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Abstract

We propose a novel family of connectionist models based on kernel machines and con-

sider the problem of learning layer-by-layer a compositional hypothesis class, i.e., a

feedforward, multilayer architecture, in a supervised setting. In terms of the models, we

present a principled method to “kernelize” (partly or completely) any neural network
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(NN). With this method, we obtain a counterpart of any given NN that is powered by

kernel machines instead of neurons. In terms of learning, when learning a feedforward

deep architecture in a supervised setting, one needs to train all the components simulta-

neously using backpropagation (BP) since there are no explicit targets for the hidden

layers (Rumelhart et al., 1986). We consider without loss of generality the two-layer case

and present a general framework that explicitly characterizes a target for the hidden layer

that is optimal for minimizing the objective function of the network. This characteriza-

tion then makes possible a purely greedy training scheme that learns one layer at a time,

starting from the input layer. We provide realizations of the abstract framework under

certain architectures and objective functions. Based on these realizations, we present a

layer-wise training algorithm for an l-layer feedforward network for classification, where

l ≥ 2 can be arbitrary. This algorithm can be given an intuitive geometric interpretation

that makes the learning dynamics transparent. Empirical results are provided to com-

plement our theory. We show that the kernelized networks, trained layer-wise, compare

favorably with classical kernel machines as well as other connectionist models trained

by BP. We also visualize the inner workings of the greedy kernelized models to validate

our claim on the transparency of the layer-wise algorithm.

1 Introduction

One can “kernelize” any neural network (NN) by replacing each artificial neuron (Mc-

Culloch & Pitts, 1943), i.e., function approximator of the form f(x) = σ
(

w>x+ b
)

,

with a kernel machine, i.e., function approximator of the form f(x) = 〈w, φ(x)〉H + b
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with kernel function k(x, y) = 〈φ(x), φ(y)〉H . While the nonlinearities in deep NNs

make it notoriously difficult to analyze these models, the simple interpretation of a

kernel machine as a hyperplane in a reproducing kernel Hilbert space (RKHS) makes

the kernelized networks more tractable mathematically. We shall refer to the kernelized

NNs in general as kernel networks (KNs).

We then revisit the problem of learning a composite hypothesis class, by which

we mean a trainable model that consists of more elementary trainable submodels, in

a supervised learning setting. In this paper, we shall only consider the special case of

a compositional hypothesis class, in which the elementary submodels are linked via

function compositions and therefore the overall model can be written as F = Fl ◦· · ·◦F1

for some l, with each Fi being a submodel with proper domain and codomain. For

example, a deep, feedforward NN can be considered as a compositional hypothesis class.

When it comes to training these models, the usual method is to learn all its trainable

submodels simultaneously using, for example, backpropagation (BP) (Rumelhart et al.,

1986). However, in the context of supervised learning, the need for BP is caused by the

fact that there is no explicit target information to tune the latent submodels (Rumelhart

et al., 1986). Moreover, when the model is large, BP usually becomes computationally

intensive and can suffer from issues such as vanishing gradient. Also, BP returns very

little information on the training of each submodel to the user and therefore forces the

user to treat the model as a “black box”. For example, it is usually not possible to

know which specific part or parts of the network is responsible when the performance is

suboptimal. Also, it is extremely difficult to interpret or assess the hidden representations

during or after training.
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We consider the problem of reducing the compositional learning problem into a set of

noncompositional ones and then solving each one of them individually. We approach by

deriving explicit targets for the hidden submodels. The targets are optimal for minimiz-

ing a given objective function of the overall model. The central idea can be summarized

as follows: let input data SX, supervision SY (labels in classification, dependent variable

in regression), a two-layer feedforward architecture F2 ◦ F1, and an objective function

R̃(F2 ◦ F1(SX), SY ) be given, define F?
2 ◦ F?

1 := argminF2◦F1
R̃(F2 ◦ F1(SX), SY ).

If we could find functions s, u, and a new objective R̃1(s(F1(SX)), u(SY )) whose min-

imizer is equivalent to F?
1 for minimizing the objective R̃, then finding F?

1 is equivalent

to finding an F1 that minimizes R̃1. If the dependence of s and u on F2 can be reduced

to a point where this search for F?
1 does not involve the trainable parameters of F2, then

we have reduced the original compositional learning problem into two noncompositional

ones that can be solved sequentially.

As examples, we provide realizations of the abstract framework and also, based

on these realizations, a sample greedy training algorithm for a multilayer feedforward

architecture for classification. This greedy learning algorithm enjoys the same optimality

guarantee as BP in the sense that they both effectively train each layer to minimize

the overall objective. But the former is faster, more memory efficient, and evidently

less susceptible to vanishing gradient. It also greatly increases the transparency of

deep models: the quality of learning in the hidden layers can be directly assessed

during or after training, providing the user with more information about training. Also,

alternative model selection and hyperparameter tuning paradigms are now available

since unsatisfying performance of the network can be traced to a certain layer or layers,
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allowing the user to “debug” the layers individually. Moreover, the target for each hidden

layer in this algorithm can be given an intuitive geometric interpretation, making the

learning dynamics transparent.

Empirical results are provided to complement our theory. First, we compare KNs with

classical kernel machines and show that KNs consistently outperform Support Vector

Machine (SVM) (Cortes & Vapnik, 1995) as well as several SVMs enhanced by Multiple

Kernel Learning (MKL) algorithms (Bach et al., 2004; Gönen & Alpaydın, 2011). We

then fully or partly kernelized both fully-connected and convolutional NNs and trained

them with the proposed layer-wise algorithm. The resulting KNs compare favorably

with their NN equivalents trained with BP as well as some other commonly-used deep

architectures trained with BP together with unsupervised greedy pre-training. We also

visualize the learning dynamics and hidden representations in the greedy kernelized

networks to validate our claim on the transparency of the greedy algorithm.

2 Setting and Notations

We consider the following supervised set-up: let a realization of an i.i.d. random

sample be given: S = {(xn, yn)}Nn=1, where (xn, yn) ∈ R
d0 × R. Denote {xn}Nn=1 as

SX and {yn}Nn=1 as SY for convenience. We consider only real, continuous, symmetric,

positive definite (PD) kernels (Schölkopf & Smola, 2001), which possess the reproducing

property k(x, y) = 〈φ(x), φ(y)〉H , where H is the RKHS induced by k. Further, we

assume, for all kernels considered in all results, that k(x, x) = c < +∞, ∀x, and

that infx,y k(x, y) = a > −∞. It is straightforward to check using Cauchy-Schwarz
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inequality that the first condition implies maxx,y k(x, y) = c. Note that by construction

of a PD kernel, we always have a < c.

For the rest of this paper, we shall use bold letters to denote vectors or vector-valued

functions. For random elements, we use capital letter to denote the random element

and lower-case letter a realization of it. Notations similar to the following will be used

whenever convenient: for a general l-layer feedforward architecture Fl ◦ · · · ◦ F1 and

for i = 2, 3, . . . , l, x ∈ R
d0 , Fi(x) := Fi ◦ · · · ◦F1(x). For any F, the shorthand F(SX)

represents {F(xn)}Nn=1. And likewise for F(SY ). When there is no confusion, we shall

suppress the dependency of any loss function on the example for brevity, i.e., for a loss

function `, instead of writing `(f(x), y), we write `(f).

Given a loss function `(f(x), y), we define the risk as R(f) := E (X, Y )`(f(X), Y )

and an objective function R̃(f(SX), SY ) to be a bound on the risk that is computable

using the given data only. In this paper, we shall take any objective as given without

rigorously justifying why it is a bound of some risk since that is not the purpose of

this paper. Nevertheless, the objectives we use in this paper are fairly common and

the corresponding justifications are routine. We make this distinction between risk and

objective here as it will be needed in later discussions.

3 Kernelizing a Neural Network

Kernel machines are parametric models defined as f(x) = 〈w, φ(x)〉H + b with kernel

k(x, y) = 〈φ(x), φ(y)〉H and w, b being the learnable weights and φ being a map

into the RKHS H . NNs are connectionist models defined by arbitrarily combining the
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parametric base units defined as f(x) = σ
(

w>x+ b
)

with w, b being the learnable

weights and σ a (usually nonlinear) gating function. These base units are sometimes

called neurons.

While NNs are flexible models and have strong expressive power in practice, they are

notoriously difficult to analyze due to each nonlinear neuron being a nontrivial function

itself and the arbitrariness involved in the overall architecture design. Kernel machines,

in comparison, are much more mathematically tractable since they are linear models in

the feature spaceH , i.e., the f is linear in w. This allows one to reduce otherwise abstract

problems into geometric ones, making possible simpler and more intuitive solutions.

However, their architectures are not as flexible and their practical performance in most

cutting-edge machine learning applications has been unsatisfying (Bengio et al., 2013).

The question we consider is how to combine the idea of connectionism, which is

central to NNs, with kernel machines and build families of models that are flexible,

expressive, and at the same time, more mathematically tractable than NNs. We hope this

will be a first step toward explaining why deep learning performs so well in the most

challenging AI tasks.

In this section, we discuss how to kernelize an NN to build models that combine

the best of both worlds. We first present the generic approach and then as an example,

concretely define a fully-kernelized Multilayer Perceptron (MLP). To further shed light

on the effect of kernelization on the expressive power of the original model, we give an

analysis on the model complexity of a fully-kernelized MLP.
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3.1 A Generic Approach to Kernelization

The general idea we adopt is to build connectionist models with the base units being

not neurons but kernel machines. This is mathematically viable since in an NN, any

neuron can be directly replaced by a kernel machine without altering the architecture and

functionality of the network. An illustration of this kernelization procedure is provided

in Fig. 1. In this way, one can kernelize an NN to any degree: a node, several nodes, a

layer, several layers, or the entire network.

KN is flexible in the sense that one can inject prior knowledge into the architecture

design, as is done for NNs. KN inherits the expressive power of the original NN since

a kernel machine is a universal function approximator under mild conditions (Park &

Sandberg, 1991; Micchelli et al., 2006). Moreover, KN works in a more mathematically

intuitive way since each base unit is a simple linear model in an RKHS.

Further, a general criticism toward kernel methods in machine learning is that their

performance usually relies heavily on the parameterization of the kernels used. This

issue is mitigated in KN, thanks to the introduction of connectionism. To be specific,

KN performs nonparametric kernel learning alongside learning to perform the given

task. Indeed, to build the network one only needs generic kernels, but in a connectionist

model, the kernels on the non-input layers admit the form k(F(x), G(y)), where F, G

are some other trainable submodels. The fact that F, G are trainable makes this kernel

“adaptive”, mitigating to some extent any limitation of the fixed generic kernel k. The

training of F and G makes this adaptive kernel optimal as a constituent part of the

corresponding kernel machine for the task the network was trained for. And it is always

a valid kernel if the generic kernel k is. Note that observations similar to this one have
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been made in different contexts by, for example, Huang & LeCun (2006) and Bengio et

al. (2013), we include it here only for completeness.

3.2 Kernelized MLP: The Architecture

As a more concrete example, we now define a fully-kernelized l-layer MLP, which we

will specifically refer to as kernel MLP (kMLP).1

The l-layer kMLP is defined as follows. For i ≥ 1, the ith layer in a kMLP, denoted Fi,

is an array of di kernel machines: Fi : R
di−1 → R

di ,Fi(x) =
(

f 1
i (x), f

2
i (x), . . . , f

di
i (x)

)

with the f j
i all using kernel ki. Let F0 be the identity map on R

d0 , each f j
i : Rdi−1 → R

is a hyperplane in RKHS Hi: f
j
i (x) =

〈

wfj
i
, φi(Fi−1 ◦ · · · ◦ F0(x))

〉

Hi

+ bfj
i
, wfj

i
∈

Hi, bfj
i
∈ R. The set of mappings

{

Fl ◦ · · · ◦ F1 : wfj
i
∈ Hi, bfj

i
∈ R for all admissible n, j, i

}

defines an l-layer kMLP.

In practice, wfj
i

is usually not accessible but can be approximated using, for instance,

∑N
n=1 α

j
i, nφi(Fi−1 ◦ · · · ◦ F0(xn)), where the αj

i, n ∈ R are the learnable parameters.2

3.3 Kernelized MLP: Model Complexity

We give a bound on the model complexity of an l-layer kMLP using a well-known

complexity measure called Gaussian complexity (Bartlett & Mendelson, 2002). In

1A PyTorch-based (Paszke et al., 2017) library for implementing KN and the proposed layer-wise

training algorithm is available at: https://github.com/michaelshiyu/kerNET.

2The optimality of this expansion can be justified in the following layer-wise setting by directly

applying the representer theorem (Schölkopf et al., 2001).
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particular, the bound describes the relationship between the depth/width of the model and

the complexity of its hypothesis class, providing insights into the effect of kernelization

on the expressive power of the model as well as useful information for model selection.

We first review the definition of Gaussian complexity.

Definition 3.1 (Gaussian complexity). Let X1, . . . , XN be i.i.d. random elements

defined on metric space X and let F be a set of functions mapping from X into R. Define

ĜN(F) = E

[

sup
f∈F

1

N

N
∑

n=1

Znf(Xi)

∣

∣

∣

∣

∣

X1, . . . , XN

]

,

where Z1, . . . , ZN are independent standard normal random variables. The Gaussian

complexity of F is defined as GN(F) = E ĜN(F).

Intuitively, Gaussian complexity quantifies how well elements in a given function

class can be correlated with a normally-distributed noise sequence of length N (Bartlett

& Mendelson, 2002).

For Proposition 3.2 and the lemma based on which this proposition is proven

(Lemma B.2 in Appendix B), we impose the following smoothness assumption on all ker-

nels considered: for each fixed x ∈ R
di−1 , we assume that ki(x, y), as a function of y, is

Li,x-Lipschitz with respect to the Euclidean metric on R
di−1 . Let sup

x∈Rdi−1 Li,x = Li,

which we assume to be finite.

Proposition 3.2. Given an l-layer kMLP, approximate wfj
i

using

m
∑

ν=1

αj
i, νφi(Fi−1 ◦ · · · ◦ F1(xν)),

where the xν are an m-subset of SX, 1 ≤ m ≤ N , α
j
i :=

(

αj
i, 1, . . . , α

j
i,m

)

∈ R
m and

bfj
i
∈ R. Assume

∥

∥α
j
i

∥

∥

1
≤ Ai and let dl = 1. Consider

F1 =
{

x 7→
(

f 1
1 (x), . . . , f

d1
1 (x)

)

| f j
1 ∈ Ω, j = 1, . . . , d1

}

,
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where Ω is a given hypothesis class of functions from R
d0 to R. Denote the class of

functions implemented by this kMLP as Fl-kMLP, if F1 ∈ F1, for i ≥ 2, we have

GN(Fl-kMLP) ≤ 2d1

l
∏

i=2

AiLidiGN(Ω).

It is worth noting that the model complexity kMLP grows in the depth and width

of the network in a similar way as that of an MLP (Sun et al., 2016). In particular,

the expressive power of the model increases linearly in the width of a given layer and

roughly exponentially in the depth of the network.

4 A Layer-Wise Learning Framework

We now formally present our greedy framework for learning compositional hypothesis

classes in a supervised setting. To simplify discussion, we first consider the two-layer

case, i.e.,

F = {F = F2 ◦ F1 |Fi ∈ Fi, i = 1, 2}.

Define F?
1 ◦F?

2 = F? := argminF∈F R̃(F(SX), SY ). The goal is to learn the input layer

to find F?
1 (without touching the output layer), freeze the input layer afterwards, and then

learn the output layer to find F?
2.

To disentangle the learnings of the two layers, we must disentangle the definitions

of F?
1 and F?

2. The idea is to re-characterize F?
1, i.e., to derive conditions under which

F1 = F?
1, using no information on the trainable parameters of the output layer. Then, we

need to translate these conditions into choosing a new loss `1 (inducing a new risk R1), a

function s, and a function u accordingly with the property that

argmin
F1∈F1

R1(s(F1(X)), u(Y )) = F?
1
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and that s, u do not rely on the trainable parameters of the output layer. An objective

R̃1(s(F1(SX)), u(SY )) can be subsequently chosen, and we can find F?
1 by training the

input layer to minimize this new objective. This training process requires no tuning on

the output layer as this new objective does not involve the trainable parameters of it.

The re-characterization of F?
1 is dependent on F2 and R̃. Therefore, different choices

induce different realizations of our general framework.

The search of u can be understood as the procedure of explicitly backpropagating

the targets SY to the hidden layers. This contrasts how learning is made possible in BP

via backpropagating derivative information but not the targets directly.

We proceed by first describing the general framework and then, as examples, provide

realizations under a specific choice of F2 and two families of objectives. Finally, based

on these realizations, we provide a sample layer-wise training algorithm for learning

an l-layer feedforward network for classification, where l ≥ 2 can be arbitrary. This

layer-wise algorithm is simple to implement and its learning dynamics enjoy an intuitive

geometric interpretation.

4.1 The Framework

Let the architecture F and objective R̃ be given, our greedy learning framework for the

two-layer compositional hypothesis class consists of the following steps:

1. Finding F?
1

(a) Define an equivalence relation between hypotheses.

(b) Give an equivalent definition for F?
1 under the new equivalence relation.
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(c) Re-characterize F?
1 for the given F under the given objective R̃.

(d) Choose s, u, `1, and R̃1 accordingly.

(e) Train the input layer to minimize R̃1(s(F1(SX)), u(SY )).

(f) After training, freeze the input layer at, say, F◦
1.

2. Finding F?
2

(a) Train the output layer to minimize R̃(F2 ◦ F◦
1(SX), SY ).

We now provide more details for a couple of the listed steps.

Step 1a. Define an equivalence relation between hypotheses

In our framework, we use the following definition of equivalence between hypotheses

of the input layer:

F1 = G1 if and only if min
F2∈F2

R̃(F2 ◦ F1) = min
F2∈F2

R̃(F2 ◦G1), ∀S.

It is easy to check that this is indeed an equivalence relation. Intuitively, this means that

we consider two hypotheses of the input layer to be equally good if the best networks

one can build with these two hypotheses minimize the objective function equally well,

i.e., when they have the same “potential”. Evidently, this notion of equivalence is proper

and sufficient as we have no knowledge of F2 while we train the input layer.

Step 1b. Give an equivalent definition for F?
1 under the new equivalence relation

Compared to the original minimizer definition of F?
1, it is easier to work with the

following more concrete definition under the equivalence relation described in Step 1a.
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Lemma 4.1. Suppose F?
1 ∈ F

′
1 ⊆ F1 and F?

2 ∈ F
′
2 ⊆ F2, we have

F?
1 = argmin

F1∈F′

1

min
F2∈F′

2

R̃(F2 ◦ F1).

This definition is easier to work with when we later re-characterize F?
1 because it

shrinks the range of F2 we need to consider for each F1 to only the minimizer F2 under

that specific F1.

4.2 Some Realizations

We now provide realizations of the greedy learning framework under a specific family of

F2 and two classes of objective functions. Note that these realizations are certainly not

all that can be derived from our layer-wise framework. We leave the exploration of more

such realizations as future work.

Steps 1a and 1b are the same for all realizations. Therefore, the only nontrivial steps

in our framework to discuss for specific realizations are steps 1c and 1d.

The specific F2 we consider in this section is defined as the set of functions of the

following form: F2(x) = (f 1
2 (x), . . . , f

d2
2 (x)), f j

2 (x) =
〈

wfj
2

, φ(x)
〉

H
+ bfj

2

with

kernel k(x, y) = 〈φ(x), φ(y)〉H , j = 1, . . . , d2, x, y ∈ R
d0 , where we have omitted

and will continue to omit writing out explicitly the function composition: for example,

for x ∈ R
d0 , we write F2(x) in place of F2(F1(x)). There is no assumption needed on

F1.

For these realizations, we consider the case Y ∈ {+1, −1}, and we shall use

subscript + or − to indicate the class of a particular example, if needed.

Re-characterize F?
1 under regularized hinge loss as objective
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Let d2 = 1, write f2 in place of F2 accordingly. Let the objective function R̃(f2 ◦ F1)

be R̂(f2 ◦ F1)+τ‖wf2‖H , where τ > 0 is a hyperparameter that can be chosen as desired

and

R̂(f2 ◦ F1) =
1

N

N
∑

n=1

`(f2 ◦ F1, (xn, yn))

with `(f2 ◦ F1, (xn, yn)) = max(0, 1− ynf2(xn)), the hinge loss. Let κ = 1
N

∑N
n=1 1{yn=+}.

We now re-characterize F?
1.

Theorem 4.2. Assume that τ <
√

2(c− a)min(κ, 1− κ) and that there exist (x+, y+), (x−, y−) ∈

S such that `(f ?
2 ◦ F?

1, (xn, yn)) = 0, n = +, −.

If F1 satisfies

k(F1(x+), F1(x−)) = a and

k(F1(x), F1(x
′)) = c

(1)

for all pairs of x+, x− ∈ SX and all pairs of x, x′ ∈ SX with y = y′, then F1 = F?
1.

Re-characterize F?
1 under regularized supervised representation similarity (SRS)

loss as objective

Consider function h : Rd2 × R
d2 → R with the property that h(x, y), as a function

of x and y, has the following properties:

• infx,y h(x, y) = b > −∞, supx,y h(x, y) = d <∞, d > b;

• h depends only on ‖x− y‖q for some q ≥ 1, i.e., h(x, y) = h
(

‖x− y‖q
)

;

• h strictly decreases in ‖x− y‖q for all x, y ∈ R
d2 with h(x, y) > b.

Define the following SRS loss:

`(F2 ◦ F1, (x, y), (x
′, y′)) = |g(y, y′)− h(F2(x), F2(x

′))|p,
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where p ≥ 1 can be arbitrarily chosen and g(y, y′) = b if y 6= y′ and d if otherwise.

It is easy to see that this loss penalizes the similarity between images of examples

under the mapping F2 ◦ F1 based on their classes, therefore the name supervised

representation similarity.

Let the objective function be

R̃(F2 ◦ F1)

=
1

N2

N
∑

n,m=1

`(F2 ◦ F1, (xn, yn), (xm, ym)) + τt
(∥

∥

∥wf1
2

∥

∥

∥

H
, . . . ,

∥

∥

∥wf
d2
2

∥

∥

∥

H

)

,

where τ > 0 can be freely chosen and t can be any function that strictly decreases in all

of its arguments.

Theorem 4.3. Assume that there exist (x+, y+), (x−, y−) ∈ S such that

`(F?
2 ◦ F?

1, (x+, y+), (x−, y−)) = 0. Also assume that for all j,
∥

∥

∥
wfj?

2

∥

∥

∥

H
> 0.

If F1 satisfies

k(F1(x+), F1(x−)) = a; and

k(F1(x), F1(x
′)) = c

(2)

for all pairs of x+, x− ∈ SX and all pairs of x, x′ ∈ SX with y = y′, then F1 = F?
1.

On selecting s, u, `1, and R̃1

For both of the two objectives described above, we may choose, for example, s to

be the kernel function k, u to be the function defined as u(y, y′) = a if y 6= y′ and c if

otherwise, and `1 to be the SRS loss defined earlier with g set to u and h set to s, i.e.,

`1(F1, (x, y), (x
′, y′)) = |u(y, y′)− k(F1(x), F1(x

′))|p,
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where p ≥ 1 can be freely chosen. This of course requires k to satisfy the aforementioned

conditions on h for the resulting loss to be a valid SRS loss.

Under this selection of `1, it is evident that the minimizers of `1 (and also R1) are all

equal to F?
1 by Theorems 4.2 and 4.3. R̃1 can be set to the empirical SRS loss plus an

arbitrary regularization term on norms of the weights.

Generalizing to l-layer feedforward models with l ≥ 2

The generalization to a feedforward model with l layers, where l ≥ 2 can be arbitrary,

is trivial. To begin with, treat Fl and Fl−1 ◦ · · · ◦F1 as the earlier F2 and F1, respectively.

Then work as in the two-layer case to find an objective R̃l−1 for Fl−1 ◦ · · · ◦ F1. This

reduces the l-layer problem to an l − 1-layer problem. Repeat this procedure on the rest

of the layers until we return to the original two-layer case.

4.3 A Layer-Wise Training Algorithm for an l-Layer (l ≥ 2) Feed-

forward Network for Classification

We can build upon the above realizations an certified (in the sense that the optimality is

guaranteed) layer-wise algorithm for training an l-layer (l ≥ 2) feedforward network for

classification tasks. In this section, we describe this algorithm and show that it enjoys

a geometric interpretation that makes the learning dynamics transparent. Moreover,

we show that there is a simple acceleration method for the kernelized non-input layers,

making the architecture more practical.

We present this algorithm for binary classification. Nevertheless, as multi-class

problems can be reduced to a set of binary classification problems by using either the
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one-vs-all or the one-vs-one strategy (Schölkopf & Smola, 2001), an extension of this

algorithm to multi-class problems is trivial.

The architecture considered is as follows:

{

fl ◦ · · · ◦ F1 : R
d0 → R |

Fi(x) = (f 1
i (x), . . . , f

di
i (x)), f j

i (x) =
〈

wfj
i
, φi(x)

〉

Hi

+ bfj
i
, wfj

i
∈ Hi, bfj

i
∈ R,

∀l > i > 1, ∀j, fl(x) = 〈wfl , φl(x)〉Hl
+ bfl , wfl ∈ Hl, bfl ∈ R

}

.

Note that we have made no assumption on the input layer.

For i < l, define

R̃i(Fi) =
1

N2

N
∑

n,m

`i(Fi, (xn, yn), (xm, ym)) + τit

(

∥

∥

∥
wf1

i

∥

∥

∥

Hi

, . . . ,
∥

∥

∥
w

f
di
i

∥

∥

∥

Hi

)

,

where

`i(Fi, (xn, yn), (xm, ym)) = |u(yn, ym)− ki+1(Fi(xn), Fi(xm))|p,

p ≥ 1 can be chosen freely, τ > 0, u(y, y′) = a if y = y′ and c otherwise, and t can be

any function that strictly decreases in all of its arguments.

For i = l, define :

R̃l(fl) =
1

N

N
∑

n=1

`l(fl, (xn, yn)) + τl‖wfl‖Hl
,

where

`l(fl, (xn, yn)) = max(0, 1− ynfl(xn))

Then the training algorithm is given in Algorithm 1.

The optimality of this training algorithm is justified by Theorems 4.2 and 4.3 when

the τi and ki satisfy the corresponding conditions for all i = 1, . . . , l.
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Algorithm 1 A certified layer-wise training algorithm for classification.

input: training set {(xn, yn)}Nn=1

initialize: initialize and freeze all layers

for i = 1, 2, . . . , l do

unfreeze layer i

train layer i to minimize R̃i

freeze layer i

end for

We emphasize that this particular training algorithm gives great freedom to the choice

of F1: it can be any arbitrary architecture. In particular, it can be a stack of multiple

layers in practice. This stack can be trained with an end-to-end method such as BP.

4.3.1 Geometric Interpretation of Learning Dynamics

The sufficient conditions described by Eq. 1 and Eq. 2 can be interpreted geometrically:

under an F1 satisfying these conditions, images of examples from distinct classes are

as distant as possible in the RKHS induced by k whereas images of examples from the

same class are as concentrated as possible (see proof of Theorem 4.2 in Appendix B).

Intuitively, such a representation is the “easiest” for the classification task. And our

earlier theorems essentially justified this intuition in a rigorous fashion.

Therefore, the learning dynamics of this training algorithm can be given a straightfor-

ward geometric interpretation: it trains each layer to push apart examples from different

classes while squeeze together those within the same class. In other words, each layer

learns a better representation of the data. Eventually, the output layer works as a classifier
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on the final hidden representation.

4.3.2 Accelerating the Kernelized Layers

There is a natural method to accelerate the kernelized non-input layers: the hidden targets

are sparse in the sense that for 1 ≤ i < l and any Fi satisfying Eq. 1 or Eq. 2, we have

φi+1(Fi(xm)) = φi+1(Fi(xn)) if ym = yn and φi+1(Fi(xm)) 6= φi+1(Fi(xn)) if ym 6=

yn (see proof of Theorem 4.2 in Appendix B). Since we usually approximate w
j
i+1 using

∑N
n=1 α

j
i+1, nφi+1(Fi(xn)), retaining only one example from each class would result in

exactly the same hypothesis class Fi+1 because
{

∑N
n=1 α

j
i+1, nφi+1(Fi(xn)) |αj

i+1, n ∈ R

}

=

{

∑

n=+,− α
j
i+1, nφi+1(Fi(xn)) |αj

i+1, n ∈ R

}

for arbitrary x+, x− in SX.

Thus, after training a given layer, depending on how well its objective function has

been minimized, one may discard some of the centers for kernel machines of the next

layer to speed up the training of that layer without sacrificing performance. This trick

also has a regularization effect on the kernel machines since the number of trainable

parameters of a kernel machine grows linearly in the number of its centers.

4.4 How is our layer-wise framework different from the existing

layer-wise pre-training schemes?

Existing layer-wise pre-training methods such as those proposed in (Hinton et al., 2006)

and (Bengio et al., 2007) require backpropagation (BP) fine-tuning. This is because,

to the best of our knowledge, no optimality guarantee comparable to that provided

by BP can be made for these pre-training algorithms. In other words, the layer-wise

pre-training commonly used in the deep learning community does not necessarily learn
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the hypothesis that minimizes the objective function for the network and thus can only

be used as an add-on to BP that helps BP converge faster.

In contrast, our work proves such optimality for our layer-wise training scheme in

certain specific learning settings and therefore completely removes the need for BP in

these settings. To put this in another way, even if one applies BP after performing our

layer-wise training, one will not (in theory) end up with a hypothesis that is strictly

better than the one learned by the layer-wise learning process in terms of minimizing the

objective function of the network.

Coming up with a purely layer-wise substitute for BP is relevant because, as we

have mentioned, BP can be computationally expensive and its end-to-end nature makes

it practically impossible to precisely trace the source of unsatisfying performance and

find out which layer or layers is to be blamed. This can make the architecture search

process lengthy and sometimes painful. Furthermore, training all layers simultaneously

complicates the parameter space and may introduce more local minima to the learning

process, which can be another unwanted factor for gradient descent-based learning.

In contrast, a fully layer-wise training process allows one to divide and conquer the

learning problem and reveals more useful information about training, mitigating the

aforementioned issues to some extent.

5 Related Works

The link between NNs and the kernel method has been long known. In (Vapnik, 2000),

the hyperbolic tangent kernel was defined and used in SVM, leading to an architecture
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equivalent to a shallow MLP. Suykens & Vandewalle (1999) viewed MLP as SVM by

treating the hidden layer as the feature map and proposed accordingly a modified support

vector method to train the former. More recently, Cho & Saul (2009) defined an “arc

cosine” kernel to imitate the computations performed by a one-layer MLP. Zhuang et al.

(2011) extended the idea to arbitrary kernels with a focus on MKL, using an architecture

similar to a two-layer kMLP. As a further generalization, Zhang et al. (2017) proposed

kMLP and fully-kernelized CNN. However, they did not extend the idea to more network

architectures. These works essentially combine kernel method with deep learning by

substituting neurons in NNs with kernel machines, which is similar to what we are

pursuing in this work. However, to the best of our knowledge, our work enjoys perhaps

the greatest generality among works that follow this line of research.

There are also works that attempt to integrate kernel method with deep learning

using other methods. Suykens (2017) drew connections between restricted Boltzmann

machines (RBM) and kernel machines by creating RBM-like representations for the

latter. The resulting restricted kernel machines (RKMs) are then combined to form deep

RKMs. Mairal et al. (2014) proposed to learn hierarchical representations by learning

mappings of kernels that are invariant to irrelevant variations in images. Hermans

& Schrauwen (2012) used the kernel method to expand the echo state networks to

essentially infinite-sized recurrent neural networks. The resulting network can then be

viewed as a recursive kernel that can be used in SVMs. Wilson et al. (2016) proposed

to learn the covariance matrix of a Gaussian process using an NN in order to make the

kernel “adaptive”. Such an interpretation of “adaptive” kernels can be given to KNs as

well. This idea also underlies the now standard approach of combining a deep NN with
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SVM for classification, which was first explored by Huang & LeCun (2006) and Tang

(2013) and can be viewed as a special case of the proposed kernelization framework. In

terms of the training of such hybrid systems, there are mainly two methods. The first is

to apply BP to the entire model (Tang, 2013), which enjoys an optimality guarantee from

BP but forces the SVM to be trained with gradient descent instead of the more efficient

optimization algorithms that are usually used for SVMs. The alternative is to feed the

hidden representations from a trained NN to the SVM and train the latter in the usual

way (Huang & LeCun, 2006), but this practice is not theoretically solid. The proposed

layer-wise learning framework serves as another alternative that combines the best of

both worlds: one can train the NN and SVM separately with an optimality guarantee as

that given by BP.

Much works have been done to improve or substitute BP in learning a deep archi-

tecture. Most aim at improving the classical method, working as add-ons for BP. The

most notable ones are perhaps the unsupervised greedy pre-training techniques proposed

by Hinton et al. (2006) and Bengio et al. (2007). Among works that try to completely

substitute BP, none provided a comparable optimality guarantee in theory as that given

by BP. Fahlman & Lebiere (1990) pioneered the idea of greedily learn the architecture

of an NN. In their work, each new node is added to maximize the correlation between its

output and the residual error signal. Several authors explored the idea of approximat-

ing error signals propagated by BP locally at each layer or each node (Bengio, 2014;

Carreira-Perpinan & Wang, 2014; Lee et al., 2015; Balduzzi et al., 2015; Jaderberg et

al., 2016). Zhou & Feng (2017) proposed a BP-free deep architecture based on decision

trees. Raghu et al. (2017) attempted to quantify the quality of hidden representations
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toward learning more interpretable deep architectures, sharing a motivation similar to

ours.

6 Experiments

We now demonstrate the competence of the kernelized models and the effectiveness

of the proposed layer-wise framework via experiments. We will be implementing the

sample training algorithm described in Section 4.3 throughout. This section will be

divided into two parts. The first one will be dedicated to comparing KNs with traditional

kernel machines. In the second part, we compare KNs with other popular connectionist

models. These empirical results serve as proofs of concept for the proposed architectures

as well as the greedy training framework.

6.1 Comparing KNs with Classical Kernel Machines

We now compare a single-hidden-layer kMLP using simple, generic kernels with the

classical SVM and SVMs enhanced by MKL algorithms that used significantly more

kernels to demonstrate the competence of kMLP and in particular, its ability to perform

well without excessive kernel parameterization. The standard SVM and seven other

SVMs enhanced by popular MKL methods were compared (Zhuang et al., 2011), in-

cluding the classical convex MKL (Lanckriet et al., 2004) with kernels learned using

the extended level method proposed in (Xu et al., 2009) (MKLLEVEL); MKL with Lp

norm regularization over kernel weights (Kloft et al., 2011) (LpMKL), for which the

cutting plane algorithm with second order Taylor approximation of Lp was adopted;
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Generalized MKL in (Varma & Babu, 2009) (GMKL), for which the target kernel class

was the Hadamard product of single Gaussian kernel defined on each dimension; Infinite

Kernel Learning in (Gehler & Nowozin, 2008) (IKL) with MKLLEVEL as the embedded

optimizer for kernel weights; 2-layer Multilayer Kernel Machine in (Cho & Saul, 2009)

(MKM); 2-Layer MKL (2LMKL) and Infinite 2-Layer MKL in (Zhuang et al., 2011)

(2LMKLINF).

Eleven binary classification data sets that have been widely used in MKL literature

were split evenly for training and test and were all normalized to zero mean and unit

variance prior to training. Twenty runs with identical settings but random weight

initializations were repeated for each model. For each repetition, a new training-test split

was selected randomly.

For kMLP, all results were achieved using a greedily-trained, one-hidden-layer model

with the number of kernel machines ranging from 3 to 10 on the first layer for different

data sets. The second layer was a single kernel machine. All kernel machines within

one layer used the same Gaussian kernel (k(x, y) = e−‖x−y‖
2
/σ2

), and the two kernels

on the two layers differed only in kernel width σ. All hyperparameters were chosen

via 5-fold cross-validation. As for the other models compared, for each data set, SVM

used a Gaussian kernel. For the MKL algorithms, the base kernels contained Gaussian

kernels with 10 different widths on all features and on each single feature and polynomial

kernels of degree 1 to 3 on all features and on each single feature. For 2LMKLINF, one

Gaussian kernel was added to the base kernels at each iteration. Each base kernel matrix

was normalized to unit trace. For LpMKL, p was selected from {2, 3, 4}. For MKM,

the degree parameter was chosen from {0, 1, 2}. All hyperparameters were selected via
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Table 1: Average test error (%) and standard deviation (%) from 20 runs. Results with

overlapping 95% confidence intervals (not shown) are considered equally good. Best

results are marked in bold. The average ranks (calculated using average test error) are

provided in the bottom row. When computing confidence intervals, due to the limited

sizes of the data sets, we pooled the twenty random samples.

Size/Dimension SVM MKLLEVEL LpMKL GMKL IKL MKM 2LMKL 2LMKLINF kMLP-1

Breast 683/10 3.2± 1.0 3.5± 0.8 3.8± 0.7 3.0± 1.0 3.5± 0.7 2.9± 1.0 3.0± 1.0 3.1± 0.7 2.4± 0.7

Diabetes 768/8 23.3± 1.8 24.2± 2.5 27.4± 2.5 33.6± 2.5 24.0± 3.0 24.2± 2.5 23.4± 1.6 23.4± 1.9 23.2± 1.9

Australian 690/14 15.4± 1.4 15.0± 1.5 15.5± 1.6 20.0± 2.3 14.6± 1.2 14.7± 0.9 14.5± 1.6 14.3± 1.6 13.8± 1.7

Iono 351/33 7.2± 2.0 8.3± 1.9 7.4± 1.4 7.3± 1.8 6.3± 1.0 8.3± 2.7 7.7± 1.5 5.6± 0.9 5.0± 1.4

Ringnorm 400/20 1.5± 0.7 1.9± 0.8 3.3± 1.0 2.5± 1.0 1.5± 0.7 2.3± 1.0 2.1± 0.8 1.5± 0.8 1.5± 0.6

Heart 270/13 17.9± 3.0 17.0± 2.9 23.3± 3.8 23.0± 3.6 16.7± 2.1 17.6± 2.5 16.9± 2.5 16.4± 2.1 15.5± 2.7

Thyroid 140/5 6.1± 2.9 7.1± 2.9 6.9± 2.2 5.4± 2.1 5.2± 2.0 7.4± 3.0 6.6± 3.1 5.2± 2.2 3.8± 2.1

Liver 345/6 29.5± 4.1 37.7± 4.5 30.6± 2.9 36.4± 2.6 40.0± 2.9 29.9± 3.6 34.0± 3.4 37.3± 3.1 28.9± 2.9

German 1000/24 24.8± 1.9 28.6± 2.8 25.7± 1.4 29.6± 1.6 30.0± 1.5 24.3± 2.3 25.2± 1.8 25.8± 2.0 24.0± 1.8

Waveform 400/21 11.0± 1.8 11.8± 1.6 11.1± 2.0 11.8± 1.8 10.3± 2.3 10.0± 1.6 11.3± 1.9 9.6± 1.6 10.3± 1.9

Banana 400/2 10.3± 1.5 9.8± 2.0 12.5± 2.6 16.6± 2.7 9.8± 1.8 19.5± 5.3 13.2± 2.1 9.8± 1.6 11.5± 1.9

Rank - 4.2 6.3 7.0 6.9 4.3 5.4 5.0 2.8 1.6

5-fold cross-validation.

From Table 1, kMLP compares favorably with other models, which validates our

claim that kMLP learns its own kernels nonparametrically hence can work well even

without excessive kernel parameterization. Performance difference among models can

be small for some data sets, which is expected since these datasets are all rather small

in size and not too challenging. Nevertheless, it is worth noting that only two Gaussian

kernels were used for kMLP, whereas all other models except for SVM used significantly

more kernels.
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6.2 Comparing KNs with NNs

In this section, we provide empirical results on comparing KN with NN. In the first

part, we demonstrate the competence of kernelized NNs and the effectiveness of the

layer-wise learning method using kMLPs. We use the proposed layer-wise algorithm

derived from our greedy learning framework and Adam (Kingma & Ba, 2014) as the

underlying optimization algorithm. First, we show that this algorithm, albeit only

having been certified under certain families of objectives, works well with most popular

objective functions in practice. We then compare kMLPs trained with BP and the layer-

wise algorithm to show the effectiveness of the latter. Finally, to further showcase the

competence of the greedily-trained kernelized models, we compare kMLPs learned

layer-wise with other popular deep architectures including MLPs, Deep Belief Networks

(DBNs) (Hinton & Salakhutdinov, 2006) and Stacked Autoencoders (SAEs) (Vincent

et al., 2010), with the last two trained using a combination of unsupervised greedy pre-

training and standard BP (Hinton et al., 2006; Bengio et al., 2007). We also visualize the

learning dynamics of greedy kMLPs and show that it is intuitive and simple to interpret.

In the second part of the experiments, we partially kernelize the classic LeNet-5 (LeCun

et al., 1998) and compare it with the original to validate our claim that the proposed

kernelization and training algorithm is flexible in the sense that it works well with any

given feedforward NN architecture and one can freely decide the degree of kernelization.

The hidden representations learned from the two models are visualized. We show that the

hidden representations learned by the kernelized model are much more discriminative

than that from the original.
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kernel matrix of ki+1 computed on Fi(SX) and G? is the kernel matrix induced by g on

SX. The regularization term was always chosen to be the sum of the L2 norms of the

weights. On convex, this kMLP achieved a test error rate of 19.36%, 18.53% and 21.70%

using alignment, SRS-2 and SRS-1 as the hidden losses, respectively. As a baseline, our

best two-hidden-layer MLP achieved an error rate of 23.28% on this dataset. For the rest

of our experiments, we use the best result from using these three hidden losses for our

greedily-trained models.

We now test the layer-wise learning algorithm against BP using the standard MNIST

dataset (LeCun et al., 2010). Results from several MLPs were added as benchmarks.

These models were trained with Adam or RMSProp (Tieleman & Hinton, 2012) and extra

training techniques such as dropout (Srivastava et al., 2014) and batch normalization

(BN) (Ioffe & Szegedy, 2015) were applied to boost performance. kMLPs accelerated

using the proposed method (kMLPFAST) were also tested, for which we randomly dis-

carded some centers of each non-input layer before its training. Two popular acceleration

methods for kernel machines were compared, including using a parametric representation

(kMLPPARAM), i.e., for each node in a kMLP, f(x) =
∑m

n=1 αnk(wn, x), αn, wn learn-

able and m a hyperparameter, and using random Fourier features (kMLPRFF) (Rahimi &

Recht, 2008).

Results in Table 2 validate the effectiveness of our layer-wise algorithm. For both

the single-hidden-layer and the two-hidden-layer kMLPs, the layer-wise algorithm

consistently outperformed BP. The layer-wise method is also much faster than BP. In

fact, it is practically impossible to use BP to train kMLP with more than two hidden

layers without any acceleration method due to the computational complexity involved.
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Table 2: Testing the proposed layer-wise algorithm and acceleration method on MNIST.

The numbers following the model names indicate the number of hidden layers used.

For kMLPFAST, we also include in parentheses the ratio between the number of training

examples randomly chosen as centers for the kernel machines on the layer and the size

of the training set. Apart from kMLP-2 (BP), the BP kMLP results are from (Zhang

et al., 2017). For this and all following tables in this paper, the entries correspond to

test errors (%) and 95% confidence intervals (%). Results with overlapping confidence

intervals are considered equally good. Best results are marked in bold.

MLP-1
(RMSPROP+BN)

MLP-1
(RMSPROP+DROPOUT)

MLP-2
(RMSPROP+BN)

MLP-2
(RMSPROP+DROPOUT)

KMLP-1
(BP)

KMLP-1
(GREEDY)

KMLP-1RFF

(BP)

2.05 ± 0.28 1.77 ± 0.26 1.58 ± 0.24 1.67 ± 0.25 3.44 ± 0.36 1.77 ± 0.26 2.01 ± 0.28

KMLP-1PARAM

(BP)
KMLP-1FAST

(GREEDY)
KMLP-2

(BP)
KMLP-2

(GREEDY)
KMLP-2RFF

(BP)
KMLP-2PARAM

(BP)
KMLP-2FAST

(GREEDY)

1.88 ± 0.27 1.75 ± 0.26 (0.54) 3.66 ± 0.37 1.56 ± 0.24 1.92 ± 0.27 2.45 ± 0.30 1.47 ± 0.24 (1/0.19)
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Table 3: Comparing kMLPs (trained fully layer-wise) with MLPs and other popular deep

architectures trained with BP and BP enhanced by unsupervised greedy pre-training.

The MLP-1 (SGD), DBN and SAE results are from (Larochelle et al., 2007). Note that

in order to be consistent with (Larochelle et al., 2007), the MNIST results below were

obtained using a train/test split (10k/50k) more challenging than what is commonly used

in the literature.

RECTANGLES RECTANGLES-IMAGE CONVEX MNIST (50K TEST) MNIST (50K TEST) ROTATED FASHION-MNIST

MLP-1 (SGD) 7.16 ± 0.23 33.20 ± 0.41 32.25 ± 0.41 4.69 ± 0.19 18.11 ± 0.34 15.47 ± 0.71

MLP-1 (ADAM) 5.37 ± 0.20 28.82 ± 0.40 30.07 ± 0.40 4.71 ± 0.19 18.64 ± 0.34 12.98 ± 0.66

MLP-1 (RMSPROP+BN) 5.37 ± 0.20 23.81 ± 0.37 28.60 ± 0.40 4.57 ± 0.18 18.75 ± 0.34 14.55 ± 0.69

MLP-1 (RMSPROP+DROPOUT) 5.50 ± 0.20 23.67 ± 0.37 36.28 ± 0.42 4.31 ± 0.18 14.96 ± 0.31 12.86 ± 0.66

MLP-2 (SGD) 5.05 ± 0.19 22.77 ± 0.37 25.93 ± 0.38 5.17 ± 0.19 18.08 ± 0.34 12.94 ± 0.66

MLP-2 (ADAM) 4.36 ± 0.18 25.69 ± 0.38 25.68 ± 0.38 4.42 ± 0.18 17.22 ± 0.33 11.48 ± 0.62

MLP-2 (RMSPROP+BN) 4.22 ± 0.18 23.12 ± 0.37 23.28 ± 0.37 3.57 ± 0.16 13.73 ± 0.30 11.51 ± 0.63

MLP-2 (RMSPROP+DROPOUT) 4.75 ± 0.19 23.24 ± 0.37 34.73 ± 0.42 3.95 ± 0.17 13.57 ± 0.30 11.05 ± 0.61

DBN-1 4.71 ± 0.19 23.69 ± 0.37 19.92 ± 0.35 3.94 ± 0.17 14.69 ± 0.31 N/A

DBN-3 2.60 ± 0.14 22.50 ± 0.37 18.63 ± 0.34 3.11 ± 0.15 10.30 ± 0.27 N/A

SAE-3 2.41 ± 0.13 24.05 ± 0.37 18.41 ± 0.34 3.46 ± 0.16 10.30 ± 0.27 N/A

KMLP-1 2.24 ± 0.13 23.29 ± 0.37 19.15 ± 0.34 3.10 ± 0.15 11.09 ± 0.28 11.72 ± 0.63

KMLP-1FAST 2.36 ± 0.13 (0.05) 23.86 ± 0.37 (0.01) 20.34 ± 0.35 (0.17) 2.95 ± 0.15 (0.1) 12.61 ± 0.29 (0.1) 11.45 ± 0.62 (0.28)

KMLP-2 2.24 ± 0.13 23.30 ± 0.37 18.53 ± 0.34 3.16 ± 0.15 10.53 ± 0.27 11.23 ± 0.62

KMLP-2FAST 2.21 ± 0.13 (0.3/0.3) 23.24 ± 0.37 (0.01/0.3) 19.32 ± 0.35 (0.005/0.03) 3.18 ± 0.15 (0.3/0.3) 10.94 ± 0.27 (0.1/0.7) 10.85 ± 0.61 (1/0.28)

Moreover, it is worth noting that the proposed acceleration trick is clearly very effective

despite its simplicity and even produced models outperforming the original ones, which

may be due to its regularization effect. This shows that kMLP together with the greedy

learning scheme can be of practical interest even when dealing with the massive data

sets in today’s machine learning.

From Table 3, we see that the performance of kMLP is on par with some of the most

popular and most mature deep architectures. In particular, the greedily-trained kMLPs

compared favorably with their direct NN equivalents, i.e., the MLPs, even though neither

batch normalization nor dropout was used for the former.
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In Fig. 3, we visualize the learning dynamics within a two-hidden-layer kMLP

learned layer-wise. Since by construction of the Gaussian kernel, the image vectors are

all of unit norm in the RKHS, we can visualize the distance between two vectors by

visualizing the value of their inner product. In Fig. 3d, we can see that while the image

vectors are distributed randomly prior to training (see Fig. 3c), there is a clear pattern

in their distribution after training that reflects the dynamics of training: the layer-wise

algorithm squeezes examples from the same class closer together while pushes examples

from different class farther apart. And it is easy to see that such a representation would

be simple to classify. Fig. 3b and 3d suggest that this greedy, layer-wise algorithm still

learns “deep” representations: the higher-level representations are more distinctive for

different digits than the lower-level ones. Moreover, since learning becomes increasingly

simple for the upper layers as the representations become more and more well-behaved,

these layers are usually easy to set up and converge very fast during training.

6.2.2 Part 2: Kernelizing the Classic LeNet-5

We kernelize the output layer of the classic LeNet-5 (LeCun et al., 1998) architecture

and train it layer-wise with all the layers but the output layer as one layer and the output

layer as a second layer. The non-output layers are trained with BP. This is to demonstrate

that our kernelization method and the layer-wise algorithm are flexible in the sense

that the former can be applied to only a part of the network and that the latter works

well with partly-kernelized models. Since we are interested in evaluating the layer-wise

algorithm on partly-kernelized NNs instead of pursuing state-of-the-art performance, we

use the original LeNet-5 without increasing the size of any layer or the number of layers.
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traditional end-to-end methods. In that regard, it offers the same optimality guarantee

as that provided by an end-to-end method such as BP. We argue that the layer-wise

framework is promising because it is more light-weight and returns more information on

the training of the individual layers to the user, making possible new and more flexible

model selection and hyperparameter-tuning paradigms. This could serve as a tentative

step toward increasing the interpretability of deep architectures.

Fig. 4 provides more insights into the difference of kLeNet-5 and LeNet-5, in which

we plotted the activations of the last hidden layer of the two models after PCA dimension

reduction using the MNIST test set. In particular, we see that the representations in the

last hidden layer of kLetNet-5 are much more discriminative for different digits than

those in the corresponding layer of LeNet-5. Note that since the two models differed only

in their output layers, this observation suggests that the layer-wise training algorithm

turns deep architectures into more efficient representation learners, which may prove

useful for computer vision tasks that build on convolutional features (Gatys et al., 2015;

Gardner et al., 2015).

7 Conclusion

In this paper, we first proposed a family of connectionist models based on the kernel

method and then presented a framework to train multilayer feedforward networks in a

greedy, layer-by-layer fashion. Several realizations of the framework was provided and

their optimality proven. Finally, we described a certified layer-wise training algorithm

for deep feedforward architectures for classification based on the earlier realizations.
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Empirical results were provided to supplement out theory, in which our proposed models

and the layer-wise training algorithm compared favorably with classical kernel machines

as well as other popular connectionist models.
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Appendix A Experimental Setup

The data set rectangles has 1000 training images, 200 validation images 3, and 50000

test images. The model is required to tell if a rectangle contained in an image has a larger

width or length. The location of the rectangle is random. The border of the rectangle has

pixel value 255 and pixels in the rest of an image all have value 0. rectangles-image is

the same as rectangles except that the inside and outside of the rectangle are replaced

by an image patch, respectively. rectangles-image has 10000 training images, 2000

validation images, and 50000 test images. convex consists of images in which there are

white regions (pixel value 255) on black (pixel value 0) background. The model needs

to tell if the region is convex. This data set has 6000 training images, 2000 validation

images, and 50000 test images. mnist (50k test) contains 10000 training images, 2000

validation images, and 50000 test images taken from the standard MNIST. mnist (50k

test) rotated is the same as the fourth except that the digits have been randomly rotated.

For detailed descriptions of the data sets, see (Larochelle et al., 2007).

The experimental setup for the greedily-trained kMLPs is as follows, kMLP-1 corre-

sponds to a one-hidden-layer kMLP with the first layer consisting of 15 to 150 kernel

machines using the same Gaussian kernel and the second layer being a single or ten

(depending on the number of classes) kernel machines using another Gaussian kernel.

Hyperparameters were selected using the validation set. The validation set was then

used in final training only for early-stopping based on validation error. For the stan-

dard MNIST and Fashion-MNIST, the last 5000 training examples were held out as

validation set. kMLP-1FAST is the same kMLP for which we accelerated by randomly

3The last 200 of the training set. Same for other datasets as well.
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choosing a subset of the training set as centers for the second layer after the first had been

trained. The kMLP-2 and kMLP-2FAST are the two-hidden-layer kMLPs, the second

hidden layers of which contained 15 to 150 kernel machines. Settings of all the kMLPs

trained with BP can be found in (Zhang et al., 2017). Note that because it is extremely

time/memory-consuming to train kMLP-2 with BP without any acceleration method, to

make training possible, we could only randomly use 10000 examples from the entire

training set of 55000 examples as centers for the kMLP-2 (BP) from Table 2.

In Table 3, we compared kMLP with a one/two-hidden-layer MLP (MLP-1/MLP-2),

a one/three-hidden-layer DBN (DBN-1/DBN-3) and a three-hidden-layer SAE (SAE-3).

For these models, hyperparameters were also selected using the validation set. For

the MLPs, the sizes of the hidden layers were chosen from the interval [25, 700]. All

hyperparameters involved in Adam, RMSProp and BN were set to the suggested default

values in the corresponding papers. If used, dropout or BN was added to the hidden

layers and the best probability for dropout was found using the validation set. For DBN-3

and SAE-3, the sizes of the three hidden layers varied in intervals [500, 3000], [500,

4000] and [1000, 6000], respectively. DBN-1 used a much larger hidden layer than

DBN-3 to obtain comparable performance. A simple calculation shows that the total

numbers of parameters in the kMLPs were fewer than those in the corresponding DBNs

and SAEs by orders of magnitude in all experiments. Like in the training for the kMLPs,

the validation set were also reserved for early-stopping in final training. The DBNs

and SAEs had been pre-trained unsupervisedly before the supervised training phase,

following the algorithms described in (Hinton et al., 2006; Bengio et al., 2007). More

detailed settings for these models were reported in (Larochelle et al., 2007).
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Appendix B Proofs

Lemma B.1. Suppose f1 ∈ F1, . . . , fd ∈ Fd are elements from sets of real-valued

functions defined on R
p for some p ≥ 1, F ⊂ F1 × · · · × Fd is a subset of their

direct sum. For f ∈ F, define ω ◦ f : Rp × · · · × R
p × R

q → R as (x1, . . . , xm, y) 7→

ω(f1(x1), . . . , fd(x1), f1(x2), . . . , fd(xm), y), where x1, . . . , xm ∈ R
p, y ∈ R

q, and

ω : Rmd × R
q → R is bounded and L-Lipschitz for each y ∈ R

q with respect to the

Euclidean metric on R
md. Let ω ◦ F = {ω ◦ f : f ∈ F}.

Define

Gj
N(Fi) = EZn,X

j
n

[

sup
f∈Fi

1

N

N
∑

n=1

Znf
(

Xj
n

)

]

, i = 1, . . . , d, j = 1, . . . , m,

where the Xj
n are i.i.d. random vectors defined on R

p. We have

GN(ω ◦ F) ≤ 2L
d
∑

i=1

m
∑

j=1

Gj
N(Fi). (3)

In particular, if for all j, the Xj
n upon which the Gaussian complexities of the Fi

are evaluated are sets of i.i.d. random vectors with the same distribution, we have

G1
N(Fi) = · · · = Gm

N (Fi) =: GN(Fi) for all i and Eq. 3 becomes

GN(ω ◦ F) ≤ 2mL
d
∑

i=1

GN(Fi).

This lemma is a generalization of a result on the Gaussian complexity of Lipschitz

functions on R
k from (Bartlett & Mendelson, 2002). And the technique used in the

following proof is also adapted from there.

Proof. For the sake of brevity, we prove the case where m = 2. The general case uses

exactly the same technique except that the notations would be more cumbersome.
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Let F be indexed by A. Without loss of generality, assume |A| <∞. Define

Tα =
N
∑

n=1

ω(fα, 1(Xn), . . . , fα, d(X
′
n), Yn)Zn;

Vα = L

N
∑

n=1

d
∑

i=1

(fα, i(Xn)Zn, i + fα, i(X
′
n)ZN+n, i),

where α ∈ A, {(Xn, X
′
n) : n = 1, . . . , N} is a random sample of size N on R

p × R
p

and Z1, . . . , ZN , Z1, 1, . . . , Z2N, d are i.i.d. standard normal random variables.

Let arbitrary α, β ∈ A be given, define ‖Tα − Tβ‖22 = E (Tα − Tβ)
2
, where the

expectation is taken over the Zn. Define ‖Vα − Vβ‖22 similarly and we have

‖Tα − Tβ‖22 =
N
∑

n=1

(ω(fα, 1(Xn), . . . , fα, d(X
′
n), Yn)− ω(fβ, 1(Xn), . . . , fβ, d(X

′
n), Yn))

2

≤ L2

N
∑

n=1

d
∑

i=1

(

(fα, i(Xn)− fβ, i(Xn))
2 + (fα, i(X

′
n)− fβ, i(X

′
n))

2
)

= ‖Vα − Vβ‖22.

By Slepian’s lemma (Pisier, 1999),

N ĜN(ω ◦ F) = EZn
sup
α∈A

Tα

≤ 2EZn, i, ZN+n, i
sup
α∈A

Vα

≤ N2L
d
∑

i=1

(

ĜN(Fi) + Ĝ ′

N(Fi)
)

.

Taking the expectation of the Xn, X
′
n, Yn on both sides proves the result.

Lemma B.2. Given kernel k : Rd1 × R
d1 → R, let

F2 =

{

f : Rd1 → R, f(x) =
m
∑

ν=1

ανk(xν , x) + b |α = (α1, . . . , αm) ∈ R
m, ‖α‖1 ≤ A, b ∈ R

}

,

where the xν are an m-subset of SX.
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Define F1 =
{

(f1, . . . , fd1) : x 7→ (f1(x), . . . , fd1(x)) |x ∈ R
d0 , fj ∈ Ω

}

, where

Ω is a given hypothesis class of real-valued functions on R
d0 .

Also, define

F2◦F1 =

{

h : x 7→
m
∑

ν=1

ανk(F(xν), F(x)) + b |x ∈ R
d0 , ‖α‖1 ≤ A, b ∈ R, F ∈ F1

}

.

We have

GN(F2 ◦ F1) ≤ 2ALd1GN(Ω).

Proof. First, note that the bias b does not change GN(F2 ◦ F1).

ĜN(F2 ◦ F1) = E sup
α,F

1

N

N
∑

n=1

m
∑

ν=1

ανk(F(xν), F(xn))Zn

≤ E sup
α,F,yν∈Rd1

1

N

N
∑

n=1

m
∑

ν=1

ανk(yν , F(xn))Zn.

Suppose the supremum over yν is attained at Yν , the Yν are random vectors as they are

functions of the Zn.

Write

gν ◦ F(x) = k(F(x), Yν),

ω ◦ F(x) =
m
∑

ν=1

ανgν ◦ F(x) =
m
∑

ν=1

ανk(F(x), Yν).

Then we have

ĜN(F2 ◦ F1) ≤ E sup
α,F

1

N

N
∑

n=1

m
∑

ν=1

ανk(Yν , F(xn))Zn

= E sup
α,F

1

N

N
∑

n=1

ω ◦ F(x)Zn

= ĜN(ω ◦ F1).
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We now prove a Lipschitz property for ω. For any ξ1, ξ2 ∈ R
d1 , we have

|ω(ξ1)− ω(ξ2)| =
∣

∣

∣

∣

∣

m
∑

ν=1

αν(gν(ξ1)− gν(ξ2))

∣

∣

∣

∣

∣

≤
m
∑

ν=1

|αν ||gν(ξ1)− gν(ξ2)|

≤ Amax
ν

|gν(ξ1)− gν(ξ2)|

= Amax
ν

|k(ξ1, Yν)− k(ξ2, Yν)|

≤ Amax
ν

LYν
‖ξ1 − ξ2‖2

≤ AL‖ξ1 − ξ2‖2.

Therefore, ω ◦ F(x), as a function of F(x), is Lipschitz w.r.t. the Euclidean metric on

R
d1 with Lipschitz constant at most AL. It is easy to check that ω is bounded. Now the

desired result follows from Lemma B.1.

Proof of Proposition 3.2. The result follows from repeatedly applying Lemma B.2.

Proof of Lemma 4.1. Let G1 = argminF1∈F′

1
minF2∈F′

2
R̃(F2 ◦ F1), G2 = argminF2∈F′

2
R̃(F2 ◦G1).

Suppose F?
1 6= G1,

R̃(G2 ◦G1) = min
F2∈F′

2

R̃(F2 ◦G1) (definition of G2)

< min
F2∈F′

2

R̃(F2 ◦ F?
1) (definition of G1 and F?

1 6= G1)

= R̃(F?
2 ◦ F?

1). (definition of F?
2)

However, this contradicts the optimality of F?
2 ◦ F?

1.

Proof of Theorem 4.2. Let F′
1 be the class of all F′

1 such that for any f2 ∈ argminf2∈F2
R̃(f2 ◦ F′

1),

there exist (x+, y+), (x−, y−) ∈ S such that `(f2 ◦ F′
1, (xn, yn)) = 0, n = +, −.

49



Observe that F?
1 ∈ F

′
1 since any f2 ∈ argminf2∈F2

R̃(f2 ◦ F?
1) is easily shown to be

f ?
2 .

Now, suppose F◦
1 satisfies Eq. 1, if we show F◦

1 ∈ F
′
1 and that for any F′

1 ∈ F
′
1, we

have

min
f2∈F2

R̃(f2 ◦ F′
1) ≥ min

f2∈F2

R̃(f2 ◦ F◦
1),

then by Lemma 4.1, F◦
1 = F?

1.

We now start the formal proof. Note that we drop the layer indices 1 and 2 for

brevity, which will cause no confusion since the output layer will be denoted by f and

the input layer F. We assume that F◦ satisfies Eq. 1. Let f ◦ ∈ argminf∈F2
R̃(f ◦ F◦).

Let F′ ∈ F
′
1 be given and also let f ′ ∈ argminf∈F2

R̃(f ◦ F′).

Claim 1.

‖φ(x)‖H =
√
c, ∀x ∈ R

d1 .

Proof of Claim 1.

c = k(x, x) = 〈φ(x), φ(x)〉H = ‖φ(x)‖2H ,

which implies ‖φ(x)‖H =
√
c. �

Claim 2.

φ(F◦(x)) = φ(F◦(x′)), ∀x, x′ ∈ SX with y = y′;

φ(F◦(x+)) = φ(F◦(x−)), ∀x+, x− ∈ SX.

Proof of Claim 2. By Cauchy-Schwarz inequality and Claim 1,

0 < c = k(F◦(x), F◦(x′)) = 〈φ(F◦(x)), φ(F◦(x′))〉H ≤ ‖φ(F◦(x))‖H‖φ(F◦(x′))‖H = c.

50



So the equality holds in Cauchy-Schwarz and we have φ(F◦(x)) = pφ(F◦(x′)) for some

p > 0. Again by Claim 1, p = 1.

The second part of this claim follows from k(F◦(x+), F
◦(x−)) = a 6= c. �

Claim 3. For any x+, x− ∈ SX and any F : Rd0 → R
d1 ,

√

2(c− a) = ‖φ(F◦(x+))− φ(F◦(x−))‖H ≥ ‖φ(F(x+))− φ(F(x−))‖H .

Proof of Claim 3.

‖φ(F◦(x+))− φ(F◦(x−))‖2H

= ‖φ(F◦(x+))‖2H + ‖φ(F◦(x−))‖2H − 2〈φ(F◦(x+)), φ(F
◦(x−))〉H

= c+ c− 2k(F◦(x+), F
◦(x−))

= 2c− 2a

≥ 2c− 2k(F(x+), F(x−))

= ‖φ(F(x+))‖2H + ‖φ(F(x−))‖2H − 2〈φ(F(x+)), φ(F(x−))〉H

= ‖φ(F(x+))− φ(F(x−))‖2H

�

Claim 4.

R̃(f ◦ ◦ F◦) = τ‖wf◦‖H =
2τ

‖φ(F◦(x+))− φ(F◦(x−))‖H
, ∀x+, x− ∈ SX.
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Proof of Claim 4.

R̃(f ◦ ◦ F◦)

=
1

N

N
∑

n=1

max(0, 1− ynf
◦(F◦(xn))) + τ‖wf◦‖H

= κmax(0, 1− y+f
◦(F◦(x+))) + (1− κ)max(0, 1− y−f

◦(F◦(x−))) + τ‖wf◦‖H ,

for any pair of x+, x− ∈ SX. Let

ζf◦ = y+f
◦(F◦(x+))+y−f

◦(F◦(x−)) = ‖wf◦‖H‖φ(F◦(x+))− φ(F◦(x−))‖H cos θf◦ .

We have

R̃(f ◦ ◦ F◦) = κmax(0, 1− tf◦) + (1− κ)max(0, 1− (ζf◦ − tf◦)) + τ‖wf◦‖H ,

where tf◦ = f ◦(F◦(x+)).

Note that by definition of f ◦,

R̃(f ◦ ◦ F◦) = min
f
R̃(f ◦ F◦)

= min
ζf , tf ,‖wf‖

H

κmax(0, 1− tf ) + (1− κ)max(0, 1− (ζf − tf )) + τ‖wf‖H .

There are four possible cases that the terms inside the minimum operator can be

simplified to:

(1) If 1 ≥ tf ≥ ζf − 1, ζf ≤ 2, to 1− (1− κ)ζf + (1− 2κ)tf + τ‖wf‖H ;

(2) If tf ≥ max(1, ζf − 1), to (1− κ)(1− ζf + tf ) + τ‖wf‖H ;

(3) If tf ≤ min(1, ζf − 1), to κ(1− tf ) + τ‖wf‖H ;
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(4) If 1 ≤ tf ≤ ζf − 1, ζf ≥ 2, to τ‖wf‖H .

If ζf ≥ 2, for each fixed ζf , ‖wf‖H , tf , we have that the values of R̃ in (2), (3)

are no less than that in (4) and that their minima agree. Therefore, when ζf ≥ 2,

R̃(f ◦ ◦ F◦) = τ‖wf◦‖H .

On the other hand, if ζf ≤ 2, then for each fixed ζf , ‖wf‖H , first note tf ∈ R can

be chosen freely by adjusting b. Also, since max(1, ζf − 1) = 1 and min(1, ζf − 1) =

ζ − 1, by working out the minima over tf in (1), (2), and (3), respectively, we have

R̃(f ◦ ◦ F◦) = min(κ, 1− κ)(2− ζf◦) + τ‖wf◦‖H .

Note that we have ζf◦ = ‖wf◦‖Hψ◦ cos θf◦ , whereψ◦ = ‖φ(F◦(x+))− φ(F◦(x−))‖H ,

we can rewrite the earlier result in terms of ζf◦ and cos θf◦ . Consequently, we now deter-

mine the minimum over ζf and cos θf of the resulting expression.

To this end, first observe that for each ζf , one can choose cos θf ∈ [−1, 1] freely by

adjusting ‖wf‖H under the constraint that the two quantities must be of the same sign, if

both are nonzero. Therefore, for each ζf ≥ 2,

min
cos θf

R̃(f ◦ F◦) = R̃(f ◦ F◦) |cos θf=1=
τζf
ψ◦

.

Similarly, for each ζf ≤ 2, we have mincos θf R̃(f ◦ F◦) = min(κ, 1 − κ)(2 − ζf ) +

τ |ζf |/ψ◦.

Combining these two cases and using the assumption on τ , it is easy to see that

R̃(f ◦ ◦ F◦) = minζf R̃(f ◦ F◦) = R̃(f ◦ F◦) |ζf=2= 2τ/ψ◦. This proves the claim.

�

Remark B.2.1. By Claim 4, F◦ ∈ F
′

1.

Claim 5. For any F
′ ∈ F

′

1, minf∈F2
R̃
(

f ◦ F′
)

≥ minf∈F2
R̃(f ◦ F◦).
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Proof of Claim 5. By Claim 4, it amounts to prove

R̃
(

f ′ ◦ F′

)

≥ 2τ

‖φ(F◦(x+))− φ(F◦(x−))‖H
,

for an arbitrary pair of x+, x− ∈ SX. Suppose (x
′

+, y
′
+), (x

′

−, y
′
−) are a pair of examples

with x
′

+, x
′

− ∈ SX, and `
(

f ′ ◦ F′

, (x
′

n, y
′
n)
)

= 0, n = +, −, then we have y′+f
′
(

x
′

+

)

+

y′−f
′
(

x
′

−

)

≥ 2.

Since y′+f
′
(

x
′

+

)

+ y′−f
′
(

x
′

−

)

= ‖wf ′‖H
∥

∥φ
(

F
′
(

x
′

+

))

− φ
(

F
′
(

x
′

−

))∥

∥

H
cos θf ′ , it

is implied that cos θf ′ ∈ (0, 1],
∥

∥φ
(

F
′
(

x
′

+

))

− φ
(

F
′
(

x
′

−

))∥

∥

H
> 0 and ‖wf ′‖H ≥

2/
∥

∥φ
(

F
′
(

x
′

+

))

− φ
(

F
′
(

x
′

−

))∥

∥

H
. Therefore,

R̃
(

f ′ ◦ F′

)

≥ τ‖wf ′‖H

≥ 2τ
∥

∥φ
(

F
′
(

x
′

+

))

− φ
(

F
′
(

x
′

−

))∥

∥

H

≥ 2τ
∥

∥φ
(

F◦
(

x
′

+

))

− φ
(

F◦
(

x
′

−

))∥

∥

H

= R̃(f ◦ ◦ F◦).

�

This concludes the proof of the theorem.

Proof of Theorem 4.3. Denote with F
′
2 the set of all F′

2 such that for all j,
∥

∥

∥
wfj′

2

∥

∥

∥

H
> 0.

Denote with F
′
1 the set of all F′

1 such that for any F2 ∈ argminF2∈F′

2
R̃(F2 ◦ F′

1),

F2 satisfies:

∃(x+, y+), (x−, y−) ∈ SX × SY s.t. `(F2 ◦ F′
1, (x+, y+), (x−, y−)) = 0.

Using the same argument as in the beginning of the proof of Theorem 4.2, we have
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F?
1 ∈ F

′

1. Let F′
1 ∈ F

′
1 be given and suppose F◦

1 satisfies Eq. 2. Let

F′
2 ∈ argmin

F2∈F′

2

R̃(F2 ◦ F′
1), and F◦

2 ∈ argmin
F2∈F′

2

R̃(F2 ◦ F◦
1).

Then by Lemma 4.1, the proof is complete if we can show R̃(F′
2 ◦ F′

1) ≥ R̃(F◦
2 ◦ F◦

1).

To this end, first note that Claims 1, 2, 3 from the proof of Theorem 4.2 evidently

hold here as well. Define ψ = 1/N2
∑N

n,m=1 1{ym 6=yn}.

Claim 6. F◦
2(x) = F◦

2(x
′), ∀x, x′ ∈ SX with y = y′.

Proof of Claim 6. ∀x, x′ ∈ SX,

F◦
2(x)− F◦

2(x
′) =

(

f 1◦
2 (x)− f 1◦

2 (x′), . . .
)

=
(〈

wf1◦
2
, φ(F◦

1(x))− φ(F◦
1(x

′))
〉

H
, . . .

)

= (0, . . .),

where we have used Claim 2 for the last equality. �

Combining this claim with our earlier assumptions on h, we can simplify the objective

function

R̃(F◦
2 ◦ F◦

1) = ψ
(

h
(

‖F◦
2(x+)− F◦

2(x−)‖q
)

− b
)p

+ τt
(∥

∥

∥
wf1◦

2

∥

∥

∥

H
, . . . ,

∥

∥

∥
w

f
d2◦

2

∥

∥

∥

H

)

,

where x+, x− ∈ SX are arbitrary.

Rewrite the above expression as

R̃(F◦
2 ◦ F◦

1)

= ψ



h





(

d2
∑

j

∥

∥

∥
wfj◦

2

∥

∥

∥

q

H
‖φ(F◦

1(x+))− φ(F◦
1(x−))‖qH

(

cos θfj◦
2

)q
)1/q



− b





p

+ t
(∥

∥

∥
wf1◦

2

∥

∥

∥

H
, . . . ,

∥

∥

∥
w

f
d2◦

2

∥

∥

∥

H

)

Claim 7.
(

cos θfj◦
2

)2

= 1, ∀j.
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Proof of Claim 7. This claim follows from noting that for each

∥

∥

∥wfj
2

∥

∥

∥

H
,
(

cos θfj
2

)2

may be chosen freely and since the

∥

∥

∥
wfj

2

∥

∥

∥

H
are nonzero by the definition of F′

2, it is

easy to see that the unique minimizers of the
(

cos θfj
2

)2

are
(

cos θfj
2

)2

= 1, ∀j. �

Using Claim 3 and the above claim, we further simplify the objective function into

R̃(F◦
2 ◦ F◦

1)

= ψ



h





√

2(c− a)

(

d2
∑

j

∥

∥

∥
wfj◦

2

∥

∥

∥

q

H

)1/q


− b





p

+ τt
(∥

∥

∥
wf1◦

2

∥

∥

∥

H
, . . . ,

∥

∥

∥
w

f
d2◦

2

∥

∥

∥

H

)

= min
w

f
j
2

ψ



h





√

2(c− a)

(

d2
∑

j

∥

∥

∥
wfj

2

∥

∥

∥

q

H

)1/q


− b





p

+ τt
(∥

∥

∥
wf1

2

∥

∥

∥

H
, . . . ,

∥

∥

∥
w

f
d2
2

∥

∥

∥

H

)

Now, let
(

x′
+, x

′
−

)

∈
{

argmaxx+,x−∈SX
‖F′

2(x+)− F′
2(x−)‖q

}

, we have

R̃(F′
2 ◦ F′

1)

≥ ψ
(

h
(

∥

∥F′
2

(

x′
+

)

− F′
2

(

x′
−

)∥

∥

q

)

− b
)p

+ τt
(∥

∥

∥
wf1′

2

∥

∥

∥

H
, . . . ,

∥

∥

∥wf
d2′

2

∥

∥

∥

H

)

≥ ψ



h





∥

∥φ
(

F′
1

(

x′
+

))

− φ
(

F′
1

(

x′
−

))∥

∥

H

(

d2
∑

j=1

∥

∥

∥
wfj′

2

∥

∥

∥

q

H

)1/q


− b





p

+ τt
(∥

∥

∥
wf1′

2

∥

∥

∥

H
, . . . ,

∥

∥

∥wf
d2′

2

∥

∥

∥

H

)

≥ ψ



h





√

2(c− a)

(

d2
∑

j=1

∥

∥

∥
wfj′

2

∥

∥

∥

q

H

)1/q


− b





p

+ τt
(∥

∥

∥wf1′
2

∥

∥

∥

H
, . . . ,

∥

∥

∥wf
d2′

2

∥

∥

∥

H

)

≥ R̃(F◦
2 ◦ F◦

1).
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