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A B S T R A C T

A review of theoretical concepts and diverse applications of sparse representations and compressive sampling
(CS) approaches in engineering mechanics problems is provided from a broad perspective. First, following a
presentation of well-established CS concepts and optimization algorithms, attention is directed to currently
emerging tools and techniques for enhancing solution sparsity and for exploiting additional information in
the data. These include alternative to 𝓁1-norm minimization formulations and iterative re-weighting solution
schemes, Bayesian approaches, as well as structured sparsity and dictionary learning strategies. Next, CS-based
research work of relevance to engineering mechanics problems is categorized and discussed under three distinct
application areas: a) inverse problems in structural health monitoring, b) uncertainty modeling and simulation, and
c) computationally efficient uncertainty propagation. Notably, the vast majority of problems in all three areas
share the challenge of ‘‘incomplete data’’, addressed by the versatile CS framework. In this regard, incomplete
data may manifest themselves in various different forms and can correspond to missing or compressed data,
or even refer generally to insufficiently few function evaluations. The primary objective of this review paper
relates to identifying and presenting significant contributions in each of the above three application areas in
engineering mechanics, with the goal of expediting additional research and development efforts. To this aim,
an extensive list of 248 references is provided, composed almost exclusively of books and archival papers,
which can be readily available to a potential reader.

1. Introduction

The problem of determining the current and predicting the fu-
ture states of a system based on knowledge of a limited number
of data points has been a persistent challenge in a wide range of
scientific fields. Advancements in this direction have led to various
significant theoretical results, which have unequivocally revolutionized
modern science. One of the most characteristic examples relates to
the development of representations based on Fourier series [1]. This
trigonometric series expansion of periodic functions has served as
the starting point for various efficient expansion and representation
schemes (e.g., [2]). During the past fifteen years, research efforts have
focused on identifying and exploiting low-dimensional representations
of high-dimensional data, as well as on establishing conditions guar-
anteeing unique representation in the low-dimensional space. This has
triggered the birth of the currently expanding field of compressive
sampling (CS) (e.g., [3,4]), as well as the rejuvenation of the more
general field of sparse representations (e.g., [5,6]).

From a historical perspective, there have been several examples
and early observations suggesting that signal reconstruction is possible
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by utilizing a smaller number of samples than the minimum dic-
tated by the Shannon–Nyquist (SN) theorem (e.g., [2,7]). Indicatively,
Carathéodory showed in [8,9] that a signal expressed as a sum of
any 𝑘 sinusoids can be recovered based on knowledge of its values
at zero time and at any other 2𝑘 time points. Further, Beurling [10]
discussed the possibility of extrapolating in a nonlinear manner and
determining the complete Fourier transform of a signal assuming that
only part of the Fourier transform is known. Dorfman [11] studied
the combinatorial group testing problem and provided one of the first
sparse signal recovery problem formulations. Also, Logan [12] showed
that it is possible to reconstruct a band-limited corrupted signal by an
𝓁1-norm minimization approach. These early, seemingly paradoxical,
results were further supported by relevant studies in the field of geo-
physics [13–15] (see also [16]) pertaining to the analysis of seismic
signals of spike train form due to the layered structure of geological
formations. It was shown that these sparse spike trains can be recovered
accurately based on incomplete and noisy measurements.

Nevertheless, it can hardly be disputed that sparse representations
theory and tools have been revitalized in recent years due to the
pioneering work in [17–19], which provided bounds on the number
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of measurements required for the recovery of high-dimensional data
under the condition that the latter possess a low-dimensional represen-
tation in a transformed domain. The aforementioned theoretical results,
coupled with potent numerical algorithms from the well-established
field of convex optimization, have led to numerous impactful contri-
butions in a wide range of application areas. In this regard, CS-related
theoretical advancements and diverse applications associated with the
fields of signal and image processing, biomedicine, communication sys-
tems and sensor networks, information security and pattern recognition
have been well-documented in dedicated books (e.g., [3,4,20–26]),
special issues (e.g., [27]) and review papers (e.g., [28–43]).

More recently, the field of engineering mechanics has also bene-
fited from the advent of sparse representations and CS approaches in
conjunction with uncertainty quantification and health monitoring of
diverse systems and structures. However, to the best of the authors’
knowledge, there are currently no review papers providing a com-
prehensive discussion and a broad perspective on the aforementioned
developments in engineering mechanics. In fact, although there have
been a couple of relevant efforts reported previously, these focus either
on specific and relatively narrow application domains, or are cross-
disciplinary in nature and lack any focus on a specific research field.
Indicatively, the authors in [44] focus exclusively on reviewing poly-
nomial chaos expansions coupled with CS approaches as applied in
stochastic mechanics problems, whereas reference [45] discusses the
problem of CS-based governing dynamics modeling of complex systems
with applications in interdisciplinary science and engineering.

In this regard, in an effort to address this gap in the literature and to
complement some of the previous works by incorporating more recent
developments, this review paper focuses on sparse representations and
CS approaches in the field of engineering mechanics. Specifically, in
Section 2, following a presentation of well-established CS concepts and
optimization algorithms, attention is directed to currently emerging
tools and techniques for enhancing solution sparsity and for exploiting
additional information in the data. These include alternative to 𝓁1-norm
minimization formulations and iterative re-weighting solution schemes,
Bayesian approaches, as well as structured sparsity and dictionary
learning strategies. Next, in Section 3, a rather broad perspective is
provided on CS-related contributions to engineering mechanics, and
relevant research work is categorized under three distinct application
areas: (a) inverse problems in structural health monitoring, (b) un-
certainty modeling and simulation, and (c) computationally efficient
uncertainty propagation. Notably, the vast majority of problems in
all three areas share the challenge of ‘‘incomplete data’’, addressed
by the versatile CS framework. In this regard, incomplete data may
manifest themselves in various different forms and can correspond to
missing or compressed data, or even refer generally to insufficiently
few function evaluations. Further, concluding remarks are presented in
Section 4. It is noted that the primary objective of this review paper
relates to identifying and discussing significant contributions in each of
the above three application areas in engineering mechanics, with the
goal of expediting additional research and development efforts. To this
aim, an extensive list of 248 references is provided, composed almost
exclusively of books and archival papers, which can be readily available
to a potential reader.

2. Theoretical concepts and algorithmic aspects

In this section, the basic theoretical concepts and algorithmic as-
pects related to sparse representations and CS tools are reviewed. To
enhance the pedagogical merit of the paper and motivate the reader,
a simple example is provided first where the necessity for CS tools
arises naturally. Next, the problem of approximating a sparse signal is
formulated as an optimization problem and solved via a brute-force ap-
proach. The need for more computationally efficient tools is discussed
and relevant methodologies are presented. Further, the critical question
regarding performance guarantees and the number of required mea-
surements is addressed. Lastly, methodologies for exploiting additional

information present in the data and for enhancing solution sparsity are
also discussed. The interested reader is also directed to the books in
Refs. [3–6] for a more detailed presentation from a signal processing
and a mathematics perspectives.

2.1. Motivation

The SN theorem states that a bandlimited continuous-time signal
can be exactly reconstructed by a set of uniformly spaced measurements
sampled at the Nyquist rate; i.e., at a frequency double the maximum
frequency present in the signal (e.g., [2,7]). Although the SN theorem
has impacted significantly the signal processing field and related appli-
cations, in many cases the dictated minimum number of measurements
can be prohibitive from a computational cost perspective [3]. In this
regard, the acquired signals are often compressed by utilizing an ap-
propriate change of basis. In this new basis, the expansion coefficient
vector has only few nonzero elements; thus, yielding significant savings
in terms of required storage capacity (see, for instance, related ‘‘lossy’’
compression techniques [46]).

In this context, a vector 𝒙 of length 𝑛 is referred to as 𝑘-sparse if at
most 𝑘 out of its 𝑛 components are nonzero; that is,

‖𝒙‖0 ≤ 𝑘 (1)

where ‖⋅‖𝑝 denotes the 𝓁𝑝-norm defined as [6]

‖𝒙‖𝑝 =
(

𝑛∑
𝑖=1

|𝑥𝑖|𝑝
) 1

𝑝

(2)

for 0 < 𝑝 < ∞. Note that, according to the definition of Eq. (2), ‖⋅‖0
(also called the cardinality of 𝒙) is not a proper norm. However, it can
be defined as the limit of ‖⋅‖𝑝 for 𝑝 → 0; that is,

‖𝒙‖0 =
𝑛∑
𝑖=1

lim
𝑝→0

|𝑥𝑖|𝑝 =
𝑛∑
𝑖=1

𝐼(𝑥𝑖) (3)

In Eq. (3), 𝐼(𝑥𝑖) is the indicator function, which takes the value 0 if 𝑥𝑖 =
0 and 1 otherwise [6]. Moreover, if the coefficient vector is 𝑘-sparse,
then the original signal is characterized as sparse, or, in other words,
it exhibits a sparse representation in this particular expansion basis.
Accordingly, a vector is referred to as compressible (or approximately
sparse), if it can be approximated satisfactorily by a sparse vector.
Typical examples of sparse, compressible, and dense (i.e., not sparse)
vectors are shown in Fig. 1 to illustrate the differences between them.
In passing, it is worth noting that there also exist generalizations of
the concept of a vector norm to that of a matrix norm. Indicatively,
the Frobenius norm (given as the sum of squares of the elements of a
matrix) and the nuclear norm (given as the sum of singular values of a
matrix) can be construed as generalizations of the 𝓁2- and the 𝓁1-norms,
respectively, to account for matrices (e.g., [47,48]).

Next, motivated by the aforementioned sparsity, inherent in a wide
range of signals in various applications, it is natural to pose the question
whether it is possible to bypass the potentially cumbersome task of
recording the signal at a rate dictated by the SN theorem. In this man-
ner, acquisition of the signal directly in compressed form by employing
a sub-Nyquist rate would circumvent the computationally costly two-
step process of capturing and storing the complete signal first, and then
compressing it by discarding the redundant information. For tutorial
effectiveness, consider the continuous-time signal

𝑦(𝑡) = 10 cos (30𝑡 + 𝜋) + 12 cos
(
20𝑡 +

𝜋

8

)
+ 4 cos

(
6𝑡 +

2𝜋

3

)
(4)

where 0 ≤ 𝑡 < 2𝜋. According to the SN theorem [2,7], exact reconstruc-
tion requires the signal to be sampled at minimum 60 points in the time
domain. However, the signal of Eq. (4) can be represented exactly in
the frequency domain by 6 coefficients only, i.e., 2 for each dimension
of the real and imaginary components of the harmonics at 6, 20 and
30 rad/s. Clearly, in this case, the frequency domain representation
of the signal can be construed as significantly more ‘‘compact’’ (or,
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Fig. 1. Typical examples of sparse, compressible and dense (i.e., not sparse) vectors.

in other words, sparser) than the corresponding representation in the
time domain. Considering this seemingly inefficient signal representa-
tion in one domain (where typically measurements are acquired) and
the considerably more compact representation in a different one, it
would be advantageous to develop a methodology for reconstructing
(exactly or approximately) signals that are known to have a sparse
representation in some basis by collecting the smallest possible number
of measurements.

This problem takes the form of an underdetermined linear system
of equations, i.e.,

𝒚 = 𝑨𝒙0 (5)

where 𝒚 is a vector containing 𝑚 < 𝑛 measurements of the original
signal, 𝒙0 is the coefficient vector, and 𝑨 can be either fixed, or written
as 𝑨 = Φ𝑫, with 𝑫 being the basis matrix and Φ an 𝑚× 𝑛 matrix (also
known as CS matrix [49] as it randomly deletes rows of 𝑫). In passing,
the original complete signal is denoted by 𝒚0 and is given as 𝒚0 =

𝑫𝒙0. For the specific aforementioned example of Eq. (4), the 𝒚 vector
represents the measurements in the time domain, while 𝑫 represents
the Fourier basis matrix. Obviously, the underdetermined system of
Eq. (5) has either no solution, or an infinite number of solutions.
Further, since most real-life signals are corrupted with noise and are
characterized by measurement errors, the reconstruction tools should
exhibit robustness in their implementation. In fact, the reconstruction
tools should also exhibit stability in their performance and be capable
of addressing even cases of almost-sparse signals.

2.2. Regularization of the underdetermined system of equations

It has been shown that although the system of Eq. (5) is amenable
in general to an infinite number of solutions, it can be regularized
(i.e., constrained) so that only one solution is relevant (e.g., [4]).
Specifically, it can take the form of a constrained optimization problem
for which the objective function relates to the sparsity of the signal
(expressed via the 𝓁0-norm); and feasible solutions are only the ones
satisfying Eq. (5), which acts as the constraint. This can be written as

min
𝒙

‖𝒙‖0 subject to 𝒚 = 𝑨𝒙 (6)

Further, it has been proved [6] that utilizing 𝑚 ≥ 2𝑘 measurements
Eq. (6) yields a unique solution 𝒙, equal to the 𝑘-sparse coefficient
vector 𝒙0. This result defines a measurement bound (see also Sec-
tions 2.4–2.7 for more general results and discussion) dictating the
required number of measurements for a certain sparsity degree of 𝒙0,
and is based on the necessary and sufficient condition (e.g., [6])

2𝑘 ≤ krank(𝑨) (7)

In Eq. (7), krank(𝑨) is the largest number 𝑠 for which every subset of
𝑠 column vectors of 𝑨 is linearly independent. The bound 𝑚 ≥ 2𝑘 can
be easily obtained by utilizing the condition of Eq. (7) in conjunction
with the inequality

krank(𝑨) ≤ rank(𝑨) ≤ 𝑚 (8)

that holds for any arbitrary matrix [6]. Note that krank(𝑨) is NP-
hard (NP standing for nondeterministic polynomial time) to compute,
i.e., even for relatively small matrices 𝑨 there is no available algorithm
for computing it efficiently [6]. Therefore, it is often impossible to
verify numerically the condition of Eq. (7). Alternatively, the mutual
coherence of 𝑨 is easier to evaluate from an algorithmic point of view.
This is defined as

𝜇(𝑨) = max
𝑖≠𝑗

|||||||
⟨ 𝒂𝑖
‖‖𝒂𝑖‖‖

,
𝒂𝑗

‖‖‖𝒂𝑗
‖‖‖
⟩
|||||||

(9)

and can be used to determine whether the 𝓁0-norm minimization
problem of Eq. (6) has a unique solution coinciding with 𝒙0. In Eq. (9),
𝒂𝑖, ∀𝑖 ∈ {1,… , 𝑛}, represents the 𝑖th column vector of 𝑨, and ⟨⋅, ⋅⟩
denotes an inner product. Thus, 𝜇(𝑨) can be construed as a metric
of the independence degree of the basis vectors of 𝑨. In this regard,
considering also that krank(𝑨) ≥ 1∕𝜇(𝑨) [6], satisfying the condition

2𝑘 ≤ 1

𝜇(𝑨)
(10)

is sufficient for obtaining 𝒙0 as the unique solution of the 𝓁0-norm
minimization problem of Eq. (6) with 𝑚 ≥ 2𝑘 [50]. It becomes clear that
matrices 𝑨 with higher mutual coherence values 𝜇(𝑨) are better choices
within the context of CS and sparse approximations. More importantly,
it has been shown that matrices 𝑨, satisfying conditions such as those
of Eqs. (7) and (10), can be constructed by random submatrices of
bounded orthonormal systems (e.g., Fourier, wavelet and Legendre
bases with randomly deleted rows [4]). Indicatively, regarding the
𝓁0-norm minimization problem of Eq. (6), any signal with a 𝑘-sparse
Fourier coefficient vector can be exactly reconstructed by 2𝑘 randomly
selected measurements in the time domain. Thus, the signal of Eq. (4)
can be reconstructed by utilizing 12 measurements only as compared
to the 60 measurements required by the SN theorem [4].

Further, as mentioned in Section 2.1, measurement errors and noise
are often unavoidable in practice, while the exact sparsity degree of the
coefficient vector may not be known a priori. Clearly, this motivates the
reformulation of the 𝓁0-norm minimization problem of Eq. (6) to ac-
count for measurement errors and for approximately sparse coefficient
vectors. In this regard, Eq. (6) is cast in the form

min
𝒙

‖𝒙‖0 subject to ‖𝒚 −𝑨𝒙‖2 ≤ 𝜖 (11)

where 𝜖 is a pre-specified discrepancy from the measurement vector
𝒚. It can be readily seen that the equality constraint of Eq. (6) is
replaced in Eq. (11) by an inequality constraint; thus, enlarging the
set of feasible solutions and enhancing the flexibility and robustness
of the technique from a practical implementation perspective. Notably,
theoretical results referring to necessary and sufficient conditions for
sparse signal reconstruction, similar to the ones described by Eqs. (7)
and (10), are also available for the formulation of Eq. (11) [5]. In
Sections 2.4–2.5, approximate solution techniques are presented for the
𝓁0-norm minimization problem of Eq. (11), which is also referred to in
the literature as ‘‘noisy’’ 𝓁0-norm minimization problem.
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Fig. 2. Frequency domain representation of the original (blue circles) and the
reconstructed (green dots) signals of Eq. (4).

Fig. 3. Time domain representation of the original (blue line) and the reconstructed
(green circles) signals of Eq. (4); the set of randomly sampled measurements (red
squares) is also included.

2.3. A brute-force solution approach for the 𝓁0-norm minimization problem

A rather brute-force approach for solving the 𝓁0-norm minimiza-
tion problem of Eq. (6) relates to employing an exhaustive search
by considering all possible supports (i.e., all possible combinations of
the nonzero components locations) for the estimated vector 𝒙 and by
checking if a solution to 𝒚 = 𝑨𝒙 exists for each and every support. In
this regard, Fig. 2 shows the reconstructed Fourier coefficient vector
for the signal of Eq. (4) by solving the 𝓁0-norm minimization problem
of Eq. (6) via exhaustive search. Further, in Fig. 3 the original and the
reconstructed signals in the time domain are plotted. It is seen that the
reconstructed signal by utilizing only 12 measurements (i.e., 20% of the
number required by the SN theorem) matches perfectly that of Eq. (4).

Although it becomes clear, based on the simple example of Eq. (4),
that a CS-based signal reconstruction is advantageous due to the consid-
erably smaller number of required measurements, a brute-force solution
approach by exhaustive search becomes computationally prohibitive
for an increasing size of 𝑨. This is readily understood by considering
the number of supports to be examined in an exhaustive search solution
framework, which is equal to

(𝑛
𝑘

)
. In fact, it has been shown that solving

the 𝓁0-norm minimization problem of Eq. (6) (or alternatively, Eq. (11))
is NP-hard [6,51].

To address this challenge, two main categories of solution ap-
proaches are presented and discussed in the following sections. Specif-
ically, in Section 2.4 methods for solving approximately the 𝓁0-norm

minimization problems of Eqs. (6) and (11) are described, and in
Section 2.5 methods for solving a relaxed form of the 𝓁0-norm min-
imization problem are presented. In passing, it is worth noting that,
as mentioned in Section 1, a wide range of application areas have
benefited from the advent of CS-based theoretical concepts and related
numerical solution schemes. This is anticipated considering the fact
that various seemingly unrelated problems originating from different
disciplines can be cast as underdetermined systems of equations of the
form of Eq. (5). In this regard, the solution approaches discussed in the
ensuing sections are quite general and have been adopted in a rather
straightforward manner by diverse research fields, including the field
of engineering mechanics, which is the focus of this paper.

2.4. Approximate solutions to the 𝓁0-norm minimization problem: Greedy
methods

An approximate approach for solving the 𝓁0-norm problem of
Eq. (6) (or Eq. (11)) relates to, first, determining the support of the
coefficient vector (i.e., the optimal locations of the nonzero coeffi-
cients) and, second, estimating the values of the nonzero coefficients.
In this regard, aiming to obtain a globally optimal solution, greedy
methods make a sequence of decisions based on certain local optimality
conditions. More specifically, greedy methods can be broadly divided
into two categories [3]. The first relates to greedy pursuits, which
construct the support of an initially empty coefficient vector 𝒙 in an
iterative manner. This is done by adding in each iteration a column
vector of matrix 𝑨 that best fits the measurements 𝒚 according to
a pre-specified criterion, and subsequently, by estimating the coeffi-
cients of the selected support. The second relates to thresholding-type
methods, which iteratively obtain an estimate 𝒙 and employ ‘‘hard’’
thresholding to retain only the largest 𝑘 coefficients. Concisely, the
main difference between these two categories is that greedy pursuits
construct the solution 𝒙 gradually by adding nonzero coefficients to
it, whereas thresholding methods provide an estimate for the solution
in each iteration cycle, and subsequently, remove the relatively small
coefficients as dictated by the prescribed threshold.

Greedy methods have been developed in conjunction with diverse
applications in various fields such as signal processing and statistics. In
this regard, a vast amount of algorithms with similar characteristics is
available in the literature, while multiple extensions and modifications
have been proposed over the years [3,6]. Typical examples of greedy
pursuits include the matching pursuit (MP) [52] and the orthogonal
matching pursuit (OMP) [53] algorithms, whereas indicative popular
thresholding methods include the iterative hard thresholding [54] and
the compressive sampling matching pursuit [55] algorithms. In general,
it can be argued that greedy methods are attractive due to the fact
that their numerical implementation is rather straightforward, and that
the associated computational cost is kept at a reasonable level under
the condition that the sparsity degree 𝑘 is relatively low. Further, in
many cases theoretical performance guarantees are available (e.g., [3]),
while empirical studies can be performed to analyze and compare
the performance of different algorithms (see also Section 2.7). The
interested reader is also directed to [3,5] and references therein for
more details.

In the following, the OMP algorithm, which is one of the most
widely utilized greedy methods, is presented in more detail [4]. The
input to OMP is the 𝑚-length measurement vector 𝒚, the 𝑚 × 𝑛 matrix
𝑨 and the sparsity degree 𝑘 that the coefficient vector 𝒙0 is anticipated
to exhibit. At the 𝑗 = 0 iteration, the algorithm starts with an empty
support S (0), a zero vector 𝒙(0), and thus, with a residual vector equal
to

𝒓(0) = 𝒚 −𝑨𝒙(0) = 𝒚 (12)

Next, the column vector of matrix 𝑨 with the maximum correlation
with the residual 𝒓(0) is selected. In this manner, the corresponding
location in the support of 𝒙(1) becomes active. Subsequently, for the
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Fig. 4. Two-dimensional representation of various norms restricted in the domain [−1, 1] × [−1, 1].

selected support S (1), the value of the nonzero component is obtained
by employing ordinary least squares and minimizing ‖‖‖𝒚 −𝑨𝒙(1)

‖‖‖2. The
above scheme is repeated in an iterative manner until convergence.
The convergence criterion may relate, for instance, to the quantity
‖𝒚 −𝑨𝒙‖2 becoming smaller than a prescribed threshold, or to the
number of nonzero elements in 𝒙 exceeding a given value. It is noted
that, at every iteration of the algorithm, the vector 𝒙 is updated as an
orthogonal projection of 𝒚 onto the subspace of the selected vectors
from 𝑨. The fact that all the components of 𝒙 may change at a given
iteration constitutes the most pronounced difference with the related
MP algorithm. Specifically, at the 𝑗th iteration, the MP algorithm adds a
single component in 𝒙 according to the criterion of maximum reduction
of the residual 𝒓(𝑗+1), without affecting the rest of the vector elements.

Further, indicative OMP enhancements include efficient implemen-
tation schemes for performing the matrix–vector multiplications 𝑨𝑇 𝒓(𝑗)

to obtain correlation degree estimates at each iteration 𝑗 (e.g., based
on fast Fourier transform [5]), reduction of the least squares related
computational cost (e.g., based on QR factorization [56]), approaches
for adding not only one, but multiple elements to the support at each
iteration (e.g., Stagewise OMP [57]), and various alternative strategies
for selecting the next location to be added to the support S (e.g., least
squares OMP [5]).

Also, it is worth noting that the aforementioned algorithms (and
OMP in particular), which aim at solving the 𝓁0-norm minimization
problem directly, perform satisfactorily when the sparsity 𝑘 of the coef-
ficient vector is small compared to its size 𝑛. However, they can become
computationally prohibitive in cases, for example, of high-dimensional
problems exhibiting low sparsity degrees.

2.5. Relaxation of the 𝓁0-norm minimization problem: 𝓁1-norm minimiza-
tion

As highlighted in Section 2.3, the 𝓁0-norm minimization problem
in Eq. (6) is NP-hard to solve. To address this challenge, a popular
solution approach relates to utilizing a surrogate for approximating the
non-convex objective function. To this aim, convex surrogates appear
particularly attractive, primarily due to the plethora of well-established
theoretical tools and efficient numerical algorithms for analyzing and
solving convex optimization problems.

In this regard, there are several properties rendering the 𝓁1-norm an
efficacious convex surrogate for the non-convex 𝓁0-norm. Specifically,
focusing on the hypercube 𝐵∞ defined as 𝐵∞ = {𝒙| ‖𝒙‖∞ ≤ 1}

(i.e., each dimension of 𝒙 is restricted within the interval [−1, 1]), the
𝓁1-norm is the largest convex function not exceeding ‖.‖0; that is,
‖𝒙‖1 = sup{ℎ(𝒙) | ℎ is convex and ℎ(𝒙) ≤ ‖𝒙‖0 ∀𝒙 ∈ 𝐵∞}. This property
can be proved formally (e.g., [4]) and such a function is referred to
typically as convex envelope. In Fig. 4, the two-dimensional case is
depicted for tutorial effectiveness, where it can be observed that the 𝓁1-
norm (Fig. 4c) is indeed the convex envelope of the 𝓁0-norm (Fig. 4a).
Further, it is seen that the 𝓁1∕2-norm (Fig. 4b) is non-convex (this holds
for all 𝓁𝑝-norms with 0 < 𝑝 < 1), whereas the 𝓁2-norm (Fig. 4d) is
not the largest convex underestimator of the 𝓁0-norm; the latter holds
true for all 𝓁𝑝-norms with 𝑝 > 1 (e.g., [5]). Next, utilizing the 𝓁1-norm
surrogate, the optimization problem in Eq. (6) is replaced by

min
𝒙

‖𝒙‖1 subject to 𝒚 = 𝑨𝒙 (13)

which is a convex optimization problem that can be solved much more
efficiently than the one in Eq. (6) [3,6]. Eq. (13) is also referred to in the
literature as convex relaxation of the 𝓁0-norm minimization problem.

A graphical demonstration of the property of the 𝓁1-norm minimiza-
tion to recover sparse vectors is provided in Fig. 5. Specifically, the set
of feasible vectors 𝒙 related to the optimization problem in Eq. (13)
form the affine subspace

𝑆 = {𝒙 | 𝑨𝒙 = 𝒚} = {𝒙0} + null(𝑨) (14)

where null(𝑨) denotes the nullspace of matrix 𝑨. The 𝓁1-norm min-
imization determines the point in 𝑆 with the smallest 𝓁1-norm. This
procedure can be illustrated by considering the 𝓁1-ball

𝐵1 = {𝒙 | ‖𝒙‖1 ≤ 1} (15)

of radius one in R
𝑛, which contains all vectors 𝒙 with objective function

in Eq. (13) at most equal to one. Scaling 𝐵1 by 𝑠 yields the set of vectors
𝒙 with objective function at most equal to 𝑠. In this regard, initializing
the process by setting the value of 𝑠 equal to zero, 𝐵1 is expanded
gradually by increasing 𝑠. The 𝓁1-norm minimizer is obtained when
𝑠𝐵1 first reaches the affine subspace 𝑆 and this intersection point 𝒙0 is
the solution to the optimization problem in Eq. (13). Considering the
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Fig. 5. Graphical demonstration of the 𝓁1-norm property of recovering sparse vectors:
sparse vector 𝒙0, feasible set {𝒙0} + null(𝑨) and 𝓁1-ball of radius ‖‖𝒙0

‖‖1.

geometry of the ball 𝐵1, it is readily seen that the possible solution
points belong either to the vertices or to the edges of 𝐵1, which
correspond, indeed, to sparse vectors.

Motivated by early observations in the 1960 s [12] related to its
efficiency in recovering sparse vectors, 𝓁1-norm minimization has been
employed over the past few decades in various applications based on
rather heuristic arguments. In fact, it was not until the first decade of
the twenty-first century that conditions guaranteeing sparse recovery
were formally stated and proved. Specifically, it was shown in [50,58]
that the condition of Eq. (10) guarantees that the 𝓁1-norm minimization
problem in Eq. (13) has a unique solution provided that the columns
of 𝑨 have unit 𝓁2-norms. Moreover, this solution coincides with the
unique solution of the 𝓁0-norm minimization problem in Eq. (6). No-
tably, it was shown in [59] that the mutual coherence of any matrix
𝑨 ∈ R

𝑚×𝑛 with unit 𝓁2-norm columns is bounded by

𝜇(𝑨) ≥
√

𝑛 − 𝑚

𝑚(𝑛 − 1)
(16)

Eq. (16) is referred to in the literature as Welch’s bound (e.g., [5]). Tak-
ing into account Eqs. (10) and (16) yields a bound estimate of the form
𝑚 ≥ 𝐶𝑘2 on the number 𝑚 of measurements required for the recovery
of a 𝑘-sparse vector via 𝓁1-norm minimization; 𝐶 denotes a constant
factor. Note, however, that this bound on 𝑚 appears quite conservative
from a practical perspective, and that a significantly smaller number of
measurements (than of the order of 𝑘2) can be adequate for successful
sparse recovery based on 𝓁1-norm minimization.

In this regard, a condition that leads to considerably ‘‘tighter’’
bounds on the number 𝑚 of measurements guaranteeing exact 𝓁1-
norm recovery of any 𝑘-sparse vector, relates to the restricted isometry
property (RIP). According to [60], a matrix 𝑨 satisfies the RIP of order
𝑘, with constant 𝛿, if

∀ 𝒙 𝑘-sparse, (1 − 𝛿) ‖𝒙‖2
2
≤ ‖𝑨𝒙‖2

2
≤ (1 + 𝛿) ‖𝒙‖2

2
(17)

Also, the order 𝑘 RIP constant 𝛿𝑘(𝑨) is the smallest number 𝛿 satisfying
the inequality in Eq. (17). Further, it was shown in [17] that if 𝒚 = 𝑨𝒙0
with ‖‖𝒙0‖‖0 = 𝑘 and 𝛿2𝑘(𝑨) <

√
2 − 1, then 𝒙0 is the unique optimal

solution of the optimization problem in Eq. (13). Next, focusing on the
RIP of Gaussian random matrices, i.e., matrices 𝑨 with independent
 (0, 1∕𝑚) random variables as entries, it was shown (e.g., [17,61]) that
a 𝑘-sparse vector can be reconstructed via 𝓁1-norm minimization by
employing only 𝑚 ≥ 𝐶 ′𝑘 log(𝑛∕𝑘) random measurements, where 𝐶 ′ is a
constant factor. This is a substantially tighter bound on 𝑚 as compared
to 𝑚 ≥ 𝐶𝑘2 derived by employing Eqs. (10) and (16). Note also that the
bound 𝑚 ≥ 𝐶 ′𝑘 log(𝑛∕𝑘) allows for (𝑘, 𝑚, 𝑛) to scale proportionally [18],
a result that contributed to the rapid development of the CS field.
One of the tightest known bounds of this kind related to Gaussian
matrices was derived in [19]. This requires only 𝑚 ≥ 8𝑘 log(𝑛∕𝑘) + 12𝑘

measurements and does not involve any unknown constants. However,

notwithstanding their considerable theoretical value, in many cases
the practical merit of such measurement bounds is limited by the fact
that the sparsity degree 𝑘 of the target vector is unknown, in general,
a priori. Thus, alternative approaches are required for assessing the
performance of sparse recovery algorithms (see Section 2.7). In passing,
it is mentioned for completeness that two other relevant properties,
which are actually utilized in the proof of exact 𝓁1-norm recovery under
the RIP [17], are the nullspace and the restricted strong convexity prop-
erties. Unfortunately, the problem of verifying any of these conditions
for a given matrix 𝑨 is NP-hard [62].

2.6. Approximate solutions to the 𝓁1-norm minimization problem: Convex
optimization methods

The 𝓁1-norm minimization problem of Eq. (13), also known as basis
pursuit, can be cast in the form

min
𝒙

‖𝒙‖1 subject to ‖𝒚 −𝑨𝒙‖2 ≤ 𝜖 (18)

to account for measurement error as also explained in Section 2.1. To
facilitate its numerical solution, Eq. (18) can be equivalently written as
an unconstrained problem in the form

min
𝒙

‖𝒚 −𝑨𝒙‖2
2
+ 𝜆 ‖𝒙‖1 (19)

The problem of Eq. (19) is also referred to in the literature as basis pur-
suit denoising (BPDN) [63], or least absolute shrinkage and selection
operator (LASSO) [64].

Two main challenges to be addressed for solving, in a computa-
tionally efficient manner, the convex optimization problem of Eq. (19)
relate to scalability and non-differentiability. Second-order convex op-
timization algorithms, such as interior-point methods or quasi-Newton
schemes [65], are advantageous in the sense that they require typically
relatively few iterations to converge. Note, however, that for an 𝑛-
variate problem each iteration involves the solution of an 𝑛 × 𝑛 linear
system, incurring a computational cost of 𝑂(𝑛3) per iteration. In various
signal processing and statistical learning applications (as well as in
many engineering mechanics applications discussed in Section 3), the
number 𝑛 of variables can reach the order of millions; thus, rendering
the computational cost of even a single iteration prohibitively large.
Therefore, attention has been directed to alternative algorithms, which
utilize only first-order information about the objective function.

A standard first-order method in convex optimization is the gradient
descent method, which in its basic form and under certain smoothness
conditions exhibits a convergence rate of 𝑂(1∕𝑗), where 𝑗 is the itera-
tion number. Nevertheless, the objective function in Eq. (19) involves
the non-differentiable 𝓁1-norm. To address this challenge related to
the evaluation of the gradient, subgradient methodologies can be em-
ployed; however, these are typically characterized by a relatively poor
convergence rate of the order 𝑂(1∕

√
𝑗) [6].

Further, the proximal gradient (PG) method (e.g., [66]) exhibits
considerable efficiency in solving optimization problems, where the
objective function consists of the sum of a smooth convex function
𝑓 (𝒙) (with ∇𝑓 being Lipschitz continuous; see [67] for a definition
of Lipschitz continuity) and a non-differentiable convex function 𝑔(𝒙),
such as in Eq. (19). In this regard, the proximal operator is defined as

prox𝑔(𝒛) = argmin
𝒙

{
𝑔(𝒙) +

1

2
‖𝒙 − 𝒛‖2

2

}
(20)

and the update formulas at iteration 𝑗 take the form

𝒛(𝑗) = 𝒙(𝑗) −
1

𝐿
∇𝑓

(
𝒙(𝑗)

)

𝒙(𝑗+1) = prox𝑔∕𝐿
(
𝒛(𝑗)

) (21)

where 𝐿 is typically equal to the Lipschitz constant of ∇𝑓 . The 𝑗th
PG iteration in Eq. (21) can be construed as a two-step update for-
mula, where, first, an ordinary gradient descent step 𝒛(𝑗) decreasing
the smooth function 𝑓 is determined and, second, the step 𝒙(𝑗+1)
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is chosen in a manner that it both reduces the value of the non-
differentiable function 𝑔 and remains close to 𝒛(𝑗) via the introduction

of the term ‖‖‖𝒙 − 𝒛(𝑗)
‖‖‖
2

2
in the proximal operator of Eq. (20). The

strong convexity of ‖.‖2
2
guarantees that the PG step has a unique

solution [68]. Also, compared to the subgradient method, the PG
algorithm yields a convergence rate of 𝑂(1∕𝑗), which corresponds to the
standard case of no non-differentiable terms. Clearly, although the PG
method exhibits a relatively high convergence rate, the minimization of
a non-differentiable function at each iteration can be computationally
demanding. Nevertheless, the non-differentiable 𝓁1-norm function in
Eq. (19) yields a proximal operator (also known as soft thresholding
operator) in closed-form, i.e.,

[prox𝜆‖.‖1 (𝒛)]𝑖 = soft(𝑧𝑖, 𝜆) = sign(𝑧𝑖)max(|𝑧𝑖| − 𝜆, 0) (22)

This leads to the iterative soft-thresholding algorithm (ISTA) [69],
which is widely utilized in 𝓁1-norm minimization approaches. More-
over, it has been shown that the theoretically optimal convergence
rate for first-order optimization methods is 𝑂(1∕𝑗2) and this can be
achieved by Nesterov’s accelerated gradient method (AGM) [70]. Note
that the fundamental concept in AGM, which relates to introducing a
momentum term in the gradient descent update formula, can be readily
used in conjunction with the ISTA. This has led to the computationally
efficient fast iterative shrinkage-thresholding algorithm (FISTA) [71]
with a convergence rate of 𝑂(1∕𝑗2).

A potential shortcoming of ISTA and FISTA relates to parameter
𝜆, which needs to be tuned for solving the problem in Eq. (19). The
least angle regression (LARS) algorithm [21,72] constitutes an alterna-
tive approach with the advantageous feature of computing the entire
solution path directly; that is, the solution of Eq. (19) corresponding
to a given range of 𝜆 values is provided as the output of a single
run of the algorithm. LARS follows a procedure somewhat similar to
the OMP, and thus, it can be argued that its performance deteriorates
for problems with increasing dimensionality. It is worth mentioning
that there exist various other algorithms for solving the BPDN problem
in Eq. (19). Indicatively, these include coordinate descent algorithms,
which update a single coordinate at each iteration, and primal–dual
algorithms (e.g., [73]).

Alternative solution schemes, which deviate considerably from the
standard 𝓁1-norm formulation of Eq. (19) and aim at further enhancing
the sparsity of the solution, are presented and discussed in Section 2.8.

2.7. Performance analysis

Successful CS-based reconstruction of a sparse coefficient vector 𝒙0
relies on a priori knowledge of the minimum possible number 𝑚, where
𝑚 is the size of the measurement vector 𝒚. Of course, the selected
solution algorithm, the basis matrix 𝑫 and the CS matrix Φ affect
the reconstruction accuracy as well. In this regard, this section focuses
on presenting both theoretical results and practical approaches for
addressing the above points related to CS performance assessment.

The problem is typically posed in the literature as determining the
minimum number 𝑚 for exact reconstruction of an arbitrary coeffi-
cient vector 𝒙0 with sparsity degree 𝑘, given a fixed matrix 𝑨 (strong
case). Alternatively, the weak case relates to determining the minimum
number 𝑚 for exact reconstruction of a specific coefficient vector 𝒙0
with sparsity degree 𝑘 by appropriately constructing a matrix 𝑨; see
also [74].

In this regard, the potential of combinatorial geometry has been
explored for providing precise measurement bounds (e.g., [74]; see
also [75] for alternative approaches). More specifically, consider the
𝓁1-ball of Fig. 5, which represents a convex polytope C in R

𝑛. A poly-
tope generalizes the definition of a three-dimensional polyhedron to
𝑛 dimensions and is characterized by a number 𝑓0(C) of 0-dimensional
faces (i.e., vertices), a number 𝑓1(C) of 1-dimensional faces (i.e., edges),
and, in general, a number 𝑓𝑘(C) of 𝑘-dimensional faces (e.g., [74]).
Obviously, multiplying a matrix 𝑨 of size 𝑚 × 𝑛 by a vector of size

𝑛 projects the vector onto a lower-dimensional space, and thus, the
number of 𝑘-dimensional faces of 𝑨C can only be less than or equal
to 𝑓𝑘(C), i.e.,

𝑓𝑘(𝑨C) ≤ 𝑓𝑘(C) for 𝑘 ≥ 0 (23)

Notably, it has been proved (e.g., [76]) that the ratio of face counts
of the projected polytope 𝑨C over the original polytope C is equal
to the probability of exact reconstruction of 𝒙0 by solving the 𝓁1-
norm minimization problem of Eq. (13). Also, it has been shown
that, for the weak case [76,77] and for matrices 𝑨 with independent
identically distributed  (0, 1) Gaussian random entries and provided
a sufficiently large number 𝑚, the fraction 𝑓𝑘(𝑨C)∕𝑓𝑘(C) approaches 1
as the problem dimension 𝑛 approaches infinity. Various other similar
results have been obtained referring to, indicatively, the reconstruction
of a non-negative coefficient vector by solving a special form of Eq. (13)
(e.g., [74]), cases of employing other than 𝓁1-norm regularization
methods (e.g., [78]), cases of finite 𝑛 values (e.g., [79]), as well as the
strong reconstruction case for which the condition 𝑓𝑘(𝑨C) = 𝑓𝑘(C) must
hold.

However, notwithstanding empirical evidence indicating that exact
reconstruction with a similarly small number 𝑚 of measurements is pos-
sible (e.g., [77]), theoretical results on precise measurement bounds for
cases of non-Gaussian matrices 𝑨 have been scarce; see also [75]. In this
regard, an alternative approach relates to associating the reconstruction
performance with certain properties of matrix 𝑨, such as krank(𝑨),
𝜇(𝑨), nullspace property, and RIP; see also Sections 2.2–2.5. Concisely,
exact reconstruction of the coefficient vector 𝒙0 is guaranteed (at least
with high probability; see, for instance, [60]) if a condition, such as
Eq. (17), pertaining to the sparsity degree 𝑘 and to a property of 𝑨
is satisfied. In this context, it is noted that there has been extensive
research during the past decade (e.g., [4]) on identifying properties
of 𝑨 with direct relation to the performance of the reconstruction
problem. Of course, verifying such conditions for a given matrix 𝑨,
or constructing a matrix 𝑨 adhering to prescribed properties, are
nontrivial challenges. For example, Eq. (7) represents a necessary and
sufficient condition guaranteeing exact reconstruction of 𝒙0 by solving
either the 𝓁0-norm or the 𝓁1-norm minimization problems of Eqs. (6)
and (13), respectively; however, it is NP-hard to verify [62]. On the
other hand, it is rather straightforward to construct matrices 𝑨 with low
mutual coherence 𝜇(𝑨) dictated by the sufficient condition of Eq. (10)
(e.g., [4,58]); however, the measurement bound obtained is rather
conservative (referred to as ‘‘pessimistic’’ in the CS literature [74]).
Further, the nullspace property guaranteeing exact reconstruction of
𝒙0 by solving the 𝓁1-norm minimization problem of Eq. (13) is also
NP-hard to verify [4]. Regarding matrices 𝑨 satisfying the RIP of
Eq. (17), these can be constructed by employing, for instance, random
submatrices of bounded orthonormal systems [4], and thus, RIP has
been used in various practical problems. Nevertheless, the RIP-based
measurement vector size 𝑚 is also a pessimistic bound; see also [60,74]
for a discussion and [80] for related improvements.

Although the aforementioned results and conditions are character-
ized by theoretical rigor and have been catalytic for the advancement
of CS, alternative rather empirical approaches are necessary for ad-
dressing more general cases. Indicatively, these include the tasks of
tuning a certain algorithm (i.e., selecting an optimal set of parameters;
e.g., [81]) and comparing performances of different reconstruction
algorithms [82], as well as cases of coefficient vectors exhibiting struc-
tured sparsity (see Section 2.8.3); and thus, alternative algorithms are
required for exploiting this additional information [83]. In this regard,
empirical measurement bounds are often constructed in practice in the
form of a phase diagram, i.e., a diagram depicting the transition from
accurate recovery to recovery with significant error. In fact, such a
diagram not only provides a required number of measurements as a
function of problem size 𝑛 and sparsity degree 𝑘, but also illustrates
the behavior of the reconstruction error with varying values of 𝑚 and
𝑘. Of particular importance to applications is the width of the transition
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zone from accurate to inaccurate reconstruction, which has been shown
to be sharper for increasing values of 𝑛 (e.g., [78]). It is worth noting
that phase diagrams, as a tool for assessing the performance of CS
methodologies, appear versatile in addressing a wide range of diverse
problems in a rather straightforward manner.

Phase diagrams are typically constructed with the aid of synthetic
data. Specifically, for a fixed coefficient vector length 𝑛, synthetic vec-
tors 𝒙0 are constructed randomly with varying sparsity degree values
𝑘, and reconstruction is attempted based on measurement vectors 𝒚

of varying sizes 𝑚 (see [74] for more details). The above procedure
is applied for every possible combination of (𝑚, 𝑘) with successful
reconstruction indicated when the error associated with the estimate
𝒙, i.e.,

𝑒𝑟𝑟 =
‖‖𝒙 − 𝒙0

‖‖2
‖‖𝒙0‖‖2

(24)

is below a certain threshold (e.g., < 10−5). Finally, the mean re-
construction success rate is plotted for each and every pair of 𝑚∕𝑛

(undersampling ratio or degree of underdeterminacy) and 𝑘∕𝑚 (sparsity
ratio). In Fig. 6, indicative results are plotted for various values of 𝑚∕𝑛
and 𝑘∕𝑚, with 𝑛 = 100 and 𝑨 being the Fourier basis matrix with ran-
domly deleted rows. The mean success rate has been evaluated based on
200 reconstruction runs by employing the standard basis pursuit SPGL1
algorithm [84]. The region corresponding to reconstruction error less
than 10−5 with high probability is shown with blue color, whereas
yellow indicates the region corresponding to inaccurate reconstruction
with high probability. The transition zone lies in between. To provide
an illustrative example, it is seen that for a 𝑘-sparse coefficient vector
𝒙0 with 𝑛 = 100 and 𝑘 = 20, 𝑚 = 30 measurements are adequate to yield
successful reconstruction with high probability.

2.8. Enhancing sparsity and exploiting additional information in the data

In this section, attention is directed to currently emerging tools
and techniques for enhancing solution sparsity and for exploiting ad-
ditional information in the data. These include alternative to 𝓁1-norm
minimization formulations and iterative re-weighting solution schemes,
Bayesian approaches, as well as structured sparsity and dictionary
learning strategies.

2.8.1. Alternative to 𝓁1-norm minimization formulations and iterative re-
weighting solution schemes

As discussed in Sections 2.2–2.3, although the 𝓁0-norm formula-
tion of Eq. (6) leads to sparse coefficient vectors based on minimal
number of measurements, there is no known algorithm for solving
it efficiently. In this regard, although convex 𝓁1-norm relaxations of
the 𝓁0-norm problem have been proposed to address this challenge
(see Sections 2.5–2.6), it has been shown that alternative, mostly
non-convex, proxies of 𝓁0-norm exhibit enhanced sparsity-promoting
behavior in comparison to 𝓁1-norm. Indicatively, the difference of the
convex 𝓁1- and 𝓁2-norms has been considered in [85,86], leading to an
overall non-convex Lipschitz-continuous metric denoted as 𝓁1−2-norm.
The related minimization problem can be solved, for instance, by the
difference of convex functions algorithm [87].

An alternative, more general, formulation of the sparse vector recov-
ery problem relates to replacing the 𝓁0-norm minimization criterion by
an 𝓁𝑝-norm criterion as

min
𝒙

‖𝒙‖𝑝
𝑝

subject to 𝒚 = 𝑨𝒙 (25)

where 0 < 𝑝 ≤ 1, and to employing an iterative re-weighting solution
scheme. In fact, although the formulation in Eq. (25) is non-convex (for
𝑝 ≠ 1), it can be solved efficiently by iteratively minimizing a convex
function, such as the re-weighted 𝓁2-norm. In this context, the focal
underdetermined system solver (FOCUSS) [88] has been one of the
first such research efforts followed by a number of relevant contribu-
tions [89–91] addressing the problem of Eq. (25) in conjunction with

iterative re-weighting solution schemes. Further, important theoretical
results, similar to the RIP (see Section 2.5), have been established [92–
95] providing conditions guaranteeing equivalence between Eqs. (25)
and (6).

It is worth mentioning that the iteratively-reweighted-least-squares
(IRLS) method, initially introduced for robust statistical estimation
applications [96,97], has also received significant attention with the
advent of CS [4,98]. The IRLS solves a least squares problem iteratively
considering ‖𝒙‖1 = 𝒙𝑇𝑿−1𝒙 and 𝑿 = diag(|𝒙|). In other words,
IRLS re-weights the 𝓁2-norm iteratively to approximate an 𝓁1-norm
minimization function. In a similar manner, FOCUSS re-weights the
𝓁2-norm iteratively to approximate the 𝓁𝑝-norm minimization function
of Eq. (25) with 0 < 𝑝 < 1. Note that FOCUSS has been widely
utilized in early studies of the dictionary learning problem as well (see
Section 2.8.4).

In the following, attention is directed to a solution scheme initially
proposed in [99], which re-weights the 𝓁1-norm iteratively to approxi-
mate an 𝓁0-norm minimization function. This solution scheme, referred
to as IR𝓁1 in the ensuing analysis, aims at enhancing the sparsity
exhibited by the 𝓁1-norm formulation while preserving convexity. The
rationale relates to minimizing the influence of the nonzero coefficients
magnitude, similarly to the 𝓁0-norm. In this regard, a number of
positive weights 𝑤1,… , 𝑤𝑛 are introduced, and the ‘‘weighted’’ 𝓁1-norm
minimization problem is formulated as

min
𝒙

‖𝑾 𝒙‖1 subject to 𝒚 = 𝑨𝒙 (26)

where𝑾 = diag(𝑤1,… , 𝑤𝑛). It is noted that the solution of the problem
in Eq. (26) does not coincide, in general, with the solution of the
original problem in Eq. (13). In fact, the weights 𝑤𝑖 can be construed as
parameters to be appropriately selected for improving the reconstruc-
tion performance. Since the weights 𝑤𝑖 are introduced to counteract the
influence of the coefficients magnitude, it is evident that their optimal
values should be inversely proportional to the magnitudes, i.e.,

𝑤𝑖 =

⎧⎪⎨⎪⎩

1

|𝑥0,𝑖| if 𝑥0,𝑖 ≠ 0

∞ if 𝑥0,𝑖 = 0
(27)

Taking into account Eq. (27), the problem in Eq. (26) is guaranteed to
yield the correct solution 𝒙 under the assumption that 𝑚 ≥ 𝑘 [99].

Clearly, since 𝒙0 is the unknown vector to be determined, it is not
possible to select the weights according to Eq. (27). Nevertheless, large
weights are used in practice to discourage nonzero coefficients, whereas
small weights are used to encourage nonzero coefficients. To provide
an illustrative example, consider the 3-dimensional problem shown in
Fig. 7, where the target vector is 𝒙0 = [0, 0, 1]𝑇 , 𝑨 = [6,−2, 3], and the
plane in gray color represents the affine subspace {𝒙0}+null(𝑨), i.e., the
set of points 𝒙 ∈ R

3 satisfying 𝑨𝒙 = 𝑨𝒙0 = 𝒚. It is observed in Fig. 7a
that the plane 𝒚 = 𝑨𝒙 intersects with the interior of the 𝓁1-ball of radius
1 centered at the origin. Hence, the 𝓁1-norm minimization approach
discussed in Section 2.5 (see Fig. 5 and the subsequent discussion)
recovers the incorrect vector 𝒙̄ = [0.5, 0, 0]𝑇 shown in Fig. 7b. Next,
considering a weighting matrix𝑾 = diag(5, 5, 1), the weighted 𝓁1-norm
minimization of Eq. (26) correctly recovers 𝒙0 as shown in Fig. 7c,
which depicts the weighted 𝓁1-ball 𝐵

𝑊
1
of radius 1, defined as 𝐵𝑊

1
=

{𝒙 | ‖𝑾 𝒙‖1 ≤ 1}. It is worth noting that any choice of the weights with
𝑤1 > 2𝑤3 and 3𝑤2 > 2𝑤3 in the above example yields a sufficiently
modified (weighted) 𝓁1-ball for recovering 𝒙0. The fact that there
may exist a wide range of possible candidate values for the weights
𝑤1,… , 𝑤𝑛 has motivated the development of an iterative algorithm
in [99]. Initially, the weights are set equal to 1 and the formulation
degenerates to Eq. (13), which yields a first approximation 𝒙(0) of the
target vector. Next, the weights are updated according to

𝑤
(𝑗+1)
𝑖

=
1

|𝑥(𝑗)
𝑖
| + 𝜖

∀ 𝑖 = 1,… , 𝑛 (28)

8



I.A. Kougioumtzoglou, I. Petromichelakis and A.F. Psaros Probabilistic Engineering Mechanics 61 (2020) 103082

Fig. 6. Phase diagram corresponding to random sub-matrices of a Fourier basis matrix and to reconstruction using the SPGL1 algorithm. The brightness of each point represents
the observed success rate, ranging from certain failure (yellow) to certain success (blue). The 𝑧-axis corresponds to the average success rate over 200 runs; the 𝑦-axis corresponds to
the ratio showing the degree of the problem underdeterminacy, whereas the 𝑦-axis corresponds to the ratio showing the sparsity degree of the coefficient vector. (For interpretation
of the references to color in this figure legend, the reader is referred to the web version of this article.)

Fig. 7. Weighted 𝓁1-norm minimization for improved sparse signal recovery. (a) Sparse vector 𝒙0, feasible set {𝒙0} + null(𝑨) and 𝓁1-ball of radius ‖‖𝒙0
‖‖1. (b) There exists vector

𝒙̄ ≠ 𝒙0 with ‖𝒙̄‖1 < ‖‖𝒙0
‖‖1. (c) Weighted 𝓁1-ball; there is no 𝒙̄ ≠ 𝒙0 with ‖𝑾 𝒙̄‖1 ≤ ‖‖𝑾 𝒙0

‖‖1.

where a small value 𝜖 is introduced to avoid division by zero. This
IR𝓁1 scheme has been shown to correctly converge to the sparse
solution vector in a relatively small number of iterations. Further, in
comparison to the original 𝓁1-norm minimization, a smaller number
of measurements 𝑚 is required in general [99]. Moreover, any 𝓁1-norm
minimization method (see Section 2.6) can be employed for the solution
of Eq. (26).

In passing, note that the weights used in FOCUSS take the form
𝑤

(𝑗+1)
𝑖

= 1∕𝑥
(𝑗)
𝑖
, whereas the coefficients converging to zero are removed

and constrained to be identically zero. Moreover, an IRLS scheme was
proposed in [94], where the value of 𝜖 in the update formula of the
weights (see Eq. (28)) is gradually reduced with increasing iteration
number. This scheme, referred to as 𝜖-regularized IRLS, exhibits similar
performance to the IR𝓁1 in sparse vector recovery, and appears to
outperform the standard IRLS in the sense that it requires signifi-
cantly fewer measurements, especially as the value of 𝑝 decreases and
approaches 0 [94].

2.8.2. Bayesian CS approaches
This section presents the fundamental concepts of an alternative

class of methodologies addressing the CS problem from a Bayesian
perspective [100]. In this regard, the prior belief that 𝒙0 is sparse
is expressed via an appropriately chosen probability density function
(PDF), whereas the objective is to provide a posterior PDF for the
values of the estimate 𝒙 by utilizing a small number 𝑚 of measurements
𝒚, where 𝑚 < 𝑛. The Bayesian CS approach exhibits two significant
advantages over the standard CS techniques. First, in contrast to the

deterministic estimates obtained for the sparse vector 𝒙 in the tra-
ditional CS framework, Bayesian CS yields a posterior PDF. Clearly,
this provides a tool for uncertainty quantification associated with the
reconstructed vector 𝒙. Second, instead of a priori selecting a fixed
random matrix Φ following standard CS (see Section 2.1), the posterior
PDF can be employed for determining the CS matrix Φ adaptively. This
is achieved in an iterative manner by selecting at each cycle the next
row of Φ that minimizes the reconstruction uncertainty (see [100]).

In Bayesian CS, the residual vector 𝒓 (see Eq. (12)) is modeled as
a zero-mean Gaussian vector with covariance matrix 𝜎2𝑰 , where 𝑰 is
the identity matrix of size 𝑚. This choice yields a Gaussian likelihood
function of the form

𝑝(𝒚|𝒙, 𝜎2) = (2𝜋𝜎2)
−

𝑚

2 exp

(
−

1

2𝜎2
‖𝒚 −𝑨𝒙‖2

2

)
(29)

Comparing with the standard CS, Eq. (29) corresponds to the first term
of Eq. (19) and can be construed as a measure of the reconstruction
accuracy for given 𝒙 and 𝜎2. Next, a sparsity-promoting prior PDF is
required for 𝒙. A popular choice is the Laplace PDF [101] of the form

𝑝(𝒙|𝜆) ∝
𝑛∏
𝑖=1

𝜆

2
exp

(
−𝜆|𝑥𝑖|

)
=
(
𝜆

2

)𝑛

exp
(
−𝜆 ‖𝒙‖1

)
(30)

where 𝜆 is the coefficient of the penalty factor in Eq. (19). It is noted
that the Bayesian formulation corresponding to the standard CS prob-
lem of Eq. (19) aims at determining the maximum a posteriori (MAP)
value of 𝒙 by using the likelihood function of Eq. (29) in conjunction
with the Laplace prior of Eq. (30). This naturally raises the question
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of whether the Bayesian approach can be adapted for determining
the complete posterior PDF 𝑝(𝒙|𝒚). Unfortunately, the Laplace prior in
Eq. (30) is not conjugate to the Gaussian likelihood in Eq. (29), and
thus, the Bayesian inference problem cannot be solved to yield the
posterior PDF in closed-form. The interested reader is directed to [102]
for more details about conjugacy in Bayesian inference.

In this regard, there have been efforts for addressing this issue
within the context of sparse Bayesian learning [103] by introducing
a technique typically referred to as relevance vector machine (RVM).
Specifically, two distinct PDFs are utilized, i.e., a zero-mean Gaussian
prior on each element of 𝒙 of the form

𝑝(𝒙|𝜶) ∝
𝑛∏
𝑖=1

 (𝑥𝑖|0, 𝛼−1𝑖 ) (31)

and a Gamma prior for each element 𝛼𝑖 of 𝜶 given by

𝑝(𝜶|𝛽, 𝛾) ∝
𝑛∏
𝑖=1

𝛤 (𝛼𝑖|𝛽, 𝛾) (32)

In Eqs. (31) and (32), 𝜶 represents hyperparameters, whereas 𝛽 and 𝛾

are parameters that need to be tuned. Hence, a marginalization over
the hyperparameters 𝜶, yields the overall prior on 𝒙 as

𝑝(𝒙|𝛽, 𝛾) ∝
𝑛∏
𝑖=1

∫
∞

0

 (𝑥𝑖|0, 𝛼−1𝑖 )𝛤 (𝛼𝑖|𝛽, 𝛾)d𝛼𝑖 (33)

Since the Gamma PDF 𝛤 (𝛼𝑖|𝛽, 𝛾) is the conjugate prior of the Gaussian
PDF (𝑥𝑖|0, 𝛼−1𝑖 ) with respect to 𝛼𝑖, the integrals appearing in the prod-
uct of Eq. (33) can be evaluated in closed-form yielding the Student-t
distribution [103]. The PDF of Eq. (33) is plotted in Fig. 8a, where it is
seen that nonzero probability values are concentrated primarily around
the origin and along the axes; thus, indicating that sparse vectors
are more probable than dense vectors. The Laplace prior of Eq. (30),
plotted in Fig. 8b, exhibits similar features. In contrast, a product of
independent Gaussian random variables, plotted in Fig. 8c, does not
exhibit probability concentration along the axes.

Several other sparsity inducing priors have been proposed in the
sparse Bayesian learning literature. Indicatively, the spike-and-slab
approach introduced in [104], where spike refers to the probability
of a particular coefficient being zero and slab relates to the prior
distribution of the coefficients, has been utilized for Bayesian variable
selection [105] and for penalized likelihood estimation [106]. More re-
cently, the horseshoe distribution was proposed in [107] (see also [108]
for a review survey), which exhibits advanced performance in terms of
robustness and adaptivity to different sparsity patterns, and is amenable
to analytical mathematical treatment.

The hierarchical structure discussed so far leads eventually to a
convenient representation of the complete posterior PDF 𝑝(𝒙|𝒚) as
multivariate Gaussian with mean vector and covariance matrix given
by

𝝁 = 𝜎−2Σ𝑨𝑇 𝒚 (34)

and

Σ =
(
𝜎−2𝑨𝑇𝑨 + diag(𝛼1,… , 𝛼𝑛)

)−1
(35)

respectively. Therefore, the Bayesian CS formulation leads to the prob-
lem of estimating the hyperparameters 𝜎 and 𝜶 = [𝛼1,… , 𝛼𝑛]

𝑇 . This
can be achieved with the aid of standard Bayesian tools such as
Markov chain Monte Carlo [109] and variational inference [110].
Nevertheless, it can be argued that the standard solution approach in
Bayesian CS is the RVM [103], which is a type II maximum-likelihood
approach exhibiting both satisfactory accuracy and computational effi-
ciency [100]. Specifically, the objective relates to estimating the values
of 𝜶 and 𝜎 that maximize the logarithm of the marginal likelihood,
where marginalization is performed over 𝒙. This can be accomplished
by implementing an expectation maximization (EM) algorithm, which
leads to closed-form recursive formulas for the iterative solution of
the unknown hyperparameters 𝜶 and 𝜎 (see [103] and [100] for

more details). From a computational cost perspective, the evaluation
of Eq. (35) involves the inversion of an 𝑛 × 𝑛 matrix, an operation of
complexity 𝑂(𝑛3). This limitation has been addressed in [111,112] by
developing a fast RVM algorithm with complexity 𝑂(𝑛𝑘2).

2.8.3. Structured sparsity
Solving the optimization problems of Eqs. (6) and (13) by employing

the convex and non-convex approaches described in Sections 2.4–2.5,
respectively, the position of each coefficient in the coefficient vector 𝒙0
is not taken into account. However, due to the physics of the specific
problem, 𝒙0 may exhibit not only sparsity, but also additional patterns.
This situation is referred to in the literature as structured sparsity [113].
In this regard, typical examples of structured sparsity include group
sparsity (e.g., [114]), according to which the coefficients of 𝒙0 are
clustered in disjoint or overlapping groups; hierarchical sparsity, ac-
cording to which the coefficients are divided into parents and children
that are jointly zero or nonzero (see, for instance, the wavelet tree
sparsity in [115]); and, more generally, graph sparsity, according to
which underlying relationships between coefficients are described by
a graph structure with the aid of nodes, representing the coefficients,
and edges, representing the relationships between them (e.g., [116]).

Notably, within the context of sparse reconstruction, structured
sparsity serves as additional information to be exploited for further
reducing the required number of measurements. In fact, it has been
shown that modifying the regularization method leads to improve-
ment in reconstruction accuracy for a given number of measurements
(e.g., [113]). Approaches for exploiting structured sparsity include both
convex (e.g., [114]) and non-convex (e.g., [116,117]) formulations
with a varying degree of success depending on the type of information
available.

An indicative example of a greedy, non-convex, approach proposed
in [116] is StructOMP, which can be construed as a generalization
of the OMP algorithm described in Section 2.4. In StructOMP, the
input consists not only of the 𝑚-length measurement vector 𝒚 and the
𝑚 × 𝑛 matrix 𝑨, but also of the group structure that the coefficient
vector is anticipated to exhibit. Specifically, a block set is defined that
contains possible disjoint or overlapping groups, while each block is
assigned a value that describes its complexity; i.e., generalizing the
notion of sparsity to account for group structures (see [116] for more
details). For example, in standard sparse vectors, each component of
the coefficient vector is considered to have complexity 1, and thus, if a
given coefficient is active, the coefficient vector will be less sparse by 1.
In other words, every coefficient is equally penalized and encouraged
to be zero. In group sparse vectors treated within the StructOMP
framework, if a given block is active, the complexity of the overall
coefficient vector increases by the complexity of that group, and thus,
blocks are not evenly penalized. Next, similarly to the standard OMP,
the algorithm, first, selects which block reduces ‖𝒓‖2 (see Eq. (12)) per
unit increase of complexity the most (this block is considered to provide
the maximum progress to the algorithm), and, second, assigns values
to the coefficients of the selected block via least squares regression.
Subsequently, the algorithm locates the next block corresponding to the
maximum progress and terminates either when ‖𝒓‖2 becomes smaller
than a prescribed threshold, or when the complexity of 𝒙 becomes
larger than a prescribed value. In general, StructOMP is straightforward
to implement and can address cases of overlapping groups as well.
Theoretical results regarding its performance (e.g., Structured-RIP; see
also Section 2.7) can be found in [116].

Further, a notable convex approach is the elastic net, proposed
in [118] in the context of grouped variable selection in regression
analysis. Specifically, as argued in [118], the two most widely used
regularization techniques, namely, 𝓁1-norm penalization (referred to
as LASSO [64] in the statistical and as BPDN [63] in the signal pro-
cessing communities) and 𝓁2-norm penalization (used for coefficient
vector shrinkage and also known as ridge regression or Tikhonov
regularization) are unable to perform variable selection, shrinkage
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Fig. 8. Various probability density functions that may be employed as priors. (a), (b) Nonzero probability values are primarily concentrated around the origin and along the axes
encouraging sparse solutions. (c) There is no probability density concentration along the axes. (d) Contour lines of the three density functions at PDF value 𝑝 = 0.01.

and variable grouping, simultaneously. Thus, a rather straightforward
approach relates to combining 𝓁1-norm (that promotes sparsity and
leads to shrinkage) with 𝓁2-norm (that promotes grouping and leads
to shrinkage) penalizations, yielding the minimization problem

min
𝒙

‖𝒚 −𝑨𝒙‖2
2
+ 𝜆1 ‖𝒙‖1 + 𝜆2 ‖𝒙‖22 (36)

The formulation of Eq. (36), referred to as naive elastic net in the
original paper [118], can be recast as a LASSO problem (see Eq. (19));
thus, a solution estimate 𝒙̂ can be obtained by using the LARS-EN
algorithm, which is a modified version of LARS (see also Section 2.6).
However, Eq. (36) leads to an undesirably high degree of shrinkage due
to the combined shrinkage effects of the 𝓁1- and 𝓁2-norms. Therefore,
scaling of the solution estimate is typically applied in the form

𝒙 = (1 + 𝜆2)𝒙̂ (37)

where 𝒙 is known as the elastic net solution estimate. Overall, elastic
net exhibits the significant advantage of successfully promoting group
sparsity, even in cases where no information about group structures in
𝒙0 is available; see also Fig. 9 for a visual representation of the elastic
net unit-norm ball in R

3.
Next, another widely used regularization technique that promotes

group sparsity is the 𝓁1∕𝓁𝑝 penalty, which encourages sparse solutions
at the group level, but not within the groups (e.g., [114]). In this
regard, the minimization problem becomes

min
𝒙

‖𝒚 −𝑨𝒙‖2
2
+ 𝜆

∑
𝑔∈G

𝑑𝑔
‖‖‖𝒙𝑔

‖‖‖
𝑝

𝑝
(38)

where 𝒙𝑔 represents the coefficients of 𝒙 that belong to group 𝑔 ∈ G,
with G being the set of all groups, and 𝑑𝑔 represent positive scalar
weights. The approach described by Eq. (38) is referred to in the
literature as group-LASSO, with typical 𝑝 values being 2 and ∞ [113].
Indicatively, in Fig. 9 the three-dimensional 𝓁1∕𝓁2-norm ball is shown
and compared with the elastic net unit-norm ball. Group-LASSO has
been shown to improve reconstruction performance as compared to
standard LASSO [119]. This is under the condition that there is a

priori knowledge of coefficients 𝒙0 forming disjoint groups, with either
simultaneously active or simultaneously inactive coefficients. Further,
to account for the impact of uneven group sizes, rather sophisticated
approaches exist for appropriately selecting the weights 𝑑𝑔 (see, for
instance, [120]). Clearly, if groups in G are allowed to overlap, more
complex coefficient structures can be formed, such as hierarchical and
graph structures [113]. In fact, a direct extension of group-LASSO
relates to considering groups in G defined as intersections of comple-
ments of overlapping groups [121]. An alternative approach, commonly
referred to as latent group-LASSO [122], considers groups in G defined
as unions of overlapping groups. Interestingly, the latter approach can
be construed as a convex relaxation of StructOMP; see [123] for more
details and comparisons.

2.8.4. Dictionary learning strategies
This section focuses on approaches addressing the problem of deter-

mining an optimal matrix 𝑨 ∈ R
𝑚×𝑛 in Eq. (5) based on a training set

of available signals {𝒚𝑖}
𝑁
𝑖=1
. These approaches are collectively referred

to in the literature as dictionary learning and seek for a proper basis
𝑨 ∈ R

𝑚×𝑛 (also termed overcomplete dictionary), promoting the sparse
representation of signals with similar characteristics to the training set.

In the following, 𝒀 ∈ R
𝑚×𝑁 denotes the matrix with the training

vectors {𝒚𝑖}
𝑁
𝑖=1

as its columns, and 𝑿 ∈ R
𝑛×𝑁 represents the matrix with

the corresponding representation vectors {𝒙𝑖}
𝑁
𝑖=1

as its vectors, where
𝒚𝑖 = 𝑨𝒙𝑖 for all 𝑖 = 1,… , 𝑁 . Also, the columns of matrix 𝑨 are referred
to herein as dictionary atoms, following the established terminology in
the literature. In this regard, the associated optimization problem can
be formulated quite generally in the form

min
𝑨,𝑿

‖𝒀 −𝑨𝑿‖2
𝐹

subject to ‖‖𝒙𝑖‖‖0 ≤ 𝑘0 ∀ 𝑖 = 1,… , 𝑁 (39)

where ‖.‖𝐹 denotes the Frobenius norm, and 𝑘0 is an integer denoting
a prespecified target sparsity degree. Eq. (39) can be equivalently cast
in the form

min
𝑨,𝑿

𝑁∑
𝑖=1

‖‖𝒙𝑖‖‖0 subject to ‖𝒀 −𝑨𝑿‖2
𝐹
≤ 𝜖 (40)
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Fig. 9. Comparison between the elastic net unit-norm ball (a) and the 𝓁1∕𝓁2-norm ball (b) in R
3. In the elastic net ball, curved contours encourage grouping of coefficients,

whereas sharp edges and vertices promote sparsity. In the 𝓁1∕𝓁2-norm ball, sparsity is promoted between the groups 𝑔1 = {𝑥1 , 𝑥2} and 𝑔2 = {𝑥3}, however, no particular direction
is encouraged within the groups.

for a fixed value 𝜖. Next, to address the non-convexity of the 𝓁0-norm,
an 𝓁1-norm relaxation can be introduced yielding an objective function
of the form

min
𝑨,𝑿

𝑁∑
𝑖=1

1

2
‖‖𝒚𝑖 −𝑨𝒙𝑖

‖‖22 + 𝜆 ‖‖𝒙𝑖‖‖1 (41)

Although the objective function in Eq. (41) is not jointly convex with
respect to variables 𝑨 and 𝑿, it becomes convex with respect to one
variable when the other is kept fixed [124]. This motivates a two-step
iterative solution approach, adopted by the vast majority of researchers
in dictionary learning. The approach entails a sparse coding step,
i.e., the determination of the representation vectors in 𝑿, followed by
a dictionary update step for 𝑨. A closer examination of Eq. (41) shows
that the 𝓁1-norm constraint on 𝒙𝑖 tends to reduce the values of the
nonzero elements of 𝒙𝑖, which forces the elements of 𝑨 to increase
arbitrarily in the dictionary update step. This undesirable effect can be
meliorated by restraining the columns of 𝑨 to have 𝓁2-norms less or
equal to one.

Dictionary learning approaches have also been developed within
a Bayesian framework (see Section 2.8.2). Indicatively, according to
[125] the dictionary 𝑨 is determined based on maximization of the
likelihood PDF 𝑝(𝒀 |𝑨). Two fundamental assumptions are introduced
in [125]. First, independence is assumed between the training samples,
and second, the prior PDF 𝑝(𝑿) is chosen in a manner that the elements
of each representation vector 𝒙𝑖 are zero-mean independent identically
distributed random variables following the Laplace distribution. These
assumptions lead to a similar to Eq. (41) formulation, which can
be solved efficiently by employing a steepest descent approach for
the sparse coding step and a closed-form formula for the dictionary
update step (see also [126–128]). Furthermore, the method of opti-
mal directions [129–131] can be construed as a modification of the
aforementioned approach, which provides a simpler dictionary update
formula and allows for the adoption of more sophisticated techniques
(e.g., OMP or FOCUSS) for the sparse coding step; see also [132–134]
for an alternative related approach, which relies on a MAP setting. In
general, the dictionary learning techniques available in the literature
utilize various different solution approaches for the dictionary update
and/or the sparse coding steps. For instance, the OMP [135] (see
Section 2.4) can be utilized for the problems in Eq. (39) or Eq. (40),
or the ISTA [136,137] and the LARS [124] (see Section 2.6) can be
employed for the problem in Eq. (41).

Early work in dictionary learning has also been inspired by vec-
tor quantization (VQ) clustering [135,138]. In VQ clustering, a set
of descriptive vectors {𝒅𝑗}

𝐾
𝑗=1

is learned and each training sample is

represented by one of those vectors, typically the closest one in an
𝓁2-norm sense. This approach can be construed as an extreme case of
sparse representation, where only one atom of dictionary 𝑨 is selected
for representing 𝒚; thus, yielding a 1−sparse representation vector 𝒙.
Note that in the general sparse representation framework discussed so
far, each signal is represented as a linear combination of more than
one atoms of 𝑨. Further, the 𝐾-means algorithm, also referred to as
the generalized Lloyd algorithm [139], is routinely utilized in the VQ
training procedure. This motivates its use for addressing the dictionary
learning problem. Interestingly, the 𝐾-means algorithm is a two step
procedure, which, first, determines the 1−sparse representation vectors,
and second, updates the dictionary (or codebook in VQ terminology),
in a similar manner as the two step dictionary update framework
discussed previously. In this regard, a dictionary learning technique
referred to as K-SVD was presented in [135], where the sparse coding
step is performed by employing OMP (this choice is not restrictive),
and the dictionary update is performed by sequentially updating each
column of 𝑨 based on singular value decomposition (SVD) to minimize
the approximation error. Although it is not guaranteed to converge, and
its convergence performance depends on the robustness of the adopted
sparse coding algorithm [135], K-SVD has exhibited highly satisfactory
accuracy in various applications such as image denoising [138].

The dictionary learning approaches discussed so far can be cate-
gorized as ‘‘batch’’ algorithms in the sense that the complete training
set is provided as an input and the ensemble of the training samples
is processed at each iteration. Clearly, this affects the computational
efficiency of these algorithms, especially in applications involving large
training sets. To address this challenge, an online dictionary learning
algorithm was presented in [124,140], which processes the training
signals one at a time, or in mini-batches. This algorithm utilizes a
LARS solution approach for the problem in Eq. (41) regarding the
sparse coding step, and a block-coordinate descent method with warm
restarts for the dictionary update step; see also [141]. Compared with
the standard batch algorithms, this online dictionary learning tech-
nique has been shown to exhibit enhanced performance for both large
and small training sets [124]. Moreover, under certain rather strong
conditions, convergence to a stationary point is guaranteed [124]. In
passing, it is noted that all dictionary learning algorithms address a
non-convex problem, and thus, are susceptible to being trapped in local
minima [124,135,138].

3. Diverse applications in engineering mechanics

Sparse representations and CS approaches have impacted signifi-
cantly the field of engineering mechanics over the past few years. In this
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section, relevant research work is categorized under three distinct ap-
plication areas, whereas a concerted effort is made to highlight the links
and interconnections between the theoretical concepts presented in
Section 2 and the specific engineering mechanics applications discussed
below.

The first application area relates to inverse problems in the field
of structural health monitoring, and specifically to the development of
techniques for structural system identification and damage detection
subject to incomplete data. In fact, applications related to efficient data
compression and storage at the sensors level, and to fast data transmis-
sion, have proved quite advantageous for real-time structural health
monitoring. Also, exploitation of the inherently sparse data structure
of vibration response measurements has benefited the development of
efficacious system identification and damage detection schemes.

The second application area relates to uncertainty modeling and
simulation under incomplete data. In particular, CS-based techniques
have been developed within the context of stochastic processes to
address problems in engineering mechanics related to spectral anal-
ysis, statistics estimation and Monte Carlo simulation under sparse
measurements.

The third application area relates to developing computationally ef-
ficient uncertainty propagation techniques for determining the response
statistics of diverse systems in engineering mechanics. The rationale
relates to employing CS tools for evaluating the system response,
which is represented by appropriately chosen sparse expansions. In this
manner, the associated computational cost is reduced, and thus, the
solution technique can be applied to higher-dimensional problems.

It is interesting to note that although the aforementioned applica-
tion areas appear relatively unrelated to each other, the theoretical
concepts and mathematical tools utilized (and described in Section 2)
are surprisingly similar in their implementation. This is due to the fact
that problems in all three areas share the challenge of incomplete data.
Of course, incomplete data may manifest themselves in various differ-
ent forms and can correspond to missing or compressed data, or even
refer generally to insufficiently few function evaluations. Ultimately,
however, in all herein considered applications, the mathematical for-
mulation yields an undetermined linear system of the form of Eq. (5),
which can be addressed by the versatile CS machinery discussed in
Section 2.

3.1. Inverse problems in structural health monitoring: Structural system
identification and damage detection under incomplete data

One of the first applications of sparse representations and CS theory
in the field of structural health monitoring has been the analysis of
sparse and/or incomplete data acquired by diverse sensor technologies.
In this regard, many applications have focused on developing efficient
data compression schemes for real-time structural health monitoring.
The rationale relates to acquiring the signal directly in a compressed
format. Clearly, this circumvents the computational burden of com-
pressing it locally at the sensor and bypasses the need for sensors with
high storage capacity. This entails the utilization of CS in conjunction
with an appropriate compression basis (in which the signal has a sparse
representation) for reconstructing data series with far higher resolution
than those originally captured. Notably, in the problem of data com-
pression the CS efficiency can be optimized by appropriately designing
the sampling matrix Φ, or, equivalently, matrix 𝑨 in Eq. (5). However,
this is not the case when the problem of limited and/or missing data is
considered. Indicatively, practical reasons for the occurrence of limited
data include data loss due to both equipment failure (e.g., damaged
sensors) and sensor thresholding limitations. Numerous other issues
including sensor maintenance, bandwidth limitations, usage and data
acquisition restrictions, as well as data corruption may also lead to
missing data. It becomes clear that applying CS theory to the problem of
missing data for signal reconstruction differs primarily in one respect as
compared to data compression; that is, missing data are not necessarily

intentional. Obviously, this removes control over one important step of
compressive sampling, i.e., the arrangement of the sampling matrix Φ.
Indeed, as mentioned in Section 2.2, a number of bases with randomly
deleted rows, such as Fourier, satisfy the requirements of Eqs. (7) and
(10) for sparse reconstruction with high probability. Unfortunately,
the missing data may not be uniformly distributed over the record;
thus, regular or large gaps of missing data can lead to matrices 𝑨

with less incoherent basis vectors. Clearly, this additional challenge
highlights the need for assessing the performance of the various CS
tools in conjunction with matrices 𝑨 that do not (strictly) conform to
theoretical conditions such as the RIP (see also Section 2.7).

One of the first CS applications for data compression can be found
in [142], where the authors utilized bridge vibration data and em-
ployed orthogonal expansion bases (e.g., Fourier and wavelets) in
conjunction with an 𝓁1-norm minimization formulation. The approach
was subsequently applied for signal reconstruction related to the prob-
lem of data loss in a wireless sensor network during transmission of
data between the wireless sensor nodes and the base station [143].
In a similar context, CS was employed in [144] for data loss recovery
associated with a fast-moving wireless sensing technique for structural
health monitoring of bridges without interrupting traffic.

Further, following pioneering contributions in signal processing (see
Section 2.8.2), a Bayesian CS methodology was proposed in [145],
which, in contrast to the standard approaches delineated in
Sections 2.3–2.6, provides also with an estimate of the signal re-
construction uncertainty. Specifically, this Bayesian treatment yields
posterior distributions 𝑝(𝒙|𝒚) for the basis coefficients of Eq. (5),
which can be used eventually for suppressing the basis terms whose
contribution to the reconstructed signal is minimal. The methodology
was further enhanced and its reconstruction robustness was improved
in [146], where its performance was assessed with regard to recovery
of lost data during wireless transmission.

Next, by proposing a matrix reshape scheme, a low-rank repre-
sentation of large-scale structural seismic and typhoon responses was
identified in [147], which proved to be beneficial for efficient data com-
pression. The scheme was coupled in [148] with a nuclear norm mini-
mization algorithm for recovering of multi-channel structural response
time-histories with randomly missing data. The same authors exploited
CS tools in [149] for efficient transmission and recovery of large-
scale image data related to structural system and civil infrastructure
health diagnosis. Furthermore, the relatively recently proposed concept
of group sparsity (see also Section 2.8.3) was employed in [150] for
reconstructing incomplete vibration data measured by sensors placed
at various different locations of the structure, while in [151] a dic-
tionary learning strategy (see also Section 2.8.4) was proposed for
under-sampled acoustic emission signal reconstruction.

Finally, it is worth mentioning that Refs. [152,153] focus on prac-
tical implementation of CS algorithms in wireless sensor networks, and
provide relevant discussions about optimal configurations and energy
efficiency aspects. Moreover, a hybrid sensor network configuration
was proposed in [154] (see also [155]), based on fusion of a minimal
number of tethered sensors with wireless nodes, for improving the
information content of the transmitted data.

In the remainder of the section, attention is directed to system
identification and damage detection methodologies, which exploit the
capabilities of the CS machinery. In this regard, the work in [156]
constitutes one of the first research efforts to employ CS-based data
analysis for estimating the damage condition of a structure. In [157], a
CS-based scheme was proposed and applied for determining the degra-
dation of a pipe-soil interaction model, where the damage identification
task was treated as a pattern classification problem. In a relatively
different context, a standard 𝓁1-norm optimization approach was pro-
posed in [158] for identifying the distribution of moving vehicle loads
on cable-stayed bridges. Further, a scheme was devised in [159] based
on a combination of blind feature extraction and sparse representation
classification, in conjunction with a modal analysis treatment, for locat-
ing the structural damage and assessing its severity. The same authors
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proposed an output-only identification approach in [160] by coupling
CS with blind source separation schemes for determining the mode
shape matrix of the structural model. In [161] the approach was modi-
fied to account for video camera based vibration measurements. Along
similar lines, in [162] the mode shapes of a multi-degree-of-freedom
(MDOF) structural system were identified based on under-sampled
vibration data collected by wireless sensors; see also [163] for a for-
mulation of the mode shape identification problem based on atomic
norm minimization.

In [164,165] a sensitivity-based model updating scheme in conjunc-
tion with 𝓁1-norm minimization was proposed for identifying localized
damage in structures based on incomplete modal information; see
also [166,167] for some related work. In this context, several authors
highlighted the limitations of employing a Tikhonov regularization
strategy (see also Section 2.8.3), typically used in sensitivity-based
model updating, for addressing the resulting underdetermined problem.
In particular, to address issues related to over-smoothing resulting from
Tikhonov regularization and to promote the sparseness of the damage
identification problem, various 𝓁1-norm regularization schemes were
proposed in [168–173]. In [174] the authors combined CS for signal
reconstruction with auto-regressive and Wiener filter based methods
for structural damage detection and localization, while in [175] the ill-
posedness of the inverse damage identification problem was addressed
by adding an 𝓁1-norm regularization term in the objective function.

Furthermore, in [176,177] a spectral identification technique was
developed for determining the parameters of nonlinear and time-
variant structural systems based on available input–output (excitation-
response) realizations. A significant advantage of the technique re-
lates to the fact that it can readily account for the presence of frac-
tional derivative terms in the system governing equations, as well
as for the cases of non-stationary, incomplete and/or noise-corrupted
data. Specifically, the technique relies on recasting the governing
equations as a set of multiple-input-multiple-output systems in the
wavelet domain. Next, an 𝓁1-norm minimization procedure based on
CS theory is employed for determining the wavelet coefficients of the
available incomplete non-stationary input–output data. Finally, these
wavelet coefficients are utilized to reconstruct the non-stationary in-
complete signals, and consequently, to determine system related time-
and frequency-dependent wavelet-based frequency response functions
and associated parameters. The technique can be construed as a gen-
eralization of the multiple-input-single-output methodology pioneered
by Bendat and co-workers (e.g., [178]) to account for non-stationary
and incomplete data, as well as for fractional derivative modeling.

Moreover, in [179,180] a power spectrum blind multi-coset sam-
pling approach was proposed for operational modal analysis appli-
cations involving wireless sensor networks. In comparison with a CS
treatment, the performance of the multi-coset sampling approach ap-
peared rather insensitive to the signal sparsity degree. In [181] a
dictionary learning approach (see also Section 2.8.4) was applied for
nonlinear structural system identification and for determining the un-
derlying governing equations based on available input–output data;
see also [182,183] for indicative applications of sparsity-based algo-
rithms utilizing dictionaries in damage detection problems. It is worth
mentioning that CS concepts have also been used for structural system
impact force identification. Indicatively, in [184] a hybrid 𝓁1∕𝓁2-norm
minimization approach for promoting group sparsity was proposed (see
Section 2.8.3); see also [185,186] for some relevant references.

3.2. Uncertainty modeling and simulation under incomplete data

CS-based techniques have also been developed within the context
of stochastic processes to address problems in stochastic engineering
mechanics related to spectral analysis, statistics estimation and Monte
Carlo simulation under incomplete available data. Specifically, Kou-
gioumtzoglou and co-workers relied on CS theory for stationary and
non-stationary stochastic process power spectrum estimation subject to

missing data [187]. This was done in conjunction with an 𝓁1-norm
optimization algorithm for obtaining a sparse representation of the
signal in the selected basis (i.e., Fourier or wavelets). Notably, the
underlying stochastic process power spectrum can be estimated in a
direct manner by utilizing the determined expansion coefficients; thus,
circumventing the computational cost related to reconstructing the
signal in the time domain.

The technique was enhanced in [188] by utilizing an adaptive basis
re-weighting scheme for increasing further the sparsity of the solution
(see also Section 2.8.1), and was applied in [189] for structural system
response and reliability analysis under missing data. The rationale
relates to applying CS to multiple process records iteratively, and to
utilizing the cumulative information from all records for the purpose
of seeking a sparse representation in an average sense over an en-
semble. By introducing this iterative process to alter basis coefficients,
a significant gain in spectral estimation accuracy was observed as
compared to standard CS. In a similar context, an 𝓁𝑝-norm (0 < 𝑝 < 1)
optimization algorithm was proposed in [190] for promoting solution
sparsity (see also Section 2.8.1). Regarding the effect of the chosen
norm on the power spectrum estimation error, it was shown that the
𝓁1∕2-norm provides almost always a sparser solution than the 𝓁1-norm.
This was corroborated by various examples considering stationary, non-
stationary and two-dimensional processes related to sea wave, wind,
and material properties spectra, respectively. It was also observed that
the reconstruction accuracy of the technique is further enhanced when
coupled with the aforementioned adaptive basis re-weighting scheme.

The above developments have found recently diverse applications
in marine engineering. Indicatively, a methodology based on 𝓁1∕2-norm
minimization (see Section 2.8.1) was proposed for efficient processing
and joint time–frequency analysis of relatively long water wave records
by enabling reconstruction of data recorded at a very low (sub-Nyquist)
sampling rate [191]. Further, a CS technique relying on adaptive basis
re-weighting (see Section 2.8.1 and [188]) was developed in [192]
for extrapolating in the spatial domain and estimating the space–
time characteristics of a sea state based on data collected at very
few spatially sparse points (e.g., wave buoys). This is of considerable
importance to a number of marine engineering applications involving
three-dimensional waves interacting with marine structures, such as
optimizing arrays of wave energy converters. Furthermore, a novel
approach for measuring the sea surface elevation on vertical break-
waters was developed in [193]. Note that this is not a trivial problem
since alternative typically used approaches, such as ultrasonic probes
and image processing, exhibit limitations related to signal distortion
and high computational cost, respectively. In this regard, the authors
in [193] relied on pressure measurements and on a CS-based recon-
struction algorithm in conjunction with a generalized harmonic wavelet
basis. Specifically, the proposed approach leads to an 𝓁1-norm based
constrained optimization scheme, which utilizes the known values
of the free surface data to reconstruct all other missing data while
adhering at the same time to prescribed upper and lower bounds at
all time instants. The approach was also used in [194] as a validation
tool for supporting the veracity of the analytically derived probability
distribution of the nonlinear wave crest height on a vertical breakwater.

In [195] a Bayesian CS approach (see also Section 2.8.2) was
proposed for estimating profiles of soil properties based on sparse mea-
surement data. The approach is capable of quantifying the uncertainty
of the statistical estimates as well, while its performance was assessed
in [196] against alternative widely used techniques for interpolation
of spatially varying and sparsely measured geo-data. From a random
field simulation perspective, the approach was coupled in [197] with a
Karhunen–Loève expansion for generating random field samples within
a Monte Carlo simulation context. It was further generalized in [198]
for simulation of cross-correlated random fields in the spatial domain,
and in [199] to account for non-stationary and non-Gaussian random
fields. Also, it was shown in [200] that the approach can be em-
ployed for random field simulation without the need for ‘‘detrending’’
first, while a bootstrap approach for statistical inference of random
field auto-correlation structure was proposed in [201] based on a
combination of Bayesian CS and Karhunen–Loève expansion.
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3.3. Computationally efficient uncertainty propagation in engineering me-
chanics

Addressing the challenge of uncertainty propagation in engineering
mechanics relates to the development of analytical and numerical
methodologies for stochastic response analysis of engineering systems.
Specifically, ever-increasing computational capabilities, novel signal
processing techniques, and advanced experimental setups have con-
tributed to a highly sophisticated mathematical modeling of the sys-
tem governing equations. In general, these take the form of high-
dimensional stochastic (partial/fractional) differential equations to be
solved for evaluating the system response statistics; see also [202,
203] for a broad perspective. In this regard, a wide range of solu-
tion techniques rely on appropriate (stochastic) representations and
expansions of the system response quantities of interest (e.g., displace-
ments, stresses, etc.), where the objective is to determine the expansion
coefficients accurately and in a computationally efficient manner. Re-
cently, the potential sparsity of such expansions has been exploited
and CS-based strategies have been proposed for reducing the associated
computational cost and for extending the range of applicability of the
techniques to problems of higher dimensions.

In this context, a rather popular solution technique in stochastic me-
chanics relates to the use of polynomial chaos expansions (e.g., [204–
206]). This entails the expansion of the system response quantity on a
basis of (multivariate) polynomials that are orthogonal with respect to
the joint PDF of the input. Recently, polynomial chaos expansions have
been coupled with CS concepts and tools for efficient representation
and determination of the system response (e.g., [44]). This has been
motivated not only by theoretical results showing that multivariate
functions possess sparse expansions in orthogonal polynomial bases
(e.g., [207]), but also by the typically observed structured sparsity
(see also Section 2.8.3) in the polynomial chaos expansions of various
problems; that is, coefficients corresponding to low polynomial orders
tend to be larger than coefficients corresponding to higher orders.

One of the first research efforts to explore the sparsity-promoting
properties of the 𝓁1-norm, in conjunction with a LARS algorithm (see
Section 2.6) for automatically detecting the significant coefficients
of the polynomial chaos expansion, can be found in [208]. Further,
in [209] the polynomial chaos expansion was combined with stan-
dard CS for efficiently constructing a solution representation of elliptic
stochastic partial differential equations. Applications of the technique
to address diverse problems in the fields of molecular biology, astrody-
namics, and computational fluid dynamics can be found in [210,211],
and [212], respectively.

Following the aforementioned relatively standard implementation
of the CS approach, a weighting scheme was proposed in [213] for
further promoting sparsity in the recovery of the expansion coeffi-
cients (see also Section 2.8.1), while an adaptive re-weighting 𝓁1-norm
minimization scheme was applied in [214] for the solution of stochas-
tic partial differential equations. Note that in several cases, such as
in [215], the construction of the weighting matrix 𝑾 in Eq. (26)
can be based on a priori information and on theoretical results about
the decay of the polynomial chaos coefficients. Moreover, additional
information in the form of response derivative estimates may be avail-
able. In this context, gradient-enhanced 𝓁1-norm minimization schemes
were proposed in [216,217] for accelerating the determination of the
polynomial coefficients. Further, it is worth mentioning that alternative
optimization algorithms based on 𝓁𝑝-norm, 𝑝 < 1, [218,219] and on
𝓁1−2-norm [220] (see Section 2.8.1) were also employed for increasing
the sparsity of the obtained polynomial chaos expansion coefficient
vector (see also Section 2.8.1).

More recently, dictionary learning approaches (see Section 2.8.4)
and iterative basis updating schemes were proposed for increasing the
approximation accuracy and for decreasing the required number of
expansion coefficients. In this regard, anisotropic basis sets with more
terms in important dimensions were constructed in [221] in an adaptive

manner, while an incremental algorithm was employed in [222] for
promoting sparsity by exploring sub-dimensional expansions. Also, by
resorting to CS concepts, a basis adaptation technique was developed
in [223] yielding a sparse polynomial chaos expansion. Specifically,
a two-step optimization algorithm was devised, which calculates the
coefficients and the input projection matrix of a low dimensional
polynomial chaos expansion with respect to an optimally rotated basis.
Further, to reduce the number of samples necessary for recovering
the expansion coefficients, importance sampling and coherence-optimal
sampling strategies were developed in [224], and applied in [225] in
conjunction with adaptive global bases; see also [226,227] for relevant
work. It is worth mentioning that Bayesian CS (see also Section 2.8.2)
has also been used in conjunction with polynomial chaos expansions
for basis selection and uncertainty quantification regarding the basis
significance (e.g., [228,229]).

Of course, polynomial chaos expansions are not the only response
representations that have been employed in conjunction with CS strate-
gies for efficient uncertainty propagation. Indicatively, sparse wavelet-
based expansions were employed in [230], and were coupled with
importance sampling schemes for determining the expansion coeffi-
cients in an efficient manner. In [231], a problem-dependent basis in
conjunction with a Karhunen–Loève representation was proposed for
enhancing the sparsity of the coefficient vector. In a relatively different
context, CS was applied in [232] for the computationally efficient cal-
culation of high-dimensional integrals arising in quantum mechanics.
In particular, by interpreting the integrand as a tensor in a suitable
tensor product space, its entries were determined by utilizing an 𝓁1-
norm minimization in conjunction with few only function evaluations.
Next, by employing a rank reduction strategy, the high-dimensional
integrand was cast in the form of a sum of low dimensional functions
to be integrated by a standard Gauss–Hermite quadrature rule.

Further, Kougioumtzoglou and coworkers have recently adapted,
extended, and applied the Wiener path integral methodology, which
originates from theoretical physics (e.g., [233–235]), for the stochastic
response analysis and optimization of diverse engineering dynamical
systems (e.g., [236–242]). Specifically, it has been shown that the joint
response transition PDF of stochastically excited dynamical systems can
be expressed exactly as a functional integral over all possible paths
that the response process may follow [236,237]. Notably, a diverse
class of problems, such as systems endowed with fractional derivative
terms [238] or characterized by singular diffusion matrices [243],
structures exhibiting various nonlinear behaviors [240], as well as sys-
tems subject to non-white, non-Gaussian and non-stationary excitation
processes [244], can be readily addressed by the versatile Wiener path
integral formalism.

Nevertheless, the analytical evaluation of the path integral is, in
general, a highly challenging task, and thus, approximate solution
techniques are typically required. In this regard, the standard approach,
which is referred to in the theoretical physics literature as the semi-
classical approximation, relates to accounting in the path integral only
for the path associated with the maximum probability of occurrence
(also known as the most probable path). Therefore, evaluating the
path integral degenerates to obtaining the most probable path and to
determining its probability. However, obtaining analytically in explicit
form the (dependent on boundary conditions) most probable path is
generally impossible. Thus, a variational problem is solved numerically
for determining a specific point of the joint response PDF. Accordingly,
for an 𝑀-DOF system corresponding to 2𝑀 stochastic dimensions
(𝑀 displacements and 𝑀 velocities), and discretizing the effective
PDF domain using 𝑁 points in each dimension, the number of re-
quired ‘‘measurements’’ (i.e., number of boundary value problems to be
solved numerically) becomes 𝑁2𝑀 . Clearly, this demonstrates the high
computational cost related to a brute-force implementation. However,
it has been shown recently that this ‘‘data acquisition’’ process can
be coupled with versatile expansion schemes, compressive sampling
techniques and group sparsity concepts. Specifically, by utilizing (time-
variant) sparse representations of the response PDF (e.g., monomial or
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wavelet bases) and by exploiting the group structure of the expansion
coefficients (see Section 2.8.3), the response PDF of relatively high-
dimensional nonlinear systems can be determined in a computationally
efficient manner [239,245,246].

4. Concluding remarks

A review of CS theoretical concepts and numerical tools in con-
junction with diverse applications in engineering mechanics has been
attempted from a broad perspective. In this regard, a concerted effort
has been made to highlight the links and interconnections between the
CS theory and algorithms presented in Section 2 and the plethora of
applications in engineering mechanics discussed in Section 3. Hope-
fully, the extensive list of readily available references can serve as a
compass for navigating the interested researcher though the multitude
of CS concepts and applications, even beyond the scope of this paper.

It is anticipated that the currently rapid progress in data science
and machine learning will facilitate further the development, enhance-
ment and application of CS-based techniques in engineering mechanics.
Indicatively, the work in [247] constitutes an interesting effort to-
wards this direction, where deep learning is employed in conjunction
with sparse regression and 𝓁1-norm minimization for simultaneous
reduced-order modeling and data-driven identification of the governing
equations of the dynamical system. Such approaches may prove in
the near future indispensable for the materialization and practical
implementation of emerging concepts in data-driven uncertainty quan-
tification and health monitoring of diverse engineering systems and
structures; see, for instance, the concept of a digital twin mirroring the
physical system and tracking its temporal evolution (e.g., [248]).
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