On the Variety and Veracity of Cyber Intrusion Alerts
Synthesized by Generative Adversarial Networks

CHRISTOPHER SWEET, Department of Computer Engineering, Rochester Institute of Technology
STEPHEN MOSKAL, Department of Computer Engineering, Rochester Institute of Technology
SHANCHIEH JAY YANG®, Department of Computer Engineering, Rochester Institute of Technology

Many cyber attack actions can be observed but the observables often exhibit intricate feature dependencies,
non-homogeneity, and potentially rare yet critical samples. This work tests the ability to learn, model and
synthesize cyber intrusion alerts through Generative Adversarial Networks (GANs), which explore the feature
space by reconciling between randomly generated samples and data that reflect a mixture of diverse attack
behaviors without apriori knowledge. Through a comprehensive analysis using Jensen-Shannon Divergence
(JSD), Conditional and Joint Entropy, and mode drops and additions, we show that the Wasserstein-GAN
with Gradient Penalty and Mutual Information (WGAN-GPMI) is more effective in learning to generate
realistic alerts than models without Mutual Information constraints. We further show that the added Mutual
Information constraint pushes the model to explore the feature space more thoroughly and increases the
generation of low probability, yet critical, alert features. This research demonstrates the novel and promising
application of unsupervised GANSs to learn from limited yet diverse intrusion alerts to generate synthetic
alerts that emulate critical dependencies, opening the door to proactive, data-driven cyber threat analyses.

CCS Concepts: » Security and privacy — Intrusion detection systems; - Computing methodologies
— Neural networks; « Information systems — Similarity measures.

Additional Key Words and Phrases: GAN, Intrusion Alert Analysis, Cyberattack Characterization

ACM Reference Format:

Christopher Sweet, Stephen Moskal, and Shanchieh Jay Yang. 2020. On the Variety and Veracity of Cyber
Intrusion Alerts Synthesized by Generative Adversarial Networks. ACM Trans. Manag. Inform. Syst. 1, 1,
Article 1 (January 2020), ?? pages. https://doi.org/10.1145/3394503

1 INTRODUCTION

The prevalence of cyber intrusion activities has led to diverse observables that often puzzle analysts
and researchers while determining the intent and actions of the attack. Utilizing machine learning
techniques to assist in extracting behavioral patterns from the intrusion alerts is a logical step; such
techniques will need to be unsupervised since it is unlikely to obtain truths for adversary behaviors.
With a diverse mix of attack behaviors and potentially rare yet critical feature combinations in
any given set of observables, the unsupervised technique must go beyond just learning the exact
feature dependencies exhibited in the data. Generative Adversarial Networks (GANSs) serve as a

“This research is supported by NSF SaTC Awards #1526383 and #1742789.

Authors’ addresses: Christopher Sweet, crs4263@rit.edu, Department of Computer Engineering, Rochester Institute of
Technology, 1 Lomb Memorial Drive; Stephen Moskal, Department of Computer Engineering, Rochester Institute of
Technology, 1 Lomb Memorial Drive; Shanchieh Jay Yang, jay.yang@rit.edu, Department of Computer Engineering,
Rochester Institute of Technology, 1 Lomb Memorial Drive.

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee
provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and
the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored.
Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires
prior specific permission and/or a fee. Request permissions from permissions@acm.org.

© 2020 Association for Computing Machinery.

2158-656X/2020/1-ART1 $15.00

https://doi.org/10.1145/3394503

ACM Trans. Manag. Inform. Syst., Vol. 1, No. 1, Article 1. Publication date: January 2020.

https://doi.org/10.1145/3394503
https://doi.org/10.1145/3394503

ACM TMIS, April 12 2020, Special Issue Sweet and Moskal, et al.

plausible solution to discover and synthesize data with similar, but not exactly the same, feature
dependencies exhibited in historical data. The generated intrusion alerts not only help characterize
the intrusion observables but also can augment the often limited true observables to strengthen
prediction and other analytics for cyber defense.

Cyber intrusion alerts have been used to identify anomalous activities [?] [?] [?], discover
network vulnerabilities [?], and profile bad-actor behaviors [?]. Imagine research works like these
enhanced with synthetic data that resembles intrusion alerts from previous attacks. This work
explores and investigates the use of two types of GANs in their effectiveness to generate intrusion
alert data when given representative real world data. We consider eight target IP addresses attacked
by two sets of ten independent teams as part of the Collegiate Penetration Testing Competitions in
2017 and 2018. The application of unsupervised machine learning, in the form of GANS, to these
data includes a means for driving better coverage of the feature domain in model outputs and
allowing more rare but critical events to be synthesized. To the best of our knowledge, this work is
the first attempt to synthesize intrusion alerts using GANs to analyze intricate, and potentially rare,
attacker behaviors from observable malicious activities.

First proposed by Goodfellow et al. , Generative Adversarial Networks (GANs) [? | are unsu-
pervised deep learning models that learn to emulate data from a training dataset, by reconciling
between generated and real samples. This framework was subsequently improved by Arjovsky
et al. [?] and Gulrajani et al. [?] by optimizing models via the Earthmover Distance. Belghazi
et al. [?] further introduced an additional loss term to drive diverse model outputs. Through these
improvements, GANs have achieved state of the art results in generating data with respect to
images [?] [?][?], text [?], and sound [?] [?].

Additionally, GANs have been applied to network traffic to modify and obfuscate malicious
traffic [?] [?] [?] [?]. These adversarial samples are created to avoid being flagged by Network
Intrusion Detection Systems (NIDS). Despite the widespread usage of GANS, there is a lack of
research in using GANs to synthesize NIDS alerts for analysis from the target IP perspective,
which is essential to understanding the attack behaviors exhibited during an attack. Given the low
critical-to-noisy-alert ratio for malicious activities, a means to generate meaningful data based off
limited observables could enable researchers to reveal network vulnerabilities, understand attacker
behaviors, and augment other data driven models relying on malicious alerts for training.

To address the current void of data driven generative models for Cyber Intrusion data, we
propose using WGAN-GPMI [?]. This work specifically investigates how this GAN architecture
can be used to generate synthetic intrusion alerts by learning the sparsely distributed categorical
features of said alerts from samples of malicious network intrusions. This unsupervised learning
problem is particularly challenged by the need to generate rare yet critical alerts. This makes the
unique application of WGAN-GPMI well-suited to the domain of Cyber Intrusion alerts; better
than the standard WGAN formulation. Through well-established Information Theoretic metrics
such as Jensen-Shannon Divergence and Conditional Entropy we show that our models are able to
generate new alerts which exhibit behavior similar to that of the training data, and do so better
than comparative models without Mutual Information constraints. We further show that GANs
learn to generate alerts which emulate attacker behaviors without explicit tasking to do so.

This research realizes these claims by applying WGAN-GPMI to NIDS data collected via Suricata
(https://suricata-ids.org/)from the 2017 and 2018 Collegiate Penetration Testing Competition
(CPTC) (https://nationalcptc.org/). CPTC’17 had ten student teams attempt to penetrate and
exploit vulnerabilities of a virtualized network that manages election systems. CPTC’18 tasked new
student teams with penetration into an autonomous driving IT infrastructure including virtualized
embedded systems, mobile applications, and processing servers. Rather than directly focusing on
the specific behaviors exhibited by each team for the two datasets, the data was segmented based off

Analyzing Cyber Intrusion Alerts Synthesized by GANs ACM TMIS, April 12 2020, Special Issue

the IP address being attacked. Segmentation on a per target basis yielded independent datasets for
each target, featuring unique attack strategies from each team. The use of data from CPTC’17 and
CPTC’18 illustrates the unsupervised nature of these models, as they were applied to completely
disparate datasets without explicit labels.

The remainder of the paper is structured as follows: Section ?? provides an overview of some
of the existing challenges in Machine Learning for cyber-security as well as existing applications
of GANSs for Cyber Security data. Section ?? and Section ?? discusses the GAN model as well as
preprocessing and analysis methods employed for generating synthetic intrusion alerts. Finally,
Section ?? discusses the observations made from reviewing generated data and Section ?? gives the
concluding remarks and future works of this research.

2 RELATED WORK

With the regularity and complexity of cyber attacks increasing, so has the interest in applying
Machine Learning techniques to classify and predict attack actions. However, with the use of Deep
Learning models comes the need for massive amounts of quality training data; several ongoing
works in this field cite the need for more data as a limitation to their current research [?] [?] [?]
[?]

In particular, LSTM models are shown by Perry et al. [?] to suffer significantly lower accuracy
when the dataset provided for training is not large enough to be representative of previous observa-
tions. This holds true for both classifying cyber attackers and for predicting the next attack action
taken. This message is echoed by Faber and Malloy [?] despite having a dataset of over 600,000
alerts and promising classification accuracy. They note that the availability of quality labeled data
and a low signal-to-noise ratio for malicious activity are both outstanding issues.

Another avenue for research applying Machine Learning to cyber-security data has been the
generation of adversarial traffic. Specifically, GANs have been used to obfuscate malicious traffic
through the modification of packet behavior. Rigaki et al. [?] proposed the use of GANs in generating
malicious network traffic which appeared as benign network traffic. This allowed malware to avoid
detection from the Stratosphere Behavioral Intrusion Prevention System through the modification
of three network traffic parameters; total byte size, duration of network flow, and time delta between
current network flow and the last network flow. They showed that through the modification of
these parameters detection rate could be dropped down to 0%. Similarly, Lin et al. [?] apply GANs
to obfuscate traffic with the intention of directly deceiving a NIDS. Their model makes use of 9
discrete features and 32 continuous features to modify attack actions to avoid detection. Available
attack actions include denial of service and privilege escalation. Their model is shown to drastically
increase the evasion rate of malicious network traffic across several different classifiers when
benchmarked using the NSL-KDD benchmark provided by [?]. Despite the promise of these results,
several of the pathological issues identified in the original KDD Cup Dataset remain in the improved
NSL-KDD benchmark [?] [?].

None of the aformentioned works apply GAN models to the generation of Intrusion Alert datasets
from the target perspective. Intuitively, a target machine attracting many malicious activities may
suffer from some kind of coherent attack strategies that could be learned by an unsupervised model
and generated en masse for further study. We hypothesize that WGAN-GPMI can learn these
attack strategies to generate high fidelity alerts resembling the original dataset. GANs have been
previously shown to augment small semi-labeled datasets across a number of fields [?] [?] [?] [?]
[?]. The application of Wasserstein-GAN with Gradient Penalty and Mutual Information (WGAN-
GPMI) specifically addresses the learning of attack strategies from relatively ‘small’ datasets, each
representing intrusion alerts observed for a target. A total of eight targets are considered from

ACM TMIS, April 12 2020, Special Issue Sweet and Moskal, et al.

isolated instances of two different networks. Methods to quantify, analyze, and confirm the veracity
of these synthesized alerts are also introduced.

Applying GANs to cyber intrusion alerts is non trivial as the challenges posed by the data
directly affect the training of GANSs. The distribution of alert features cannot be modeled trivially
and critical alert features may occur with low probability. The potential for mode dropping is
simultaneously high and problematic due to the contextual meaning of results. In order to try and
address this in other fields, Belghazi et al. [?] proposed adding a Mutual Information constraint
on the Generator. Applied to cyber intrusion alerts, the Mutual Information constraint would
encourage the generation of all alert features, including the rare actions that are indicative of
targeted attacker behavior. Given the unsupervised nature of GANs no class labels for each alert
are required to train the models, allowing any NIDS data, from any network, to be used as training
data.

This work applies two types of GAN models to cyber intrusion alerts and studies the results in
depth to judge the veracity of synthetic alerts. A generalized novel set of preprocessing steps are
also introduced to provide contextually useful information from the samples generated by the GAN
models. Training on CPTC’17 and CPTC’18 data illustrates the ability of these models to recreate
small imbalanced datasets that exhibit different attack strategies tailored to the target under attack.
Additionally, intra-alert feature dependencies are captured and revealed by the data sampled from
the GANs’ output, showing that critical interactions between feature values are preserved by the
models. Finally, using a mapping of alert signatures to attack stages opens the potential for attacker
behavior to be inferred and learned by GANSs.

3 GAN MODELS FOR CYBER INTRUSION ALERTS

Generative Adversarial Networks are comprised of a pair of networks which learn the structure of
a dataset, commonly referred to as the training dataset, in an unsupervised manner and emulate it
to synthesize new datasets. One network, the generator (G), attempts to create samples which seem
to belong to a training dataset. The other network, the discriminator (D), takes inputs from the
training dataset as well as G, and flags samples as either real or fake. This structure minimizes the
generator loss each time G successfully generates a sample that tricks D into marking the sample
as real. Conversely, the discriminator loss is minimized when all samples from the training data
set are marked as real and all samples created by G are marked as fake. Throughout training each
network improves, resulting in more and more realistic output samples.

The Wasserstein GAN, first proposed by Arjovsky et al. [?] extends the concept of a GAN
but with increased stability during training. This was subsequently improved by Gulrajani et al.
[?] by adding a gradient penalty term to regularize the gradients of D. The gradient penalty
creates a 1-Lipschitz constraint on the discriminator during training by sampling noise from P,
and constraining the gradient of the L2 norm of D(P) to 1. Additionally, D is given real samples P,
and generated samples PP, in a 5:1 ratio per epoch of training; this is done to increase the utility of
gradients provided by D. These modifications resulted in the discriminator loss function provided
in (??). This model is referred to as Wasserstein GAN with Gradient Penalty (WGAN-GP).

Dross = E[D(P,)] = E[D(Py)] + AE[(||VD(®)|l; = 1)°] (1)

Wasserstein Distance Gradient Penalty

Despite these improvements to the loss function for the discriminator, the generator loss was
left unmodified. Belghazi et al. [?] changed this by adding a mutual information term to the
generator’s loss. This contribution maximized an approximation of the mutual information between

Analyzing Cyber Intrusion Alerts Synthesized by GANs ACM TMIS, April 12 2020, Special Issue

the generator’s noise input P, and it’s output samples P, by minimizing the Donsker-Varadhan
(DV) representation of the Kullback-Leibler (KL) divergence as shown in (??).

The DV KL term was added by using a neural network (E) to maximize an estimate of Mutual
Information between two distributions. The rationale behind this added constraint was that it
would force the generator to further explore the domain of the data when generating new samples;
not exploring the dataset would result in a limit to the amount of mutual information which could
be found between input noise and the output samples. Herein this model will be referred to as the
WGAN-GPMI model.

Gross = —E[D(Pyg)] +E[Py.] + log(E[er®<]))
———
Adversarial Loss DV KL Divergence

Since mutual information is theoretically unbounded, gradient updates resulting from it could
overwhelm the adversarial gradients resulting from the loss provided by D. In order to address this
all of the gradient updates to the generator were adaptively clipped to ensure that the Frobenius
norm of the gradient resulting from the mutual information was at most equal to the adversarial
gradient [?], as shown in (??). Note that g,orm is the normalized gradient, g, is the adversarial
gradient resulting from (??), and ¢y, is the gradient resulting from the DV KL portion of (??).

norm = ga + min(||all. ||gm||>(“§'““> 3)

Given the addition of these terms, the WGAN-GPMI model has a means to synthesize data with
high fidelity, without exhibiting output mode collapse, and will attempt to drive exploration of the
feature space. These attributes are ideally suited to the generation of Cyber Intrusion alert data as
they provide scalability down to small sample-limited datasets which would historically be outside
the scope of Deep Learning models.

Discriminator (D) Back-Propagation
(—
l DLnss ‘
Real Sample (s) Fully Connected Fully Connected | G |
BatchSizex ™ a:B:C+Dx 128 128 %1 Loss
A+B+C+D k. J
Fully Ci cted
Generator (G) e
Fully Connected
- = e 128:B
Moise (z) ; Fully Connected : Concat _
BaichSize x 64 64x128 Batch Size x
Fully Connected A+B+C+D
128xC
Fully Connected
128xD
. \ Y,

Back-Propagation

Fig. . WGAN-GP Model Architecture: The real samples provided to the Discriminator are one hot encoded
in the same fashion as the Generator’s output

ACM TMIS, April 12 2020, Special Issue Sweet and Moskal, et al.

WGAN-GP and WGAN-GPMI models were implemented to generate malicious cyber intrusion
alert features from historical data, herein referred to as alerts. Each network in the models were
configured with layers that had a hidden dimension size of 128. Both models used a vector of 64
normally distributed points per sample as input to G.

Fig. ?? provides a visualization of the WGAN-GP architecture used. The first layer of the discrim-
inator took input from the training data as well as G. A second layer then generated a probability
that the sample was from the training data set by using the Sigmoid activation function.

The generator featured 4 independent fully connected layers in parallel on the output. These
generated each of the 4 features tested. Due to the categorical nature of the data being generated
all features were one hot encoded and concatenated into a single vector per alert when input to
the discriminator. For analysis of generated samples, each output was transformed into real-world
values by segmenting the vector into subcomponents whose length’s equal the number of unique
values for the given feature. The argmax of each of these subcomponents was then taken as a
post-processing step to find the corresponding real world value generated.

The estimator’s first layer featured two fully connected layers; one for the input to G and one
for the output of G. The second layer took the linear combination of these layers and computed a
single output value representing the mutual information estimate. The addition of the estimator in
WGAN-GPMI may be seen in Fig. ??.

Discriminator (D) Back-Propagation
s 1
l DLDSS ‘
Real Sample (s) Fully Connected Fully Connected G
BatchSizex — ® aAsB+C+Dx 128 128x1 | =

A+B+C+D —F

Fully Connected
128xA

Generator (G)

Fully Connected
128:B

Moise (2) Fully Connected Concat)
BatchSize x 64 64x128 < BJ:EPB“%E%‘ —

Fully Connected
128xC

Fully Connected
128xD

Back-Propagation

Estimator (E)

Fully Connected
A+B+C+Dx128

Fully Connected
128x1

Fig. 2. WGAN-GPMI Model Architecture: The Generator and Discriminator are left unmodified from the
WGAN-GP model

Analyzing Cyber Intrusion Alerts Synthesized by GANs ACM TMIS, April 12 2020, Special Issue

In both figures yellow boxes represent inputs to the network. The blue boxes represent weight
layers of the network which are updated via back-propagation. The concatenation box at the end
of the generator is a post processing step to form the aforementioned one hot encoded alert vector
from each of the feature outputs. Finally, the red boxes and lines represent feedback paths which
update network parameters during each step of training.

4 EXPERIMENTAL DESIGN AND VERACITY ANALYSIS

Training and testing of the CPTC dataset was broken up into four stages. First, a GAN was trained
to learn the distribution of the input data on a per target IP basis and emulate it. Then the JSD was
calculated for all feature combinations to quantify how well the GAN had learned to emulate the
dataset. Next, feature dependencies were analyzed by computing the Conditional Entropy for all
unique feature permutations. Finally, the number of output modes dropped for each model was
compared to show that the WGAN-GPMI model covered a larger percentage of the alert feature
domain. These results are also shown to highlight specific attacker behaviors captured by the
WGAN-GPMI models output which are lacking in WGAN-GP alerts.

Given that the proposed models were all fully connected, temporal dependencies between chains
of alert are not considered. If using CNN or RNN based models the above metrics would need
to be augmented with metrics which consider similarity between chains of alerts. Such metrics
fall outside of the scope of this work; we refer the reader to review graph theoretic metrics such
as longest common subsequence or transition matrix similarity if pursuing time-based feature
analysis.

4.1 CPTC Dataset & Preprocessing

The data used for these experiments comes from the National Collegiate Penetration Testing
Competition from 2017 and 2018. In 2017, teams were tasked with penetrating and exploiting
network vulnerabilities in a virtualized network managing election systems. In 2018 teams were
required to attack a multifaceted system handling autonomous cars; this included host based systems,
servers, and mobile assets such as cell phones running an app. Each team had around 9 hours to
scan, infiltrate the network, and exfiltrate information from the target. Both datasets provide a
unique opportunity for Machine Learning experimentation as they are completely comprised of
malicious actions as teams attempt to compromise the target network.

Prior to being input to the models as training data, significant preprocessing was performed.
This not only reduced the dimensionality of each of the features but also increased the contextual
utility of generated alerts. Though this data is unique to the competition it is worth noting that
the preprocessing described herein is applicable to any dataset consisting of NIDS alerts. For both
datasets four features were considered; Alert Signature, Destination Port, Source IP and Timestamps.
The usage of these features provided contextual information regarding what type of action took
place, where it originated from and targeted, and when it occurred.

The first preprocessing step applied to the data was the segmentation of alerts on a per-
Destination IP basis. This allowed individual models to be trained for each system on the network.
Additionally, data from all of the teams could be compounded, allowing more unique attacker
behaviors to be captured for each target. Segmentation on a per-target basis has several intuitive
benefits for analysis as well: First, it allows for different vulnerabilities to be highlighted on each
machine given commonly occurring alert features at that target. Secondly, it helps to remove noisy
alert influence from critical nodes in the network. For example, internet facing IPs may contain a
significant amount of scanning activity, drowning out exfiltration related alert features at nodes
further embedded in the network. Finally, the information extracted from alerts on a per target basis

ACM TMIS, April 12 2020, Special Issue Sweet and Moskal, et al.

is actionable, as network administrators can use commonly targeted services to modify network
settings at the given system to mitigate future attacks.

Next, the dimensionality of the destination port feature was reduced based off common service
categories run across a collection of ports provided by the Internet Assigned Numbers Authority [?
]. This reduction drops the number of unique values from 1516 destination ports to 69 destination
services for the CPTC’17 dataset across all the data. Contextually, this has the effect of indicating
what service is being targeted by attackers, rather than just knowing a specific port number. Herein
the processed Destination Ports are referred to as Destination Services. Additionally, this step can
easily be expanded or customized on a per network basis given individualized configuration of
services.

Finally, a set of simple statistical criterion were used to segment timestamps into bins. Traditional
modeling of cyber attacks use attack stages to segment actions into a series of contiguous stages
with dependencies on previous stages. The beginning of an attack may consist of reconnaissance
based actions, yielding information about which IP to target in later attack stages. It is the goal of
this preprocessing step to segment timestamps into discrete bins that capture these unique attack
stages. Following the methodology shown by Perry et al. [?], bins were generated by smoothing
the histogram timestamps and taking the first derivative to identify local minima and maxima. The
data were segmented into different bins at each extrema if they contained at least 10% of the total
data and consecutive events at the candidate point contained less than 0.5% of the total data. This
ruleset captured significantly different types of traffic in each bin while not splitting bursts of data
into multiple stages.

Tables ?? and ?? shows the number of unique values present for each target IP tested after
preprocessing the data for CPTC’17 and CPTC’18. Additionally a single character symbol is defined
for each feature in parenthesis for future analysis. We limit our research to the four IPs with the
greatest number of alerts from each competition dataset, however the number of models could be
scaled up to match the number of systems in the network, provided that each featured sufficient
data to train. Despite the significant increase in the number of alerts captured in the CPTC’18 data,
the number of unique features does not vary proportionally. This feature sparsity in addition to the
overarching data sparsity are two key challenges in Cyber Intrusion alert data.

Table 1. Number of Unique Feature Values for Assorted Target IPs from CPTC 17

Target Machine IP Address
10.0.0.100 10.0.0.27 10.0.0.22 10.0.99.143
Number of Alerts 3388 3186 2974 2182
Alert Signatures (A) 13 14 8 15
Destination Service (D) 10 9 7 12
Source IPs (S) 10 10 8 6
Timebins (T) 8 8 5 6

It is worth noting that if applied to real world attack data, segmenting Source IP by subnet could
provide useful context to the originator of the attack. However, given the limited scope of the
CPTC environments this processing was not applied here. Additionally a well planned or socially
engineered attack which looked like normal behavior within the network could be completed
without generating any alerts. These shortcomings remain outstanding challenges of NIDS as a
whole and fall outside the scope of this work.

Analyzing Cyber Intrusion Alerts Synthesized by GANs ACM TMIS, April 12 2020, Special Issue

Table 2. Number of Unique Feature Values for Assorted Target IPs from CPTC’18

Target Machine IP Address
10.0.1.46 10.0.1.5 10.0.0.24 10.0.0.22
Number of Alerts 9861 8695 7996 7475
Alert Signatures (A) 13 10 10 8
Destination Service (D) 14 9 10 8
Source IPs (S) 8 7 8 5
Timebins (T) 15 12 6 6

4.2 Jensen Shannon Divergence

Several statistical metrics were considered for the comparison of generated and training data
alerts. These included Kullback Leibler Divergence (KLD) and Jensen Shannon Divergence (JSD).
Additionally, combinations of features were considered in both the training data and generated
datasets. For example, the divergence of all possible combinations of values for Alert Signature
and Destination Service is one class of combinations. The divergence of these combinations of
features was taken by representing feature combinations as joint distributions; Herein, the number
of features included in each distribution is referred to as an m-tuple. The JSD of varying m-tuple
distributions were then reviewed to judge the quality of data synthesized by each model compared
to the training data used for training.

Output mode collapse, a key challenge for GANs, occurs when G begins to output a single value
repetitiously. This is especially challenging with imbalanced datasets such as CPTC, as learning to
emulate only the most probable attack action could still yield a distribution that appears similar
to the training data. To counter this, a non-linear comparison needs to be made between the two
distributions.

KLD, given in (??), was considered as a candidate given that it incurs an exponential penalty for
failing to represent output modes. However, the KL Divergence is zero intolerant and asymmetric.
This would require special handling of null outputs as well as a defined convention of which
probability distribution is considered P and which is given by Q.

Dri(PlQ) = - 3" Pl log, 22 @
xeX (x)

The JSD, given in (??), was then considered. It is both zero tolerant and symmetric while main-
taining the penalty for failing to accurately represent the training data probability distribution.
Additionally by using a base 2 logarithm for each term in the JSD it is naturally bounded between
0 and 1, with all attributes measured in bits. Intuitively, the JSD for comparing generated results
to training data samples can be thought of how much additional information needs to be learned
by the GAN model in order to perfectly emulate the training dataset; when the divergence is
high a large amount of information needs to be learned. When it is low, only a small discrepancy
exists. These attributes make JSD an excellent metric for the comparison of high fidelity synthetic
distributions to their training data counterparts. Furthermore, JSD has been analyzed as a part of
the basic modeling of GAN’s since their inception in [?].

M(P,0) = 2(P+0) ©)

Dys(PlIQ) = 5 (Dxe(PIIM) + Dxr (QI1M) ©

ACM TMIS, April 12 2020, Special Issue Sweet and Moskal, et al.

4.3 Dependencies within Alert Features

To confirm that the models correctly learned feature dependencies from the training data the
Conditional Entropy was computed. The previous m-tuple notation was extended to include a
conditional equivalent, Y|X-tuples, which define a single feature Y given a vector of features X. The
Conditional Entropy of Y|xy, xz, ..., X, is given in (??) and was computed for both the generated
and training data. In this equation the weight term py., y, ... x,, represents the probability of the
input conditioning values occurring. This weighting enables a single Conditional Entropy score to
be given for each m-tuple combination, even though the Joint Entropy may vary depending on the
value of x1, x2, ..., Xm.

HY|x1,x2 ----- Xm = Z (pxl,xz ,,,,, X ¥ _Z (Pylxl,xz ----- X ¥ log(Pylxl,xz ----- xm))) (7)

yey

This score was then normalized in (??) by dividing the weighted entropy by the entropy max-
imizing distribution for a discrete dataset with finite support; the uniform distribution U with
cardinality equivalent to the number of unique elements in the feature value Y being considered.
Note that this uses the cardinality of Y from the generated distribution, not the cardinality from the
training data Y distribution. Using this metric, entropy values close to 0 indicated that a given input
resulted in a particular output with near determinism. Entropy values of 1 indicated that given a
particular input condition all outputs are equally probable. By normalizing the Conditional Entropy,
varying Target IPs may be compared directly despite having different feature distributions. Most
importantly, comparing the normalized Conditional Entropy of the training data and generated data
provide a numerical means to evaluate how well the GAN learned to mimic feature interactions
seen in various attacks in the training data.

— H
_ Y\I)i},xg,..l,xm (8)

(Uy)

Similarly, the Joint Entropy was computed for all m-tuples using (??). This metric provides
a baseline for analyzing the results of the normalized Conditional Entropy by illustrating the
randomness of the data if feature dependence is not considered. Additionally, the relationship
between JSD and Joint Entropy is considered to demonstrate how additional randomness in the
distributions correlates to additional divergence in output distributions.

H(x1, X2y o0y X)) = — Z Px1, X2, ..oy Xm) * log (p(x1, X2, ey Xm)) 9)

By computing conditional and Joint Entropy the ability of GANs to learn latent interactions in the
training data despite no explicit requirement to do so is demonstrated. These interactions are directly
related to the attack actions taken, providing insight into attacker behavior and dependencies
within an attack.

4.4 Output Modes and Attack Stages

Finally, the purpose of adding in the mutual information constrained model (WGAN-GPMI) was
to palliate mode dropping. In order to evaluate this, a two step analysis process was employed.
First, the number of output modes dropped for all feature combinations was collected. Then, to
provide a result with direct contextual meaning to cybersecurity, the generated alerts were mapped
to attack stages to show that WGAN-GPMI is capable of synthesizing alerts pertaining to more
unique attack stages than the WGAN-GP model is. Furthermore these attack stages occurred with
probabilities far closer to that of the training data, even when dealing with sparse feature values.

10

Analyzing Cyber Intrusion Alerts Synthesized by GANs ACM TMIS, April 12 2020, Special Issue

Following the work in [?], we define the attack stages based off the type of actions taken, such
as reconnaissance and data exfiltration. Alert attributes such as category or signature gives the
inclination of attack type; however, the category is an arbitrary high-level description of the attack
type that may not accurately represent the outcome of the action whereas the signature may be at
too fine of a granularity to depict the attack behavior. Thus, this work also assesses the synthetically
generated alerts by mapping the alert signatures to generalized attack stages based off the objective
and outcome described in the signature description.

Using this mapping we can see if GANSs captured latent attacker behaviors within the dataset
even when they failed to output specific alert signatures that occurred explicitly in the dataset. Addi-
tionally, the output domain coverage for each model is shown to compare the model’s performance
on fine grained generation to that of the attack action distribution.

5 ANALYSIS AND FINDINGS

Each model used was trained using individualized hyper-parameter settings. After training each
model was tested using the proposed metrics in Sections ??, ??, and ??.

Section ?? covers the tuning of these hyper-parameters. Additionally, the fundamental structure
of the CPTC’17 and CPTC’18 data are used to formulate a set of criterion for application to other
datasets. Sections ?? through ?? cover the application and analysis of the proposed metrics.

5.1 Hyperparamter Tuning and Training Considerations

Following the work in [?], an exhaustive hyperparameter sweep was performed for both WGAN-GP
and WGAN-GPMI models to find the values which resulted in optimal results across all m-tuples
of features. Table ?? illustrates the range of values swept over for the initial search performed on
CPTC’17 data. From this sweep the parameters were then tested against the CPTC’18 data. Output
mode collapse was then observed for the WGAN-GPM], resulting in the need for an increased
lambda value to help regularize the gradients of the Discriminator. Additionally, it was found
empirically that increasing the number of epochs for the WGAN-GPMI model to 300 resulted in
improved results across all m-tuples.

Table 3. Candidate Parameters for WGAN-GP and WGAN-GPMI

WGAN-GP Parameters WGAN-GPMI Parameters
Lambda 0.05 0.1 0.2 0.2 03 04
Batch Size 10 25 50 100 150 50 100
Learning Rate 5e-5 5e-4 le-3 5e-5 1le-4 5e-4 1le-3
Hidden Dimension | 128 256 384 64 128 256
Epochs 100 150 200 150 200 250
Number of Unique Combinations \ 405 216

Ultimately this parameter search resulted in the following hyper-parameter settings: The WGAN-
GP model was trained for a total of 200 epochs, while the WGAN-GPMI model was trained for 300
epochs. The lambda value was set to 0.1 and 1.0 for the CPTC’17 and CPTC 18 data respectively. All
other hyperparameter values were held constant for both models. Batch_size was set to 100, and
the hidden_dimension was set to 128. The parameters of the ADAM optimizer also followed the
work performed in [?]. The learning_rate was set to 5e — 5 with f; = 0.5 and S, = 0.8. Finally, the
entirety of the alerts collected for each target IP were used in training, as there is no separation of
training and test sets in unsupervised models. For each target IP, the disciminator had it’s weights
updated 5 times for each time the generator’s weights were. Given that each target contained a

11

ACM TMIS, April 12 2020, Special Issue Sweet and Moskal, et al.

different number of alerts in the training dataset, the overall number of updates each network went
through was variable.

By forcing all models trained on a given CPTC dataset to use the same hyperparameters, we
demonstrate that the proposed models are able to generalize their output. Concisely, a single set of
hyperparameter values is suitable to the generation of a wide variety of alert structures, across a
variety of targets IPs. Treating the two datasets as separate experiments is a critical test of model
generalizability, as performing an exhaustive hyperparameter search for all systems in a network
would quickly become infeasible.

When training on an Intel Core i7 4558U running at 2.8 Ghz with 8 GB of RAM and no GPU, it
took an average of 10 minutes to train with an average of 7626 alerts as the training set. Training
times are hindered primarily by the difficulty of training unsupervised models, such as WGAN-
GPMI, which have loss functions that oscillate as the Generator, Discriminator, and Estimator
compete. Despite this, the training times for these models are low compared to other works in the
field of Deep Learning where training time may be on the order of hours or days. The relatively
small number of alerts required to train and use of fully connected networks was a driving factor of
this speed, however came at a cost; temporal dependencies were not directly learned by the models.
Moving to models such as LSTM that do model temporal dependencies would greatly increase the
amount of time required to train each model.

Upon completion of training, alert synthesis was shown to be quick. Using an average taken
over 100 sample dataset generations, with cardinality equal to the respective training dataset, it
took 0.0092 seconds to synthesize a new set of alerts for a given target. These tests were performed
using the same hardware as described above. Given the speed of model evaluation, it is the amount
of time and data required for training that hinder the ability to scale these models to generating
alerts for the entirety of a network. Superior hardware, such as GPU acceleration and specialized
Tensor Processing Units, offer solutions to the time required for training.

To address the question of how much data is required for training, we consider the criterion
for applying these models to other Cyber Intrusion Alert datasets. Given that a neural network
acts as an approximator of high-order non-linear functions, no specific distribution is required
in the training data. The current models assume that only 4 features of each alert are used for
training and generation; Alert Signature, Source IP, Destination Port, and Timestamp. In order
to scale these models to include other alert features an additional fully connected layer would be
required mapping the last hidden layer of the generator to an output. Also, the cardinality of each
alert feature when one hot encoded must be known in order to provide an output vector with size
great enough to map each possible output value for the given feature.

The work presented here demonstrates that a relatively small number of alerts is required to
learn intricate feature dependencies from sparse data. In the alerts derived from CPTC’17, around
3000 alerts were included for training a WGAN-GPMI model on each Target IP. Despite this, our
metrics show that the models are able to learn the latent structure of the alerts. Determining a
definitive lower bound for data sufficiency with respect to training GANs remains an open problem.
However, empirical study from [?], show that unique samples that occurred less than 100 times
were rarely generated, even when implementing WGAN-GPMI. Thus datasets which are sparse to
the point that most feature combinations have less than 100 unique instances are prone to poor
results. Historically, insufficient training of GAN based models results in output mode collapse
or noisy outputs, which have no semantic meaning, dominating output. Additionally, in order to
scale these models to large-scale, real world networks, a large corpus of data representative of
numerous attack vectors must be obtained for each system. Outside of ethical hacking in the form
of penetration tests and actual attacks on the network, such datasets do not exist.

12

Analyzing Cyber Intrusion Alerts Synthesized by GANs ACM TMIS, April 12 2020, Special Issue

5.2 Jensen Shannon Divergence

The quality of data generated using WGAN-GP and WGAN-GPMI models were assessed using the
JSD metric discussed in Section ??. Intrusion alerts targeting a total of eight machines were used as
discussed in Section ??. Each case was run 1000 times to determine the standard deviation of JSD.
Table ?? shows the JSD values and their standard deviations for each m-tuple and each target from
CPTC’17 and CPTC’18. Each table is oriented with the results from WGAN-GP on the left and the
results from WGAN-GPMI on the right. By comparing corresponding values for each model and
bolding the entry that is closest to 0, it is readily apparent that WGAN-GPMI learns to synthesize
data which diverges less from the training dataset.

First, note that both WGAN-GP and WGAN-GPMI achieved reasonably good performance,
even when considering the combination of all 4 feature values; When trained on CPTC’17 data,
samples from the WGAN-GP model did not exceed 0.28 bits while the WGAN-GPMI samples did
not exceed a divergence of 0.26 bits; similarly the CPTC’18 data shows improvements when using
the WGAN-GPMI model and a maximum divergence of 0.2501 bits. Secondly, note that for many of
the IPs tested the Mutual Information constraint in the WGAN-GPMI model is able to decrease
the amount of divergence between the generated and training data samples. This is a result of the
model learning a probability distribution which is closer to that of the training data.

It is interesting to note that the effect of the mutual information constraint varies from target
IP to target IP. For Target IP 10.0.0.22 from CPTC’18 saw an increase in the divergence when
using the WGAN-GPMI model. On the other hand, Target IP 10.0.0.27 saw a large benefit from
using the mutual information constraint. Palliating mode dropping is directly related to decreasing
histogram divergence in many cases because it distributes output sample entropy across more
output values than standard GAN models do when exhibiting mode dropping. Recall that the JSD is
a non-linear distance metric where outputting all modes with some probability is more important
than outputting the most probable mode with excessively high probability.

Another interesting result of Table ?? is that the JSD is that low divergence in a single feature
does not guarantee low divergence in all joint distributions that feature is a part of. Consider the
divergence of Timestamp (T) on target IP 10.0.0.22. This feature has a low JSD of 0.0561, potentially
leading to the fallacious expectation that any combination with T will also be low. However, When
moving to testing 2-tuple combinations such as Timestamp (T) + Source IP (S) the divergence more
than doubles.

Overall, the JSD demonstrates that both models learned an approximate representation of each
Target IP’s alerts. The JSD never exceeded 0.275 bits compared to the upper bound of 1 bit for
maximally diverging distributions. Additionally, the models showed consistency in their outputs as
the standard deviation of divergences was low; never exceeding 0.0040 bits.

5.3 Dependencies within Alert Features

In order to further validate the output feature distributions learned by each model, feature depen-
dencies in the training data were analyzed and confirmed to exist in the generated alerts. This was
accomplished using the normalized Conditional Entropy and Joint Entropy introduced in Section
??

Conditional entropy was computed for all target IPs from the CPTC’17 dataset, across all potential
Y|X feature-tuples. These results are shown in Table ??. By computing the Conditional Entropy
in Table ?? it is apparent that the WGAN-GPMI model closely imitates the dependencies of the
training data. In fact, several of the small valued m-tuples such as A|T, T|D, and DI|S,T all have
identical Conditional Entropy values to the training data distribution. These values, as well as those
within within 10% of the training data entropy value, are bolded for clarity. These cases illustrate

13

Sweet and Moskal, et al.

ACM TMIS, April 12 2020, Special Issue

Table 4. Jensen Shannon Divergence for all Feature Combinations: (TOP) CPTC’17 (BOTTOM) CPTC’18

6200°0 F ¥9¢1°0 0€00°0 F 04L21°0 | €€00°0 F ¥SIZ'0 | 6€00°0 F 10520 L200°0 + €650°0 | ¥200°0 + OCIT'0 | 2€00°0 F 04220 0%00°0 F $2L20 | L'A‘S'V
8200°0 F 2901°0 6200°0 F #8TT°0 | L2000 F STLL'0 | 9€00°0 + SLZZ'0 9200°0 ¥ €950°0 | €200°0 F L60L°0 | 82000 F S68T°0 8¢00°0 + €0S2°0 ras
6200°0 + L660°0 1€00°0 + 68500 | S200°0 + 99€1°0 | S€00°0 + CIVI'0 G200°0 + 89€0°0 | LI00°0 + ¥€S0°0 | S200°0 F82ST'0 ¢€00°0 F 9SLT°0 rawv
1€00°0 F 90TT°0 0€00°0 F €12T°0 | 0€00°0 + GL8T°0 | €€00°0 + 2CIZ0 G200°0 ¥ 67500 | 8T00°0 F 9LIT'0 | €200°0 F 00220 0€00°0 + ¥6S¢°0 as‘v
0€00°0 + ¥S01°0 | 9200°0 + YIL0°0 | 62000 F 6€€L°'0 | 8€00°0 + SOVL'0 9200°0 + 8%¥0°0 | ¥200°0 + €080°0 6200°0 F 68%1°0 9¢00°0 + €€LT°0 I's'V
G200°0 F L¥90°0 | 9200°0 + SS¥0°0 | 92000 F Z¥80°0 | L2000 F 1S60°0 €200°0 ¥ ST€0°0 | €100°0 F 60500 | LL00°0 F ¥LLO'O | €200°0 F IS¥I'0 av
€200°0 + €190°0 | €200°0 F 6090°0 | S200°0 + LLLL'0 | ¥200°0 + SL60°0 0200°0 ¥ 60€0°0 | L1000+ 8T1L00 €200°0 F 06%1°0 92000 + 0I¥1°0 IS
9200°0 + 05900 | ¥200°0 + 8850°0 | 6200°0 + S€90°0 | 9200°0 + ¥860°0 0200°0 + ¢¥€0°0 | STI00°0 +28L0°0 6100°0 + LS80°0 L2000 + LZPT°0 r'a
#2000 F G6L0°0 | €200°0 + L8F¥0°0 | ¢200°0 + ¥2OL'0 | 8200°0 F L¥60°0 0200°0 + 91€0°0 | L1000 F €2S0°0 ¥100°0 * I¥¥1°0 9200°0 F+ L9ST°0 a‘s
22000 F 88L0°0 62000 F S¥€0°0 | 2200°0 + S080°0 | ¥200°0 + 9080°0 2200°0 ¥ $L20°0 | L1000 F €1€0°0 | 61000 F #7600 92000 + 80110 SV
12000 + 61800 | 6100°0 + 6190°0 | T200°0 F €960°0 | £€200°0 F LL60°0 €200°0 + 86€0°0 | 9T00°0 F 96400 0200°0 + 66¢1°0 9200°0 + 82ST°0 Lv
GT00°0 + 61200 | PI00°0 F L¥I0°0 | ITO0°0 + STE€0°0 | €100°0 + 8€20°0 $100°0 + ¥CI0°0 | ¢I100°0 + €810°0 21000 F I¥%0°0 ¥100°0 + 8LL0O°0 L
L100°0 + 82¢€0°0 | 6000°0 + 9610°0 | 6000°0 + ¥920°0 | Y1000 + 16€0°0 $100°0 + €S10°0 | ¢100°0 + 26200 9000°0 + 1120°0 L100°0 + 91800 S
¢100°0 F 66200 | €T00°0 F 0420°0 | ¥L00°0 F LST0°0 | LT00°0 F LOE0O'0 GT00°0 + Z¥I0°0 | 9000°0 F €8%0°0 11000 F 1290°0 9100°0 + L¥S0°0 a
¢100°0 ¥ ¢S¥0°0 | T100°0 + ¥120°0 | OT00°0 + 88€0°0 | LT00°0 + €0¥0°0 L100°0 + 2020°0 | 0100°0 F 10€0°0 80000 F 25800 81000 + ¥580°0 \4
¢cooor ¥2°0°0°01 ST°0°01 97°'1°0°01 2¢C’0°0°01 ¥2'0°0°0L S1°0°01 97°'1°0°01 Soanjeod,q
INdO-NVOM dO-NVOM
(sassaIppVy JI) sduryoey 1981e], 81, 1.0dD
=
0€00°0 F €952°0 | L£00°0 F €9S1°0 | S200°0 + 868L°0 | 8200°0 F LSTT0 6200°0 ¥ 06€2°0 | 82000 F 62L1°0 9200°0 F 65L2°0 2€00°0 ¥ 26220 | L'A'S'V
¢200°0 + 6522°0 | S€00°0 F 66¥L°0 | €200°0 + LILL'0 | ¥200°0 + OVLL°0 92000 + ¥€12°0 ¢c00°0 + ¢2LT'0 $200°0 + 81920 6200°0 F L6LT°0 r‘ass
$200°0 + 86S1°0 | 2€00°0 + L180°0 | SC00°0 F LI¥L'0 | L200°0 F ¥SSL°0 ¥200°0 F ¥802°0 ¥200°0 F ¥€21°0 €200°0 F 91220 0€00°0 + €LST°0 ra‘yv
$200°0 F 67€C°0 | 6200°0 + ¢CST'0 | L200°0 F LZLT°0 | 920070 F 9S61°0 $200°0 F €622°0 1200°0 F €TLT0 6100°0 F 6992°0 | L2000 F ¥S61°0 assv
G6200°0 F T9€1°0 | 1€00°0 + €990°0 | 0200°0 + Z8¥L°0 | L2000 + 89%1°0 £€200°0 F 8LLT'0 0200°0 * 6€IT°0 12000 F #922°0 | 6200°0 + 6€€L°0 A
€200°0 F PIOL'0 | S200°0 + €2L0°0 | LT00°0 + 9€21°0 | €200°0 + ¥260°0 6T00°0 F LELTO 8100°0 F+ 82210 0200°0 F+ L2120 9200°0 + 67600 a‘'v
0200°0 = ¥¥S0°0 | L200°0 + IS80°0 | 9T00°0 + ¥880°0 | 9200°0 F 0590°0 02000 + 6LIT°0 ¢100°0 + 80€T°0 $200°0 + 2991°0 | S200°0 + 9LS0°0 IS
6100°0 F ¥¥L0°0 | €200°0 F €850°0 | ST00°0 + ISIL'0 | #2000 F 65900 1200°0 ¥ LEOT'0 €100°0 F 61TT°0 ¢200°0 F L9610 | L200°0 * ¥¥S0°0 ra
¥200°0 F 6421°0 | €200°0 + 92L0°0 | LI00°0 + €I21°0 | 0200°0 F I9T1°0 0200°0 F 9L61°0 ¥100°0 F ¢611°0 6100°0 + 62120 L2000 + 8LIT0 ass
1200°0 + 8%60°0 | €200°0 + LI1€0°0 | 9T00°0 + S960°0 | 02000 F S¥60°0 8100°0 + 26S1°0 ¥100°0 F ¥LL0°0 0200°0 + 00S1°0 | SC00°0 + S280°0 SV
0200°0 F S€0T°0 | ¢200°0 F 95S0°0 | ¥100°0 + 0SCL'0 | 61000 F 910T°0 9100°0 F 80S1°0 0100°0 F 610T°0 0200°0 + 9€12°0 | 0200°0 + ¥880°0 LV
9100°0 + 8¢20°0 | L1000 + 0020°0 | €100°0 F ¥1S0°0 | [100°0 F ¥020°0 ¢100°0 + 9060°0 0T00°0 F 9LL0°0 8100°0 + €0¥1°0 | TT00°0 + ¥610°0 L
€100°0 + 6£€0°0 | 8T00°0 + €120°0 | 0T00°0 F 66900 | #1000 F 10€0°0 ¥100°0 + 6¥80°0 01000 F+ SSL00 6100°0 F 2S€1°0 | 9T00°0 + I810°0 S
$100°0 + €220°0 | 2100°0 + S0€0°0 | OT00°0 + ZIT0°0 | €100°0 F 6€20°0 €100°0 F 9¢20°0 60000 F 92L0°0 ¥100°0 + 1200 | €100°0 + YIT0°0 a
6000°0 + 2¥S0°0 | ¥100°0 + 2€20°0 | 60000 F £€0L0°0 | ST100°0 F ¥0¥0°0 0T00°0 F L9€T°0 £000°0 F+ 1950°0 91000 F 8LET'0 | CL00°0 F €1€0°0 \4
€V1°66°0°01 2¢C’0°0°01 L2°0°0°01 001°0°0°0T €V1L°66°0°01 ¢c’0°0°01 L2'0°0°01 001°0°0°0T saanjes,|
INdO-NVOM dO-NVOM

Awommvhmvmv< AHHV SouIYyoIeIN “—Qw.ﬁﬂ,ﬁ LI, LOdD

Analyzing Cyber Intrusion Alerts Synthesized by GANs ACM TMIS, April 12 2020, Special Issue

the ability of WGAN-GPMI to learn feature important dependencies between individual features
despite never receiving specific reinforcement of these dependencies. Additionally it is significant
that data generative models learn dependencies such as these as it reflects the attacker behaviors
seen in the training data.

Table 5. CPTC’17: Normalized Conditional Entropy Values for all target IPs: WGAN-GPMI Result

Target Machine IP Address
Training Data Results Generated Results
Features | 10.0.0.100 | 10.0.0.27 | 10.0.0.22 | 10.0.99.143 10.0.0.100 | 10.0.0.27 | 10.0.0.22 | 10.0.99.143
A|T 0.244 0.238 0.153 0.333 0.244 0.238 0.153 0.334
T|S 0.593 0.463 0.515 0.695 0.593 0.463 0.516 0.695
TIA 0.330 0.339 0.695 0.246 0.330 0.339 0.695 0.246
S|T 0.262 0.252 0.263 0.405 0.263 0.186 0.252 0.406
S|A 0.800 0.752 0.831 0.711 0.229 0.239 0.526 0.222
D|S 0.346 0.445 0.253 0.278 0.509 0.385 0.207 0.558
AD 0.080 0.222 0.070 0.288 0.149 0.026 0.007 0.097
T|D 0.479 0.346 0.655 0.383 0.479 0.346 0.655 0.383
D|T 0.287 0.234 0.152 0.379 0.287 0.234 0.152 0.379
AlS 0.346 0.385 0.271 0.475 0.403 0.376 0.214 0.543
S|D 0.822 0.779 0.856 0.785 0.436 0.260 0.474 0.301
D|A 0.006 0.246 0.006 0.016 0.055 0.009 0.048 0.000
S|A,D 0.799 0.747 0.829 0.705 0.228 0.226 0.474 0.222
D|S,T 0.171 0.118 0.013 0.149 0.171 0.118 0.013 0.149
S|D,T 0.107 0.025 0.101 0.024 0.107 0.025 0.101 0.024
T|A,D 0.316 0.335 0.650 0.246 0.316 0.335 0.650 0.246
A|S,D 0.069 0.206 0.056 0.245 0.018 0.003 0.007 0.055
AlS,T 0.131 0.117 0.013 0.130 0.112 0.117 0.013 0.131
A|D,T 0.038 0.018 0.001 0.004 0.038 0.018 0.001 0.004
D|A,S 0.005 0.243 0.005 0.012 0.054 0.000 0.000 0.000
T|S,D 0.393 0.340 0.587 0.348 0.176 0.144 0.334 0.170
D|AT 0.004 0.238 0.003 0.007 0.044 0.006 0.000 0.000
S|A,T 0.211 0.178 0.100 0.228 0.055 0.012 0.100 0.019
T|A,S 0.365 0.312 0.561 0.302 0.170 0.144 0.328 0.089
AlS,D,T 0.041 0.172 0.028 0.195 0.005 0.003 0.000 0.001
D|AS,T 0.002 0.232 0.002 0.004 0.044 0.000 0.000 0.000
T|A,D,S 0.209 0.167 0.498 0.222 0.157 0.144 0.328 0.089
S|A,T,D 0.362 0.302 0.558 0.294 0.055 0.004 0.100 0.019

The Conditional Entropy for samples from CPTC’18 were also computed as shown in Table ??.

The same criteria for bolding values within 10% of the training data values was applied. Note that
there are far fewer samples which meet this criteria in CPTC’18 data. One explanation for this is that
the constraints which inhibit the WGAN-GPMI model from output mode collapse actually prevent
the network from modeling the true distribution of the training data. Several Y|X3, X, ..., X, in
the training data have a Conditional Entropy below the three decimal places used. These samples
include D|A, D|A, S, D|A, T, and D|A, S, T for all but Target 10.0.1.46. Additionally, combinations
such as A|S, D, A|D, T, and A|D, S, T also exhibit very low entropy across each of the targets. These
samples illustrate the tight coupling between Alert Signature and the Destination Service being
targeted by the attackers in CPTC’18.

In order to better understand the relationship between randomness in each feature distribution
and the model’s ability to synthesize realistic data, the JSD was plotted against the Joint Entropy

15

ACM TMIS, April 12 2020, Special Issue Sweet and Moskal, et al.

Table 6. CPTC’18: Normalized Conditional Entropy Values for all target IPs: WGAN-GPMI Result

Target Machine IP Address
training data Results Generated Results
Features | 10.0.1.46 | 10.0.1.5 | 10.0.0.24 | 10.0.0.22 10.0.1.46 | 10.0.1.5 | 10.0.0.24 | 10.0.0.22
A|T 0.287 0.175 0.265 0.151 0.412 0.371 0.304 0.209
T|S 0.303 0.355 0.321 0.231 0.479 0.565 0.343 0.297
T|A 0.317 0.395 0.169 0.113 0.518 0.628 0.196 0.254
S|IT 0.334 0.246 0.367 0.171 0.495 0.399 0.375 0.225
S|A 0.272 0.350 0.223 0.135 0.452 0.529 0.256 0.252
DI|S 0.270 0.234 0.249 0.223 0.395 0.533 0.317 0.307
AD 0.091 0.274 0.005 0.069 0.202 0.460 0.069 0.157
T|D 0.346 0.681 0.176 0.216 0.525 0.810 0.195 0.281
D|T 0.307 0.153 0.283 0.164 0.448 0.445 0.307 0.230
AlS 0.221 0.235 0.238 0.205 0.337 0.443 0.317 0.271
S|D 0.336 0.618 0.223 0.238 0.486 0.690 0.253 0.293
D|A 0.062 0.000 0.000 0.000 0.212 0.257 0.073 0.147
S|A,D 0.236 0.350 0.223 0.135 0.411 0.522 0.243 0.223
DIS,T 0.043 0.063 0.013 0.076 0.305 0.420 0.155 0.183
S|D,T 0.070 0.160 0.115 0.049 0.358 0.385 0.223 0.173
T|A,D 0.248 0.394 0.169 0.113 0.461 0.618 0.182 0.215
A|S,D 0.002 0.040 0.005 0.001 0.130 0.280 0.059 0.099
AlS,T 0.040 0.054 0.012 0.070 0.257 0.313 0.153 0.158
A|D,T 0.0121 0.048 0.000 0.000 0.146 0.255 0.057 0.010
D|A,S 0.026 0.000 0.000 0.000 0.169 0.244 0.059 0.121
T|S,D 0.052 0.174 0.036 0.027 0.383 0.505 0.162 0.173
DI|A,T 0.000 0.000 0.000 0.000 0.158 0.238 0.061 0.107
S|A,T 0.058 0.107 0.115 0.049 0.334 0.344 0.225 0.164
T|A,S 0.080 0.125 0.030 0.027 0.387 0.443 0.160 0.175
A|S,D,T 0.001 0.002 0.000 0.000 0.103 0.205 0.049 0.077
D|A,S,T 0.000 0.000 0.000 0.000 0.137 0.227 0.050 0.095
T|A,S,D 0.051 0.125 0.030 0.027 0.352 0.435 0.150 0.149
S|A,D,T 0.057 0.107 0.115 0.049 0.313 0.339 0.214 0.150

for each Target IP in Fig. ??. As the number of features in each m-tuple increased, so did the Joint
Entropy of the resultant joint distribution. This is due to Joint Entropy being additive when not
considering feature dependencies. As the Joint Entropy for each distribution rose, so did the JSD
between the training data and generated results. This positive correlation occurs as there is more
information for the GAN models to learn in order to accurately synthesize alerts from distributions
with a higher amount of entropy. Despite this, the JSD never exceeds a value of 0.275 bits even as
the Joint Entropy for each Target reaches it’s maximum when considering 4-tuple combinations.

5.4 Output Modes and Attack Stages

Finally, to assess output modes captured by each model, we examine the number of output modes
dropped or added by WGAN-GPMIL. This was done by looking at all the unique alert feature
combinations across A/D/S/T values that existed in the training dataset versus those existing in the
generated dataset. These sets of unique values were compared to see which modes were dropped,
which were covered, and which existed in the generated set but not the training data set. We refer
to these values as Dropped, Covered, and Noisy respectively.

16

Analyzing Cyber Intrusion Alerts Synthesized by GANs ACM TMIS, April 12 2020, Special Issue

e 17:10.0.0.100 .

9025 .
o) 17:10.0.0.27 .
~ . L4
o « 17:10.0.0.22 .
% 0201 « 17:10.0.99.143 .
o . 18:10.0.1.46 .
g | - 18:10.0.1.5 e .
2 0.15 ki
&) 18:10.0.0.24 . o
S - 18:10.0.0.22 : -
E 0.101 '”. o MR . 8e®
[(v] .
< 'Y o® K 1]
0 o N :- .
@ 0.05/ . e
wn o o .
c s * ° o ° L
2‘ o o M ep® . .
0097 0.5 1.0 15 2.0 255 3.0

Joint Entropy (bits)

Fig. 3. CPTC’17 and CPTC’18 Targets: Jensen Shannon Divergence is positively correlated with Joint Entropy
of the feature distribution.

The top portion of Table ?? shows the number of Dropped and Noisy outputs for each GAN
model when trained on CPTC’17 data. The bottom four rows show the number of alerts, the number
of unique 4-feature combinations, % of output modes dropped, and ratio of noisy outputs to outputs
within the domain of the training data. Note that this table shows the direct benefit of mutual
information maximization, as the number of output modes missed by the model decreases across
the board for the WGAN-GPMI model. Some of the target IPs learn more output modes than others
when moving to the WGAN-GPMI model; 10.0.0.100, as well as 10.0.0.22, halve the number of
output modes dropped. On the other hand, 10.0.0.27 and 10.0.99.143 only see a minor improvement
when adding in the mutual information constraint. These IPs instead see a large decrease in the
number of noisy output modes when used for training the WGAN-GPMI model instead of the
WGAN-GP model. It’s also important to note that these output modes aren’t inherently wrong
since the individual feature value do exist in the training dataset. However, there should be no
gradient feedback to encourage the generation of these combinations of feature values since they
don’t occur in the training dataset for these targets.

The bottom portion of Table ?? shows the equivalent information for each generative model
trained on the CPTC’18 data. Interestingly for all but target IP 10.0.0.22 the inverse relationship
between Dropped and Noisy output modes holds true. Target IP 10.0.1.5 sees no change in the
number of output modes dropped but does see an increase in noisy outputs. Despite these two
IPs, Table ?? still showed a decrease in the divergence between the training data and generated
histograms for the WGAN-GPMI model in 3 out of the 4 Target IPs from CPTC’18. This points
to WGAN-GPMI model learning to output alerts with probabilities much closer to those of the
training data distribution.

One method to demonstrate this would be to view the percent of alerts generated that are within
the training data compared to the percentage of alerts generated that are not. Viewing the alert
distribution at this macro scale could be thought of as a means to view the power of the noisy alerts.
Even if the generator synthesizes a large number of alert modes which do not exist in the training
data distribution those modes would have a low power if they occur rarely.

17

ACM TMIS, April 12 2020, Special Issue Sweet and Moskal, et al.

Table 7. Output Modes Dropped and Noisy Outputs: (TOP) CPTC’17 (BOTTOM) CPTC’18

o
3 3
Ra) o
N = 1 ~
N oo e S (2| X~
NS Qv =1k 3 -
< S © = S
—
S
N <+
- Fel =3 N
o~
Eo-ov o 2 EO.QL,-, NI
(== — S |~ [a\}
Q‘O‘ PR &o- PRI
3x ao En ;
o - N
(= 0 X o —
gcgi a0 gogi R
o = N=)
g s : s
12}
1]
(=
9] -]
S
g I 8g Il o
a1 o || — 8 18| n o
< g5 7 S |8 23
o S S @ = S —
— — —
o
=t
o=
=
Q o
ER 3
< o N
N S © o n
D (=] o~
s SlF[c|E55% S|« |§a85
@ g ™ IS P ™ o«
«< S -
= -
N <
N — N N
N <t o 0 . — <+ 9
S| >~ N w Sla oo & e}
(jo N Qo. [oN :
7 S S 7 S S
z = —
<
[N O n
gqm NS B I 3"2 9D 29
SlR|w||e 5w 2 sl ||l = 7 S
S N[~ N » S| o ¢ D
s el o © =) =] s
—
—
S
\-)
=]
= o 82 3 w9y
S| |—||0 & » 2 TR 0 = ®
g N[v o N =] <+ N
o | I3a) T — ~ <
d (=) (=) o
—
—
a=1 2=}
»n Y »
Q L
» - "894 @ - "gﬁn
Llo|@ an Llo|@ EEO
=w9~ a-s =V)Q.4 as
Slel8l,258 £88logs2
5|z|2]g 28 = 5|z|2]g 28 =
e QllE = Q o QllE = Q
2 E2 .2 2ES 2
<95 =73 <5 =13
X Z # # X Z

Figure ?? shows these output mode distributions as a series of bar graphs for two target IPs
from both CPTC’17 and CPTC’18. The bars marked "Coverage" show the number of unique alert
combinations (modes) that fall into each category. The bars marked "Distribution” show the
percentage of alerts from the generated distribution belonging to each category. Across all of the
distributions there are significantly more noisy alert modes than those which occur in the training

18

Analyzing Cyber Intrusion Alerts Synthesized by GANs ACM TMIS, April 12 2020, Special Issue

WGAN-GPMI Output Modes

BN Dropped
10.0.0.24 Distribution mm Covered

mmm Noise

10.0.0.24 Coverage

10.0.1.5 Distribution

10.0.1.5 Coverage

10.0.0.22 Distribution

10.0.0.22 Coverage

10.0.0.27 Distribution

10.0.0.27 Coverage

0 50 100 150 200
Unique Outputs

Fig. 4. CPTC’17 Target IPs 10.0.0.22 and 10.0.0.23: The WGAN-GPMI model features less mode dropping than
the WGAN-GP model, however the amount of probability mass assigned to noisy samples also increases.

data distribution. However, these noisy modes have a low power as they occur far less often than
the modes which do exist in the training data distribution. In particular, Target IP’s 10.0.0.24 and
10.0.1.5 from CPTC’18 generate noisy alerts no more than 15% of the time despite having 1.5
times more noisy output modes than the IP’s from CPTC’17. Additionally, these two targets have
significantly more unique outputs than the samples from CPTC’17. This is predominantly due
to the higher number of noisy output modes. For the two targets from CPTC’17 the noisy alerts
exhibit more power as they occur with a higher probability of 17%-22%.

A detailed look at the results reveal differences in theses two target IPs. Target 10.0.0.22 shows
superior coverage with only 4 output modes being dropped while adding a larger number of novel
modes which occur with low probability. On the other hand, Target 10.0.0.27 has less noisy modes
and alerts but still drops 14 modes from the training data. It is possible that these dropped modes
represent samples which have an extremely low probability of occurring; so much so that the
mutual information constraint is insufficient to encourage the generation of these values. Further
supporting this is the fact that even with less than half of the total output modes covered there is
still an 83% chance that the outputs from this model do exist in the training data distribution. Note
that these results only represent a subset of the IP addresses tested due to space limitations; the
observations above hold for each of the IPs tested.

Finally, a means to identify the type of behavior associated with the additional output modes
captured would provide contextual information to what type of network behaviors are most
recoverable from data driven models such as GANs. To accomplish this Alert Signatures were
mapped to attack stages such as Host, Service, and Vulnerability Discovery. Figure ?? shows the
attack stage coverage within the training data as well as those generated from WGAN-GP and
WGAN-GPMI for the CPTC’17 and CPTC’18 datasets respectively. Note that the WGAN-GPMI
model shows attack stage behavior with probabilities far closer to the training data distribution,
exhibiting improvement over the WGAN-GP case.

Specifically for CPTC’17, the WGAN-GPMI model synthesized alerts pertaining to the Host
Discovery stage with probability only 1% off from the training data distribution. Meanwhile, the

19

ACM TMIS, April 12 2020, Special Issue Sweet and Moskal, et al.

[A]: Ground Truth AS Distribution
[A]: Ground Truth AS Distribution

Other INFORMATION

VULNERABILITY DISCOVERY Other

DISCOVERY

HOST

HOST DISCOVERY

DISCOVERY

VULNERABILITY
DISCOVERY

SERVICE

DISCOVERY SERVICE
DISCOVERY

[B]: WGAN-GP AS Distribution [B]: WGAN-GP AS Distribution

Other

HOST
DISCOVERY

Other
HOST
DISCOVERY

INFORMATION
VULNERABILITY DISCOVERY

DISCOVERY VULNERABILITY

DISCOVERY

SERVICE
DISCOVERY

SERVICE
DISCOVERY

[C]: WGAN-GPMI AS Distribution [C]: WGAN-GPMI AS Distribution

Other
Other
INFORMATION

DISCOVERY HOST

DISCOVERY
HOST
DISCOVERY

VULNERABILITY
DISCOVERY

VULNERABILITY
DISCOVERY

SERVICE
DISCOVERY

SERVICE
DISCOVERY

Fig. 5. (Left): Distribution of Attack Stages (AS) on target IP 10.0.99.143 from CPTC’17. (Right): Distribution
of Attack Stages (AS) on target IP 10.0.1.46 from CPTC’18. Note that the WGAN-GPMI model results [C]
have a much closer probability distribution to the training data [A] then the WGAN-GP Model [B].

standard WGAN-GP model could not capture this output mode with probability greater than 8.6%,
leaving a large gap in the generated data sample. In CPTC’18 alerts exhibiting this behavior were
synthesized with the exact same probability as the training data, 11.3%. Finally, in both CPTC
datasets the WGAN-GP model generated alerts pertaining to Vulnerability Discovery around 20%

20

Analyzing Cyber Intrusion Alerts Synthesized by GANs ACM TMIS, April 12 2020, Special Issue

more frequently than they occurred in the training data. The WGAN-GPMI model cut this down
by 10%, contributing to the overall probability distribution diverging from the training data less.

6 CONCLUDING REMARKS

This research showed the promise of using unsupervised Deep Learning models, GANS, to synthesize
target based cyber-alert data from known malicious data. Usage of the WGAN-GPMI model is shown
to lower the divergence of the generated distribution from the training data distribution, better
maintain intra-alert feature dependencies, and generate alerts pertaining to real attacker behavior
far more often than WGAN-GP based models. Future works using synthetically generated alerts
could pursue multiple directions. Synthesizing alerts which emulate historical attacker behavior
could be used to increase the utility and responsiveness of network intrusion prevention systems
by updating detection rule-sets automatically and continuously on a per system basis; all based
off the traffic previously seen. Furthermore, these models offer the potential to augment limited
datasets for usage in other Machine Learning systems. Finally, future experimentation with varying
GAN models is of great interest. Through the usage of LSTM or CNN architectures, temporal
dependencies in network behavior for a given machine may be exploited to build complex multistep
attacker models. And through the usage of Transfer Learning, models trained on a combination
of malicious data and network configuration parameters could be applied to another network to
discover possible attack vectors.

21

