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Summary

We propose and prove the optimality of a Bayesian approach for estimating the latent posi-
tions in random dot product graphs, which we call posterior spectral embedding. Unlike classical
spectral-based adjacency, or Laplacian spectral embedding, posterior spectral embedding is a
fully likelihood-based graph estimation method that takes advantage of the Bernoulli likelihood
information of the observed adjacency matrix. We develop a minimax lower bound for estimat-
ing the latent positions, and show that posterior spectral embedding achieves this lower bound
in the following two senses: it both results in a minimax-optimal posterior contraction rate and
yields a point estimator achieving the minimax risk asymptotically. The convergence results are
subsequently applied to clustering in stochastic block models with positive semidefinite block
probability matrices, strengthening an existing result concerning the number of misclustered ver-
tices. We also study a spectral-based Gaussian spectral embedding as a natural Bayesian analogue
of adjacency spectral embedding, but the resulting posterior contraction rate is suboptimal by an
extra logarithmic factor. The practical performance of the proposed methodology is illustrated
through extensive synthetic examples and the analysis of Wikipedia graph data.

Some key words: Likelihood-based graph estimation; Minimax optimality; Positive semidefinite stochastic block model;
Posterior spectral embedding.

1. Introduction

Using graphs as a data structure to represent network data, with the vertices denoting entities
and the edges encoding relationships between vertices, has become increasingly important in
a broad range of applications, including social networks (Young & Scheinerman, 2007), brain
imaging (Priebe et al., 2017) and neuroscience (Lyzinski et al., 2017; Tang et al., 2018). For
example, in a Facebook network vertices represent users, and the occurrence of an edge linking
any two users indicates that they are friends on Facebook. When one collects random graph data,
it may be costly or even infeasible to collect individual-specific attributes that are heterogeneous
across individuals, while only the adjacency matrix of the graph is accessible. For example, in
studying the structure of a Wikipedia page network, collecting the hyperlinks between articles
is much more feasible than collecting the attributes associated with each individual article. To
model the unobserved vertex-specific attributes that result in the observed network, Hoff et al.
(2002) proposed latent positions graphs, in which each vertex is associated with an unobserved
Euclidean vector called the latent position, and the edge probability between any two vertices
only depends on their latent positions. Formally, each vertex i is associated with a vector xi in
some latent space X , and there exists a symmetric function κ : X ×X → [0, 1], called a graphon
(Lovász, 2012), such that an edge between vertices i and j occurs with probability κ(xi, xj), and
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876 F. Xie and Y. Xu

the occurrences of these edges are independent given the latent positions. There is a vast literature
addressing statistical inference on latent positions graphs; see Bickel & Chen (2009), Fortunato
(2010), Goldenberg et al. (2010), Bickel et al. (2011) and Choi et al. (2012), among others.

In this paper we focus on a specific example of latent positions graphs: the random dot product
graph model (Young & Scheinerman, 2007), in which the graphon function κ is simply the dot
product of two latent positions: κ(xi, xj) = xT

i xj. The random dot product graph model enjoys
several nice properties. First, the well-known stochastic block model, in which the vertices are
grouped into several blocks, is a special case of the random dot product graph model and can be
represented with the latent positions of vertices in the same block being identical, provided that the
block probability matrix is positive semidefinite. Second, the architecture of the random dot prod-
uct graph is simple, as the expected value of the adjacency matrix is a symmetric low-rank matrix,
motivating the use of a wide range of tractable spectral-based techniques for statistical analysis.
Furthermore, the random dot product graph can provide accurate approximation to more general
latent positions graphs when the dimension of the latent positions grows with the number of ver-
tices at a certain rate (Tang et al., 2013). For a thorough review of recent advances in statistical
inference on the random dot product graph model, readers are referred to Athreya et al. (2018).

The techniques for statistical analysis of the random dot product graph model have so far
focused on spectral methods based on the observed adjacency matrix or its graph Laplacian
matrix. For example, Sussman et al. (2014) proposed directly estimating the latent positions using
adjacency spectral embedding, and proved its consistency. For the normalized graph Laplacian
matrix of the adjacency matrix, Tang & Priebe (2018) found the asymptotic distribution of spec-
tral embedding using the normalized graph Laplacian, and made a thorough comparison between
adjacency spectral embedding and Laplacian spectral embedding under various contexts. The
well-developed theory for spectral methods for the random dot product graph model lays a the-
oretical foundation for a variety of subsequent inference tasks, including spectral clustering for
stochastic block models (Sussman et al., 2012; Lyzinski et al., 2014, 2017), vertex classification
and nomination (Sussman et al., 2014; Lyzinski et al. 2017, 2018), nonparametric graph hypoth-
esis testing (Tang et al., 2017a) and multiple graph inference (Tang et al., 2017b; Levin et al.,
2019; Wang et al., 2019).

Despite the marvellous success of spectral methods for the random dot product graph model, it
remains an open question whether these spectral estimators are minimax optimal for estimating
the latent positions with respect to suitable loss functions. Taking one step back, a more fun-
damental question is: what is the minimax risk for estimating the latent positions, and how can
one achieve it by constructing a useful estimator? In this paper we provide a detailed answer
to this question. Unlike the aforementioned spectral-based approaches, we take advantage of
the Bernoulli likelihood information of the observed graph adjacency matrix and design a fully
likelihood-based Bayesian approach, referred to as posterior spectral embedding. Not only do
we establish a minimax lower bound for estimating the latent positions, but we also show that
this lower bound is achievable through the proposed Bayes procedure. Specifically, we show that
posterior spectral embedding both yields the rate-optimal contraction and produces a minimax-
optimal point estimator for estimating the latent positions. To the best of our knowledge, our
work represents the first effort in the literature of the random dot product graph model that lever-
ages a likelihood-based Bayesian approach with theoretical guarantee. In addition, as a sample
application we improve an existing result regarding clustering in positive semidefinite stochastic
block models by showing that the number of misclustered vertices can be reduced from O(log n)

(Sussman et al., 2012) to O(1), using the proposed posterior spectral embedding method.
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Optimal estimation for random graphs 877

There are several results related to our method in the literature. Strong consistency for clustering
in stochastic block models was achieved by Bickel & Chen (2009) and Zhao et al. (2012), but
their methods are not applicable to more general random dot product graph models. In addition,
their approaches are frequentist methods, whereas we develop a Bayes procedure and establish
theoretical properties of the resulting full posterior distribution. A Bayesian methodology for
clustering stochastic block models was used by van der Pas & van der Vaart (2018), but the
consistency result was with regard to the maximum a posteriori estimator, which can be treated
as a frequentist point estimator as well. The strong consistency of the full posterior distribution
for clustering in stochastic block models was discussed by Zhuo & Gao (2018), but under the
assumption that the stochastic block models were homogeneous. In contrast, our work includes
positive semidefinite stochastic block models, and is more flexible from the perspective of the
number of free parameters.

The following notation and symbols will be used in the rest of this paper. The d × d identity
matrix is denoted by Id . For an integer p, 1 � p � ∞, and a d-dimensional Euclidean vector x =
(x1, . . . , xd)T, we use ‖x‖p to denote its �p-norm, and when p = ∞, ‖x‖∞ = maxk=1,...,d |xk |. For
a vector x = (x1, . . . , xp)

T ∈ R
p, the vector inequality x � 0 represents xk � 0 for k = 1, . . . , p.

For an n×d matrix X we use (X )∗k to denote the n-dimensional vector formed by the kth column
of X . For a positive integer n, we denote by [n] the set of integers [n] = {1, 2, . . . , n}. For any
two positive integers n, d with n � d, O(n, d) denotes the set of all orthogonal d-frames in R

d ,
i.e., O(n, d) = {U ∈ R

n×d : U TU = Id}, and when n = d, we use the notation O(d) = O(d, d).
The symbols � and � mean the corresponding inequality up to a constant, i.e., a � b or a � b
if a � Cb or a � Cb for some constant C > 0. We write a � b if a � b and a � b. For
a d × d positive definite matrix �, we use λk(�) to denote its kth largest eigenvalue, and for
any rectangular matrix X , we use σk(X ) to denote its kth largest singular value. We say that a
sequence of events (En)

∞
n=1 occurs almost always if pr(

⋃∞
n=1

⋂∞
k=n Ek) = 1.

2. Preliminaries

We first give some background information on the random dot product graph model. Let the
space of d-dimensional latent positions be X = {x ∈ R

d : ‖x‖2 � 1, x � 0}, where ‖ · ‖2 is
the �2-norm of a Euclidean vector. Let X = (x1, . . . , xn)

T ∈ R
n×d be an n × d matrix, where

x1, . . . , xn ∈ X represent the latent positions of n vertices in a graph. A symmetric random binary
matrix Y = (yij)n×n ∈ {0, 1}n×n is said to be the adjacency matrix of a random dot product graph
with latent position matrix X , denoted by Y ∼ rdpg(X ), if the random variables yij ∼ Ber(xT

i xj)

independently, 1 � i � j � n. Namely, p(Y | X ) = ∏
i�j(x

T
i xj)

yij (1 − xT
i xj)

1−yij .

Example 1 (Positive semidefinite stochastic block model). The most popular example of the
random dot product graph model is the stochastic block model with a positive semidefinite
block probability matrix. Formally, given K with K/n → 0, a symmetric random adjacency
matrix Y is drawn from a K-block stochastic block model with a symmetric block probability
matrix B = (bkl)K×K ∈ (0, 1)K×K and a block assignment function τ : [n] → [K], denoted by
Y ∼ sbm(B, τ), if the random variables yij ∼ Ber(bτ(i)τ (j)) independently for 1 � i � j � n.
Namely, vertices in the same block have the same connecting probability. When B is positive
semidefinite with rank d, we refer to the model as a positive semidefinite stochastic block model,
and there exists a matrix L ∈ R

K×d such that B = LLT. By converting the block assignment
function τ into an n×K matrix Z = [1{τ(i) = k}]i∈[n],k∈[K] we obtain EX (Y ) = (ZL)(ZL)T, and
therefore sbm(B, τ) coincides with rdpg(X ) through the reparametrization X = ZL. The positive
semidefinite stochastic block model will be revisited in § 4.
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878 F. Xie and Y. Xu

Remark 1. Not all stochastic block models can be represented by the random dot product graph
model. Consider the following example: Y ∼ sbm(B, τ) with τ(1) = 1, τ(2) = · · · = τ(n) = 2,
where B = (bk�)2×2 is indefinite, indicating that there exists some u = (u1, u2)

T ∈ R
2 such

that uTBu < 0. Take v = {u1, u2/(n − 1), . . . , u2/(n − 1)}T ∈ R
n, and denote Z = [1{τ(i) =

k}]i∈[n],k∈[K]. It follows that ZTv = u, and hence vTE(Y )v = (ZTv)TB(ZTv) = uTBu < 0.
Since E(Y ) is not positive semidefinite, sbm(B, τ) cannot be represented by rdpg(X ) for some
X ∈ R

n×2.

Example 2 (Hardy–Weinberg curve example). We provide an example of the random dot
product graph model that is not a stochastic block model. Let d = 3 and C : (0, 1) → X 3 be the
Hardy–Weinberg curve (Athreya et al., 2020) defined by C(t) = (t2, 1−2t + t2, 2t −2t2)T ∈ R

3.
Let (ti)n

i=1 be distinct points taking values in (0, 1), and xi = C(ti) for all i ∈ [n]. Define the
latent position matrix X by X = (x1, . . . , xn)

T ∈ R
n×3, and let Y ∼ rdpg(X ). Then the random

dot product graph model generated according to this Hardy–Weinberg curve does not fall into
the category of stochastic block models.

Remark 2 (Intrinsic nonidentifiability). The latent position matrix X cannot be uniquely deter-
mined by the distribution Y ∼ rdpg(X ), i.e., X is not identifiable. In fact, for any orthogonal
matrix W ∈ R

d×d , the two distributions rdpg(X ) and rdpg(XW ) are identical, since for any
i, j ∈ [n], xT

i xj = (Wxi)
T(Wxj). In addition, any d-dimensional random dot product graph model

can be embedded into a d ′-dimensional random dot product graph model for any d ′ > d, in the
sense that there exists a d ′-dimensional latent position matrix X ′ ∈ R

n×d ′
such that the two dis-

tributions rdpg(X ) and rdpg(X ′) are identical. The latter source of nonidentifiability, however,
can be eliminated by requiring the columns of X to be linearly independent.

Remark 3 (Choice of orthogonal transformation and loss function). Since the latent position
matrix X can only be identified up to an orthogonal transformation, one needs to properly rotate
any estimator X̂ to align with the underlying true X . The alignment matrix can be found by the
solution to the orthogonal Procrustes problem W ∗ = arg inf W ‖X̂ W − X ‖F, where the infimum
ranges over the set of all orthogonal matrices in R

d×d (Athreya et al., 2020). In particular, W ∗
has a closed-form expression. Consequently, in this work we consider the loss function

LF(X̂ , X ) = 1

n
inf

W∈O(d)
‖X̂ − XW‖2

F = inf
W∈O(d)

1

n

n∑
i=1

‖x̂i − W Txi‖2
2,

where X̂ = (x̂1, . . . , x̂n)
T ∈ R

n×d . This loss function can also be interpreted as the average
error of the estimated latent positions x̂1, . . . , x̂n of all n vertices after the appropriate orthogonal
alignment.

The adjacency matrix Y can be viewed as the sum of a low-rank signal matrix XX T and
a noise matrix E = (eij)n×n, the elements of which are centred Bernoulli random vari-
ables eij ∼ Ber(xT

i xj) − xT
i xj independently for 1 � i � j � n. Sussman et al. (2014)

argued for embedding the adjacency matrix Y into R
n×d by solving the least-squared prob-

lem X̂ = arg minX ∈Rn×d ‖Y − XX T‖2
F. The resulting estimator X̂ is referred to as the adjacency

spectral embedding of Y (Sussman et al., 2012) and is denoted by X̂ase. Theoretical properties of
adjacency spectral embedding have been explored by Sussman et al. (2012) and Lyzinski et al.
(2014, 2017). Notably, the following convergence result of X̂ase was established by Sussman
et al. (2014).
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Optimal estimation for random graphs 879

Theorem 1 (Sussman et al., 2014). Suppose Y ∼ rdpg(X ) for some X ∈ R
n×d , and

(1/n)X TX → � for some positive definite � ∈ R
d×d with distinct eigenvalues λ1(�) > · · · >

λd(�) > 0 as n → ∞. Assume that there exists δ > 0 such that minj=| k |λj(�) − λk(�)| > 2δ

and λd(�) > 2δ. Then, with probability greater than 1 − 2(d2 + 1)/n2,

1

n
inf

W∈O(d)
‖X̂ase − XW‖2

F � 12d2 log n

δ3n
. (1)

Theorem 1 implies that after an orthogonal alignment of X̂ase towards X , adjacency spectral
embedding yields a convergence rate LF(X̂ase, X ) = opr {(Mn log n)/n} for arbitrary Mn →
∞, where (Mn)

∞
n=1 should be interpreted as a sequence converging to ∞ arbitrarily slowly.

Nevertheless, as will be seen in § 3, this rate is suboptimal and, interestingly, can be improved
by a Bayes estimator instead. Furthermore, it is unclear what the minimax risk for estimating the
latent position matrix X with respect to the loss LF(·, ·) is, or how to construct an estimator to
achieve the minimax rate, which we will address in this paper. The distinct eigenvalues condition
will also be relaxed in § 3. We begin approaching our main goal by first establishing the following
minimax lower bound.

Theorem 2. Let Y ∼ rdpg(X ) for some X = (x1, . . . , xn)
T, x1, . . . , xn ∈ X . Assume that d is

fixed and does not change with n. Let X̂ be an estimator of the latent position matrix X satisfying
‖X̂ ‖F � n1/2 with probability 1. Then

inf
X̂

sup
X ∈X n

EX

(
1

n
inf

W∈O(d)
‖X̂ − XW‖2

F

)
� 1

n
. (2)

The above minimax lower bound does not necessarily result in a minimax rate of convergence
for estimating the latent positions. Nevertheless, if we assume the existence of an estimator X̂ with
EX {(1/n) inf W ‖X̂ −XW‖2

F} � 1/n, which will be rigorously proved in § 3, then simply applying
Markov’s inequality yields (1/n) inf W ‖X̂ − XW‖2

F = opr(Mn/n) for an arbitrary sequence
Mn → ∞. This observation suggests that the convergence rate derived in Sussman et al. (2014)
for the adjacency spectral embedding might be suboptimal and motivates us to pursue an estimator
achieving the minimax lower bound (2).

3. Likelihood-based posterior spectral embedding

Although it is intuitive and computationally convenient to directly estimate the latent posi-
tion matrix X by the popular spectral-based approaches, i.e., adjacency spectral embedding,
the Bernoulli likelihood information of the adjacency matrix is neglected. On the other hand,
likelihood-based methods for the random dot product graph model remain underexplored. In
particular, neither the existence nor the uniqueness of the maximum likelihood estimator for X
has been addressed. In this section we develop a Bayesian approach for estimating the latent
positions by taking advantage of the Bernoulli likelihood information.

Recall that the space of latent positions is X = {x ∈ R
d : ‖x‖2 � 1, x � 0}. Let X0 =

(x01, . . . , x0n)
T be the true latent position matrix, and X = (x1, . . . , xn)

T be the latent position
matrix to be assigned a prior distribution 	. Whenever we consider the distribution 	, X is treated
as a random matrix taking values in the space X n = {X = (x1, . . . , xn)

T : xi ∈ X , i = 1, . . . , n}.
The prior distribution 	 on X is constructed by assuming that x1, . . . , xn follow a distribution
with a density function πx supported on X independently, and we denote it by X ∼ 	. In this
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880 F. Xie and Y. Xu

work we only require πx to be bounded away from 0 and ∞ over X , e.g., the uniform distribution
on X . It follows directly from the Bayes formula that the posterior distribution of X is

	(X ∈ A | Y ) = Nn(A)

Dn
, Nn(A) =

∫
A

∏
i�j

p(yij | X )

p(yij | X0)
	(dX ), Dn = Nn(X ),

and p(yij | X ) = (xT
i xj)

yij (1 − xT
i xj)

1−yij , for any measurable set A ⊂ X n. Clearly, the posterior
distribution of X incorporates the Bernoulli likelihood information through the Bayes formula,
and we refer to 	(X ∈ · | Y ) as posterior spectral embedding.

The following theorem, which is the key result of this work, shows that under mild regularity
conditions, the posterior contraction of the latent positions is minimax optimal. The proof is
deferred to the Supplementary Material.

Theorem 3. Let Y ∼ rdpg(X0) for some X0 = (x01, . . . , x0n)
T ∈ R

n×d , and the prior 	

be as described above. Assume that (1/n)(X T
0 X0) → � as n → ∞ for some positive definite

� ∈ R
d×d . If d is fixed, and δ � mini,j xT

0ix0j � maxi,j xT
0ix0j � 1 − δ for some constant

δ ∈ (0, 1/2) independent of n, then there exist some large constants M1, M2 > 0, depending on
� and the prior πx, such that

E0

{
	

(
1

n
‖XX T − X0X T

0 ‖F >
M1√

n

∣∣∣ Y

)}
� 8 exp

(
−1

2
nd

)
,

E0

{
	

(
1

n
inf

W∈O(d)
‖X − X0W‖2

F >
M2

n

∣∣∣ Y

)}
� 8 exp

(
−1

2
nd

)

for sufficiently large n.

Remark 4. The assumption (1/n)(X T
0 X0) → � as n → ∞ in Theorem 3 can be equivalently

written as (1/n)
∑n

i=1 x0ixT
0i → � as n → ∞ for some positive definite �. An intuitive inter-

pretation of this condition is that the true latent positions x01, . . . , x0n can be regarded as random
samples drawn from some nondegenerate distribution with a positive definite second-moment
matrix �. By the law of large numbers, the sample version of the second-moment matrix con-
verges to the population version of the second-moment matrix. An illustrative example is the
positive semidefinite stochastic block model. Suppose the distinct latent positions of x01, . . . , x0n
are x∗

01, . . . , x∗
0K , and let nk = ∑n

i=1 1(x0i = x∗
0k) be the number of vertices corresponding to the

latent position x∗
0k . Assume that K is fixed, nk/n → αk > 0 as n → ∞, and αks, x∗

0ks are fixed
for k = 1, . . . , K . Then

1

n
X T

0 X0 =
K∑

k=1

n∑
i=1

1(x0i = x∗
0k)x0ix

T
0i =

K∑
k=1

nk

n
(x∗

0k)(x
∗
0k)

T →
K∑

k=1

αk(x
∗
0k)(x

∗
0k)

T

as n → ∞. Therefore, with the above assumption, the positive semidefinite stochastic block
model satisfies this condition provided that

∑K
k=1 αk(x∗

0k)(x
∗
0k)

T is positive definite.

Theorem 3 claims that, under appropriate regularity conditions, posterior spectral embedding
yields a rate-optimal posterior contraction for the latent positions in the Bayesian sense. The
following theorem shows that one can use posterior spectral embedding to construct a point
estimator X̂ that exactly achieves the minimax lower bound (2).

D
ow

nloaded from
 https://academ

ic.oup.com
/biom

et/article/107/4/875/5867841 by Johns H
opkins U

niversity user on 30 N
ovem

ber 2022



Optimal estimation for random graphs 881

Theorem 4. Let the conditions in Theorem 3 hold, and let constant M1 > 0 be given by
Theorem 3. Consider the posterior mean of the edge probability matrix,

P̃ =
∫

X ∈X n
XX T	(dX | Y ).

Suppose P̃ yields the spectral decomposition P̃ = ∑n
j=1 λ̂j ûj , where λ̂1, . . . , λ̂n are eigenvalues

of P̃ arranged in nonincreasing order, and û1, . . . , ûn are the associated eigenvectors. Let Û =
(û1, . . . , ûd), Ŝ = diag(λ̂1, . . . , λ̂d), X̂ = Û Ŝ1/2 and U0 be the left-singular vector matrix of X0.
Then, for sufficiently large n,

E0

(
1

n
inf

W∈O(d)
‖X̂ − X0W‖2

F

)
� 1

n
. (3)

Furthermore, for sufficiently large n,

pr0

{
inf

W∈O(d)
‖Û − U0W‖2

F >
128M 2

1 d

λ2
d(�)n

}
� 2 exp

(
−1

4
M1d

√
n

)
. (4)

We briefly compare the results of Theorem 4 with those in Sussman et al. (2014). The con-
vergence rate (3) shows that X̂ not only achieves the minimax lower bound (2), but also yields
a convergence rate (1/n) inf W ‖X̂ − X0W‖2

F = opr0
(Mn/n) for any Mn → ∞, improving the

rate (1) obtained in Sussman et al. (2014). The convergence rate of the unscaled eigenvectors
Û given by (4) also improves its counterpart in Sussman et al. (2014), which is explained as
follows. Denote by U the left-singular vector matrix of X , and Ûase that of X̂ase. Then, under the
assumptions of Theorem 1, there exists a diagonal matrix W , the diagonal entries of which are
either 1 or −1, such that

pr0

{
‖(Ûase)∗k − (WU0)∗k‖2

2 >
3 log n

δ2n

}
� 2(d2 + 1)

n2 (5)

for k = 1, . . . , d. In contrast, the eigenvector estimate Û derived using posterior spectral embed-
ding improves the convergence rate (5). Not only do we improve the rate from (log n)/n to 1/n,
but we also sharpen the large deviation probability from O(1/n2) to O(e−cn1/2

) for some constant
c > 0. The distinct eigenvalues condition for � required in Sussman et al. (2014) is also relaxed.

4. Application: clustering in positive semidefinite stochastic block models

This section presents an application of posterior spectral embedding to clustering in positive
semidefinite stochastic block models. In particular, we show that the result obtained in this section
strengthens an existing result related to the number of misclustered vertices. We first review the
K-means clustering procedure in general (Lloyd, 1982). Suppose that n data points x̂1, . . . , x̂n in
R

d are to be assigned into K clusters, and denote X̂ = (x̂1, . . . , x̂n)
T ∈ R

n×d the corresponding
data matrix. The K-means clustering centroids of x̂1, . . . , x̂n, represented by an n×d matrix C(X̂ )

with K distinct rows, are given by

C(X̂ ) = arg min
C∈CK

‖C − X̂ ‖F, where CK = {C ∈ R
n×d : C has K distinct rows}.
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882 F. Xie and Y. Xu

The corresponding cluster assignment function is defined to be any function τ(·; X̂ ) : [n] → [K]
such that τ(i; X̂ ) = τ(j; X̂ ) if and only if {C(X̂ )}i∗ = {C(X̂ )}j∗. Given two cluster assign-
ment functions τ1 and τ2, the Hamming distance between τ1 and τ2 is defined by dH(τ1, τ2) =∑n

i=1 1{τ1(i) =| τ2(i)}. To avoid the labelling issue, we use inf σ∈SK dH{σ ◦ τ(·; X ), τ(·; X0)} as
the measurement for clustering performance, where SK is the set of all permutations in [K].

A clustering procedure for stochastic block models is called consistent if the resulting
fraction of misclustered vertices is asymptotically zero. Consistent clustering procedures in
stochastic block models have been investigated in earlier work, including likelihood-based
methods (Choi et al., 2012), spectral clustering based on Laplacian spectral embedding (Rohe
et al., 2011), K-means clustering based on adjacency spectral embedding (Sussman et al., 2012)
and modularity maximization (Girvan & Newman, 2002), among others. In particular, Sussman
et al. (2012) argue that by directly applying the K-means procedure to adjacency spectral embed-
ding X̂ase, i.e., replacing the aforementioned X̂ by X̂ase, the number of misclustered vertices can
be upper bounded by O(log n). In what follows we show that this result can be strengthened by
taking advantage of the n1/2 convergence rate of posterior spectral embedding.

Our method for clustering is straightforward: similar to K-means clustering based on X̂ase,
we directly apply the K-means clustering procedure to the posterior samples collected from
posterior spectral embedding. Specifically, for each realization X drawn from posterior spectral
embedding, we obtain a cluster assignment function τ(·; X ) by applying the aforementioned K-
means clustering procedure to X . This results in a posterior distribution of the cluster assignment
function 	{τ(·; X ) ∈ · | Y }, which is induced from the map X 
→ τ(·; X ) and posterior spectral
embedding 	(X ∈ · | Y ). The theorem below shows that we can recover the clustering structure
through the K-means procedure, even when we assume that the working model is the random
dot product graph model, which is more general than the positive semidefinite stochastic block
model.

Theorem 5. Assume the conditions in Theorem 3 hold, and let the constants M1, M2 > 0 be
provided byTheorem 3. Further assume that X0 = (x01, . . . , x0n)

T has K distinct rows x∗
01, . . . , x∗

0K
for some K ∈ [n], they satisfy mink=| k ′ ‖x∗

0k−x∗
0k ′‖2 > ξ for some ξ > 0, and nk := ∑n

i=1 1(x0i =
x∗

0k) → ∞ as n → ∞ for all k ∈ [K]. Then, for sufficiently large n,

E0

[
	

{
inf

σ∈SK
dH(σ ◦ τ0, τX ) �

16M 2
2

ξ2

∣∣∣ Y

}]
� 8 exp

(
−1

2
nd

)
,

where τ0 = τ(·; X0) and τX = τ(·; X ). Let Û be the left-singular vector matrix of X̂ defined in
Theorem 4, and U0 be that of X0. Then it almost always holds that

inf
σ∈SK

dH{σ ◦ τ(·; Û ), τ(·; U0)} � 16

ξ2

{
8M1

√
2d

λd(�)

}2

.

Remark 5. Sussman et al. (2012) directly applied the K-means clustering procedure to X̂ase,
and showed that inf σ∈SK dH{σ ◦ τ(·; X̂ase), τ(·; X0)} � log n almost always. Namely, the number
of vertices that are incorrectly clustered is O(log n) eventually. The result obtained in Theorem 5
is stronger, since it shows that this number can be further reduced to O(1) in the following
two senses: if the K-means clustering procedure is applied to the posterior samples drawn from
posterior spectral embedding, then with posterior probability tending to 1 in pr0-probability,
the posterior number of misclustered vertices is upper bounded by a constant. If the K-means
clustering procedure is directly applied to the unscaled left-singular vector Û of the point estimator
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Optimal estimation for random graphs 883

X̂ obtained in Theorem 4, then it almost always holds that this number can be upper bounded by
a constant as well.

Remark 6. The rate O(1) for the number of misclustered vertices is due to the convergence
rate E0{(1/n) inf W ‖X̂ − X0W‖2

F} � 1/n. This improvement is not only specific to positive
semidefinite stochastic block models, but also accredited to the Bayesian approach, along with
its specific proof strategy. The improvement is specific to positive semidefinite stochastic block
models because the minimax lower bound provided in Theorem 2 is only valid in the context
of random dot product graphs. It should also be accredited to the Bayesian approach with its
corresponding proof strategy because, by doing so, we are able to achieve the desired minimax
lower bound via Bayes estimates.

5. Spectral-based Gaussian spectral embedding

We have seen in § 3 and § 4 the advantages of posterior spectral embedding over adjacency
spectral embedding for the random dot product graph model. The major difference is that posterior
spectral embedding is a fully likelihood-based approach taking the Bernoulli likelihood informa-
tion into account, while adjacency spectral embedding only leverages the low-rank structure of
the expected value of the adjacency matrix XX T = EX (Y ). Recall that adjacency spectral embed-
ding X̂ase is the solution to the minimization problem minX ∈Rn×d ‖Y − XX T‖2

F. Equivalently,
we can also view X̂ase as the maximum likelihood estimator of X using a Gaussian likelihood
function,

X̂ase = arg min
X ∈Rn×d

‖Y − XX T‖2
F = arg max

X ∈Rn×d

n∑
i=1

n∑
j=1

{
−1

2
log(2π) − 1

2
(yij − xT

i xj)
2
}

.

The above interpretation motivates us to study a Bayesian analogue of the adjacency spectral
embedding, referred to as the Gaussian spectral embedding, introduced as follows.

Assume that 	G is some prior distribution on the latent position matrix X supported on R
n×d .

We consider the following pseudo-posterior distribution by taking the Gaussian density as the
working model:

	G(X ∈ A | Y ) = N G
n (A)

DG
n

, N G
n (A) =

∫
A

∏
i,j∈[n]

φ(yij − xT
i xj)

φ(yij − xT
0ix0j)

	G(dX ),

DG
n = Nn(R

n×d),

(6)

for any measurable set A ⊂ R
n×d , where φ is the density function of N(0, 1). The formulation

of (6) is completely based on the spectral property of Y and EX (Y ) = XX T, and does not
incorporate the Bernoulli likelihood information. We refer to the pseudo-posterior distribution
(6) as the Gaussian spectral embedding of Y . Observe that when

	G(dX ) =
n∏

i=1

(
1√

2πσ 2

)d

exp
(

−xT
i xi

2σ 2

)
dxi (7)

for some σ 2 > 0, the maximum a posteriori estimator of (6) is the same as the solution to the
minimization problem minX ∈Rn×d ‖Y − XX T‖2

F + (1/2σ 2)‖X ‖2
F. In particular, when σ 2 → ∞,
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884 F. Xie and Y. Xu

which corresponds to a noninformative flat prior, the maximum a posteriori estimator of (6)
coincides with the adjacency spectral embedding X̂ase. Therefore, one can heuristically view
Gaussian spectral embedding defined through (6) as a direct Bayesian analogy of adjacency
spectral embedding.

Remark 7 (Generality of Gaussian spectral embedding). Recall that the random dot product
graph model can be alternatively regarded as a low-rank matrix model: Y = XX T+E for some low-
rank matrix XX T and some noise matrix E. In the formulation of Gaussian spectral embedding, we
do not constrain the latent positions x1, . . . , xn to lie in the space X = {x ∈ R

d : ‖x‖2 � 1, x � 0},
and do not assume a parametric form for the distribution of the entries of Y . Namely, the Gaussian
spectral embedding (6) is well defined, not only for the random dot product graph model, but also
for a more general class of low-rank matrix models. In the theoretical analysis below, we also
assume that the sampling model for Y is a more general low-rank matrix model Y = XX T + E
for some X ∈ R

n×d , and the entries of E are only required to be sub-Gaussian.

Theorem 6. Let Y ∈ R
n×n be a symmetric random matrix with (yij : 1 � i � j � n)

being independent, and let E0(Y ) = X0X T
0 for some X0 ∈ R

n×d , where d/n → 0. Assume
that (1/n)X T

0 X0 → � as n → ∞ for some positive definite � ∈ R
d×d , and the entries of

Y − E0(Y ) are sub-Gaussian, i.e., there exists some constant τ > 0 such that, for all A ∈ R
n×n

with ‖A‖2
F = 1, and all t > 0, pr0

[|Tr
{
AT(Y − X0X T

0 )
} | > t

]
� e−τ t2

. Then there exist some
M > 0 and a constant Cτ only depending on τ and � such that, for sufficiently large n,

E

{
	G

(
1

n
inf

W∈O(d)
‖X − X0W‖2

F >
Md log n

n

∣∣∣ Y

)}
� 14 exp(−Cτ M 2n log n).

On the one hand, when the sampling model is restricted to the random dot product graph model,
the posterior contraction rate for the latent positions under Gaussian spectral embedding is slower
than the optimal rate 1/n by an extra logarithmic factor, while posterior spectral embedding yields
a rate-optimal contraction. On the other hand, Gaussian spectral embedding can be applied to
more general low-rank matrix models, while posterior spectral embedding is specifically designed
for the random dot product graph model. In addition, posterior spectral embedding requires the
latent positions x1, . . . , xn to lie in the space X . Such a restriction could potentially lead to a
cumbersome Markov chain Monte Carlo sampler for posterior inference. In contrast, Gaussian
spectral embedding has no constraint on the latent positions, making the corresponding posterior
computation relatively convenient.

6. Numerical examples

6.1. General set-up for posterior inference

We evaluate the performance of the proposed posterior spectral embedding in comparison
with Gaussian/adjacency spectral embedding through simulated examples and the analysis of a
Wikipedia graph dataset. For each of the numerical set-ups, the posterior inferences are carried
out through a standard Metropolis–Hastings sampler with 15 000 iterations, where the first 5000
iterations are discarded as burn-in, and 1000 post-burn-in samples are collected every 10 itera-
tions. The prior density for x1, . . . , xn is set to be the uniform distribution Un(X ) for posterior
spectral embedding, and the Gaussian prior in (7) with σ = 10 for Gaussian spectral embed-
ding. Additional details of the Metropolis–Hastings sampler are provided in the Supplementary
Material.
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Optimal estimation for random graphs 885

Table 1. Simulation set-up for positive semidefinite stochastic block models
K K = 3 K = 5 K = 7
n n = 600 n = 1000 n = 1400

(x∗
01, . . . , x∗

0K )

[
0.3 0.3 0.6
0.3 0.6 0.3

] [
0.3 0.3 0.7 0.7 0.5
0.3 0.7 0.3 0.7 0.5

] [
0.2 0.2 0.2 0.5 0.5 0.5 0.7
0.2 0.5 0.7 0.2 0.5 0.7 0.2

]

6.2. Simulated examples

We first consider stochastic block models with positive semidefinite block probability matrices
as our simulated examples. Three simulation set-ups are considered, and the number of commu-
nities K and the unique values of their latent positions (x∗

01, . . . , x∗
0K ) are tabulated in Table 1. In

each simulation set-up, the numbers of vertices in different clusters are drawn from a multinomial
distribution with the probability vector (1/K , . . . , 1/K)T.

For the posterior spectral embedding, we compute the point estimator X̂ given in Theorem 4.
A point estimator for Gaussian spectral embedding is also obtained in a similar fashion. Although
the data-generating models are positive semidefinite stochastic block models, the posterior infer-
ences are performed under the more general random dot product graph models as the working
models. We perform the subsequent clustering based on the K-means procedure, as described
in § 4.

Rand (1971) suggested using the Rand index to evaluate the performance of clustering. Speci-
fically, given two partitions C1 = {c11, . . . , c1r} and C2 = {c21, . . . , c2s} of [n], i.e., for i = 1, 2,
the cij are disjoint and their union is [n], denote by a the number of pairs of elements in [n]
that are both in the same set in C1 and in the same set in C2, and b the number of pairs in [n]
that are neither in the same set in C1 nor in the same set in C2. Then the Rand index is defined
as ri = 2(a + b)/{n(n − 1)}. The Rand index is a quantity between 0 and 1, with a higher
value suggesting better accordance between the two partitions. In particular, when C1 and C2 are
identical up to relabelling, ri = 1.

Comparisons of the Rand indices and the embedding errors (1/n) inf W ‖X̂ − X0W‖2
F for the

three embedding approaches are tabulated in Tables 2 and 3, respectively. We see that the point
estimates of posterior spectral embedding are superior to the other two competitors in terms of
higher Rand indices and lower embedding errors, whereas the point estimates of Gaussian spectral
embedding perform the worst in all three set-ups. All three embedding approaches perform
better as the number of vertices n increases. In particular, Gaussian spectral embedding does
not produce satisfactory results when n = 600 and n = 1000, but performs decently well when
n = 1400. These numerical results are also in accordance with the theoretical results established
in § 3, § 4 and § 5, suggesting the optimality of posterior spectral embedding and the suboptimality
of adjacency and Gaussian spectral embedding.

We also visualize the three embeddings of the observed adjacency matrix for the three
set-ups in Figs. 1, 2 and 3, respectively. The estimation errors of the point estimates under
Gaussian spectral embedding can be clearly recognized from the figures when n = 600 and
n = 1000. We also observe that, for the underlying true latent position (0.7, 0.7)T when
K = 5, adjacency spectral embedding and the point estimator of Gaussian spectral embed-
ding produce estimates that may stay outside the latent position space X , whereas the point
estimates of posterior spectral embedding almost stay inside the space X . This agrees with
the fact that posterior spectral embedding requires the latent positions to stay inside X ,
whereas Gaussian spectral embedding and adjacency spectral embedding do not have such
constraints.
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Table 2. Simulated examples: Rand indices of different clustering methods
Method PSE (point estimate) ASE GSE (point estimate)

K = 3, n = 600 0.9171 0.9160 0.7826
K = 5, n = 1000 0.9584 0.9558 0.7187
K = 7, n = 1400 0.9964 0.9508 0.9505

pse, the posterior spectral embedding; ase, the adjacency spectral embedding; gse, the Gaussian
spectral embedding.

Table 3. Simulated examples: errors (1/n) inf W ‖X̂ − X0W‖2
F of different methods

Method PSE (point estimate) ASE GSE (point estimate)

K = 3, n = 600 1.281 × 10−2 1.560 × 10−2 2.792 × 10−2

K = 5, n = 1000 6.851 × 10−3 8.548 × 10−3 1.418 × 10−2

K = 7, n = 1400 3.460 × 10−3 3.582 × 10−3 4.200 × 10−3

pse, the posterior spectral embedding; ase, the adjacency spectral embedding; gse, the Gaussian spectral
embedding.

0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.2

0.4

0.6

0.8

1.0

PSE (Point Estimate)

x1

x 2

0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.2

0.4

0.6

0.8

1.0

ASE

x1

x 2

0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.2

0.4

0.6

0.8

1.0

GSE (Point Estimate)

x1

x 2

Fig. 1. Visualization of the three embedding approaches for the simulated positive semidefinite stochastic block models
with K = 3. The red triangles are the true latent positions, and the scatter points are embedding estimates of the

latent positions.

6.3. Wikipedia graph data

We next turn to the analysis of a real-world Wikipedia graph dataset, which is publicly
available at http://www.cis.jhu.edu/ parky/Data/data.html. Specifically, the
dataset consists of a network of articles that are within two hyperlinks of the article ‘Algebraic
Geometry’, resulting in n = 1382 vertices. In addition, the articles involved are manually labelled
as one of the following six classes: People, Places, Dates, Things, Math, Categories.

We first estimate the embedding dimension d by an ad hoc method. We examine the plot of
the singular values of the observed adjacency matrix in Fig. 4, and directly locate an elbow that
suggests a cut-off between the signal dimension and the noise dimension. For this Wikipedia
dataset, the elbow is located at d̂ = 3.

We then conduct the posterior inferences under posterior spectral embedding, Gaussian spectral
embedding and adjacency spectral embedding to obtain the estimates of the latent positions based
on d̂ = 3. To obtain the clustering results, we further apply the mclust package in R (Fraley
et al., 2012; R Development Core Team, 2020) to these embedding estimates with K = 6,
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Fig. 2. Visualization of the three embedding approaches for the simulated positive semidefinite stochastic block models
with K = 5. The red triangles are the true latent positions, and the scatter points are embedding estimates of the

latent positions.
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Fig. 3. Visualization of the three embedding approaches for the simulated positive semidefinite stochastic block models
with K = 7. The red triangles are the true latent positions, and the scatter points are embedding estimates of the

latent positions.
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Fig. 4. Wikipedia graph data: singular values plot of the observed adjacency matrix. An elbow can be located at
d̂ = 3 (the red circle).

as discussed in § 4, and compute their Rand indices with the manually labelled classes. The
results are presented in Table 4, showing that the point estimate of posterior spectral embedding
outperforms the other two approaches.
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Table 4. Wikipedia graph data: Rand indices of different clustering methods
Method PSE (point estimator) ASE GSE (point estimator)

Rand index 0.7451 0.7213 0.7155

pse, the posterior spectral embedding; ase, the adjacency spectral embedding; gse, the Gaussian
spectral embedding.

7. Discussion

There are several potential extensions of the proposed methodology and the corresponding
theory. First, the framework we have considered so far is based on the fact that the observed
adjacency matrix of the network are Bernoulli random variables, i.e., an unweighted network.
It is also common to encounter weighted network data in a wide range of applications (Schein
et al., 2016; Tang et al., 2017b). Our theory and method can easily be extended to the weighted
adjacency matrix, the elements of which typically follow distributions of more general forms.
Alternatively, the Gaussian spectral embedding proposed in § 5 can be applied when the elements
of the weighted adjacency matrix are sub-Gaussian random variables after centring. Second, we
assume that the graph model is dense and undirected. Generalization of the random dot product
graph model to sparse and directed networks, along with the corresponding theory, are provided
in the Supplementary Material. Last, but not least, we assume that the embedding dimension
d is known for ease of the mathematical analysis. When d is unknown, we can first consis-
tently estimate d by some estimator d̂ (Chatterjee, 2015), and then perform posterior/Gaussian
spectral embedding based on d̂. Alternatively, we can assign a prior distribution on d and let
the posterior distribution adaptively select the correct dimension with moderate uncertainty. The
challenge, nevertheless, is that it is nontrivial to design a reversible-jump sampler to address the
cross-dimensional Monte Carlo problem for the random dot product graph model. We defer the
computational issue with random d to future work. In contrast to Markov chain Monte Carlo
samplers, which become computationally expensive when the number of vertices grows large, it
is also worthwhile developing variational Bayes methods along with the corresponding theory
for random graph models.
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