

∑
i

xi (1)

Σ̂ =
1

N

∑
i

(xi − µ̂)(xi − µ̂)T (2)

Here, xi represents the penultimate feature i.e. the output
of the penultimate layer for the ith instance, and so xi is a
N dimensional vector where N is the number of nodes in the
penultimate layer. It should be noted that all the instances of
the representative set are from hand washing. We compute the
distance of an instance from the mean (µ̂) using Mahanabolis
distance [15] as:

d(x) = (x− µ̂)T Σ̂−1(x− µ̂) (3)
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Fig. 3. t-SNE representation of some hand washing and other instances for (a) Input features, (b) output of layer 1, (c) output of layer 2 and (d) output of
layer 3 of a feedforward neural network with 3 hidden layers. This figure is better visualized in color.

The Mahalanobis distance is usually more effective than
Euclidean distance for detecting OOD samples [14]. Using
the representative instances, we calculate a distance threshold
(dth) that covers most of the hand-washing instances. The
distance threshold creates a boundary around the center of the
positive (hand washing) instances, and any instance outside
that boundary (OOD sample) is considered as a NULL activity
(negative class). Consequently, activities from X (Figure 3(d))
is correctly detected as negative.

Our method is applied to the output of the penultimate
layer, and so we use a pre-trained network. Training the neural
network is not part of our solution. We need to estimate three
parameters: µ̂, Σ̂ and dth that are used to infer the class of test
instances. Figure 4 shows the steps for parameter estimation
and inference. We describe them in more detail below.

A. Parameter Estimation

To estimate the parameters, we use a set of instances from
hand washing, called Parameter Estimation Instances. It can be
the hand washing instances from the dataset used to train and
evaluate the network or any set of similar instances. We get
the penultimate features of the instances and their probability

of being hand washing using the pre-trained network. The
penultimate features of the instances that are detected as
positive (hand washing) by the network are used to construct
the representative set. Our goal is to further test only the
instances that are detected as positive by the network. So,
we do not include the instances detected as negative into the
representative set. We use Equation 1 and 2 to estimate the
mean and covariance of the selected penultimate features. We
calculate the Mahanabolis distance of each of the penultimate
features using Equation 3 and then select some percentile (P )
of the distances as the distance threshold. With a P percentile
distance threshold, (100−P )% of the instances truly detected
as positive by the network are discarded as negative or OOD
instances by our method. However, it would discard many
negative instances that are falsely detected as positive (False
Positives) by the network.

B. Inference

To infer the class of a test instance, we find its probability
using the pre-trained model. If the instance is detected as hand
washing, we use the penultimate features of the instance to
find its distance. If the distance is greater than the threshold,



Fig. 4. Steps in (a) Parameter Estimation (b) Inference

the instance is detected as a negative or an OOD sample;
otherwise, it is considered a positive instance. We do not
process any instance that is detected as negative by the
network. Our solution discards many false positives from the
network with a small compromise on true positives, resulting
in significant improvement in different performance metrics.

III. EXPERIMENTS

A. Data Description

We have developed a dataset, called HAWAD dataset, by
collecting data from 16 participants (9 males, 7 females)
with age range between 17 to 36 years. The participants
washed hands following the guideline by the World Health
Organization (WHO) [16], as shown in Figure 5, as well
as by rubbing hands in different other ways usually present
in hand washing. It is extremely important for health and
food workers to follow the guideline by WHO. Though others
usually do not need to follow the guideline, several gestures
from the guideline are often present in their hand washing. We
also collected data for other activities including wiping water
from hands with a towel or napkin, walking, opening/closing
doors, using computers/phones, eating, and drinking. The data
were collected using Samsung Gear Live, an Android-powered
smartwatch. The dataset contains about 5 hours of data from
each of the hands where nearly half of the data are from
hand washing. We have collected acceleration, rotation rate,
linear acceleration, and gravitational acceleration from the
smartwatches. More details of the data and a preliminary study
using a decision tree method are described in Harmony [5].

We have also used a public dataset, named WISDM [12],
that contains accelerometer and gyroscope data for 18 activ-
ities from 51 subjects. The activities are walking, jogging,
climbing stairs, sitting, standing, typing, brushing teeth, kick-
ing a soccer ball, playing catch with a tennis ball, dribbling

Fig. 5. Hand washing Guideline by World Health Organization (WHO).
Figure from Harmony [5].

a basketball, writing, clapping, folding clothes, drinking from
a cup and eating soup, chips, pasta, and a sandwich. This
dataset does not have any data for hand washing, and so we
use this dataset to detect out-of-distribution patterns. In the
dataset, there are data available from both a smartphone and
a smartwatch. We have used data from the smartwatch only.

B. Network Training

The WISDM dataset has both accelerometer and gyroscope
data from the smartwatch. However, the data from these two
sensors are not synchronized in the dataset. Also, using a
gyroscope in addition to an accelerometer doesn’t improve
the performance significantly for hand washing detection, but
consumes a significant amount of battery life from the watch
[5]. So, we use data only from the accelerometer of the watch
in our experiment. The accelerometer data from the watch are
time series in nature. We segment the data into 1 second long
frames with 0.5-second window sliding, and extract a set of
features including mean, variance, root mean square, median,
first quartile, third quartile, minimum, maximum, skewness,
kurtosis from each of the axes of the sensors. We also use



Fig. 6. F1-score for networks with different number of layers.

the covariance among the axes resulting in a total of 33
features. There is no pre-trained neural network available for
hand washing detection from accelerometer data. So, we used
our HAWAD dataset to train a feedforward neural network.
There are 64 nodes in each of the layers of the network and
we evaluated the models for different numbers of layers. We
split the data into training (80%) and testing (20%) sets with
random sampling. A dropout rate of 0.25 and a validation
set (10% of the training data) along with an early stopping
mechanism are used to reduce the problem of over-fitting. We
developed and evaluated models for the left and the right hand
separately. Figure 6 shows the F1-scores on the test data for
a different numbers of layers. The performance doesn’t differ
significantly, but it reduces as the number of layer increases,
particularly for the right hand. This is because the network is
over-fitted as more layers are added. We have used the network
with three hidden layers for the remaining experiments.

C. Out of Distribution

We used the pre-trained model to predict an instance. Since
there is no hand washing data in the WISDM dataset, any
instance from this dataset that is detected as hand washing is
a false positive. About 6% and 5% of the instances from the
WISDM dataset are detected as false positives by the neural
network for the left and the right wrist, respectively. Figure
7 shows the output of each of the layers of the network for
the hand washing and NULL instances from the validation
dataset of HAWAD as well as some false positives from the
WISDM dataset. Similar to Figure 3, instances from hand
washing are better separable over the layers. In the penultimate
layer (Figure 7(d)), many of the false positives are out of
the distribution of the hand washing instances. However, they
are detected falsely as hand washing due to their closeness
to the hand washing instances than to the NULL instances.
Our method detects such false positives using the distance
threshold.

We used the hand-washing instances from our dataset to
estimate the parameters (µ̂, Σ̂, dth). As mentioned earlier, a
percentile is used to determine the distance threshold. Any
instance detected as positive by the network is detected as
negative by our method if the distance of the instance is greater
than the threshold. The more we reduce the percentile the

more instances are detected as negative by our solution and
vice versa. Though a number of true positive instances may
be detected as negative by our solution, a large number of
false positives are correctly detected as negative, ultimately
improving the overall performance. We define TPDNR (rate
of the True Positives Detected as Negative) and FPDNR (rate
of the False Positives Detected as negative) as:

TPDNR =
True Positives Detected as Negative

Total True Positives
(4)

FPDNR =
False Positives Detected as Negative

Total False Positives
(5)

Figure 8 shows the TPDNR and FPDNR for the left and the
right wrist, respectively. The WISDM dataset does not have
any data for hand washing, and so there is no true positive
instances from this dataset. The results show that our solution
corrects a significant portion of the false positives from both
the HAWAD and the WISDM dataset. The less the percentile
(and so the distance threshold), the more false positives are
corrected. However, a small portion of the true positives is
also detected as negative. For example, with 95 percentile
threshold, we detect 5% of the true positives as negative
but reduce the false positive rate from the WISDM dataset
by 48% and 45% for the left and right wrist, respectively.
It also reduces the false positives for our dataset by 27%
and 25%, respectively. The results show that our method is
very effective in detecting instances from unseen data and
activities. The more we reduce the percentile, the more false
positives are corrected, but it also results in more mistakes
for the true positives. The percentile should be set according
to the requirements of the applications on some metrics like
precision, recall or F1-score. At the 100 percentile threshold,
we select the distance using the maximum distance of all
the true positives. There are some true positives that lie far
away (outliers) from the mean of the Gaussian distribution.
Consequently, the distance at 100 percentile is very high, and
very few (nearly zero) false positives are discarded, even from
the WISDM dataset. Setting the percentile to 99 corrects about
22% false positives from the WISDM dataset. This is because
the distance threshold is reduced significantly compared to 100
percentile due to the removal of the outliers.

Figure 9 shows the precision, recall and F1-score for the left
and right wrist, respectively. As expected, when the percentile
is increased the precision decreases and the recall increases,
and vice versa. This is because when percentile is increased,
there are more true positives that increase the recall, but
the number of false positives also increases, that results in
reduction of the precision. The F1-score is the harmonic mean
of precision and recall and widely used to balance between
them. We see that our solution gives the best F1-score around
80 percentile threshold. The F1-scores at this percentile are
0.72 and 0.74 for the left and the right wrist, respectively.
The F1-scores of the baseline method, the pre-trained network
without using out-of-distribution as proposed by Galluzzi et
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Fig. 7. t-SNE representation of the validation instances as well as some False positives from the WISDM dataset for (a) Input features, (b) output of layer
1, (c) output of layer 2 and (d) output of layer 3 of the network. This figure is better visualized in color.

(a) (b)

Fig. 8. TPDNR (HAWAD), FPDNR (HAWAD), FPDNR(WISDM) for different percentiles for (a) left wrist, (b) right wrist.



al. [6], are 0.55 and 0.57, respectively. So the F1-score is
improved by 0.17, about 30% more compared to the baseline.
At this percentile, the false positive rate from the WISDM
dataset is reduced by 76.8% and 77% for the left and right
wrist, respectively, and the reductions for our dataset are
61.4% and 71.7%, respectively. The result indicates we avoid
a significant amount of false positives by using our out-of-
distribution based method on top of existing neural networks.
With a small compromise on recall, our method gains large
precision, resulting a significant increase in the F1-score.

IV. RELATED WORK

Human activity recognition using wearable sensors is an
active research area with significant involvement of re-
searchers from different domains, including computational
science, healthcare, and engineering. Recent developments in
wearable technology, particularly availability and widespread
use of sensor-enabled tiny devices like fitness trackers and
smartwatches, have thrust research in this direction. Most
of the state-of-the-art solutions for activity recognition use
neural networks. Hammerla et al. [11] explore different neural
network architectures, including convolutional and recurrent
neural networks for activity recognition using wearable sen-
sors. They propose a regularization technique to improve the
performance of the networks. DeepConvLSTM [9] segments
the time series sensor data from the wearables and applies
both convolution and recurrent neural networks on each of the
segments independently. Guan et al. [8] ensembles a set of
Long Short Term Memory (LSTM) networks to improve the
performance of activity recognition tasks. They save the LSTM
model after each of the epochs where the data used to train
the network during an epoch is randomly selected from the
training data and ensemble the top-performing LSTM learners
for activity recognition. These works do not address the issue
of NULL activities, particularly unseen NULL activities.

Galuzzi et al. [6] use sensors from wrist devices to detect
hand washing. In addition to hand washing, they collect a
limited number of NULL activities that include opening a jar,
opening and eating the candy from the jar, tying shoes and ap-
plying bandages. They evaluated the performance of different
machine learning techniques, namely K-Nearest Neighbors,
Decision Tree, Neural Network, and Naive Bayes, for hand
washing detection where the neural network outperforms the
other methods. WristWash [7] uses Hidden Markov Model
to detect different hand rubbing approaches suggested by
the World Health Organization (WHO). These works do not
address the problem of separating hand-washing activities
from unseen NULL activities.

Detecting out-of-distribution is an active area of research.
Hendrycks et al. [17] uses probabilities from softmax distri-
butions to detect out-of-distribution samples. They evaluated
their method using datasets from computer vision, natural
language processing, and speech recognition. Lee et al. [14]
propose a method that can be used with any pre-trained
softmax neural classifier to detect abnormal samples. They
use class conditional Gaussian distributions of the outputs of

different layers of a neural network along with Mahalanobis
distance to find confidence. The method works for both out-of-
distribution and adversarial samples. They also demonstrated
the use of their method in learning new classes. They use
pre-trained convolutional neural networks on some vision
datasets including CIFAR [18] and ImageNet [19]. These
works on out-of-distribution detection are focused on computer
vision, natural language processing, or speech recognition.
We developed a solution for hand washing detection using
wearable sensors.

V. DISCUSSION

State of the art solutions for activity recognition focuses on
the architecture or parameter tuning of the neural networks.
We also use a neural network for hand washing detection.
However, it is not focused on the neural network architecture
or parameter tuning; rather, it works on top of a pre-trained
neural network. So, our solution can be used with the existing
neural network based solutions to detect hand-washing with
more robustness and accuracy. We have used a feedforward
network for evaluation, but our method is not network specific.
We use the output of the penultimate layer only, and so it can
be used for other types of neural networks like Convolutional
Neural Networks (CNN) and Recurrent Neural Networks
(RNN). Though the method presented here has been evaluated
for hand washing, it is generic in nature, and so it can be used
for other types of activities. Future work includes exploring the
effectiveness of the method for different activity recognition
tasks with different types of neural networks.

As our method uses the output of a neural network model,
the additional computational cost for inference is very low. In
addition to the computation required by the underlying neural
network, our method only computes the Mahanabolis distance
and compare the distance with the pre-defined threshold. Since
we use a pre-trained network, there is no need to train a
network for our solution. However, we trained a network
for evaluation purposes as there is no pre-trained network
available for hand-washing detection using accelerometer data.

Compared to other solutions that require a lot of parameter
tuning, there is only one parameter in our method, the distance
threshold (percentile), that needs to be tuned. The distance
threshold should be set to balance the trade-off between
different metrics like precision and recall. For example, a
system where recall is more important than precision, the
distance threshold can be set to maximize the recall while
meeting the requirement for precision. The duration of a hand
washing can range from few seconds to over a minute. The
hand washing and other data used in this paper have been
collected separately, making it infeasible to detect the duration
of a hand washing. Detecting the duration of hand washing
using interleaved hand washing and other data is a potential
future work.

Hand hygiene compliance can be improved by providing
real-time alerts when the user forgets to wash hands. For
example, beacons can be placed near the patient beds in
the hospital and used to detect the proximity of the doctors
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Fig. 9. Precision, Recall and F1-score for different percentiles for (a) left wrist, (b) right wrist. The horizontal lines represents the metrics of the baseline.

or nurses [5]. If they forget to wash hands before entering
into or after exiting from the patient room, an alert can be
provided immediately. Monitoring hand hygiene practices and
real-time reminders would increase hand hygiene compliance.
We have not evaluated the performance of our method in
improving hand hygiene compliance as well as how it can
be generalized to different users. The effectiveness of the
solution can be further evaluated by deploying the solution
in the real-world. We have not implemented the system on
smartwatches. However, recent works [20] show the feasibility
of implementing deep neural networks on resource constraint
devices. Future works include implementing and evaluating the
method on smartwatches. We can place the device on any wrist
to detect hand washing since there is no significant difference
in the performance. As our solution uses only a single wrist, it
is very practical and convenient to be used in the real world.

VI. CONCLUSION

In this paper, we present a novel solution for hand washing
detection that addresses the problem of NULL activities. Our
method reduces the false positives by 77% and improves F1-
score by 30% compared to the baseline method. The solution
is robust against unseen NULL activities, and so it would be
very effective in the real-world where people performs a wide
range of activities.
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[9] F. J. Ordóñez and D. Roggen, “Deep convolutional and lstm recurrent
neural networks for multimodal wearable activity recognition,” Sensors,
vol. 16, no. 1, p. 115, 2016.

[10] J. Yang, M. N. Nguyen, P. P. San, X. Li, and S. Krishnaswamy, “Deep
convolutional neural networks on multichannel time series for human
activity recognition.” in Ijcai, vol. 15, 2015, pp. 3995–4001.

[11] N. Y. Hammerla, S. Halloran, and T. Plötz, “Deep, convolutional, and
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