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ABSTRACT
We develop a Bayesian approach called the Bayesian projected calibration to address the problem of
calibrating an imperfect computer model using observational data from an unknown complex physical
system. The calibration parameter and the physical system are parameterized in an identifiable fashion via
the L2-projection. The physical system is imposed a Gaussian process prior distribution, which naturally in-
duces a prior distribution on the calibration parameter through the L2-projection constraint. The calibration
parameter is estimated through its posterior distribution, serving as a natural and nonasymptotic approach
for the uncertainty quantification. We provide rigorous large sample justifications of the proposed approach
by establishing the asymptotic normality of the posterior of the calibration parameter with the efficient
covariance matrix. In addition to the theoretical analysis, two convenient computational algorithms based
on stochastic approximation are designed with strong theoretical support. Through extensive simulation
studies and the analyses of two real-world datasets, we show that the proposed Bayesian projected
calibration can accurately estimate the calibration parameters, calibrate the computer models well, and
compare favorably to alternative approaches. Supplementary materials for this article are available online.
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1. Introduction

With the rapid development of computational techniques and
mathematical tools, computer models have been widely adopted
by researchers to study large and complex physical systems.
One can think of computer models as complicated nonlinear
functions designed by experts using their scientific knowledge
(Sacks et al. 1989; Fang, Li, and Sudjianto 2005). Compared
to real physical experiments, in silico computer models are
typically much faster and cheaper to run. Furthermore, com-
puter models can be used to generate data that are infeasi-
ble to collect in practice. For example, a publicly available
computer model called TITAN2D (Sheridan et al. 2002) that
simulates granular mass flows over digital elevation models of
natural terrain was developed to better understand the loss of
life and disruption of infrastructure due to volcanic phenom-
ena. Such data are impossible to collect in real life. For more
applications of computer models, we refer to Fang, Li, and
Sudjianto (2005), Santner, Williams, and Notz (2013), and the
April 2018 issue of Statistica Sinica (http://www3.stat.sinica.edu.
tw/statistica), which are devoted to computer experiments and
uncertainty quantification.

In this article, we consider the calibration problem in com-
puter models when they include not only the variables that
can be measured, often referred to as the design, but also un-
known parameters that are not directly available in the physi-
cal system. These parameters are referred to as the calibration
parameters in the literature (Kennedy and O’Hagan 2001). The
goal of calibration is to estimate the calibration parameters by
combining observational data from the physical systems and
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simulated data from the computer models, so that the computer
models with the estimated calibration parameters plugged-in
provide reasonable approximations to the underlying physical
systems. Formally, we model the outputs (yi)

n
i=1 of the physical

system η at design (xi)
n
i=1 through a nonparametric regression

model

yi = η(xi) + ei, i = 1, . . . , n,

where (ei)
n
i=1 are independent N(0, σ 2) noise. The computer

model ys(·, θ), also known as the simulator, is a function de-
signed by scientific experts to model the unknown physical
system η(·) when the calibration parameter θ is appropriately
estimated.

Despite the success of computer models in many scientific
studies, researchers often ask the following question: is the com-
puter model a suitable surrogate for the real physical system?
Compared to the physical systems, the traditional computer
models are rarely perfect or exact due to their fixed parametric
nature or simplifications of the complex physical phenomenon
(Tuo and Wu 2015). This implies that there exists some dis-
crepancy between a physical system η(·) and its corresponding
computer model ys(·, θ) even if the computer model is well
calibrated. Kennedy and O’Hagan (2001) first tackled this dis-
crepancy issue under a Bayesian framework, which has been
influential among many other statisticians and quality control
engineers. For an incomplete list of references for the computer
model calibration problem, we refer to Higdon et al. (2004),
Bayarri et al. (2007), Qian and Wu (2008), Joseph and Melkote
(2009), Wang, Chen, and Tsui (2009), Chang and Joseph (2014),
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Brynjarsdóttir and O’Hagan (2014), Storlie et al. (2015), among
others.

Theoretical properties of the calibration problem were not
well understood until Tuo and Wu (2015, 2016), which pointed
out that the calibrated computer models estimated by Kennedy
and O’Hagan (2001) could lead to poor approximations to the
physical systems. The identifiability issue of the calibration pa-
rameter in Kennedy and O’Hagan (2001) was also noticed by
H. P. Wynn, among several other discussants, in the written
discussion of Kennedy and O’Hagan (2001). In short, the iden-
tifiability issue refers to the phenomenon that the distribution
of the observed data from a physical system does not uniquely
determine the corresponding calibration parameter value given
the computer model. There are several Bayesian approaches
to tackle the identifiability issue. For example, Bayarri et al.
(2007) suggested to incorporate the experts’ information of the
calibration parameter θ into the prior distribution to reduce
the confounding between θ and the model discrepancy caused
by the nonidentifiability. Brynjarsdóttir and O’Hagan (2014)
presented a concrete example in which the derivative infor-
mation of the model discrepancy was incorporated through a
constrained Gaussian process prior. These Bayesian approaches,
however, lack theoretical guarantees and mathematical rigor. In
contrast to Bayesian methods, which are traditionally applied
to solve the calibration problem, Tuo and Wu (2015, 2016)
and Wong, Storlie, and Lee (2017) addressed the identifiability
issue rigorously in frequentist frameworks and provided the
corresponding theoretical justifications.

We propose a Bayesian method for computer model calibra-
tion called the Bayesian projected calibration. To the best of
our knowledge, our work is the first one in the literature that
simultaneously achieves the following objectives:

(a) Model identifiability: The proposed approach is formulated
in a rigorously identifiable fashion. Tuo and Wu (2015,
2016) and Wong, Storlie, and Lee (2017) defined the “true”
value of the calibration parameter to be the one that mini-
mizes the L2-distance between the computer model ys(·, θ)

and the physical system η(·). Following their work, the pro-
posed Bayesian projected calibration provides a Bayesian
method to estimate this “true” value of the calibration pa-
rameter consistently.

(b) Uncertainty quantification: The Bayesian projected calibra-
tion serves as a natural way for the uncertainty quantifi-
cation of the calibration parameter through its full poste-
rior distribution. Tuo and Wu (2015) showed the asymp-
totic normality of the L2-projected calibration estimator for
the uncertainty quantification of the calibration parameter,
which may not work in practice because the amount of the
physical data is usually very limited (Tuo 2017). Hence a
Bayesian approach is desired, especially when the data are
scarce.

(c) Theoretical guarantee: We show that the full posterior dis-
tribution of the calibration parameter is asymptotically nor-
mal with the efficient covariance matrix. Earlier literature
either only provide asymptotic results of specific point esti-
mators (Tuo and Wu 2015, 2016; Tuo 2017; Wong, Storlie,
and Lee 2017), or formulate a Bayesian methodology for cal-
ibration problems without large sample evaluation (Plumlee

2017). Our method represents the first effort in providing
the theoretical guarantee for the full posterior distribution
of a Bayesian method for the computer model calibration
problem.

(d) Convenient computational algorithms: We design two al-
gorithms based on stochastic approximation to tackle the
computation issue for obtaining the posterior distribution
of the calibration parameter. Unlike the orthogonal Gaus-
sian process approach for computer model calibration pro-
posed in Plumlee (2017), which is typically computationally
expensive, the proposed two algorithms are computation-
ally cheaper. This is illustrated in Section 5. Furthermore,
the theoretical properties of these algorithms, including the
convergence analyses, are discussed, justifying their useful-
ness.

The rest of the article is organized as follows. In Section 2,
we formulate the calibration problem rigorously in an identi-
fiable fashion and introduce the Bayesian projected calibration
method. Section 3 elaborates on the asymptotic properties of
the posterior distribution of the calibration parameter. We dis-
cuss the computational strategies for computing the projected
calibration and its approximation in Section 4, in which two
algorithms based on stochastic approximation are designed with
theoretical support. In Section 5, we demonstrate the advantages
of the Bayesian projected calibration in terms of the estima-
tion accuracy and the uncertainty quantification via simulation
studies and two real-world data examples. Potential extensions
beyond the current projected calibration framework are consid-
ered in Section 6, and we conclude the article with a discussion
in Section 7.

2. Problem Formulation

2.1. Background

We first briefly review the frequentist L2-projected calibration
approach proposed by Tuo and Wu (2015) before introducing
the proposed Bayesian projected calibration method, which can
be regarded as the Bayesian version of the L2-projected calibra-
tion.

Suppose one has collected responses (yi)
n
i=1 from a physical

system η on a set of design points (xi)
n
i=1 ⊂ � ⊂ R

p, where
η : � → R is a deterministic function, and the design space
� is the closure of a connect bounded convex open set in R

p.
The physical responses (yi)

n
i=1 are noisy due to measurement or

observational errors, and are hence modeled by the following
nonparametric regression model:

yi = η(xi) + ei, i = 1, . . . , n, (1)

where ei’s are independent N(0, σ 2) noise. Such a model has
been widely adopted in the literature of calibration (Kennedy
and O’Hagan 2001; Tuo and Wu 2015; Tuo 2017; Wong, Storlie,
and Lee 2017).

Let � be the parameter space of the calibration parameter
θ . We assume that � ⊂ R

q is compact. A computer model is a
deterministic function ys : �×� → R that produces an output
ys(x, θ) given a controllable input x ∈ � and the calibration
parameter θ ∈ �. The goal of calibration is to estimate θ
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given the computer model ys and the physical data (yi)
n
i=1, such

that the calibrated computer model approximates the physical
system well. However, as pointed out by Tuo and Wu (2016)
and Wong, Storlie, and Lee (2017), the calibration parameter θ

cannot be identified without further restriction, in the sense that
θ cannot be uniquely determined by the distribution of the phys-
ical data (xi, yi)

n
i=1. More precisely, by alternatively expressing

the physical system η in terms of the computer model ys(x, θ)

and a discrepancy δ(x) as the equation (Kennedy and O’Hagan
2001; Plumlee 2017; Tuo 2017; Wong, Storlie, and Lee 2017)

η(x) = ys(x, θ) + δ(x),

where the discrepancy function δ is completely nonparametric,
it is clear that (θ , δ) cannot be uniquely identified by the physical
system η. Therefore, the “true” value of the calibration parame-
ter that gives rise to the physical data is not well-defined.

The computer model calibration problem was firstly studied
in Kennedy and O’Hagan (2001) using a Bayesian approach by
imposing a Gaussian process prior on the discrepancy function
δ(·). Although this approach did not address the identifiability
issue directly, a related later work (Tuo and Wu 2016) tackled
the identifiability issue by modifying the Kennedy and O’Hagan
(abbreviated as KO) approach in a simplified setting. Specif-
ically, if the discrepancy function follows a mean-zero Gaus-
sian process prior with covariance function �(·, ·), θ follows a
uniform prior, and the physical data are noise-free (i.e., ei’s are
zeros), then the posterior density of θ is proportional to

π(θ | (x1, y1), . . . , (xn, yn))

∝ exp
[
−1

2
(y − ys

θ )
T�(x1:n, x1:n)

−1(y − ys
θ )

]
,

where y = [y1, . . . , yn]T, ys
θ = [ys(x1, θ), . . . , ys(xn, θ)]T,

and �(x1:n, x1:n) = [�(xi, xj)]n×n. Instead of using a fully
Bayesian approach, Tuo and Wu (2016) argued for a simplified
KO approach, which is to compute the maximum a posteriori
estimator θ̂ that maximizes the above display. Under certain reg-
ularity conditions, Tuo and Wu (2016) proved that θ̂ converges
to a point θ∗ that minimizes the reproducing kernel Hilbert
space norm of δ associated with the covariance function � .
Therefore, in this simplified KO approach, the “true” value of
θ can be defined to be θ∗. However, when the physical data are
noisy, such an approach is no longer valid for defining θ∗, and
the resulting estimator θ̂ does not converge to the desired θ∗
(Tuo and Wu 2015, 2016).

Alternatively, as pointed out in Tuo and Wu (2016, sec. 4.2),
in comparison with the definition of θ∗ in the simplified KO
approach, it is also reasonable to define the “true” value of θ

through the more straightforward L2-projection:

θ∗ = arg min
θ∈�

∥∥η(·) − ys(·, θ)
∥∥2

L2(�)
(2)

= arg min
θ∈�

∫
�

[η(x) − ys(x, θ)]2dx.

The L2-projected calibration method provides an estimator θ̂L2
for θ∗ using a two-step procedure. First, an estimator η̂ of the

physical system η is obtained via the kernel ridge regression
(Wahba 1990) given the physical data (xi, yi)

n
i=1:

η̂ = arg min
f ∈H�(�)

1
n

n∑
i=1

[yi − f (xi)]2 + λ‖f ‖H�(�), (3)

where � : � × � → R is a positive definite covariance
function, H�(�) is the reproducing kernel Hilbert space (RKHS)
associated with � , and ‖ · ‖H�(�) is the native norm of H�(�).
We refer to Wahba (1990) and Wendland (2004) for detailed
treatment of these concepts. Then, the L2-projected calibration
estimator θ̂L2 for θ∗ is given by

θ̂L2 := arg min
θ∈�

∥∥η̂(·) − ys(·, θ)
∥∥2

L2(�)
. (4)

The L2-projected calibration has very nice theoretical proper-
ties: θ̂L2 is not only

√
n-consistent for θ∗, but is also semipara-

metric efficient (Tuo and Wu 2016). In other words, it provides
an optimal estimator to the “true” calibration parameter. More
importantly, compared to the simplified KO approach, the L2-
calibration approach can directly deal with noisy physical data.

2.2. Bayesian Projected Calibration

The L2-projected calibration estimator θ̂L2 enjoys nice asymp-
totic properties. Nevertheless, it is a frequentist approach, the
uncertainty quantification of which needs to be assessed via ad-
ditional procedures, for example, the bootstrap (Wong, Storlie,
and Lee 2017). A convenient way to incorporate the uncertainty
is to develop a Bayesian model with carefully selected prior
distributions, and assess the uncertainty via the posterior dis-
tribution of the parameter of interest. Although the Bayesian
philosophy originates from the belief that the parameters of
interest are random variables following certain prior distribu-
tions, Bayesian methods have been gaining popularity among
frequentist community as well, as it can be regarded as a class of
flexible approaches to estimate deterministic parameters. Fur-
thermore, there has been a rapid development in the field of
frequentist justification of Bayesian estimation for deterministic
parameters in nonparametric and high-dimensional problems
(Xie and Xu 2019, 2020). The readers are referred to Ghosal and
van der Vaart (2017) for a thorough review of the related litera-
ture. The key to the success of Bayesian methods in estimating
deterministic parameters lies in the delicate construction of an
appropriate prior model. In what follows, we achieve this goal
in the context of the computer model calibration problem by
constructing a prior model.

We follow the definition of the “true” value θ∗ of θ given in
(2), as it minimizes the uncertainty beyond the computer model
for explaining the physical system. There are two unknown pa-
rameters: the physical system η, taking values in some function
space F , and the calibration parameter θ ∈ �. The statistical
model for calibration can be defined by

P =
{
φσ (y − η(x)) : η ∈ F , θ∗

= arg min
θ∈�

‖η(·) − ys(·, θ)‖2
L2(�)

}
,



4 F. XIE AND Y. XU

where φσ (·) is the density function of N(0, σ 2). Namely, the
parameter (η, θ∗) is constrained on a manifold inF×� defined
by

M=
{
(η, θ∗)∈F × � : θ∗ = arg min

θ∈�

‖η(·) − ys(·, θ)‖2
L2(�)

}
.

(5)

We will rigorously show in Section 3 that under certain regu-
larity conditions, M is a differentiable Banach manifold. It is
therefore natural to treat the “true” calibration parameter θ∗ as
a functional θ∗ : F → �, η 	→ arg minθ ‖η(·) − ys(·, θ)‖2

L2(�),
of a physical system η, and we denote this functional by θ∗

η. To
distinguish the parameter (η, θ∗

η) and the truth that generates
the data, we denote η0 to be the true physical system producing
physical data (yi)

n
i=1, and θ∗

0 = θ∗
η0 .

We now introduce the Bayesian projected calibration. The
unknown physical process η is imposed a mean-zero Gaussian
process prior � = GP(0, τ 2�), where � : � × � → R+
is a positive definite covariance function, and τ > 0 is a
scaling factor. We will discuss later regarding the choice of an
appropriate covariance function � . Let Dn denote the physical
data (xi, yi)

n
i=1, and �(· | Dn) denote the posterior distribution

given Dn. It is straightforward to show that the posterior distri-
bution of η is also a Gaussian process with mean function η̃ and
covariance function �̃ , where

η̃(x) = τ 2�(x1:n, x)T(τ 2�(x1:n, x1:n) + σ 2In)
−1y, (6)

�̃(x, x′) = τ 2�(x, x′) − τ 2�(x1:n, x)T(τ 2�(x1:n, x1:n) (7)
+ σ 2In)

−1τ 2�(x1:n, x′).

Here �(x1:n, x) = [�(x1, x), . . . , �(xn, x)]T ∈ R
n,

�(x1:n, x1:n) = [�(xi, xj)
]

n×n ∈ R
n×n, and y = [y1, . . . , yn]T ∈

R
n. Note here the predictive mean η̃(x) given physical data Dn

coincides with the kernel ridge regression estimator η̂ for some
suitably chosen τ (see, e.g., Rasmussen and Williams 2006).
The Gaussian process prior GP(0, τ 2�) on η naturally induces
a prior distribution on θ∗

η through the constrained manifold
M in (5). Therefore, after collecting noisy physical responses
(xi, yi)

n
i=1 from the regression model (1), one can obtain the

posterior distribution of η, and hence, that of θ∗
η, given the

physical responses and the computer model ys. The procedure
of computing the posterior distribution of θ∗

η is referred to as the
Bayesian projected calibration. It can be regarded as a Bayesian
version of the L2-projected calibration method, because the
two approaches are to estimate the “true” value of θ over the
constrained manifold M using a Bayesian and a frequentist
approach, respectively. Furthermore, in Section 3 we will show
that the posterior of θ∗

η in the Bayesian projected calibration is
asymptotically centered at the L2-projected calibration estima-
tor θ̂L2 .

The choice of an appropriate covariance function � for the
Gaussian process prior is of fundamental importance in com-
puter model calibration. One of the most popular choices is
the class of the Matérn covariance functions. Formally, given
α > p/2, the Matérn covariance function with a smoothness

parameter α and a range parameter ψ is given by

�α(x, x′ | ψ) (8)

= 1
�(α)2α−1

(√
2α‖x − x′‖

ψ

)α

Kα

(√
2α‖x − x′‖

ψ

)
,

where Kα is the modified Bessel function of the second kind.
Throughout this work, we shall assume that all Gaussian pro-
cesses involved are with the Matérn covariance function for
the convenience of theoretical analyses. As will be seen in Sec-
tion 3, when the smoothness parameter α matches the smooth-
ness level of the underlying true physical system, the resulting
convergence rate is minimax-optimal. In practice the Matérn
covariance functions with smoothness parameters α = 3/2
and α = 5/2 are popular due to their closed-form expressions,
but the practitioners are welcome to select other covariance
functions based on their expert knowledge depending on the
specific application domains.

Remark 1 (Expensive computer model). In the literature of com-
puter experiments, it is common that the computer model ys is
not directly available to us or time-consuming to run, in which
case the computer model can be only computed at the given
design points. Thus, finding an emulator ŷs for ys using the com-
puter outputs data at the given design points is needed. One first
collects a set of data (xs

j , θ
s
j , ys

j)
m
j=1 from m runs of the computer

model, where ys
j = ys(xs

j , θ
s
j) is the output at the design point xs

j ,
then build the emulator ŷs using the data (xs

j , θ
s
j , ys

j)
m
j=1. There

are varieties of methods for constructing emulators for com-
puter experiments, including Gaussian process models (Santner,
Williams, and Notz 2013), the radial basis function interpo-
lation (Wendland 2004), the polynomial chaos approximation
(Xiu 2010), and the smoothing spline ANOVA (Wahba 1990).
To perform computer model calibration when the computer
model ys is not directly available or time-consuming to run, the
calibration parameter θ∗

η can be estimated by replacing ys with
the corresponding emulator ŷs.

3. Theoretical Properties

In this section, we provide large sample justifications of the
proposed Bayesian projected calibration by characterizing the
asymptotic behavior of the posterior distribution �(θ∗

η ∈ · |
Dn). The posterior of θ∗

η has the similar behavior as the L2-
projected calibration estimator θ̂L2 : �(θ∗

η ∈ · | Dn) is not
only

√
n-consistent, but also asymptotically normal with the

efficient covariance matrix. The asymptotic normality of the
full posterior distribution is also known as the Bernstein–von
Mises (BvM) limit (see, e.g., van der Vaart 2000, chap. 10). The
development of a semiparametric BvM theorem had not been
established until Bickel and Kleijn (2012). For a thorough treat-
ment of BvM limits of smooth functionals in semiparametric
models in general, we refer to Castillo and Rousseau (2015a).

Before proceeding to the main results, we introduce some
notations and definitions. Given an integer vector k =
[k1, . . . , kp]T and a function f (x1, . . . , xp) : � → R, denote
Dk to be the mixed partial derivative operator defined by Dkf =
∂ |k|f /∂xk1

1 · · · ∂xkp
p , where |k| :=∑p

j=1 kj. Let α > 0 be positive,
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and α be the greatest integer strictly smaller than α. The α-
Hölder norm of a function f : � → R is defined by

‖f ‖Cα(�) := max
k:|k|≤α

∥∥∥Dkf
∥∥∥

L∞(�)

+ max
k:|k|=α

sup
x 
=x′

|Dkf (x) − Dkf (x′)|
‖x − x′‖α−α

.

The α-Hölder space of functions on �, denoted by Cα(�), is
the set of functions with finite α-Hölder norms. The α-Sobolev
space of functions, denoted by Hα(�), is the set of functions
f : � → R that can be extended to R

p such that the Fourier
transforms f̂ (t) = (2π)−p ∫

Rp eitTxf (x)dx satisfy (van der Vaart
and van Zanten 2011)∫

Rp

(
1 + ‖t‖2)α ∣∣∣̂f (t)

∣∣∣2 dt < ∞.

To study the asymptotic behavior of �(θ∗
η ∈ · | Dn), we first

explore the convergence property of the physical system η. In
practice it is common to encounter design points that are either
randomly sampled or fixed a priori at certain prespecified loca-
tions, and the design space can be not as regular as a hypercube,
but in this section, we shall assume for the ease the mathematical
treatment that the design space � is the unit hypercube [0, 1]p,
and the design points (xi)

n
i=1 are independently and uniformly

sampled from �. The theory developed here can be easily ex-
tended to the case where the design points are independently
drawn from a distribution with a density that is bounded away
from 0 and ∞. The computer model ys is assumed to be directly
available to us or cheap to run. Such a simplified assumption
is also adopted in Wong, Storlie, and Lee (2017) and it does
no harm to the theoretical analyses, as the amount of data
from the computer experiments is typically much larger than
the sample size of the physical data. In addition, the computer
data (xs

j , θ
s
j , ys

j)
m
j=1 are deterministic and the approximation error

between ys and ŷs, when sufficiently small as m gets large, does
not affect the stochastic analyses here. Therefore, one may as-
sume that the error between ŷs and ys is negligible. The true but
unknown physical system η0 is assumed to lie in the intersection
of the α-Hölder space Cα(�) and α-Sobolev space Hα(�) for
some α > p/2. We assume that the prior � for η is the mean-
zero Gaussian process GP(0, τ 2�α(·, · | ψ)) and without loss of
generality, the scaling factor τ is fixed at 1. We shall also assume
that the range parameter ψ is fixed, as fixing the range parameter
does not affect the asymptotic analyses of both η and θ . When
ψ = 1, we use �α(·, ·) to denote �α(·, · | ψ).

We now present the convergence result for η. In particular,
the first result (9) in the following theorem directly follows from
van der Vaart and van Zanten (2011, Theorem 5) and the proof
of the second result is given in the supplementary materials.

Theorem 1 (Convergence of η). Suppose η is imposed a Gaussian
process prior � = GP(0, �α), and η0 ∈ Cα(�)∩Hα(�), where
α > p/2. Then for any sequence Mn → ∞,

E0
[
�
(
‖η − η0‖L2(�) > Mnn−α/(2α+p) | Dn

)]
→ 0, (9)

and there exists some constant M > 0 such that
�
(‖η − η0‖L∞(�) > M | Dn

)→ 0
in P0-probability.

The resulting rate n−α/(2α+p) is proven to be optimal when
the underlying true function η0 is an α-Hölder or α-Sobolev
function (see, e.g., Stone 1982; van der Vaart and Wellner 1996;
Ghosal and van der Vaart 2017).

We next discuss the property of θ∗
η as a functional: η 	→ θ∗

η.
Under certain regularity conditions to be stated next, θ∗

η yields
a first-order Taylor expansion with respect to η locally around
η0. Such a smooth property of the functional θ∗

η serves as the
building block to derive the asymptotic normality of �(θ∗

η ∈ · |
Dn).

A1 θ∗
η is the unique solution to (2) and is in the interior of � for

η in an L2-neighborhood of η0.
A2 supθ∈� ‖ys(·, θ)‖L2(�) < ∞.
A3 The Hessian matrix

Vη =
∫

�

{
∂2

∂θ∂θT [η(x) − ys(x, θ)]2
}

dx
∣∣∣∣
θ=θ∗

η

is strictly positive definite for all η in an L2-neighborhood
of η0.

A4 For all j, k = 1, . . . , q, it holds that

sup
θ∈�

∥∥∥∥∂ys

∂θj
(·, θ)

∥∥∥∥
H�α (�)

< ∞,
∂2ys

∂θj∂θk
(·, ·) ∈ C1(� × �).

The proof of the following lemma is given in the supplementary
materials.

Lemma 1 (Taylor expansion). Assume that η0 ∈ Cα(�)∩Hα(�)

for some α > p/2. Under conditions A1–A4, there exists some
ε > 0 and some positive constants L(1)

η0 and L(2)
η0 depending on

η0 only, such that ‖θ∗
η − θ∗

0‖ ≤ L(1)
η0 ‖η − η0‖L2(�) and∥∥∥∥θ∗

η − θ∗
0 − 2

∫
�

[η(x) − η0(x)]V−1
0

∂ys

∂θ
(x, θ∗

0)dx
∥∥∥∥

≤ L(2)
η0 ‖η − η0‖2

L2(�) (10)

whenever ‖η − η0‖L2(�) < ε, where V0 = Vη0 . Furthermore,
if A1 and A3 hold for all η in an L2-neighborhood U of η0, then
the set M(U) := {(η, θ∗

η) : η ∈ U} forms a Banach manifold,
and if U is the entire L2(�) space, then M defined by (5) is a
Banach manifold.

It follows immediately from the convergence results of the
physical system η (Theorem 1) and the Taylor expansion prop-
erty of θ∗

η (Lemma 1) that the posterior of θ∗
η is consistent.

Corollary 1 (Consistency of θ∗
η). Suppose η is imposed a Gaus-

sian process prior � = GP(0, �α), and η0 ∈ Cα(�) ∩ Hα(�).
Then the posterior of θ∗

η is consistent, that is, �(‖θ∗
η − θ∗

0‖ >

ε | Dn) → 0 in P0-probability for any ε > 0.

Now we characterize the asymptotic behavior of �(θ∗
η ∈

· | Dn), which is the main result of this article. Under certain
regularity conditions, the posterior distribution of

√
n(θ∗

η −
θ̂L2) is asymptotically normal, where θ̂L2 is the frequentist L2-
projected calibration estimator of θ proposed by Tuo and Wu
(2015) (see Section 2). We describe the L2-projected calibration
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procedure in our context for completeness:

η̂ = arg min
f ∈H�ν (�)

1
n

n∑
i=1

[yi − f (xi)]2 + λn‖f ‖2
H�ν (�),

θ̂L2 = arg min
θ∈�

∥∥η̂(·) − ys(·, θ)
∥∥2

L2(�)
,

where ν = α − p/2, and λn � n−2α/(2α+p) is a sequence
depending on the sample size of the physical data Dn.

The proof of the following theorem is deferred to the Ap-
pendix.

Theorem 2 (Asymptotic normality). Suppose η is imposed a
Gaussian process prior � = GP(0, �α), and η0 ∈ Cα(�) ∩
Hα(�), where α > p/2. Under conditions A1–A4, it holds that

sup
A

∣∣∣� (√n(θ∗
η − θ̂) ∈ A | Dn

)
− N

(
0, 4σ 2V−1

0 WV−1
0
)
(A)

∣∣∣
= oP0(1),

provided that

W =
∫

�

[
∂ys

∂θ
(x, θ∗

0)
∂ys

∂θT (x, θ∗
0)

]
dx

is strictly positive definite, where the supremum is taken over all
measurable subsets in R

q, and θ̂ is any estimator of θ satisfying

θ̂ − θ∗
0 = 2V−1

0

[
1
n

n∑
i=1

ei
∂ys

∂θ
(xi, θ∗

0)

]
+ oP0(n−1/2).

In particular, θ̂ can be taken as the L2-calibration estimator θ̂L2
if λn � n−2α/(2α+p) and ν = α − p/2 are chosen in the kernel
ridge regression (3).

Tuo and Wu (2015) proved that the L2-projected calibra-
tion estimator θ̂L2 is also asymptotically normal:

√
n(̂θL2 −

θ∗
0)

L→ N(0, 4σ 2V−1
0 WV−1

0 ). Furthermore, the covariance
matrix 4σ 2V−1

0 WV−1
0 achieves the semiparametric efficiency in

the sense that there does not exist a regular estimator with a
smaller asymptotic covariance matrix (in spectra). The posterior
of θ∗

η possesses a similar optimal behavior as the L2-calibration
in the following two senses: First, �(θ∗

η ∈ · | Dn) is a poste-
riori consistent and θ̂L2 is consistent for θ∗

0 in the frequentist
sense, and the covariance matrix of the asymptotic posterior
of

√
n(θ∗

η − θ̂L2) coincides with the asymptotic covariance
matrix of θ̂L2 . Second, the following corollary unveils that the
coordinate-wise posterior median of θ∗

η, as a Bayes estimator
given rise by the full posterior distribution, is asymptotically
equivalent to θ̂L2 in the coordinate-wise sense. The proof of the
following corollary is given in the supplementary materials.

Corollary 2. Suppose η is imposed a Gaussian process prior � =
GP(0, �α), and η0 ∈ Cα(�) ∩ Hα(�), where α > p/2. Let θ̂

∗

be the coordinate-wise marginal posterior median of θ∗
η. Then

under the conditions of Theorem 2, for each k = 1, . . . , q,
√

n
[̂
θ

∗ − θ∗
0

]
k

L→ N
(
0, 4σ 2 [V−1

0 WV−1
0
]

kk
)

,

where [·]k is the kth component of the argument vector and [·]kk
is the (k, k)th element of the argument matrix.

We finish this section with the following
√

n-consistency
result of θ∗

η, which is a refinement of Corollary 1. It is a con-
sequence of Theorem 2 and the asymptotic normality of θ̂L2 .

Corollary 3 (
√

n-Consistency of θ∗
η). Suppose η is imposed a

Gaussian process prior � = GP(0, �α), and η0 ∈ Cα(�) ∩
Hα(�), where α > p/2. Under the conditions of Theorem 2, the
posterior of θ∗

η is
√

n-consistent, that is, for any sequence Mn →
∞, it holds that E0

[
�
(√

n‖θ∗
η − θ∗

0‖ > Mn | Dn
)]

→ 0.

4. Computation Strategies

As seen in Section 3, the Bayesian projected calibration enjoys
nice theoretical properties. In this section, we develop the com-
putation strategies for obtaining the posterior distribution of θ∗

η

given the physical data Dn = (xi, yi)
n
i=1.

In principle, computing the posterior distribution of θ∗
η is

quite straightforward: To obtain T independent samples from
�(θ∗

η ∈ · | Dn), one first draw T independent sample
paths η(1), . . . , η(T) from the posterior distribution of η from
GP(̃η, �̃) using formula (6) and (7), and then for each η(t), t =
1, . . . , T, compute the minimizer θ∗

η(t) = arg minθ ‖ys(·, θ) −
η(t)(·)‖2

L2(�). Although drawing sample paths from the posterior
distribution η is easy, it is, however, nontrivial to compute
the corresponding θ∗

η’s due to the generally intractable integral
‖ys(·, θ) − η(·)‖2

L2(�) for any sample path η. A natural but
naive strategy is to discretize the integral by the Monte Carlo
approximation. Namely, one first draw N independent samples
xd

1 , . . . , xd
N uniformly from �, then approximately compute θ∗

η

for a sample path η by minimizing the discretized integral:

θ∗
η ≈ arg min

θ∈�

1
N

N∑
j=1

[
ys(xd

j , θ) − η(xj)
]2

. (11)

This strategy becomes accurate as N → ∞ by the law of
large numbers, but is not recommended in practice for the
following reason: The discretized integral is still a function of θ ,
the minimizer of which is typically not in a closed-form except
in rare cases, and finding the minimizer often requires the use
of iterative optimization algorithms. Assuming that at least R
iterations are needed to obtain θ∗

η(t) for each η(t), t = 1, . . . , T,
we see that the total complexity of the computation procedure
becomes O(NTR). To ensure the quality of the discretization
approximation, N is typically made sufficiently large, especially
when � is multidimensional. We will see next that the com-
putation burden can be reduced by stochastic approximation
methods.

4.1. Stochastic Approximation for the Projected
Calibration

We first briefly introduce the basic idea of stochastic approx-
imation before applying it to the projected calibration proce-
dure. Stochastic approximation methods can be dated back to
Robbins and Monro (1951) and have been gaining enormous
progress in the recent decade thanks to the emergence of big
data problems and the rapid development of advanced machine
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learning techniques. This collection of methods focuses on
minimizing objective functions f (θ) that can be written as an
expected value f (θ) = Ew[g(w, θ)], where w is a random vari-
able following a distribution p(w). The major difference between
stochastic approximation and its deterministic counterpart is
that rather than observing f directly, one only has access to the
noisy version g(w, ·). The basic idea of stochastic approximation
is to generate a sequence of iterates θ (1), θ (2), . . ., using the
stochastic gradient descent (SGD) method as follows: Let θ (t) be
the updated value of θ in the tth iteration. Then θ (t+1) is updated
by θ (t+1) = θ (t) − αt∇θ g(wt , θ (t)), where (αt)t≥1 ⊂ (0, ∞) is
a sequence of suitable step sizes and (wt)t≥1 are independent
copies of w ∼ p(w). There is vast literature discussing the choice
of the step sizes (αt)t≥1 for convex and nonconvex f , among
which the AdaGrad method (Duchi, Hazan, and Singer 2011)
is one of the most popular ones. In the form of Li and Orabona
(2018), the authors proposed to use the following form of the
coordinate-wise step sizes:

αtk = a0

⎧⎨⎩b0 +
t−1∑
j=1

[
∂g(wj, θ (j))

∂θk

]2
⎫⎬⎭

−(1/2+ε)

, k = 1, . . . , q,

(12)

where a0, b0 > 0, ε ∈ (0, 1/2] are some constants, and then
update θ (t+1) by

θ (t+1) = θ (t) − diag(αt1, . . . , αtq)
∂g
∂θ

(wt , θ (t)). (13)

Convergence of AdaGrad for convex and nonconvex f was
addressed in Li and Orabona (2018). In what follows, we modify
the AdaGrad method for the projected calibration to reduce the
aforementioned computation burden.

Recall that in the projected calibration procedure, we are
interested in computing θ∗

η = arg minθ∈� ‖ys(·, θ)− η(·)‖2
L2(�)

given a sample path η drawn from the posterior distribution
�(η ∈ · | Dn). Denote the integral fη(θ) = ‖ys(·, θ) −
η(·)‖2

L2(�). Clearly, by introducing a uniform random variable
w ∼ Unif(�), fη(θ) = Ew{[ys(w, θ)−η(w)]2} can be expressed
as the expected value of a function of w. Note that the parameter
space � for the calibration parameter is compact, and AdaGrad
needs to be modified to avoid searching out of the boundary of
�. In the current context, whenever the updated θ (t+1) strays
outside the parameter space, we repeatedly take step-halving
procedures until it falls back to �. We formally organize the
modified AdaGrad for the projected calibration in Algorithm 1.

We see that by calling Algorithm 1 for computing θ∗
η(t) for

t = 1, . . . , T rather than repeatedly optimizing the discretized
integral in (11), the computation complexity is reduced to
O(NT). Furthermore, the convergence to a stationary point can
be guaranteed by the following theorem, the proof of which is
given in the supplementary materials. Although it is challenging
to provide a theory for finding the global minimizer of the
nonconvex objective functions involved, this can be typically
addressed by trying multiple starting points in practice.

Theorem 3. Assume that the sample path η is continuous over
�. Then under conditions A2 and A4, the output θ (N) of Algo-
rithm 1 converges to a stationary point of fη(θ) as N → ∞ a.s.
with respect to the distribution of (wt)t≥0.

Algorithm 1 Modified AdaGrad for the projected calibration
1: Input: Computer model ys(·, ·) and its derivative ∇θ ys(·, ·);

Sample path η(·);
2: Initialize: Initialize θ (1) ∼ Unif(�); Set N to be number

of samples from �;
3: For t = 1 : (N − 1)

4: Draw wt ∼ Unif(�);
5: For k = 1 : q
6: Compute αtk using formula (12) with g(w, θ) =

[η(w) − ys(w, θ)]2;
7: End For
8: Compute

θ (t+1) = θ (t) − 2[ys(wt , θ (t)) − η(wt)]diag(αt1, . . . , αtq)

∂ys

∂θ
(wt , θ (t));

9: If θ (t+1) /∈ �\∂�, then set αtk ← αtk/2 for k =
1, . . . , q and go to line 8;

10: End For
11: Output: the last iterate θ (N).

4.2. Approximate Computation of the Projected
Calibration

We have seen in Section 4.1 that by borrowing the idea of
stochastic approximation and AdaGrad, the computation com-
plexity of computing the projected calibration can be reduced
from O(NTR) to O(NT) , where N is the number of samples
required for discretization of the integral or AdaGrad, T is the
number of independent copies drawn from the posterior of θ∗

η,
and R is the number of iterations required to find θ∗

η given
η using any iterative optimization algorithm. Although Algo-
rithm 1 adopts certain stochastic approximation techniques, the
resulting samples of θ∗

η(t) ’s are drawn exactly from the posterior
distribution of θ∗

η for any sample size n as N → ∞ (recall that
N can be made arbitrarily large). In contrast, in this subsection
we seek an approximate computation method that can further
reduce the computation cost of the projected calibration for a
relatively large sample size.

The major computation bottleneck in finding θ∗
η by either

minimizing the discretized integral (11), which requires O(NR)

operations, or AdaGrad, which needs O(N) operations, is that
there does not exist a closed-form formula to exactly compute
θ∗

η using ys and η. It is, however, feasible to approximate θ∗
η

in certain ways. Recall that by Lemma 1 θ∗
η can be linearly

approximated by a Taylor’s expansion locally around η0:

θ∗
η = θ∗

0 + 2
∫

�

[η(x) − η0(x)]V−1
0

∂ys

∂θ
(x, θ∗

0)dx + remainder,

where the remainder term is of the order O(‖η−η0‖2
L2(�)). Since

η0 is unknown, a kernel ridge regression estimator η̂, in the form
of Section 3 (i.e., � is the Matérn covariance function �ν with
the smoothness parameter ν = α − p/2, and λn � n−2α/(2α+p),
where we assume that η0 ∈ Cα(�) ∩ Hα(�)), can be applied
in place of η0 to estimate θ∗

0 and V0. Consequently, we have the
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following approximation:

θ∗
η ≈ θ̃η := θ̂L2 + 2

∫
�

[η(x) − η̂(x)] V−1
η̂

∂ys

∂θ
(x, θ̂L2)dx.

(14)

The above approximation can be treated as a Taylor’s expansion
of θ∗

η locally around η̂ alternatively. As illustrated later this sec-
tion, computing the posterior distribution of θ̃η is much more
convenient than computing that of θ∗

η. More importantly, θ̃η, as
a cheap approximation to θ∗

η, is asymptotically equivalent to θ∗
η

for a large sample size. This can be formally put in the following
theorem, which is proved in the supplementary materials:

Theorem 4. Assume the conditions in Theorem 2 hold, and θ̃η

is computed using formula (14). Then it holds that

sup
A

∣∣� (√n(̃θη − θ̂L2) ∈ A | Dn
)− N

(
0, 4σ 2V−1

0 WV−1
0
)
(A)
∣∣

= oP0(1),

where W is given in Theorem 2.

Now we discuss the practical consideration of computing
the posterior distribution of θ̃η. Thanks to the closed-form
expression (14), we can compute θ̃η by discretizing the inte-
gral involved using N independent uniform samples xd

1 , . . . , xd
N

from �:

θ̃η ≈ θ̃
(N)

η := θ̂L2 − 2
N

N∑
j=1

η̂(xd
j )V−1

η̂

∂ys

∂θ
(xd

j , θ̂L2)

+ 2
N

N∑
j=1

η(xd
j )V−1

η̂

∂ys

∂θ
(xd

j , θ̂L2).

Note that the posterior distribution of η is GP(̃η, �̃) by formulas
(6) and (7), it follows that a posteriori, θ̃

(N)

η follows a normal
distribution with mean

θ̂L2 + 2
N

N∑
j=1

[
η̃(xd

j ) − η̂(xd
j )
]

V−1
η̂

∂ys

∂θ
(xd

j , θ̂L2) (15)

and covariance matrix

4
N2

N∑
j=1

N∑
�=1

V−1
η̂

∂ys

∂θ
(xd

j , θ̂L2)�̃(xd
j , xd

�)V−1
η̂

∂ys

∂θT (xd
j , θ̂L2). (16)

The complete algorithm of computing the approximate pro-
jected calibration is detailed in Algorithm 2. It can be clearly
seen that this procedure further reduces the overall computation
complexity from O(NT) to O(N). In the numerical studies, we
find that Algorithm 2 provides a satisfactory approximation to
the exact posterior when n ≥ 30.

5. Numerical Examples

This section provides numerical examples to evaluate the pro-
posed Bayesian projected calibration. Section 5.1 presents simu-
lation studies via three synthetic examples. Two real-world data
examples are included in Sections 5.2 and 5.3, respectively.

Algorithm 2 Approximate computation for the projected cali-
bration

1: Input: Computer model ys(·, ·) and its derivative ∇θ ys(·, ·);
Physical data (xi, yi)

n
i=1;

2: Compute the kernel ridge regression estimator η̂;
3: Call Algorithm 1 with input ys, ∇θ ys(·, ·), and η̂ and output

θ̂L2 ;
4: Generate N independent samples xd

1 , . . . , xd
N uniformly

from �;
5: Compute the mean vector θ̂APC using formula (15);
6: Compute the covariance matrix �̂APC using formula (16);
7: Output: θ̂APC and �̂APC.

5.1. Simulation Studies

For simulated examples, we consider three configurations.

• Configuration 1. The computer model is

ys(x, θ) = 7[sin(2πθ1 −π)]2 +2[(2πθ2 −π)2 sin(2πx−π)],
and the physical system coincides with the computer model
when θ∗

0 = [0.2, 0.3]T, that is, η0(x) = ys(x, θ∗
0). The design

space � is [0, 1], and the parameter space � for θ is [0, 0.25]×
[0, 0.5]. We simulate n = 50 observations from the randomly
perturbed physical system yi = η0(xi)+ ei, where (xi)

n
i=1 are

uniformly sampled from �, and the variance for the noise
(ei)

n
i=1 is set to 0.22.

• Configuration 2. We follow an example provided in Gu and
Wang (2017). The computer model is ys(x, θ) = sin(5θx) +
5x, and the physical system is η0(x) = 5x cos(15x/2) + 5x.
The design space � is [0, 1], and the parameter space � for θ

is [0, 3]. We simulate n = 30 observations from yi = η0(xi)+
ei with var(ei) = 0.22, and (xi)

n
i=1 are equidistant on �. The

L2-discrepancy ‖η0(·)−ys(·, θ)‖L2(�) between the computer
model ys and the physical system η0 as a function of θ is
depicted in Figure 1. The minimizer of the L2-discrepancy
is θ∗

0 = 1.8771.
• Configuration 3. We use the pedagogical example in Plumlee

(2017). The physical system is η0(x) = 4x + x sin(5x)

and the computer model is ys(x, θ) = θx, where x ∈
� = [0, 1] and θ ∈ � = [2, 4]. We take (xi)

n
i=1 =

{0, 0.05, 0.1, 0.15, 0.2, . . . , 0.8}, and the responses are given by
yi = η0(xi) + ei with var(ei) = 0.022. The L2-discrepancy as
a function of θ is given by

‖η(·) − ys(·, θ)‖L2(�)

=
√

0.33(4 − θ)2 − 0.2898(4 − θ) + 0.201714,

and is minimized at θ∗
0 = 3.5609.

For the three configurations described above, we impose the
Matérn Gaussian process prior GP(0, τ 2�α) on η, where �α

is the Matérn covariance function given by (8) with α = 5/2.
Here the scaling factor τ is set to τ = 1 for all 3 configurations
for the ease of implementation. To draw posterior samples of
θ∗

η, we first draw posterior samples of η using formula (6) and
(7), then compute θ∗

η by θ∗
η = arg minθ ‖η(·) − ys(·, θ)‖2

L2(�)

using Algorithm 1. For all three configurations, 1000 samples of
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Figure 1. The L2-discrepancy ‖η0(·)−ys(·, θ)‖L2(�) between the computer model
ys and the physical system η0 as a function of θ for configuration 2.

θ∗
η are drawn from the posterior distribution for the subsequent

analysis and the number of random samples N for AdaGrad in
Algorithm 1 is set to 2000. For both configurations 1 and 2, we
also draw 1000 samples using Algorithm 2.

For comparison, we implement the calibration method by
Kennedy and O’Hagan (2001) (abbreviated as KO) and the
orthogonal Gaussian process method by Plumlee (2017) (ab-
breviated as OGP). For the KO calibration approach, we follow
the suggestion of van der Vaart and van Zanten (2009), let the
range parameter ψ follow an inverse-Gamma prior distribution
π(ψ) ∝ ψ−aψ−1 exp(−bψ/ψ) for some aψ , bψ > 0, and
set aψ = bψ = 2 in all numerical examples. For both the
KO method and the OGP method in all three configurations,
Markov chain Monte Carlo samplers are implemented to draw
1000 posterior samples after discarding 1000 burn-in samples.

For configuration 1, the summary statistics of the poste-
rior distribution of θ∗

η are provided in Table 1, together with
those obtained via Algorithm 2, the KO method, and the OGP
method. We can see that the Bayesian projected calibration,
the approximate projected calibration, and the OGP method all
outperform the KO method in terms of both the accuracy of
the point estimators (the posterior means) and the uncertainty
quantification (the lengths of credible intervals and the standard
deviations of posterior samples). Although the OGP method
provides the slightly better posterior inference result compared
to the Bayesian projected calibration, the computation runtime
is significantly longer than the other two methods. The com-
putational bottleneck of the OGP method was also mentioned
in Plumlee (2017, sec. 6). Figure 2(a) presents the scatterplot of
the posterior samples of

√
n(θ∗

η − θ̂L2). The level curves of the
BvM limit shows that the asymptotic distribution of �(

√
n(θ∗

η−
θ̂L2) | Dn) developed in Section 3 offers a decent approxima-
tion to the exact posterior. Figure 2(b) presents the scatterplot

of
√

n(θ∗
η − θ̂L2) against the level curves of the approximate

projected calibration density, showing that the approximation is
accurate. We provide the trace plot of the loss function f̂η(θ) =
‖η̂(·) − ys(·, θ)‖2

L2(�) and the trajectory of the calibration pa-
rameter θ in Figure 3 to demonstrate the convergence behavior
of the modified AdaGrad in Algorithm 2 for computing the
approximate projected calibration. Comparing Figures 2(a) and
(c), we see that the Bayesian projected calibration outperforms
the KO in terms of the uncertainty quantification. We also
investigate the performance of the calibrated computer model
in Figures 2(d) and (e). The point-wise 95%-credible bands for
the computer model also validate that the Bayesian projected
calibration provides a better estimate to ys in contrast to the KO
approach.

Similarly, for configuration 2, the advantages of
Bayesian/approximate projected calibration in terms of the
uncertainty quantification and the computational cost are
summarized from the statistics reported in Table 2. It can
be seen that the Bayesian/approximate projected calibration
produce smaller uncertainty compared to the KO calibration.
We also provide the histogram of the projected calibration
and the density of the approximate projected calibration (blue
curve) in Figure 4(a), showing that the approximate projected
calibration density provides a satisfactory approximation to
the exact posterior. Furthermore, the red curve in Figure 4(a)
shows that the asymptotic BvM limit approximates the exact
posterior well even though the sample size is only n = 30.
The convergence of the modified AdaGrad in Algorithm 1
can be assessed via the trace plot of the loss function f̂η(θ) in
Figure 4(b).

Configuration 3 is slightly challenging due to the fact that
no physical data are available in (0.8, 1], and the physical data
are relatively sparse (see Figure 5). In such a scenario, we do
not recommend using Algorithm 2 for an approximate posterior
inference. We provide the corresponding summary statistics for
the Bayesian projected calibration, the KO method, and the
OGP method, in Table 3. It can be seen that when the design

Table 2. Summary statistics of the posterior of θ for configuration 2 (simulation
truth is θ∗

0 = 1.8771); projected refers to the projected calibration, and approxi-
mate refers to the approximate projected calibration using Algorithm 2.

Projected KO OGP Approximate

Mean 1.8816 1.8805 1.8825 1.8822
Standard deviation 0.0047 0.0661 0.0023 0.0047
97.5%-Quantile 1.8907 2.0089 1.8766 1.8915
2.5%-Quantile 1.8725 1.7480 1.8678 1.8731

Runtime 237.289 sec 1.034 sec 31,843 sec 6.269 sec

Table 1. Summary statistics of the posterior of θ for configuration 1 (the simulation truth is θ∗
0 = [0.2, 0.3]T); projected refers to the projected calibration, and approximate

refers to the approximate projected calibration using Algorithm 2.

Projected KO OGP Approximate

θ θ1 θ2 θ1 θ2 θ1 θ2 θ1 θ2

Mean 0.1984 0.3009 0.1934 0.2988 0.2068 0.3024 0.1986 0.3004
Standard deviation 0.0011 0.0013 0.0269 0.0025 0.0005 0.0006 0.0011 0.0013
97.5%-Quantile 0.2006 0.3034 0.2439 0.3182 0.2013 0.2999 0.2007 0.3029
2.5%-Quantile 0.1963 0.2984 0.1445 0.2938 0.1992 0.2975 0.1965 0.2979

Runtime 279 sec 0.834 sec 40,562 sec 7.365 sec
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Figure 2. Visualization of the posterior inference for configuration 1 in the simulation studies. Panels (a) and (b) show the scatterplot of the posterior samples of
√

n(θ∗
η −

θ̂L2 ) and the level curves of the corresponding BvM limit / approximate projected calibration density from Algorithm 2. Panel (c) presents the scatterplot of the posterior
samples of θ using the KO approach. Panels (d) and (e) display the calibrated computer models (in dashed lines) using the Bayesian projected calibration and the KO
approach, respectively, together with their corresponding point-wise 95%-credible intervals (in shaded area).

Figure 3. Convergence behavior of the modified AdaGrad for computing θ̂L2 for configuration 1 in the simulation studies.

points are not regularly spread over �, the KO method results in
larger uncertainty when estimating θ compared to the Bayesian
projected calibration and the OGP method. Note that it is unfair
to compare the point estimator of the KO method with those
of the other two competitors, since the “true” values of θ are
different according to their respective formulations. For the
uncertainty quantification performance measured by the widths
of credible intervals and standard deviations, the OGP method
and the Bayesian projected calibration are similar, and both

outperform the KO approach. The calibrated computer models
are visualized in Figure 5.

5.2. Ion Channel Example

We apply the Bayesian projected calibration to the ion channel
example used in Plumlee, Joseph, and Yang (2016). The dataset
involves measurements from experiments concerning ion chan-
nels of cardiac cells. Specifically, the output of the experiment
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Figure 4. Simulation study configuration 2: the left panel is the histogram of the posterior samples of
√

n(θ∗
η − θ̂L2 ), together with the theoretical BvM limit density (red

solid line) and the approximate projected calibration density (cyan solid line); the right panel is the trace plot of the loss function f̂η(θ) values of Algorithm 1 along the
iterations.

Figure 5. Visualization of the posterior inference for configuration 3 in the simulation studies. The three panels show the calibrated computer models (in dotted lines) using
the Bayesian projected calibration, the KO calibration method, and the OGP calibration method, respectively, together with their corresponding point-wise 95%-credible
intervals (in shaded area). The dashed lines represent the true physical system η0(x) = 4x + x sin(5x).

Table 3. Summary statistics of the posterior of θ for configuration 3 (simulation
truth is θ∗

0 = 3.5609).

Projected calibration KO calibration OGP calibration

Mean 3.4064 3.1109 3.6001
Standard deviation 0.0614 0.4760 0.0911
97.5%-Quantile 3.5964 3.9385 3.7733
2.5%-Quantile 3.3624 2.1467 3.4167

is the current through sodium channels in a cardiac cell mem-
brane, and the input is the time. For a detailed description of
the experiment, we refer to Plumlee, Joseph, and Yang (2016).
We consider a subset of the original dataset, which consists of 19
normalized current records needed to maintain the membrane
potential fixed at −35 mV as the outputs, together with the
logarithm of the corresponding time as the inputs. The same
dataset was also studied in Plumlee (2017). For the computer
model, Clancy and Rudy (1999) suggested the following Markov
model for ion channels:

ys(x, θ) = eT
1 exp[exp(x)A(θ)]e4,

where ei is the column vector with 1 at the ith coordinate and 0
for the rest components, the outer exp is the matrix exponential
function, θ = [θ1, θ2, θ3]T, and

A(θ) =

⎡⎢⎢⎣
−θ2 − θ3 θ1 0 0

θ2 −θ1 − θ2 θ1 0
0 θ2 −θ1 − θ2 θ1
0 0 θ2 −θ1

⎤⎥⎥⎦ .

We follow the Monte Carlo methods described in Section 5.1 to
collect 1000 posterior samples of θ using the Bayesian projected
calibration and the KO calibration method. The OGP calibra-
tion method, however, fails to provide adequate samples from
the posterior distribution within 20 hours. The smoothness
parameter α for the Matérn covariance function is set to 5/2,
and we set τ = 0.02, σ = 0.001, as suggested by Plumlee (2017).
Table 4 presents the comparison of the corresponding summary
statistics. The calibrated computer models are also visualized
in Figure 6. Clearly, the Bayesian projected calibration provides
better estimates to both the calibration parameter θ and the
computer model in terms of lower uncertainty (a smaller stan-
dard deviation and thinner credible intervals, respectively). It
can also be seen that the Bayesian projected calibrated computer
model provides a better approximation to the physical data than
the KO method does.

5.3. Spot Welding Example

Now we consider the spot welding example studied in Bayarri et
al. (2007) and Chang and Joseph (2014). The three control vari-
ables in the experiment are the load, the current, and the gauge.
The physical experiments are only conducted for gauge being
1 and 2. Since the computer model fails to produce sufficient
meaningful outputs when the gauge is set to 1, we only consider
the case where the gauge is 2, that is, the control variables are
the load and the current only. The physical data are provided in
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Table 4. Summary statistics of the posterior of θ for the ion channel example.

Projected calibration KO calibration

θ θ1 θ2 θ3 θ1 θ2 θ3

Mean 6.011166 5.578567 3.500813 3.4713447 0.9325514 6.7811932
Standard deviation 0.000012 0.000006 0.000006 0.2974497 0.5369031 1.1803662
97.5%-Quantile 6.011191 5.578578 3.500824 4.154933 2.034486 9.148351
2.5%-Quantile 6.011143 5.578556 3.500802 3.009278 0.114780 4.536802

Figure 6. Visualization of computer model calibration for the ion channel example. The left and right panels present the calibrated computer models (dashed lines) using
the proposed approach and the KO calibration approach, respectively. The shaded area is the point-wise 95%-credible intervals for the KO calibrated computer model. The
physical data (circles) and the Gaussian process (GP) estimates of the physical system (dashed lines) are also displayed.

Bayarri et al. (2007, Table 4). For each fixed design point, the
mean of the 10 outputs replicates is taken as the response.

The computer model for the spot welding system is not
directly available to us. The computer model consists of a time-
consuming finite element method (FEM) for numerically solv-
ing a system of partial differential equations (PDEs). There are
21 available runs for the computer code, as presented in Bayarri
et al. (2007, Table 3). Besides the three control variables (the
load, the current, and the gauge) in the physical experiment,
the computer model also involves another unknown parameter
θ (denoted as u in Bayarri et al. 2007) that summarizes the
material and surface. This parameter needs to be tuned with the
physical data and is exactly the calibration parameter in the cur-
rent context. As discussed in Section 2, an emulator is needed as
a surrogate for the computer model when the code is expensive.
Here we apply the RobustGaSP package (Gu, Palomo, and
Berger 2018) to emulate the expensive FEM computer model.
For theoretical properties of the RobustGaSP emulator, we
refer to Gu, Wang, and Berger (2018).

We draw posterior samples using the Bayesian projected
calibration and the KO method. The only difference is that the
expensive-to-run computer model ys is replaced by the predic-
tive mean of the RobustGaSP emulator based on the results of
21 runs on the FEM computer code. The summary statistics for
θ are presented in Table 5, indicating that the Bayesian projected
calibration outperforms the KO approach in terms of the un-
certainty quantification for estimating θ , that is, a smaller stan-
dard deviation and a thinner credible interval. The calibrated
computer models using the Bayesian projected calibration and
the KO approach, together with their corresponding point-wise
95%-credible intervals, are depicted in Figure 7. We can see that
in terms of computer model calibration, both approaches behave
similarly. The point-wise credible intervals, however, indicate
that the Bayesian projected calibration method outperforms the

Table 5. Summary statistics of the posterior of θ for the spot welding example.

Projected calibration KO calibration

Mean 4.385933 4.126239
Standard deviation 0.08455849 1.440555
97.5%-Quantile 4.505187 7.164378
2.5%-Quantile 4.183981 1.604301

KO approach regarding the uncertainty quantification for ys.
The imperfection of the computer model can also be seen from
the discrepancy presented on the right two panels of Figure 7.

6. Beyond the Projected Calibration

In this work, we follow the definition in Tuo and Wu (2015)
and Wong, Storlie, and Lee (2017) to define the true calibration
parameter θ∗

0 as the minimizer of the L2-distance between the
physical system η(·) and the computer model ys(·, θ). However,
it may not be always appropriate to define θ∗

0 via minimizing the
L2-distance between η(·) and ys(·, θ) in practice. For example, in
some scientific problems, the calibration parameter could have
a physical meaning and there also exist circumstances where the
physical system is more complicated than a computer mode plus
model discrepancy. In this section, we discuss several scenarios
in which the L2-projection approach may not apply.

First, the definition of θ∗
0 = arg minθ∈� ‖η0(·) −

ys(·, θ)‖2
L2(�) requires that the minimizer is uniquely defined,

which may not hold in practice. In addition, in certain appli-
cations, experts have scientific knowledge on the calibration
parameter and the corresponding computer model. In such
scenarios θ∗

0 could be defined via alternative loss functions. For
example, if scientists have certain knowledge on the relationship
between the computer model mechanism and the calibration
parameter through a penalty function P(θ , ys), one may define
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Figure 7. Visualization of computer model calibration for the spot welding example. The left and right panels present the calibrated computer models (red dashed lines)
as a function of the current with the load fixed at 4 N and 5.3 N, respectively. The shaded areas are the point-wise 95%-credible intervals for the corresponding calibrated
computer models. The physical data (circles) and the Gaussian process (GP) estimates of the physical system (solid lines) are also displayed.

θ∗
0 to be the minimizer of a penalized L2-function

‖η0(·) − ys(·, θ)‖2
L2(�) + P(θ , ys),

which allows us to reduce the discrepancy between the physical
system and the computer model, and integrate the experts’
knowledge within the calibration procedure through the penalty
function P simultaneously. We expect that the corresponding
asymptotic theory and Bayes estimators’ efficiency can be de-
veloped following the same technique adopted in this work,
provided that P is twice continuously differentiable. We defer
this portion of extension to future work.

Second, when model discrepancy between the true physical
system η and the computer model ys cannot be modeled by
an additive stochastic process, the projected calibration can be
extended to accommodate this scenario. For instance, consider

the following nonlinear state space model

η′′(x) = θ1η
′(x) + θ2η(x) + θ3η

3(x) + q(x) + δ(x),

where q(x) is some known process, δ is model discrepancy, θ =
[θ1, θ2, θ3]T is the calibration parameter, and noisy measure-
ments yi’s are generated from yi = η(xi)+ ei with ei ∼ N(0, σ 2)
independently. For simplicity let q be deterministic. One may
define θ∗

η by

θ∗
η = arg min

θ∈�

∥∥η′′(x) − θTvη(·) − q(·)∥∥2
L2(�)

,

where vη(x) = [η′(x), η(x), η3(x)]T. It is convenient to model
η, η′, and η′′ jointly by imposing a GP prior on η with suffi-
cient smoothness (see, e.g., Rasmussen and Williams 2006, sec.
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9.4). Furthermore, simple algebra directly leads to the following
closed-form formula for θ∗

η:

θ∗
η =

[∫
�

vη(x)vη(x)Tdx
]−1 ∫

�

vη(x)[η′′(x) − q(x)]dx.

The above formula can be used to compute θ∗
η once η is ap-

propriately modeled through a well-behaved GP, but theoretical
properties would require a separate treatment.

Last but not least, taking the L2-minimization criterion as the
definition of the true calibration parameter may not be always
appropriate when θ has certain physical meaning. Let us take
the free fall example in physics introduced in Plumlee (2017)
for illustration. Suppose a ball is released at vertical height y0
with an unknown initial velocity v0, and the vertical height of
the ball y decreases due to gravity as the time x increases. Then
Newtonian mechanism in a vacuum condition for describing
the ball falling process leads to the following quadratic formula:

y(x) = y0 + v0x − 1
2

gx2, 0 ≤ x ≤ 1,

where g is the gravitational acceleration. Denoting θ = [v0, g]T,
we can treat the preceding display as a computer model
ys(x, θ) = y(x) for describing the ball falling process. In reality
free fall experiments are rarely done in a vacuum condition,
and the true free fall system is usually affected by air resistance.
Consequently, the acceleration (namely, the second derivative
of the height) of the ball at time x equals −g + cv(x)2, where
v(x) is the velocity of the ball at time x and c is the coefficient
of air resistance. Taking c = 0.02, y0 = 8 m, v0 = −1 m/s,
g = 10 m/s2, where we assume that experiments are done on
earth, we obtain the following true physical system of the free
fall (Plumlee 2017):

η(x) = 5
2

log
{

50
49

− 50
49

tanh2
[√

2x + tanh−1(
√

0.02)
]}

+ 8,

0 ≤ x ≤ 1.

The physical meaning of the calibration parameter θ = [v0, g]T

is clear in the free fall experiment: v0 represents the initial
velocity of the ball when it is released, and g is the gravi-
tational acceleration. Taking θ∗

0 as the minimizer of ‖η(·) −
ys(·, θ)‖2

L2(0,1) gives rise to v0 = −1.6377 m/s and g = 5.8965
m/s2. Although the resulting calibrated computer model can
be used as an emulator for the true physical system of the
free fall with air resistance, the calibration parameter values are
questionable: The ball is never released at the initial velocity
v0 = −1.6377 m/s (which should be v0 = −1 m/s ideally),
and the gravitational acceleration on earth is far from 5.8965
m/s2 (which should be g ≈ 9.8 m/s2 according to the physics
literature). This example shows that taking the true values of
v0 and g as the minimizer of ‖η(·) − ys(·, θ)‖2

L2(0,1) for best
fitting is inappropriate in light of the physical meaning of these
parameters.

To accommodate the physical meaning of v0 and g, we can
modify the definition of θ∗

0 = arg minθ ‖η0(·) − ys(·, θ)‖2
L2(0,1)

as follows. Recall that v0 is the velocity of the ball at time x = 0.
We expect that the true free fall system gives rise to the initial
velocity of the ball being close to v0, namely, [η′(0)−v0]2 should

be sufficiently small, where η′(x) is the velocity of the ball in
the true system at time x. Similarly, the second derivative of the
height of the ball in the true free fall system satisfies η′′(x) =
−g + c[η′(x)]2. When x = 0, η′′(0) is expected to be close to the
gravitational acceleration −g because [η′′(x)+g]2 is minimized
when x = 0. Hence, we modify the L2-minimization criterion
after taking into account the physical meaning of θ :

[v∗
0, g∗

0 ]T = arg min
v0,g

{
‖η(·) − ys(·, θ)‖2

L2(0,1) + λ1[η′(0) − v0]2

+ λ2[η′′(0) + g]2
}

,

where λ1 and λ2 are tuning parameters representing the im-
portance of learning the initial velocity and the gravitational
acceleration, respectively. For example, setting λ1 = λ2 = 10
results in v∗

0 = −0.9735 m/s, g∗
0 = 9.7888 m/s2, which is more

interpretable in terms of physical meaning compared to the
naive L2-projection formulation, as the initial velocity was set
to be v0 = −1 m/s and the gravitational acceleration on earth is
g ≈ 9.8 m/s2. Therefore, the proposed L2-projected calibration
approach is flexible for extensions to handle scenarios where
calibration parameters have specific physical meaning.

7. Conclusion and Discussion

We develop a novel Bayesian projected calibration method
following the frequentist L2-projected calibration method in
Tuo and Wu (2015). The proposed approach is formulated
in an identifiable way and naturally quantifies the uncertainty
in the calibration problem through the posterior distribution.
Theoretical justification of the Bayesian projected calibration is
provided: the marginal posterior distribution of the calibration
parameter is not only

√
n-consistent, but also asymptotically

normal with the efficient covariance matrix. We also provide
the practitioners with two easy-to-implement and efficient com-
putational algorithms for the computation of the Bayesian pro-
jected calibration with theoretical support.

To obtain sensible estimators of the true calibration parame-
ter θ∗

0 (defined as the minimizer of the L2-distance between the
physical system and the computer model), the OGP calibration
method proposed in Plumlee (2017) and the Bayesian projected
calibration proposed in this work can be applied. Alternatively,
Gu and Wang (2018) proposed to directly apply a modified GP
prior, referred to as the scaled Gaussian process (S-GaSP), to the
discrepancy function δ(x) = η(x)−ys(x, θ) for computer model
calibration. The scaled Gaussian process is defined by modifying
the eigenvalues of the covariance function of some classical GP
(e.g., the Matérn process or the squared-exponential process)
such that the sample paths have smaller L2-norms than the
original GP. The construction of the S-GaSP is slightly involved,
but the resulting maximum a posteriori estimator of θ and δ

can be expressed as the following doubly penalized kernel ridge
regression problem (Gu, Xie, and Wang 2018):

(̂θ , δ̂) = arg min
θ∈�,δ∈H(�)

1
n

n∑
i=1

[yi − ys(xi, θ) − δ(xi)]2

+ λ1‖δ‖2
H(�) + λ2‖δ‖2

L2(�),
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where H(�) is the RKHS associated with the original GP, and
λ1, λ2 > 0 are the tuning parameters. The motivation of the
extra penalty term λ2‖δ‖2

L2(�) in comparison with the classical
kernel ridge regression exactly comes from the idea of minimiz-
ing the L2-norm of δ. When λ1 and λ2 are carefully selected,
the resulting estimators θ̂ converges to θ∗

0, but the rate is slower
than 1/

√
n (Gu, Xie, and Wang 2018) compared to that of the

Bayesian projected calibration and the L2-calibration, which
may not be desired when the efficient estimation of θ is needed.

The estimation methods in this work and Tuo and Wu (2015)
can be viewed as the following two-step procedure: first es-
timate the physical system through Gaussian process models;
then estimate the calibration parameter using the L2-projection
criterion. On the other hand, it is possible to jointly estimate the
calibration parameter and the discrepancy between the physical
system and the computer model. The aforementioned OGP cali-
bration method (Plumlee 2017) exactly tackles this joint estima-
tion issue. The theoretical development for OGP, nevertheless,
is only restricted to a point estimator (Tuo 2017): the maximum
a posteriori (MAP) estimator of θ is asymptotically normal
and semiparametric efficient. It will be nontrivial to apply the
technical results developed here to the OGP calibration method,
and the asymptotic characterization of the corresponding full
posterior distribution will be an interesting topic.

Similar to the OGP calibration method, the Bayesian pro-
jected calibration also involves intractable integrals, and we
propose to use stochastic approximation methods to reduce
the computation complexity in Section 4. For moderately large
sample sizes, one can apply Algorithm 2 to compute a decent
approximation to the projected calibration efficiently, but for
sparse data, one has to rely on the slightly more cumbersome
Algorithm 1 to perform the exact posterior inference. It is
therefore desired that the computational barrier of Algorithm 1
can be tackled via more efficient algorithms.

Appendix A: Auxiliary Results

In this section, we list some auxiliary results that are used to prove
Theorem 2. The proofs of the lemmas stated in this section are deferred
to the supplementary materials. Before proceeding, we introduce some
notions and definitions that are widely used in the study of empirical
processes. SupposeF is a function space equipped with metric d. Given
two functions l, u ∈ F , a bracket [l, u] is a set of functions f such that
l ≤ f ≤ u everywhere, and the size of the bracket is defined to be d(l, u).
The ε-bracketing number of F with respect to the metric d, denoted
by N[·](ε,F , d), is the minimum number of brackets of size ε that are
needed to cover F . The bracketing integral J[·](ε,F , d) is defined to be
the integral of the logarithmic bracketing number as follows:

J[·](ε,F , d) =
∫ ε

0

√
logN[·](δ,F , d)dδ.

Suppose X is the space where random variables take values. Given a
sequence (xi)n

i=1 of independent and identically distributed random
variables, the empirical measure and the empirical process of a function
f : X → R, denoted by Pnf and Gnf , are defined by

Pnf = 1
n

n∑
i=1

f (xi), Gnf = 1√
n

n∑
i=1

[f (xi) − Ef (xi)],

respectively. For two variables a and b, we use a � b and a � b to
denote the inequalities up to a universal multiplicative constant, and
write a � b if a � b and a � b.

In the empirical processes theory, maximum inequalities are widely
adopted to study the asymptotic behavior of nonparametric estimators.
Here we cite one of them that is used in the proof of Theorem 2 (see,
e.g., van der Vaart 2000, Lemma 19.36).

Theorem 5. Let (xi)n
i=1 be independent and identically distributed

according to a distributionPx overX , and letF be a class of measurable
functions f : X → R. If ‖f ‖2

L2(Px)
< δ2 and ‖f ‖∞ ≤ M for all f ∈ F ,

where δ and M does not depend on F , then

E

[
sup
f ∈F

∣∣Gnf
∣∣] � J[·]

(
δ,F , ‖ · ‖L2(Px)

)
×
[

1 + M
δ2√n

J[·]
(
δ,F , ‖ · ‖L2(Px)

)]
.

The following lemma is the modification of a standard probabilistic
theorem for Gaussian processes. For the related literature, we refer to
van der Vaart and van Zanten (2008) and Ghosal and van der Vaart
(2017).

Lemma 2. Suppose η is imposed the Matérn Gaussian process with
smoothness parameter α, and η0 ∈ Cα(�) ∩ Hα(�), where α > p/2.
Let εn = n−α/(2α+p). Then there exists a measurable set Bn in C(�)

(the space of all continuous functions on �) such that for sufficiently
large n, the following hold:

�(Bn | Dn) = 1 − oP0(1),

J[·](εn log n,Bn, ‖ · ‖L2(�)) � (log n)2α/(2α+p)√nε2
n.

Now denote

�n(η) =
n∑

i=1
log pη(yi, xi) =

n∑
i=1

log φσ (yi − η(xi))

to be the log-likelihood function of η given the physical data (xi, yi)n
i=1.

Define the event
An = {‖η − η0‖L2(�) ≤ Mnεn

} ∩ {‖η − η0‖L∞(�) ≤ M
} ∩ Bn,

where Mn = log n, M is given by Theorem 1, and Bn is given by
Lemma 2. Then by Theorem 1 and Lemma 2 we know that �(An |
Dn) = 1 − oP0(1).

Lemma 3. Suppose the conditions of Theorem 2 hold. For each vector
t ∈ R

q and each η ∈ F define

ηt(x) = η(x) − 2σ 2
√

n
tTV−1

0
∂ys

∂θ
(x, θ∗

0).

Given a realization η of the Matérn Gaussian process GP(0, �α), define
the following isometry associated to η:

U : H0 =
⎧⎨⎩

K∑
k=1

ak�(·, tk) : tk ∈ �, ak ∈ R, K ∈ N+

⎫⎬⎭→ L2(P0),

K∑
k=1

ak�(·, tk) 	→
K∑

k=1
akη(tk),

and extend U from H0 to H0 = H�α
(�) continuously. Define the

event
Cn =

{
|U(g)| ≤ L

√
nεn‖g‖H�α (�)

}
.

Then there exists a sufficiently large L such that �(Cc
n | Dn) = oP0(1),

and the following holds:∫
An∩Cn

exp [�n(ηt) − �n(η0)] �(dη)

= [1 + oP0(1)
] {∫

exp [�n(η) − �n(η0)] �(dη)

}
.
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The asymptotic normality result of the L2-projected calibration
estimator θ̂L2 from Tuo and Wu (2015) is also useful to study the
asymptotic behavior of �(

√
n(θ∗

η − θ̂L2) ∈ · | Dn).

Theorem 6. Under the conditions of Theorem 2, it holds that

θ̂L2 − θ∗
0 = 2V−1

0

[
1
n

n∑
i=1

ei
∂ys

∂θ
(xi, θ∗

0)

]
+ oP0(n−1/2).

Appendix B: Proof of Theorem 2

Theorem 1 and Lemma 2 imply that �(An ∩ Cn | Dn) = 1 − oP0(1).
Let �n =

{
θ∗
η : η ∈ An ∩ Cn

}
. It follows directly that �(θ∗

η ∈ �n |
Dn) = 1 − oP0(1). Denote

�(θ∗
η ∈ · | Dn, �n) = �(θ∗

η ∈ · ∩ �n | Dn)

�(θ∗
η ∈ �n | Dn)

.

Following the argument in Castillo and Rousseau (2015a), it suffices to
show that

sup
A

∣∣∣∣� (√n(θ∗
η − θ̂L2) ∈ A | Dn, �n

)
− N

(
0, 4σ 2V−1

0 WV−1
0

) ∣∣∣∣ P0→ 0.

We prove the result by the method of moment generating function,
namely, showing that for any fixed vector t ∈ R

q, it holds that∫
An∩Cn

exp
[

tT√
n
(
θ∗
η − θ̂L2

)]
�(dη | Dn)

→ exp
[

1
2

tT
(

4σ 2V−1
0 WV−1

0

)
t
]

in P0-probability. The rest part of the proof is completed by Castillo
and Rousseau (2015b, Lemmas 1 and 2).

Let εn = n−α/(2α+p). The left-hand side of the preceding display
can be rewritten as{∫

exp [�n(η) − �n(η0)] �(dη)

}−1

{∫
An∩Cn

exp
[

tT√
n
(
θ∗
η − θ̂L2

)
+ �n(η) − �n(η0)

]
�(dη)

}
.

For the vector t ∈ R
q, define

ηt(x) = η(x) − 2σ 2
√

n
tTV−1

0
∂ys

∂θ
(x, θ∗

0),

and for each η, define the remainder

Rn(η, η0) = n
2
‖η − η0‖2

L2(�) − n
2
Pn(η − η0)2.

Then simple algebra shows
[�n(ηt) − �n(η0)] − [�n(η) − �n(η0)]

= − n
2σ 2

[
‖ηt − η0‖2

L2(�) − ‖η − η0‖2
L2(�)

]
− 2√

n

n∑
i=1

eitTV−1
0

∂ys

∂θ
(xi, θ∗

0)

+ 1
σ 2 [Rn(ηt, η0) − Rn(η, η0)]

= 2
√

n
∫
�

[η(x) − η0(x)]tTV−1
0

∂ys

∂θ
(x, θ∗

0)dx

− 1
2

tT
(

4σ 2V−1
0 WV−1

0

)
t

− 2√
n

n∑
i=1

eitTV−1
0

∂ys

∂θ
(xi, θ∗

0) + 1
σ 2 [Rn(ηt, η0) − Rn(η, η0)].

Denote the remainder of the Taylor expansion of θ∗
η at θ∗

0 by

r(η, η0) = θ∗
η − θ∗

0 − 2
∫
�

[η(x) − η0(x)]V−1
0

∂ys

∂θ
(x, θ∗

0)dx.

Then by Theorem 6 we have

tT√
n
(
θ∗
η − θ̂L2

)
+ �n(η) − �n(η0)

= tT√
n
(
θ∗
η − θ∗

0
)

− 2√
n

n∑
i=1

eitTV−1
0

∂ys

∂θ
(xi, θ∗

0)

+ oP0(1) + �n(η) − �n(η0)

= tT√
n
(
θ∗
η − θ∗

0
)

+ oP0(1)

− 2
√

n
∫
�

[η(x) − η0(x)]tTV−1
0

∂ys

∂θ
(x, θ∗

0)dx

+ 1
2

tT
(

4σ 2V−1
0 WV−1

0

)
t − 1

σ 2 [Rn(ηt, η0) − Rn(η, η0)]

+ �n(ηt) − �n(η0)

= 1
2

tT
(

4σ 2V−1
0 WV−1

0

)
t + √

ntTr(η, η0)

+ 1
σ 2 [Rn(η, η0) − Rn(ηt, η0)]

+ �n(ηt) − �n(η0) + oP0(1).

Now set Mn = log n. By Lemma 1 we see that

sup
η∈An∩Cn

∣∣∣√ntTr(η, η0)
∣∣∣ ≤ L(2)

η0 ‖t‖√nM2
nn−2α/(2α+p)

� M2
nn(p/2−α)/(2α+p) = o(1).

In addition, simple algebra and the law of large numbers imply that

Rn(η, η0) − Rn(ηt, η0)

= 2σ 4

n

n∑
i=1

[
tTV−1

0
∂ys

∂θ
(xi, θ∗

0)

]2
− 2σ 4tTV−1

0 WV−1
0 t − 2σ 2

Gn

×
[
(η − η0)(·)tTV−1

0
∂ys

∂θ
(·, θ∗

0)

]
= −2σ 2

Gn

[
(η − η0)(·)tTV−1

0
∂ys

∂θ
(·, θ∗

0)

]
+ oP0(1).

We now claim that

sup
η∈An

|Rn(η, η0) − Rn(ηt, η0)| = oP0(1).

Since overAn, we know that ‖η−η0‖L2(�) ≤ Mnεn, ‖η−η0‖L∞(�) ≤
M, and by Lemma 2 it holds that

J[·](Mnεn,An, ‖ · ‖L∞(�)) � M2α/(2α+p)
n

√
nε2

n

= (log n)2α/(2α+p)√nε2
n,

it follows by the maximal inequality for empirical process (Theorem 5)
that

E0

{
sup

η∈An

∣∣∣∣Gn

[
(η − η0)(·)tTV−1

0
∂ys

∂θ
(·, θ∗

0)

]∣∣∣∣
}

� J[·](Mnεn,An, ‖ · ‖L2(�))

[
1 + M
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M2
nε2

n
√

n

]

� M2α/(2α+p)
n

√
nε2

n

[
1 + M2α/(2α+p)

n
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nε2
n

M2
n
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nε2
n

]
� Mn

√
nε2

n = o(1),
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and hence, it holds that supη∈An∩Cn |Rn(η, η0)−Rn(ηt, η0)| = oP0(1).
Therefore by applying Lemma 3, we obtain

∫
An∩Cn

exp
[

tT√
n
(
θ∗
η − θ̂L2

)
+ �n(η) − �n(η0)

]
�(dη)

= exp
[

1
2

tT
(

4σ 2V−1
0 WV−1

0

)
t + oP0(1)

]
∫
An

exp [�n(ηt) − �n(η0)] �(dη)

= exp
[

1
2

tT
(

4σ 2V−1
0 WV−1

0

)
t + oP0(1)

]
[1 + oP0(1)]∫

exp [�n(η) − �n(η0)] �(dη)

=
{

exp
[

1
2

tT
(

4σ 2V−1
0 WV−1

0

)
t
]

+ oP0(1)

}
∫

exp[�n(η) − �n(η0)]�(dη).

The proof is thus completed.

Supplementary Materials

The supplementary materials contain the remaining proofs, additional
numerical results, and the R package BayProjected for implementing the
computation methods in Section 4.
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