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ARTICLE INFO ABSTRACT

A novel spectral identification technique is developed for determining the parameters of nonlinear and time-
variant multi-degree-of-freedom (MDOF) structural systems based on available input-output (excitation-re-
sponse) realizations. A significant advantage of the technique relates to the fact that it can readily account for the
presence of fractional derivative terms in the system governing equations, as well as for the cases of non-
stationary, incomplete and/or noise corrupted data. Specifically, the technique relies on recasting the governing
equations as a set of multiple-input/multiple-output systems in the wavelet domain. Next, an /;-norm mini-
mization procedure based on compressive sampling theory is employed for determining the wavelet coefficients
of the available incomplete non-stationary input-output data. Finally, these wavelet coefficients are utilized to
reconstruct the non-stationary incomplete signals, and consequently, to determine system related time- and
frequency-dependent wavelet-based frequency response functions and associated parameters. Two illustrative
MDOF systems are considered in the numerical examples for demonstrating the reliability of technique. The first
refers to a nonlinear time-variant system with fractional derivative terms, while the second addresses a nonlinear
offshore structural system subjected to flow-induced forces. It is worth noting that for the offshore system, a
novel recently proposed evolutionary version of the widely used JONSWAP spectrum is employed for modeling
the non-stationary free-surface elevation in cases of time-dependent sea states.
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1. Introduction

The development of robust system identification techniques is of
paramount importance to methodologies for fault/damage detection,
for monitoring of the structural system dynamic behavior, and for as-
sessing its reliability. Although numerous and diverse system identifi-
cation techniques have been proposed over the past few decades with
varying degrees of success (see for instance the review papers and books
[1-5]), there is still merit in developing novel and enhancing existing
techniques considering the increasingly sophisticated modeling of
structural systems. Indeed, a more realistic representation of en-
gineering dynamical systems necessitates often the utilization of com-
plex nonlinear relationships, the consideration of fractional calculus for
more accurate (viscoelastic) material behavior modeling, as well as the
mathematical treatment of excitations as (non-stationary) stochastic
processes.

Specifically, the response of various structural and mechanical
systems can be significantly nonlinear, and such behaviors typically
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become more prevalent as the system response amplitude increases
(e.g., [6]). Indicative examples include nonlinear hysteretic behaviors
of building structures due to severe earthquake excitations (e.g., [7-91),
and strong (non-smooth) nonlinearities exhibited by offshore systems
subject to flow-induced forces (e.g., [10-12]). Further, the advanced
mathematical tool of generalized calculus (referred to in the literature
as fractional calculus) has been used recently in engineering mechanics
for developing non-local continuum mechanics theories and for en-
hanced modeling of viscoelastic materials (e.g., [13-15]). Furthermore,
in many real-life applications the measured available data may be not
only non-stationary (and thus, special treatments are required based on
joint time-frequency analysis tools such wavelets [16]), but also in-
complete and/or corrupted (due to several reasons such as sensor fail-
ures and limited bandwidth/storage capacity [17]). Therefore, it is
readily seen that robust system identification is required to address
simultaneously a variety of challenges. In fact, most established system
response analysis and identification techniques are tailored for treating
conventional governing equations of motion, whereas accounting for
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generalized (fractional) derivative modeling poses significant chal-
lenges and is a topic of ongoing research (e.g., [18]). In general, various
identification techniques have been developed in the literature for ad-
dressing cases of non-stationary data (e.g., [19,20]), for accounting for
incomplete measured time-histories (e.g., [21,22]), or for treating sys-
tems with fractional derivative terms (e.g., [23-26]). Nevertheless,
there are not many (if any) nonlinear system identification techniques
that can address all three aforementioned challenges simultaneously in
a consistent manner.

Recently, a nonlinear and time-variant single-degree-of-freedom
(SDOF) oscillator parameter identification technique has been devel-
oped in [27]. The technique can be construed as a generalization of the
multiple-input-single-ouput (MISO) methodology proposed by Bendat
and co-workers (e.g., [28-30]) to account for non-stationary and in-
complete data, as well as for fractional derivative modeling. In this
paper, the technique is further extended to account for multi-degree-of-
freedom (MDOF) systems. Two illustrative MDOF systems are con-
sidered in the numerical examples for demonstrating the reliability of
technique, even in cases of noise corrupted and incomplete data. The
first refers to a nonlinear time-variant system with fractional derivative
terms, while the second addresses a nonlinear offshore structural
system subjected to flow-induced forces. It is worth noting that for the
offshore system, a novel recently proposed evolutionary version of the
standard JONSWAP spectrum is employed for modeling the non-sta-
tionary free-surface elevation in cases of time-dependent sea states
[31].

2. Addressing non-stationary and incomplete data
2.1. Non-stationary data: a harmonic wavelets approach

One of the main advantages of generalized harmonic wavelets
(GHWs) [32] over alternative commonly used wavelet families (e.g.,
Morlet wavelets) relates to the fact that the time-frequency resolution
achieved at each scale is essentially decoupled from the value of the
central frequency. This is possible due to the utilization of two para-
meters (m, n) for defining the bandwidth at each scale. Thus, depending
on the application, enhanced localized resolution in the frequency do-
main can be achieved where this is deemed appropriate. In passing,
note that GHWs have found diverse applications in engineering dy-
namics including developing generalized joint time-frequency input-
output (excitation-response) relationships (e.g., [33]), determining
approximately the stochastic response of nonlinear systems (e.g.,
[34,35]), as well as identifying the time-variant parameters of struc-
tural systems based on measured available data (e.g., [36,27]). Next,
some basic definitions and properties of harmonic wavelets are deli-
neated for completeness. In particular, a wavelet of (m, n) scale and
position k in time attains a representation in the frequency domain of
the form

1 ex (—i @kTy
lIJ(Gm ) k(w) = J (n—-m)Aw p n—-m

0, otherwise )]

), mAw < w < nAw

>

where m, n and k are non-negative integers, and Aw = ZT—”, where Ty is
the total duration of the signal, and mAw < @ < nAw is the bandwidth
of the box-shaped spectrum. The inverse Fourier transform of Eq. (1)
provides the time-domain representation

exp(inAw(t - %)) - exp(imAw (t - n’iim))
i(n - m)Aw(t - nk_Tom) .

Further, the generalized harmonic wavelet transform (GHWT) of an
arbitrary signal x(¢) is given by

lII(Gm,n),k(t) =

(2)
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Wnmilxl = S x@WG0dr,

3
and the inverse transform reconstructs exactly the target signal in the
form

x(t) = Z z (W((r;n,n),k [x]q"?m,n),k(t) + W(Grr:n),k [X]Wf;n:,n),k(t)), @
mn k

where the bar over an expression denotes complex conjugation. It has
been shown recently that based on Parseval’s theorem, on the theory of
locally stationary processes (e.g., [37]), and accounting for the GHW
non-overlapping box-shaped frequency spectrum, an estimate can be
obtained for the underlying stochastic process evolutionary power
spectrum (EPS) in the form (e.g., [38,34,39])

e E[1WG 0 [X]P]
S (w t) = Simmk = T —-mbw ®)

where Sy (w, t) = Sy .« is considered constant over the intervals
KTy k+DT

mAw < w < nAw, and <t< . Note that the expectation
operator in Eq. (5) implies that an ensemble of realizations compatible
with the underlying non-stationary stochastic process is available. In a
similar manner, the cross-EPS of two processes x(¢) and y(t) can be
estimated as

EWE, i XIW Gy V1]

S| @, t| = Sgnmk = (n — m)Aw ©

2.2. Incomplete data: a compressive sampling approach

During the past fifteen years, research efforts have focused on
identifying and exploiting low-dimensional representations of high-di-
mensional data as well as on establishing conditions guaranteeing un-
ique representation in the low-dimensional space. These theoretical
results, coupled with potent convex optimization numerical algorithms,
have triggered the birth of the currently expanding field of compressive
sampling and have led to numerous impactful contributions in a wide
range of application areas. Concisely, and focusing on signal processing
under incomplete/missing data, compressive sampling allows for signal
reconstruction even if the maximum frequency in the recorded signal is
greater than half the signal’s sampling rate. This is possible primarily
due to the assumptions of sparsity and incoherence. In other words, the
signal is considered sparse in some known basis, while at the same time
has a non-sparse representation in the sampling domain. Also, the re-
stricted isometry property is required for efficient signal reconstruction;
see the pioneering work in [40-42], and the book in [43] for more
details.

Compressive sampling is typically employed for determining the
sparsest signal representation in a given basis subject to available data.
Specifically, given a sample record y € RNo—Nm_where N, is the original
sample length, and N,, is the number of missing data points, and con-
sidering the locations of the missing data to be known, the corre-
sponding sampling matrix B € R™No~Nm>XNo can be defined as

y = Bx, @

where x € R™ is the coefficients vector of the selected basis assumed to
be sparse. Clearly, Eq. (7) represents an underdetermined system of
equations with infinite solutions given that N, — N,,, < Ny. The sparsest
solution can be determined (at least theoretically) by applying an
lo-norm minimization approach. However, this yields a non-convex
optimization problem, which is most often computationally intractable.
Instead, the /;-norm can be minimized, which also promotes sparsity
and in many cases yields results comparable to applying an l,-norm
approach. Most importantly, employing an /;-norm minimization solu-
tion framework leads to a convex optimization problem of the form
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min|[x|[; subjectto y = Bx, 8

which can be solved via, for instance, basis pursuit [44] or greedy al-
gorithms [45]. In passing, note that there exist various other currently
emerging tools and techniques for enhancing solution sparsity and for
exploiting additional information in the data. These include alternative
to -norm minimization formulations and iterative re-weighting solu-
tion schemes, Bayesian approaches, as well as structured sparsity and
dictionary learning strategies (e.g., [46-48]).

Compressive sampling has found a variety of applications in struc-
tural dynamics over the past few years, especially related to efficient
data compression and storage at the sensors level and to fast data
transmission. This has proved quite advantageous for real-time struc-
tural health monitoring, not only from a cost efficiency perspective, but
also in cases of reconstructing corrupted signals; see for instance
[49-55,22] for some indicative references.

Further, compressive sampling based techniques have also been
developed within the context of random processes to address problems
in stochastic engineering dynamics related to spectral analysis and es-
timation under vastly incomplete data. Specifically, Kougioumtzoglou
and co-workers relied on compressive sampling theory for stationary
and non-stationary stochastic process power spectrum estimation sub-
ject to missing data [56]. This was done in conjunction with an /;-norm
optimization algorithm for obtaining a sparse representation of the
signal in the selected basis (Fourier/ wavelets). The technique has been
enhanced by utilizing an adaptive basis re-weighting scheme and/or an
l,-norm (0 < p < 1) optimization algorithm for increasing further the
sparseness of the solution (e.g., [57]). The above developments have
found recently diverse applications in marine engineering. Indicatively,
a methodology based on compressive sampling has been proposed for
efficient processing and joint time-frequency analysis of relatively long
water wave records by enabling reconstruction of data recorded at a
very low sampling rate (sub-Nyquist) [58]. Further, a compressive
sampling technique has been developed in [59] for extrapolating in the
spatial domain and estimating the space-time characteristics of a sea
state based on data collected at very few spatially sparse points (e.g.,
wave buoys). This is of considerable importance to a number of marine
engineering applications involving three-dimensional waves interacting
with marine structures, such as optimizing arrays of wave energy
converters.

For the non-stationary processes considered herein, the EPS is es-
timated by Eq. (5) based on an ensemble of time-histories, whereas an
appropriately modified GHW basis is utilized for the case of missing
data; see also [56] for a more detailed presentation on compressive
sampling based EPS estimation under incomplete data.

3. Identification technique

3.1. GHW-based excitation-response relationships for linear time-variant
MDOF systems with fractional derivative terms

In this section, a GHW-based input-output (excitation-response)
relationship for MDOF structural systems is derived, which is of para-
mount importance to the development of the identification technique in
Section 3.2. Specifically, the celebrated spectral input-output relation-
ship of random vibration theory, which is valid for stationary processes
(e.g., [6]), is generalized to account for non-stationary processes with
arbitrary EPS forms. Thus, a joint time-frequency response analysis is
possible. It is noted that the analysis and derivations in this section are
based on a local stationarity assumption. In particular, it can be argued
that for relatively stiff and heavily damped systems the related impulse
response function is short-lived, and thus, local stationarity can be
justified. Nevertheless, it has been shown recently that an enhanced
GHW-based input-output relationship valid for SDOF oscillators with
integer order derivatives can circumvent the above restriction [33]. Its
generalization to account for MDOF systems and for fractional
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derivative terms is identified as a topic for future work.
Consider a MDOF linear time-variant (LTV) system with fractional
derivative elements, whose motion is governed by

M)k + C(t)DI[x(t)] + K(t)x = £(t), 9

where x(t) is the oscillator response displacement; M(¢), C(¢), and K(¢)
are the time-varying mass, damping, and stiffness matrices, respec-
tively; f(t) is a realization compatible with a Gaussian, zero-mean non-
stationary stochastic excitation vector process with an EPS S¢(w, t); and
Di4[-] denotes Caputo’s fractional derivative [60] defined as

_ 1 t X(7)
DQ[x(t)] “Ta-g j(: = T)qdr,

where 0 < q < 1; and I'(z) is the gamma function. Note, in passing, that
alternative fractional derivative definitions, such as the Riemann-
Liouville and the Grunwald-Letnikov, exist in the literature (e.g., [60]).

Next, applying the GHWT of Eq. (4) to Eq. (9) and assuming that the
mass, stiffness, and damping elements are slowly varying functions in
time, and thus, approximately constant over the compact support of the
GHW in the time domain (i.e., M(¢t) = My, K(t) = K, and C(t) ~ Cy),
yields

10

MW ok (K] + CWE i x [DIXOT] + KW,y i [X] = WG, oy [£].
aamn

In the following, relationships between the GHWT of derivatives of x
and the GHWT of x are sought for to further manipulate Eq. (11). In this
regard, it is rather straightforward to generalize the relationships (re-
ferring to scalar functions) developed in [35] to account for vector-
valued functions. Specifically, following closely [35], relying on the
time localization of the GHW, on the linearity property of the fractional
derivative, and assuming that the frequency band [mAw, nAw] is rela-

tively small and defining we gmmx = ("J;m)Aw, yields the approximate
expressions

WG e [X] = i,y e Wy i [X1 12)
Wi K] = =02 iy W i (X1, a3)
W, m i [DAXDO]] = (o, om,ny k) IW i [X]. 14

Substituting Egs. (12)-(14) into Eq. (11) leads to the input-output re-
lationship

WE, i [X] (=02 (., Mic + (i, () )ICk + Ki) = WG i [£]. (15)

Next, applying complex conjugation to Eq. (15), taking the expectation
operator and considering Egs. 5,6 yields

£ T
St = Hip iy kSt Hom e - (16)

Note that Hf, y, in Eq. (16) denotes the GHW frequency response
function (GHW-FRF) given by

HE, ok = (=02 mm M + (0, immy,)7Ck + K7L a7)

Clearly, Eq. (17) represents a time- and frequency-dependent GHW-
FRF, while Eq. (16) can be construed as a generalization of the cele-
brated Wiener-Khinchin spectral input-output relationship of the sta-
tionary linear random vibration theory [6]. As noted earlier, local
stationarity has been assumed for the derivation of Eq. (17), whereas
future work towards weakening this assumption relates to generalizing
the relationships developed in [33] to account for fractional derivative
operators and vector-valued functions; see also [33,35] for more de-
tails.

3.2. Multiple-input/single-output (MISO) identification technique

In this section, a novel MISO system parameter identification
technique is developed by relying on and generalizing pioneering work
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by Bendat and co-workers [28-30]. The original development of the
MISO technique, valid for stationary processes, has found a wide range
of applications in parameter identification of diverse engineering sys-
tems (e.g., [61-64]). The technique has been generalized in [36] to
account for non-stationary excitation-response data and for time-
varying system parameters, while it has been extended recently in [27]
to address systems endowed with fractional derivative elements and
subject to incomplete measured data. Nevertheless, the previous de-
velopments in [36] and in [27] refer to SDOF oscillators. In this regard,
the present work generalizes further the MISO technique to account for
MDOF systems subject to incomplete non-stationary data, even when
endowed with fractional derivative elements.

It is noted that the developed generalization in this paper is not
trivial and exhibits considerable methodological novelty. Specifically,
first, the derivation of appropriate excitation-response relationships for
MDOF systems in the GHW domain is a requirement for the develop-
ment of the identification technique. In this regard, the herein derived
GHW-based input-output relationships for MDOF systems with frac-
tional derivatives terms (see Section 3.1) are presented for the first time
in the literature. Second, the identification technique developed in the
following is considerably different to the one in [27], which corre-
sponds to SDOF systems. In fact, in comparison to the technique in [27]
where the SDOF oscillator is cast directly into a MISO system in the
wavelet domain, an additional step is required in the herein proposed
formulation; that is, the MDOF system is cast, first, into a multiple-
input/multiple-output (MIMO) system in the wavelet domain with
correlated inputs, and subsequently, this MIMO system is cast into a set
of MISO systems. This fundamental difference complicates significantly
the ensuing analysis as the decorrelation procedure and resulting
equations become more complex as compared to the ones in [27].
Overall, it can be readily seen that various non-trivial challenges are
addressed in the following for generalizing the identification technique
from SDOF to MDOF systems.

Consider a general MIMO system, where the GHWT is applied to the
[ input and the r + 1 different output time-histories as shown in Fig. 1,
where Hfm .k accounts for an arbitrary time- and frequency-dependent
GHW-FRF (see Eq. 16). Next, accounting for correlations between the
various output records, the original MIMO system can be equivalently
cast as a set of MISO systems, with each MISO system corresponding to
a specific output and to I + r (possibly correlated) inputs; see Fig. 2,
and [65,30] for more details. Further, to address the possible correla-
tions between the inputs, a decorrelation scheme based on conditioned
spectra, presented in [30] (see also [66]) and extended herein to ac-
count for time- and frequency-dependent EPS, is outlined next. In
particular, taking into account the i-th input x; and the output f , and
based on Egs. 5,6, consider the GHW-based auto-spectra
St = SE 0 S s and cross-spectra Stk =
Sog e S = S0 s wherei, j = 1, 2, ..., + r. The conditioned EPS
are then given by
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Sthimk = St (18)
Stronic = Stk » 19)
where
rj.(r—1)!
gt gir=D! _ M G L
(m,n),k = “(m,n)k Srr_(r—l)! (m.n)k > ’
(m,n),k
(20)
if.(r=1)!
gifrt Sijl(r—l)! _ S(m,n),k ir(r=D! .
(m,n),k = P(m,n)k (=1t (m,n),k > .
(m,n),k 2D

Note that forr = 0, S5, =S¥, and S =S¥ . Next, utilizing
the conditioned GHW-based EPS, the linear operators Liﬁ(m,n),k are de-
fined that relate the uncorrelated input records y,(¢) to a specific output
f(t) via the equation (see also Fig. 3)

Stk

I
Lif nnyke =

Stk 22)

The output auto-EPS S(j;{l,n),k can then be evaluated as (see also
[65,67,36])

I+r

X B
S(fr{l,n),k = Z 1L (ke P Sy ke
i=1

(23)

In this regard, GHW-based generalized versions of coherence functions
between each of the inputs y;(¢t) and the output f(¢t) are given by
. ST P
(y(l{n,n).k)z = iic(mvn)Y;,c =
Stm.n) ke Simn) 24
while the GHW-based cumulative coherence function (GHW-CCF) is
defined as

I+r

fz 2 _ if 2
(y(m,n),k) Z} (y(m,n),k) (25)
The GHW-CCF in Eq. (25) is used as an indicator of the modeling error
providing information about the “goodness-of-fit” of the model subject
to the measured data (e.g., [36]). Note that its value should approach
unity in cases where the model provides a good fit. The interested

reader is also directed to [30,36] for more details on the topic.
Focusing next on structural systems whose governing equation of
motion can be cast in the form of a MIMO system shown in Fig. 1,
consider a nonlinear version of the MDOF system of Eq. (9), given by

M(@®)x + C()DI[x(1)] + K(H)x + g(x, %) = (1), (26)

where g(x, X) is an arbitrary nonlinear vector function of the response
displacement and velocity. Next, it is assumed that g(x, X) can be re-
presented by a superposition of zero-memory nonlinear transformations
and linear sub-systems (e.g., [68]) in the form

Wil ()] ——— Wil i (D]
W(Cr;n,n),k [x2(£)] — G s
H (mmn),k
= Wi [fr ()]
Wemme [ (©)] W& frs1(®)]

Fig. 1. MIMO model with [ inputs and r + 1 outputs.
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s N
Wy selx1 ()] ASf ik
Wy [x1(0)] Afr ik
W(fn,n),k [x41 ()] = W(fn,n),k [x, ()] A€z+1) £ (mn) k
Wy e [Xrar ()] = Wy e 2 (£)] “I A1yt mmk —\ )

—— W [f (©)]

)

Fig. 2. MISO model with [ + r potentially correlated inputs and a specific output.

G
W((r;n,n),k [y 1 (t)] A1 f,(mn),k

4 )

" n§— 'R

G
W((‘r;n,n),k O] — Alfmn)k

G G
W(m,n),k [yl+1 (t)] A(l+1)f,(m,n),k

—— Wiy [f ()]

. — [N ]

G G
W(m,n),k [J’l+r (t)] A (I+7r)f,(mn),k

% .

Fig. 3. MISO model with [ + r uncorrelated inputs.

& od
gx, %) = ) ApX).
o A 27)
In Eq. (27), A; are matrices with functions as entries to be defined in the
following, p; are zero-memory nonlinear transformations; and M is the
total number of base functions in the representation of g(x, X). Sub-
stituting Eq. (27) into Eq. (26) leads to

M
M) + C(t)Dq[x(t)] +K@Ox+ Y, A,ip,.(x) = 1(t).
o dr (28)

Taking the GHWT of Eq. (28) yields (see also [27])

M+1

D AWk X + WG, i [2] = WG, i [£],
i=1 (29)

where Af(m,n),k are unknown time- and frequency-dependent GHW-
FRFs, and z(t) accounts for added extraneous noise. Note that the inputs
x; relate to x and p; (x) (system reponses), whereas the outputs f(t) relate
to the system excitation. Further, due to its vector-valued character,
each term W((fn,n),k [x;] corresponds to n inputs, where n is the number of
degrees of freedom of the structural system. Thus, the total number of
inputs is equal to n(M + 1). Comparing Eq. (29) with Eq. (15), it can be
readily seen that

Ak = Hip il = =02 (nny x Mk + (i im ) 1Ck + K. (30)

However, W(‘,},,’n)’k [x;] represent, in general, mutually correlated inputs.
Thus, by employing the decorrelation scheme described in Egs.
(18)—(23) (see also [66,67,30,36]) the GHW-FRFs are given by

M+N S(U,C 2k
G G G m,n),
Almmi = Lionmk = D) Afemmkais
j=i+1 (m.n)k (€20)]

wherei = 1, ..., M+N, N is the number of degrees of freedom of the
system, and Af(m,n),k is computed for the different outputs of the MISO

system (f).
3.3. Mechanization of the technique

The herein developed parameter identification technique is sum-
marized in the following. In the ensuing analysis, it is assumed that the
mass matrix M(¢) is known, whereas the unknowns are, in general, the
matrices C(t), K(t), the fractional derivative order g, as well as non-
linearity parameters related to function g(x, X).

1. Provided records of excitation-response time histories, apply Egs.
5,6 and estimate the auto- and cross-EPS
Sk S({’;qffn),k, S S(f‘,'rf"n),k, S():,L,/?"n)’k for all input and output pro-
cesses. In case of incomplete/missing data, apply Egs. 5,6 in con-
junction with the compressive sampling technique delineated in
Section 2.2.

2. Evaluate the GHW-CCF (y({;lfn), )? via Eq. (25) and select appropriate
frequency ranges to identify the system parameters.

3. Estimate the GHW-FRFs A, ,; via Eq. (31).

4. Determine the unknown system parameters. Specifically, Ky is de-
termined from A{, . for @, mnk = 0. Further, casting A, .1
equivalently, in the form

_ q T . q . T
AL ok = [“’cz,(m,n),kMk + Kk + wc,(m,n),kcos(qz)ck] + l[mc,(m.n).ksm(qz)ck]’

(32)

and manipulating, yields an estimate for the fractional derivative
order in the form

|: Im(Ag(m,n),k) ]

2
q = —atan = 5
Re(Al,(m.n),k) - Ky - wc.(m.n),kMk

T

(33)

Next, considering the imaginary part of Eq. (32), the damping ma-
trix is obtained as
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Fig. 4. Non-separable evolutionary excitation power spectrum.

W{;'n,n),k [x1(®)]—

W(fn,n),k [z(t)]

— W(fn,n),k [f1(®)]

W((y;n,n),k [x2 ()] —

W(fn,n),k [x3 ()] —

Acl;, (mn),k

W[5 ()1

— Wemif2(®)]

)

W[5 (£)]—

Wy e [25 ()] —

Ag,(m,n),k

— Wil ®]

./

Fig. 5. 3-DOF Duffing oscillator recast as a MIMO problem.

Im[Af 1]

Ck = ﬁ
“’c,(m,n),ksm(QQ)

(34

Finally, based on further consideration of the specific form of the
nonlinear function g(x,%X) and the related GHW-FRFs
Afmmi | =2, ..M + 1, associated nonlinearity parameters can be
obtained; see Section 4 for indicative numerical examples.

It is noted that in the above presented configuration, “excitation” and
“response” have the standard roles of “input” and “output” in the MIMO
system modeling, while the structural system parameters are con-
sidered to be the “unknowns” to be identified. Clearly, these roles can
be altered based on the type of measured data available and the iden-
tification objective. In this regard, Eq. (28) can be readily re-arranged
so that the herein developed MISO identification approach is still ap-
plicable in a straightforward manner.

4. Numerical examples

To demonstrate the accuracy and reliability of the herein developed
system parameter identification technique, two indicative systems are
considered in this section whose dynamics is governed by Eq. (24). The
first refers to a 3-DOF time-variant Duffing oscillator with fractional

derivative elements, while the second relates to a 2-DOF nonlinear
time-variant structural system subject to flow-induced forces. In the
former case, the oscillator parameters are considered to be the un-
knowns according to Section 3.3, whereas in the latter case the un-
knowns are the time-varying drag and inertia coefficients.

Further, the excitation is modeled as a non-stationary stochastic
vector process with an EPS S(w, t). In this regard, time-histories com-
patible with the excitation EPS are generated by employing the spectral
representation technique (e.g., [69,70]); that is,

s—1

F® =2 [S;(Aw, HAwcos(iAwt + ¢),
=0 (35)

where s refers to the discretization in the frequency domain, Aw cor-
responds to the frequency increment, and ¢; are independent random
phases uniformly distributed over the interval [0, 27z]. To integrate
numerically Eq. (26) and determine response realizations, the standard
L1-algorithm [71], which utilizes a discretization of the fractional de-
rivative, is employed.

The robustness of the technique in the presence of both corrupted
and incomplete data is assessed by considering two distinct cases: (a)
complete excitation-response time histories, and (b) incomplete ex-
citation-response time histories with added noise. Herein, various per-
centages of missing data (i.e., 5%, 10%, and 20%) are considered in
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Fig. 7. Estimated GHW-CCF (incomplete time histories — 20% missing data - corrupted with noise) for a 3-DOF Duffing time-variant oscillator with fractional
derivative terms (q = 0.5, g = 15, & = 10 and & = 5).

uniformly distributed random locations in the signals. The added noise identified-target
is modeled as a Gaussian white noise vector process with a signal-to- Error = E[ target ]’ (36)
noise ratio (SNR) of 40 dB; i.e. the standard deviation of the white noise
is equivalent to 10 percent of the standard deviation of the signal. and
Furthermore, the following two metrics are employed for quantifying
the error between the estimated and target parameters, i.e., Erron, = E[ lidentified-target| ]
target 37)

where E[-] denotes the averaging operator over the time domain, and ||
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Fig. 13. Comparison between the target and the estimated damping elements
for a 3-DOF Duffing oscillator with fractional derivative terms (¢ = 0.5,
g =15, & = 10 and & = 5) considering complete time histories (thick curves)
and incomplete time histories - 20% missing data - corrupted with noise (thin
curves).
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Table 2
Identified nonlinearity parameters and fractional derivative order.

Parameter Target Complete Missing Missing Missing(5%)/
(20%)/Noise (10%)/Noise Noise

& 15 14.264 13.173 15.618 14.252

) 10 10.464 9.513 9.334 8.987

=) 5 4.310 3.231 4.434 4.014

q 0.5 0.545 0.517 0.459 0.538

is the absolute value.

4.1. 3-DOF Duffing nonlinear time-variant oscillator with fractional
derivative elements

For the case of a 3-DOF Duffing nonlinear time-variant oscillator
with fractional derivative terms, modeled as a standard chain-like
system and using relative coordinates (e.g., [6]), Eq. (26) takes the form

M, 0 O]|Hh G —G@®) 0 Di[x]
M, M O [[Wh[+]| O G =GO || Dile]|+
1\43, M3 1\43, ji3 0 0 C3 (t) D1 [X3]

K((t) —K() 0 X
0 KO -K@®||x|+
0 0 K1) [L*

Esz (t)x23 fz (t) 5

ak (r)xj [ﬁ(r)
&K; ()x3 H® (38)

with M; = M, = M; =1, and the time-varying damping and stiffness
coefficients modeled as

¢\
CG() =4+ 8(?) )

0

¢ 2
C)=2+ 4(?0) 5

¢ 2
G)=1+ 2(?) 5

0 (39)
¢ 2
K (t) = 100 — 50| — |,
0 (T)
¢ 2
¢ 2
K (t) =25 — 12.5| — | .
0 (To) (40)

The order of the fractional derivative is g = 0.5, while the nonlinearity
parameters are g = 15, g = 10, and g = 5. The excitation is modeled as
a non-stationary stochastic vector process with a non-separable EPS of

Table 1

Error estimates between the identified and the target parameter values considering various percentages of missing data.
Parameter Complete Missing(5%)/Noise Missing(10%)/Noise Missing(20%)/Noise

Error; Error; Error; Error; Error; Error; Error; Error,

K 0.0350 0.0585 0.0094 0.1083 —0.0207 0.1020 —-0.1617 0.1748
K> 0.0719 0.0886 0.1415 0.1939 0.1252 0.2317 0.0707 0.1888
K3 —0.0121 0.0686 0.0067 0.1717 —0.0339 0.1841 —0.0333 0.2543
q —0.2332 0.2332 —0.2481 0.2481 0.0025 0.1572 —0.1536 0.2516
C, —0.1825 0.1825 —0.1189 0.1434 0.1834 0.3184 —-0.1363 0.2937
Cs —0.2390 0.2396 —-0.1715 0.1999 0.1691 0.3940 —0.0118 0.3261

10
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Table 3
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Error estimates between the identified and the target values considering various percentages of missing data.

Parameter Complete Missing (5%)/Noise Missing (10%)/Noise Missing (20%)/Noise
Error; Error; Error; Error; Error; Error; Error; Error;
g —0.0490 0.2164 —0.0499 0.3666 0.0412 0.3347 —0.1218 0.2916
13 0.0464 0.2135 —0.1013 0.1630 —0.0666 0.1628 —0.0487 0.2737
& —0.1381 0.1381 —0.1972 0.6335 —0.1132 0.6160 —0.3475 0.3475
q 0.0903 0.2695 0.0768 0.3599 —0.0828 0.3430 0.0346 0.3206
0.2
100 N
E;/ 0.15
g o
o :
=
2. 0.1
2
~
0.05
0.1
. 0
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Fig. 14. Evolutionary JONSWAP power spectrum.
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Fig. 15. 2-DOF system subjected to flow-induced forces recast as a MIMO problem.
the form anticipated to exhibit better performance.

2 2
Splw, t|= So(ﬁ) exp(—bt)t%exp —(2) t],
P, b

with the parameters values: Sy, = 1, p; = 307, p, = 107, b = 0.15. This
excitation EPS, shown in Fig. 4, possesses some of the main char-
acteristics observed in seismic motions, such as decreasing of the
dominant frequency with time; see also [72].

Further, the corresponding MIMO model is shown in Fig. 5, with
X =X =[x, %, 5]7% =x3 =[x}, x5, x{]"; and £=1[f, f,, ;]'. Next,
based on input-output records, the auto- and cross-EPS
SE e S o SeeT e S(fy‘ifn),k, S(f,{jn)k are determined, and the GHW-
CCF (;/({;lfn)’k)z is estimated via Eq. (24). Indicatively, GHW-CCFs be-
tween the outputs and inputs considering the case of complete excita-
tion-response time-histories and the case of both missing and corrupted
data are shown in Figs. 6 and 7, respectively. Clearly, the estimated
GHW-CCFs are useful in identifying time-varying frequency regions
with high coherence values, where the identification technique is

(41D

11

Next, considering Eq. (29) the GHW-FRFs Af(m,n),k of Eq. (30) and
Al With i =2, ..M + 1, related to g(x, %) are determined. In-
dicatively, the elements Hf(my,,),k(l, 1), Hf(myn),k(Z, 2) and Hi(,;(m,n),k(S’ 3)
corresponding to the estimated GHW-FRF Af(m’n),k are plotted in Fig. 8,
while Fig. 9 shows the same functions for an arbitrarily chosen time
instant (¢t = 6.2s). In both figures, comparisons with the target GHW-
FRFs are included as well, demonstrating a satisfactory degree of ac-
curacy. In particular, it is seen that although the technique identifies
correctly the positions of the natural frequencies, it tends to over-
estimate some of the corresponding GHW-FRF values.

The accuracy remains satisfactory even for the challenging case of
both incomplete and corrupted data (40 dB noise), at least over the
effective frequency domain where the three modes of vibration are
prevalent. This is seen in Fig. 10 where the elements
HY k(L D, HY, 012, 2) and HY, (3, 3) corresponding to the
estimated GHW-FRF A1G,(m,n),k (subject to 20% missing data) are plotted
and compared with the target ones. In Fig. 11 the same functions are
plotted for an indicative time instant ¢ = 6.2s, however, various
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Fig. 16. Estimated GHW-CCF (complete time histories) for a 2-DOF system subject to flow-induced forces.
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Fig. 17. Estimated GHW-CCF (incomplete time histories - 20% missing data — corrupted with noise) for a 2-DOF system subject to flow-induced forces.

percentages of missing data are considered, i.e., 5%, 10% and 20%. It
appears that the degree of accuracy exhibited by the technique in
identifying the position of the natural frequencies and the corre-
sponding GHW-FRF values is, practically, not affected by the presence
of incomplete data. In fact, missing data seem to impact mostly high-
frequency regions, where the target GHW-FRF values are practically
zero. Overall, it appears that the presence of incomplete and corrupted
data does not compromise considerably the efficacy of the technique in
determining the GHW-FRFs over the frequency region where the system
is active. Next, following step 4 of Section 3.3, the time-dependent

12

fa:zo
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i
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22 ;—.1 -i’..-'#.’.’..‘;-l'.--‘l-' ::—'?
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stiffness and damping parameters are identified and shown in Figs. 12
and 13, respectively, where the cases of complete and incomplete (20%
missing data) time histories are demonstrated. It is seen that although
notable discrepancies exist between the identified and the target
parameters, the technique is capable of determining the salient features
as well as the evolution in time of the system parameters in an average
sense. As anticipated, the accuracy degree deteriorates in the presence
of incomplete data and the oscillatory behavior of the estimates around
the target values becomes more prevalent. However, the mean time-
variant behavior of the system parameters is still estimated reasonably
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Fig. 18. Estimated GHW-FRF Af(mv,,)‘k at t = 50s for a 2-DOF system subject to flow-induced forces; (a) Complete time histories; (b) Incomplete time histories

corrupted with noise (20% missing data).
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Fig. 19. GHW-TF Af(m,n),k component (1, 1) at various time instants corresponding to the inertia coefficient; (a) Complete time histories; (b) Incomplete time histories

corrupted with noise (20% missing data).
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Fig. 20. Comparison between the target and the estimated inertia coefficient
matrix elements for a 2-DOF system subject to flow-induced forces.

well.

The aforementioned remarks are further corroborated by the results
shown in Table 1, where Erroy and Errorn, are calculated for various
percentages of missing data (5%, 10% and 20%). Clearly, Erroy defi-
nition serves to quantify the average error in time, while neglecting
localized oscillatory deviations from the target values. On the other

13

hand, Error, definition can be construed as “stricter” since it accounts
for all deviations from the target. In this regard, overall smaller Erroy
values than Error, are observed in Table 1, indicating that the estimated
parameters tend to oscillate around the target ones and succeed in
capturing the average in time system behavior. Also, it is worth noting
that Error, values, in general, tend to decrease for smaller amounts of
missing data, indicating that the magnitude of oscillations reduces as
the number of missing data becomes smaller.

Further, the identified fractional derivative order and nonlinear
function parameters are shown in Table 2, and error estimates between
the identified and the target values considering various percentages of
missing data are shown in Table 3. In particular, for the identification of
the constant g, g, &, and & values, the respective averages over time
estimates are considered. Note that once the stiffness elements (K; ;) are
identified, the nolinearity parameters g can be determined as

Ag(m,n),k(i’ i]
6=\ J
' Kik
seen that Error; values are in general smaller than Error, values.

, fori =1, 2, 3. In a similar manner as in Table 1, it is

4.2. 2-DOF nonlinear time-variant offshore structural system subject to
flow-induced forces

In this example, an offshore structural system subject to flow-in-
duced forces is considered. The Morison model is adopted, which uti-
lizes an inertial term accounting for the influence of the fluid mass
around the submerged structure, and a drag-type nonlinearity ac-
counting for the relative velocity between the structure and the fluid
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Fig. 21. Estimated GHW-FRF Ag(myn)‘k at t = 50s for a 2-DOF system subject to flow-induced forces; (a) Complete time histories; (b) Incomplete time histories

corrupted with noise (20% missing data).
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Fig. 22. GHW-TF Af(m,n),k component (1, 1) at various time instants corresponding to the drag coefficient; (a) Complete time histories; (b) Incomplete time histories

corrupted with noise (20% missing data).

particles (e.g., [10]). For practical applications, the inertia and drag
coefficients are to be determined experimentally and depend on a
number of factors, such as the structure geometry, Reynolds number,
surface roughness and the Iversen’s modulus. It is noted, however, that
although in reality these coefficients are both time- and space-depen-
dent (e.g., [73-75]), most research efforts involving Morison type
modeling consider them as constants (e.g., [11]). In the present ex-
ample, and to address partly the above inconsistency, the coefficients to
be identified are modeled as time-dependent functions.

Further, it is common practice in marine engineering to model the
sea state as a stationary random process. In this regard, classical models
such as the Pierson-Moskowitz [76] and the JONSWAP [77] power
spectra are typically employed to define a stationary free-surface ele-
vation for a fully developed sea. Herein, an evolutionary version of the
JONSWAP spectrum, originally proposed in [31], is adopted to account
for time-dependent sea states. This JONSWAP EPS, shown in Fig. 14, is
given by the expression

14

4
Su(@, ) = FOga™ exp['l'”(%ft)) ]

_ 2
X exp {ln(y)exp[—%}},
P

(42)
where
-1
CHXD)| peo , wp®)* (@ = wp®)?
F([)_T[fo g%w Sexp[—l.ZS(T) exp1 In(y)exp —W dw
(43)
and
_1
2
wp(t)=o.2353(HS—(t)) .
4g (44)

In Egs. (42)-(44) g is the gravitational acceleration, y = 0.08, y = 3.3,
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matrix elements for a 2-DOF system subject to flow-induced forces.

Table 4
Error estimates between the identified and the target parameter values

Parameter Complete Missing (20%)/Noise
Errory Error; Error; Error,
Ai(1,1) 0.069202 -0.069202 0.148162 —0.148146
Ai(2,2) 0.083397 -0.083397 0.047642 0.002323
Ad(1, 1) 0.020972 0.009931 0.193157 —0.185505
Ad(2,2) 0.030817 0.008805 0.161001 0.062988

and H;(t) is estimated based on buoy data recorded at the western Gulf
of Alaska; see [31] for more details. In passing, it is noted that the flow
velocity u can be estimated from the sea elevation by employing the
linear wave theory [78].

Next, following [63], the governing equation of a 2-DOF system
subject to flow-induced forces takes the form

Ml 0 )E] + C1+ Cz —Cz xl + K1+K2 —K2 [xl]
0 M||% -G (o)) X% -K K X

_[A4a® AZd(t)H|u1—x1|(u1—x1)]+[Au(t) Aﬁ(t)][m],
Aa () A @) [ [l — %@ — %) Ay (t) Ay [
(45)

where M; = M, = 50, C; = 2, C, = 3, K; = 50, and K, = 30. The water
particle velocities i; and 0, are generated simultaneously at depths 10
and 15 m from a single random wave with steady currents of 1.5 m/s
and 1 m/s being added, respectively. In this example, the time-variant
drag coefficients Aj;(t) and A, (t), and the time-variant inertia coeffi-
cients Aj4(t) and Ay, (t) are designated as the unknowns to be identified.
In this regard, smoothly varying with time generic functions (of a si-
nusoidal form) are adopted to describe the behavior of the coefficients
based on the analysis and experimental data presented in [74,75]. Next,
applying the herein developed identification technique, the corre-
sponding MIMO model takes the form (see also Fig. 15)

Ax, + Agx, = f, (46)

where x =i = [ii, ip])7; %= — %@ —%) = [ji — 30l — i), i — %@ - 2)]T;
f=Mx + Cx + Kx, and the time-variant matrices A; and Aq to be
identified are given by

A= [An'(t) Azi(t)]

_ [Ald(t) Azd(t)]
Ay () Ayu(2) '

PR A A (47)

15
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As mentioned in Section 3.1, the designation of the inputs and outputs
in the MISO identification technique can be rather arbitrary, and such
definitions can change depending on which parameters are unknown.
This is seen in Eq. (46) where the relevant terms have been re-arranged
accordingly.

Following the evaluation of the auto- and cross-EPS
St St S St oo the GHW-CCF (7%, ,)? s esti-
mated via Eq. (25) and shown for various time instants in Figs. 16,17
for the cases of complete and of incomplete and corrupted data, re-
spectively.

Next, the GHW-FRFs corresponding to the time-dependent coeffi-
cient matrices Af(, ; and A?,(m,n),k are determined. In Fig. 18, the
estimated Alc,(m,n),k components are plotted for a given time instant,
while in Fig. 19 the estimates for component (1, 1) of Af(my,l),k are
shown for two arbitrary time instants. Note that based on the definition
of the inertia and drag coefficients, these are equal to the real parts of
the respective GHW-FRFs. Clearly, the accuracy degree of the estimated
Af(m,,,)'k varies across the joint time-frequency domain, and therefore,
the information provided by the GHW-CCF (see Figs. 16,17) in selecting
appropriate time-frequency regions is catalytic in the ensuing analysis.
In this regard, the identified inertia coefficients are plotted and com-
pared with the target ones in Fig. 20. It is seen that the technique
succeeds in capturing satisfactorily the salient features of the time-de-
pendent behavior of the parameters. In a similar manner as in Example
4.1, the accuracy degree deteriorates when incomplete and corrupted
data are considered, however, the performance of the technique re-
mains satisfactory. Similar results are shown in Figs. 21-23 corre-
sponding to the GHW-FRF Ag(m,n),k. Specifically, in Fig. 21 the esti-
mated Ag(mm)’k components are plotted for a given time instant, while
in Fig. 22 the estimates for component (1, 1) of Ag(m, .k are shown for
two arbitrary time instants. It is worth noting that despite the relatively
poor GHW-FRF estimates in the presence of incomplete and corrupted
data, utilizing frequency intervals corresponding to relatively high co-
herence values yields satisfactory estimates for the time-dependent drag
coefficients in Fig. 23. The above remarks are further corroborated by
relevant error estimates in Table 4, where it is seen that the drag
coefficients estimates appear more sensitive and the related errors in-
crease significantly in the presence of missing data compared to the
inertia coefficients estimates.

This behavior can be explained by the presence of the term
X = [%, %] in the nonlinear functional multiplying the drag coeffi-
cients in Eq. (45). Specifically, the system response velocity x tends to
exhibit a wider spectral band than ii; thus, affecting negatively the
performance of compressive sampling in recovering the missing in-
formation.

5. Concluding remarks

Various system identification techniques exist in the literature that
can handle non-stationary measured time-histories, or cases of in-
complete data, or address systems following a fractional calculus
modeling. However, there are not many (if any) techniques that can
address all three aforementioned challenges simultaneously in a con-
sistent manner. In this paper, the MISO identification technique pro-
posed in [28], and generalized in [36,27] for addressing incomplete
non-stationary data and fractional derivative modeling, has been ex-
tended herein to account for MDOF systems. Specifically, the technique
relies on recasting the governing equation as a set of MIMO systems in
the wavelet domain. Next, an /;-norm minimization procedure based on
compressive sampling theory has been employed for determining the
wavelet coefficients of the available incomplete non-stationary input-
output data. Finally, these wavelet coefficients have been utilized to
reconstruct the non-stationary incomplete signals, and consequently, to
determine system related time- and frequency-dependent wavelet-
based frequency response functions and associated parameters. Two
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illustrative MDOF systems have been considered in the numerical ex-
amples for demonstrating the reliability of technique. The first refers to
a nonlinear time-variant system with fractional derivative terms, while
the second addresses a nonlinear offshore structural system subjected to
flow-induced forces. It is worth noting that for the offshore system, a
novel recently proposed evolutionary version of the widely used
JONSWAP spectrum has been employed for modeling the non-sta-
tionary free-surface elevation in cases of time-dependent sea states. It
has been shown that even in cases where the technique fails to capture
the details of the time-varying behavior, it still succeeds in identifying
the time-varying trend of the system parameters in an average sense.

Acknowledgements

L. A. Kougioumtzoglou gratefully acknowledges the support by the
CMMI Division of the National Science Foundation, USA (Award
number: 1724930). K. R. M. dos Santos gratefully acknowledges the
support by the Brazilian Federal Agency for Coordination of
Improvement of Higher Education Personnel (CAPES) (Award number:
BEX/13406-13-2).

References

[1] Giannakis G, Serpedin E. A bibliography on nonlinear system identification. Signal
Process 2001;81(3):533-80.

[2] Kerschen G, Worden K, Vakakis A, Golinval J-C. Past, present and future of non-
linear system identification in structural dynamics. Mech Syst Signal Process
2006;20(3):505-92.

[3] Reynders E. System identification methods for (operational) modal analysis: review
and comparison. Arch Comput Methods Eng 2012;19:51-124.

[4] Billings SA. Nonlinear system identification. John Wiley & Sons; 2013.

[5] Adeniran AA, Ferik SE. Modeling and identification of nonlinear systems: a review

of the multimodel approach part 1. IEEE Trans Syst, Man, Cybern: Syst

2017;47(7):1149-59.

Roberts JB, Spanos PD. Random vibration and statistical linearization. Courier

Corporation; 2003.

[7]1 Wen Y. Methods of random vibration for inelastic structures. Appl Mech Rev

1989;42(2):39-52.

Bertotti G, Mayergoyz ID. The science of hysteresis: Hysteresis in materials. Gulf

Professional Publishing; 2006.

Ikhouane F, Rodellar J. Systems with hysteresis: analysis, identification and control

using the Bouc-Wen model. John Wiley & Sons; 2007.

[10] Morison J, Johnson J, Schaaf S. The force exerted by surface waves on piles. J Petrol
Technol 1950;2(05):149-54.

[11] Spanos P, Ghosh R, Finn L, Halkyard J. Coupled analysis of a spar structure: Monte
Carlo and statistical linearization solutions. J Offshore Mech Arctic Eng
2005;127(1):11-6.

[12] Psaros AF, Brudastova O, Malara G, Kougioumtzoglou IA. Wiener path integral
based response determination of nonlinear systems subject to non-white, non-
gaussian, and non-stationary stochastic excitation. J Sound Vib 2018;433:314-33.

[13] Di Paola M, Pirrotta A, Valenza A. Visco-elastic behavior through fractional cal-
culus: an easier method for best fitting experimental results. Mech Mater
2011;43(12):799-806.

[14] Di Paola M, Failla G, Pirrotta A, Sofi A, Zingales M. The mechanically based non-
local elasticity: an overview of main results and future challenges. Philos Trans R
Soc A: Math Phys Eng Sci 2013;371(1993):20120433.

[15] Tarasov VE. Fractional mechanics of elastic solids: continuum aspects. J Eng Mech
2016;143(5):D4016001.

[16] Mallat S, A Wavelet Tour of Signal Processing, 3rd ed.; 2009.

[17] Wang Y, Li J, Stoica P. Spectral analysis of signals: the missing data case. Morgan &
Claypool; 2006.

[18] Rossikhin YA, Shitikova MV. Application of fractional calculus for dynamic pro-
blems of solid mechanics: novel trends and recent results. Appl Mech Rev
2010;63(010801):1-52.

[19] Kijewski T, Kareem A. Wavelet transforms for system identification in civil en-
gineering. Comput-Aided Civil Infrastruct Eng 2003;18:339-55.

[20] Spanos P, Failla G. Wavelets: theoretical concepts and vibrations related applica-
tions. Sage 2005.

[21] Yang Y, Nagarajaiah S. Harnessing data structure for recovery of randomly missing
structural vibration responses time history: Sparse representation versus low-rank
structure. Mech Syst Signal Process 2016;74:165-82 Special Issue in Honor of
Professor Simon Braun.

[22] Huang Y, Beck JL, Wu S, Li H. Bayesian compressive sensing for approximately
sparse signals and application to structural health monitoring signals for data loss
recovery. Prob Eng Mech 2016;46:62-79.

[23] Deng R, Davies P, Bajaj A. Flexible polyurethane foam modelling and identification
of viscoelastic parameters for automotive seating applications. J Sound Vib
2003;262(3):391-417.

[24] TangY, Liu H, Wang W, Lian Q, Guan X. Parameter identification of fractional order

[6

[8

—

[9

—

16

[25]
[26]

[27]

[28]
[29]
[30]

[31]

[32]

[33]

[34]

[35]

[36]

[37]

[38]

[39]

[40]

[41]
[42]
[43]
[44]
[45]
[46]
[47]
[48]
[49]

[50]

[51]

[52]

[53]

[54]

[55]

[56]

[57]

Structural Safety 86 (2020) 101975

systems using block pulse functions. Signal Process 2015;107:272-81.

Zou Y, Li S, Shao B, Wang B. State-space model with non-integer order derivatives
for lithium-ion battery. Appl Energy 2016;161:330-6.

Di Matteo A, Di Paola M, Pirrotta A. Innovative modeling of tuned liquid column
damper controlled structures. Smart Struct Syst 2016;18:117-38.
Kougioumtzoglou IA, dos Santos KRM, Comerford L. Incomplete data based para-
meter identification of nonlinear and time-variant oscillators with fractional deri-
vative elements. Mech Syst Signal Proc 2017;94:279-96.

Bendat JS, Palo PA, Coppolino RN. A general identification technique for nonlinear
differential equations of motion. Prob Eng Mech 1992;7:43-61.

Bendat JS, Coppolino RN, Palo PA. Identification of physical parameters with
memory in non-linear systems. Int J Non-Linear Mech 1995;30(6):841-60.
Bendat JS. Nonlinear systems techniques and applications. John Wiley & Sons;
1998.

Spanos PD, Laface V, Malara G, Arena F. Simulation of non-stationary sea waves
compatible with storm data. Computational Stochastic Mechanics — Proceedings of
the 8th International Conference (CSM-8). 2018. ISBN 978-981-11-2723-6.
Newland DE. Harmonic and musical wavelets. Proc R Soc A
1994;444(1922):605-20.

Spanos PD, Kong F, Li J, Kougioumtzoglou IA. Harmonic wavelets based excitation
response relationships for linear systems: a critical perspective. Prob Eng Mech
2016;44:163-73.

Spanos PD, Kougioumtzoglou IA. Harmonic wavelets based statistical linearization
for response evolutionary power spectrum determination. Prob Eng Mech
2012;27(1):57-68.

Kougioumtzoglou IA, Spanos P. Harmonic wavelets based response evolutionary
power spectrum determination of linear and non-linear oscillators with fractional
derivative elements. Int J Non-Linear Mech 2016;80:66-75.

Kougioumtzoglou IA, Spanos PD. An identification approach for linear and non-
linear time-variant structural systems via harmonic wavelets. Mech Syst Signal Proc
2013;37:338-52.

Nason GP, von Sachs R, Kroisandt G. Wavelet processes and adaptive estimation of
the evolutionary wavelet spectrum. J R Stat Soci Ser B (Stat Methodol)
2000;62(2):271-92.

Spanos PD, Tezcan J, Tratskas P. Stochastic processes evolutionary spectrum esti-
mation via harmonic wavelets. Comput Methods Appl Mech Eng
2005;194(12-16):1367-83.

Kougioumtzoglou IA, Kong F, Spanos PD, Li J, Some observations on wavelets based
evolutionary power spectrum estimation, Proceedings of the Stochastic Mechanics
Conference (SM12), Ustica, Italy, 7-10 June, 2012, Meccanica dei Materiali e delle
Strutture 3 (2012) 37-44.

Candes EJ, Romberg JK, Tao T. Robust uncertainty principles: exact signal re-
construction from highly incomplete frequency information. Trans Inf Theory
2006;52:489-509.

Candes EJ, Romberg JK, Tao T. Stable signal recovery from incomplete and in-
accurate measurements. Commun Pure Appl Math 2006;59:1207-23.

Candes EJ. The restricted isometry property and its implications for compressed
sensing. CR Math 2008;346(9):589-92.

Eldar YC, Kutyniok G. Compressed sensing: theory and applications. Cambridge
University Press; 2012.

Chen SS, Donoho DL, Saunders MA. Atomic decomposition by basis pursuit. J Sci
Comput 1998;20:33-61.

Tropp JA, Gilbert AC. Signal recovery from random measurements via orthogonal
matching pursuit. Trans Inf Theory 2007;53:4655-66.

Boche H, Compressed Sensing and Its Applications: MATHEON Workshop 2013,
Birkhéuser; 2015.

Boche H, Compressed Sensing and Its Applications: Second MATHEON Workshop
2015, Birkhauser; 2017.

Boche H, Compressed Sensing and Its Applications: Third International MATHEON
Workshop 2017, Birkh&user; 2019.

Klis R, Chatzi EN. Vibration monitoring via spectro-temporal compressive sensing
for wireless sensor networks. Struct Infrastruct 2017;13:195-209.

Gkoktsi K, Giaralis A. Assessment of sub-Nyquist deterministic and random data
sampling techniques for operational modal analysis. Struct Health Monit
2017;16(5):630-46.

Jayawardhana M, Zhu X, Liyanapathirana R. Compressive sensing for efficient
health monitoring and effective damage detection of structures. Mech Syst Signal
Proc 2017;84:414-30.

Yang Y, Nagarajaiah S. Robust data transmission and recovery of images by com-
pressed sensing for structural health diagnosis. Struct Control Health Monit
2017;24:1856.

Yao R, Pakzad SN, Venkitasubramaniam P. Compressive sensing based structural
damage detection and localization using theoretical and metaheuristic statistics.
Struct Control Health Monit 2017;24:1881.

Ji S, Tan C, Yang P, Sun Y-J, Fu D, Wang J. Compressive sampling and data fusion-
based structural damage monitoring in wireless sensor network. J Supercomput
2018;74:1108-31.

Bao Y, Shi Z, Wang X, Li H. Compressive sensing of wireless sensors based on group
sparse optimization for structural health monitoring. Struct Health Monitor
2018;17(4):823-36.

Comerford L, Kougioumtzoglou IA, Beer M. Compressive sensing based stochastic
process power spectrum estimation subject to missing data. Prob Eng Mech
2016;44:66-76.

Zhang Y, Comerford L, Kougioumtzoglou IA, Beer M. L,-norm minimization for
stochastic process power spectrum estimation subject to incomplete data. Mech Syst
Signal Proc 2018;101:361-76.


http://refhub.elsevier.com/S0167-4730(20)30054-0/h0005
http://refhub.elsevier.com/S0167-4730(20)30054-0/h0005
http://refhub.elsevier.com/S0167-4730(20)30054-0/h0010
http://refhub.elsevier.com/S0167-4730(20)30054-0/h0010
http://refhub.elsevier.com/S0167-4730(20)30054-0/h0010
http://refhub.elsevier.com/S0167-4730(20)30054-0/h0015
http://refhub.elsevier.com/S0167-4730(20)30054-0/h0015
http://refhub.elsevier.com/S0167-4730(20)30054-0/h0020
http://refhub.elsevier.com/S0167-4730(20)30054-0/h0025
http://refhub.elsevier.com/S0167-4730(20)30054-0/h0025
http://refhub.elsevier.com/S0167-4730(20)30054-0/h0025
http://refhub.elsevier.com/S0167-4730(20)30054-0/h0030
http://refhub.elsevier.com/S0167-4730(20)30054-0/h0030
http://refhub.elsevier.com/S0167-4730(20)30054-0/h0035
http://refhub.elsevier.com/S0167-4730(20)30054-0/h0035
http://refhub.elsevier.com/S0167-4730(20)30054-0/h0040
http://refhub.elsevier.com/S0167-4730(20)30054-0/h0040
http://refhub.elsevier.com/S0167-4730(20)30054-0/h0045
http://refhub.elsevier.com/S0167-4730(20)30054-0/h0045
http://refhub.elsevier.com/S0167-4730(20)30054-0/h0050
http://refhub.elsevier.com/S0167-4730(20)30054-0/h0050
http://refhub.elsevier.com/S0167-4730(20)30054-0/h0055
http://refhub.elsevier.com/S0167-4730(20)30054-0/h0055
http://refhub.elsevier.com/S0167-4730(20)30054-0/h0055
http://refhub.elsevier.com/S0167-4730(20)30054-0/h0060
http://refhub.elsevier.com/S0167-4730(20)30054-0/h0060
http://refhub.elsevier.com/S0167-4730(20)30054-0/h0060
http://refhub.elsevier.com/S0167-4730(20)30054-0/h0065
http://refhub.elsevier.com/S0167-4730(20)30054-0/h0065
http://refhub.elsevier.com/S0167-4730(20)30054-0/h0065
http://refhub.elsevier.com/S0167-4730(20)30054-0/h0070
http://refhub.elsevier.com/S0167-4730(20)30054-0/h0070
http://refhub.elsevier.com/S0167-4730(20)30054-0/h0070
http://refhub.elsevier.com/S0167-4730(20)30054-0/h0075
http://refhub.elsevier.com/S0167-4730(20)30054-0/h0075
http://refhub.elsevier.com/S0167-4730(20)30054-0/h0085
http://refhub.elsevier.com/S0167-4730(20)30054-0/h0085
http://refhub.elsevier.com/S0167-4730(20)30054-0/h0090
http://refhub.elsevier.com/S0167-4730(20)30054-0/h0090
http://refhub.elsevier.com/S0167-4730(20)30054-0/h0090
http://refhub.elsevier.com/S0167-4730(20)30054-0/h0095
http://refhub.elsevier.com/S0167-4730(20)30054-0/h0095
http://refhub.elsevier.com/S0167-4730(20)30054-0/h0100
http://refhub.elsevier.com/S0167-4730(20)30054-0/h0100
http://refhub.elsevier.com/S0167-4730(20)30054-0/h0105
http://refhub.elsevier.com/S0167-4730(20)30054-0/h0105
http://refhub.elsevier.com/S0167-4730(20)30054-0/h0105
http://refhub.elsevier.com/S0167-4730(20)30054-0/h0105
http://refhub.elsevier.com/S0167-4730(20)30054-0/h0110
http://refhub.elsevier.com/S0167-4730(20)30054-0/h0110
http://refhub.elsevier.com/S0167-4730(20)30054-0/h0110
http://refhub.elsevier.com/S0167-4730(20)30054-0/h0115
http://refhub.elsevier.com/S0167-4730(20)30054-0/h0115
http://refhub.elsevier.com/S0167-4730(20)30054-0/h0115
http://refhub.elsevier.com/S0167-4730(20)30054-0/h0120
http://refhub.elsevier.com/S0167-4730(20)30054-0/h0120
http://refhub.elsevier.com/S0167-4730(20)30054-0/h0125
http://refhub.elsevier.com/S0167-4730(20)30054-0/h0125
http://refhub.elsevier.com/S0167-4730(20)30054-0/h0130
http://refhub.elsevier.com/S0167-4730(20)30054-0/h0130
http://refhub.elsevier.com/S0167-4730(20)30054-0/h0135
http://refhub.elsevier.com/S0167-4730(20)30054-0/h0135
http://refhub.elsevier.com/S0167-4730(20)30054-0/h0135
http://refhub.elsevier.com/S0167-4730(20)30054-0/h0140
http://refhub.elsevier.com/S0167-4730(20)30054-0/h0140
http://refhub.elsevier.com/S0167-4730(20)30054-0/h0145
http://refhub.elsevier.com/S0167-4730(20)30054-0/h0145
http://refhub.elsevier.com/S0167-4730(20)30054-0/h0150
http://refhub.elsevier.com/S0167-4730(20)30054-0/h0150
http://refhub.elsevier.com/S0167-4730(20)30054-0/h0155
http://refhub.elsevier.com/S0167-4730(20)30054-0/h0155
http://refhub.elsevier.com/S0167-4730(20)30054-0/h0155
http://refhub.elsevier.com/S0167-4730(20)30054-0/h0160
http://refhub.elsevier.com/S0167-4730(20)30054-0/h0160
http://refhub.elsevier.com/S0167-4730(20)30054-0/h0165
http://refhub.elsevier.com/S0167-4730(20)30054-0/h0165
http://refhub.elsevier.com/S0167-4730(20)30054-0/h0165
http://refhub.elsevier.com/S0167-4730(20)30054-0/h0170
http://refhub.elsevier.com/S0167-4730(20)30054-0/h0170
http://refhub.elsevier.com/S0167-4730(20)30054-0/h0170
http://refhub.elsevier.com/S0167-4730(20)30054-0/h0175
http://refhub.elsevier.com/S0167-4730(20)30054-0/h0175
http://refhub.elsevier.com/S0167-4730(20)30054-0/h0175
http://refhub.elsevier.com/S0167-4730(20)30054-0/h0180
http://refhub.elsevier.com/S0167-4730(20)30054-0/h0180
http://refhub.elsevier.com/S0167-4730(20)30054-0/h0180
http://refhub.elsevier.com/S0167-4730(20)30054-0/h0185
http://refhub.elsevier.com/S0167-4730(20)30054-0/h0185
http://refhub.elsevier.com/S0167-4730(20)30054-0/h0185
http://refhub.elsevier.com/S0167-4730(20)30054-0/h0190
http://refhub.elsevier.com/S0167-4730(20)30054-0/h0190
http://refhub.elsevier.com/S0167-4730(20)30054-0/h0190
http://refhub.elsevier.com/S0167-4730(20)30054-0/h0200
http://refhub.elsevier.com/S0167-4730(20)30054-0/h0200
http://refhub.elsevier.com/S0167-4730(20)30054-0/h0200
http://refhub.elsevier.com/S0167-4730(20)30054-0/h0205
http://refhub.elsevier.com/S0167-4730(20)30054-0/h0205
http://refhub.elsevier.com/S0167-4730(20)30054-0/h0210
http://refhub.elsevier.com/S0167-4730(20)30054-0/h0210
http://refhub.elsevier.com/S0167-4730(20)30054-0/h0215
http://refhub.elsevier.com/S0167-4730(20)30054-0/h0215
http://refhub.elsevier.com/S0167-4730(20)30054-0/h0220
http://refhub.elsevier.com/S0167-4730(20)30054-0/h0220
http://refhub.elsevier.com/S0167-4730(20)30054-0/h0225
http://refhub.elsevier.com/S0167-4730(20)30054-0/h0225
http://refhub.elsevier.com/S0167-4730(20)30054-0/h0245
http://refhub.elsevier.com/S0167-4730(20)30054-0/h0245
http://refhub.elsevier.com/S0167-4730(20)30054-0/h0250
http://refhub.elsevier.com/S0167-4730(20)30054-0/h0250
http://refhub.elsevier.com/S0167-4730(20)30054-0/h0250
http://refhub.elsevier.com/S0167-4730(20)30054-0/h0255
http://refhub.elsevier.com/S0167-4730(20)30054-0/h0255
http://refhub.elsevier.com/S0167-4730(20)30054-0/h0255
http://refhub.elsevier.com/S0167-4730(20)30054-0/h0260
http://refhub.elsevier.com/S0167-4730(20)30054-0/h0260
http://refhub.elsevier.com/S0167-4730(20)30054-0/h0260
http://refhub.elsevier.com/S0167-4730(20)30054-0/h0265
http://refhub.elsevier.com/S0167-4730(20)30054-0/h0265
http://refhub.elsevier.com/S0167-4730(20)30054-0/h0265
http://refhub.elsevier.com/S0167-4730(20)30054-0/h0270
http://refhub.elsevier.com/S0167-4730(20)30054-0/h0270
http://refhub.elsevier.com/S0167-4730(20)30054-0/h0270
http://refhub.elsevier.com/S0167-4730(20)30054-0/h0275
http://refhub.elsevier.com/S0167-4730(20)30054-0/h0275
http://refhub.elsevier.com/S0167-4730(20)30054-0/h0275
http://refhub.elsevier.com/S0167-4730(20)30054-0/h0280
http://refhub.elsevier.com/S0167-4730(20)30054-0/h0280
http://refhub.elsevier.com/S0167-4730(20)30054-0/h0280
http://refhub.elsevier.com/S0167-4730(20)30054-0/h0285
http://refhub.elsevier.com/S0167-4730(20)30054-0/h0285
http://refhub.elsevier.com/S0167-4730(20)30054-0/h0285

K.R.M. dos Santos, et al.

[58]

[59]
[60]

[61]

[62]

[63]

[64]

[65]
[66]
671

[68]

Laface V, Kougioumtzoglou IA, Malara G, Arena F. Efficient processing of water
wave records via compressive sensing and joint time-frequency analysis via har-
monic wavelets. Appl Ocean Res 2017;69:1-9.

Malara G, Kougioumtzoglou IA, Arena F. Extrapolation of random wave field data
via compressive sampling. Ocean Eng 2018;157:87-95.

Oldham KB, Spanier J. The fractional calculus: theory and applications of differ-
entiation and integration to arbitrary order. Dover Publications; 2006.

Selvam RP, Bhattacharyya SK. System identification of a coupled two DOF moored
floating body in random ocean waves. J Offshore Mech Arctic Eng
2006;128:191-202.

Raman S, Yim SCS, Palo PA. Nonlinear model for sub- and superharmonic motions
of a MDOF moored structure, Part 1 — system identification. J Offshore Mech Arctic
Eng 2005;127:283-90.

Spanos PD, Lu R. Nonlinear system identification in offshore structural reliability. J
Offshore Mech Arctic Eng 1995;117:171-7.

Perreault EJ, Kirsch RF, Acosta AM. Multiple-input, multiple-output system iden-
tification for characterization of limb stiffness dynamics. Biol Cybern
1999;80:327-37.

Bendat JS, Piersol AG, Data Random. Analysis and measurement procedures. 2nd
ed. John Wiley & Sons; 1986.

Rice HJ, Fitzpatrick JA. A generalized technique for spectral analysis of non-linear
systems. Mech Syst Signal Proc 1988;2:195-207.

Bendat JS, Piersol AG. Engineering applications of correlation and spectral analysis.
2nd ed. John Wiley & Sons; 1993.

Zeldin BA, Spanos PD. Spectral identification of nonlinear structural systems. J Eng
Mech 1998;124:728-33.

17

[69]
[70]
[71]

[72]

[73]
[74]

[75]

[76]

[77]

[78]

Structural Safety 86 (2020) 101975

Shinozuka M, Deodatis G. Simulation of multi-dimensional gaussian stochastic
fields by spectral representation. Appl Mech Rev 1996;49(1):29-53.

Liang J, Chaudhuri SR, Shinozuka M. Simulation of nonstationary stochastic pro-
cesses by spectral representation. J Eng Mech 2007;133(6):616-27.

Koh CG, Kelly JM. Application of fractional derivatives to seismic analysis of base-
isolated models. Earthq Eng Struct Dyn 1990;19:229-41.

Tubaldi E, Kougioumtzoglou IA. Nonstationary stochastic response of structural
systems equipped with nonlinear viscous dampers under seismic excitation. Earthq
Eng Struct Dyn 2015;44:121-38.

Fish P, Dean R, Heaf N. Fluid-structure interaction in morison’s equation for the
design of offshore structures. Eng Struct 1980;2(1):15-26.

Jordan SK, Fromm JE. Oscillatory drag, lift, and torque on a circular cylinder in a
uniform flow. Phys Fluids 1972;15(3):371-6.

Chapter 12 - calculation of wave forces on three-dimensional space frames, in: P.
Boccotti (Ed.), Wave Mechanics and Wave Loads on Marine Structures,
Butterworth-Heinemann, Oxford, 2015, pp. 227 - 243.

Pierson JW, Moskowitz L. A proposed spectral form for fully developed wind seas
based on the similarity theory of s. a. kitaigorodskii. J Geophys Res
1964;69(24):5181-90.

Hasselmann K, Barnett T, Bouws E, Carlson H, Cartwright D, Enke K, et al.
Measurements of wind-wave growth and swell decay during the joint north sea
wave project (jonswap). Ergnzungsheft zur Deutschen Hydrographischen Zeitschrift
Reihe A 1973;8(12):1-95.

Donelan M, Anctil F, Doering J. A simple method for calculating the velocity field
beneath irregular waves. Coast Eng 1992;16(4):399-424.


http://refhub.elsevier.com/S0167-4730(20)30054-0/h0290
http://refhub.elsevier.com/S0167-4730(20)30054-0/h0290
http://refhub.elsevier.com/S0167-4730(20)30054-0/h0290
http://refhub.elsevier.com/S0167-4730(20)30054-0/h0295
http://refhub.elsevier.com/S0167-4730(20)30054-0/h0295
http://refhub.elsevier.com/S0167-4730(20)30054-0/h0300
http://refhub.elsevier.com/S0167-4730(20)30054-0/h0300
http://refhub.elsevier.com/S0167-4730(20)30054-0/h0305
http://refhub.elsevier.com/S0167-4730(20)30054-0/h0305
http://refhub.elsevier.com/S0167-4730(20)30054-0/h0305
http://refhub.elsevier.com/S0167-4730(20)30054-0/h0310
http://refhub.elsevier.com/S0167-4730(20)30054-0/h0310
http://refhub.elsevier.com/S0167-4730(20)30054-0/h0310
http://refhub.elsevier.com/S0167-4730(20)30054-0/h0315
http://refhub.elsevier.com/S0167-4730(20)30054-0/h0315
http://refhub.elsevier.com/S0167-4730(20)30054-0/h0320
http://refhub.elsevier.com/S0167-4730(20)30054-0/h0320
http://refhub.elsevier.com/S0167-4730(20)30054-0/h0320
http://refhub.elsevier.com/S0167-4730(20)30054-0/h0325
http://refhub.elsevier.com/S0167-4730(20)30054-0/h0325
http://refhub.elsevier.com/S0167-4730(20)30054-0/h0330
http://refhub.elsevier.com/S0167-4730(20)30054-0/h0330
http://refhub.elsevier.com/S0167-4730(20)30054-0/h0335
http://refhub.elsevier.com/S0167-4730(20)30054-0/h0335
http://refhub.elsevier.com/S0167-4730(20)30054-0/h0340
http://refhub.elsevier.com/S0167-4730(20)30054-0/h0340
http://refhub.elsevier.com/S0167-4730(20)30054-0/h0345
http://refhub.elsevier.com/S0167-4730(20)30054-0/h0345
http://refhub.elsevier.com/S0167-4730(20)30054-0/h0350
http://refhub.elsevier.com/S0167-4730(20)30054-0/h0350
http://refhub.elsevier.com/S0167-4730(20)30054-0/h0355
http://refhub.elsevier.com/S0167-4730(20)30054-0/h0355
http://refhub.elsevier.com/S0167-4730(20)30054-0/h0360
http://refhub.elsevier.com/S0167-4730(20)30054-0/h0360
http://refhub.elsevier.com/S0167-4730(20)30054-0/h0360
http://refhub.elsevier.com/S0167-4730(20)30054-0/h0365
http://refhub.elsevier.com/S0167-4730(20)30054-0/h0365
http://refhub.elsevier.com/S0167-4730(20)30054-0/h0370
http://refhub.elsevier.com/S0167-4730(20)30054-0/h0370
http://refhub.elsevier.com/S0167-4730(20)30054-0/h0380
http://refhub.elsevier.com/S0167-4730(20)30054-0/h0380
http://refhub.elsevier.com/S0167-4730(20)30054-0/h0380
http://refhub.elsevier.com/S0167-4730(20)30054-0/h0385
http://refhub.elsevier.com/S0167-4730(20)30054-0/h0385
http://refhub.elsevier.com/S0167-4730(20)30054-0/h0385
http://refhub.elsevier.com/S0167-4730(20)30054-0/h0385
http://refhub.elsevier.com/S0167-4730(20)30054-0/h0390
http://refhub.elsevier.com/S0167-4730(20)30054-0/h0390

	Spectral identification of nonlinear multi-degree-of-freedom structural systems with fractional derivative terms based on incomplete non-stationary data
	Introduction
	Addressing non-stationary and incomplete data
	Non-stationary data: a harmonic wavelets approach
	Incomplete data: a compressive sampling approach

	Identification technique
	GHW-based excitation-response relationships for linear time-variant MDOF systems with fractional derivative terms
	Multiple-input/single-output (MISO) identification technique
	Mechanization of the technique

	Numerical examples
	3-DOF Duffing nonlinear time-variant oscillator with fractional derivative elements
	2-DOF nonlinear time-variant offshore structural system subject to flow-induced forces

	Concluding remarks
	Acknowledgements
	References


