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1 Introduction

The Brownian Loop Soup (BLS) [1] is an ideal gas of planar loops whose partition function

can be formally written as

Z = 1 +
∞∑
n=1

λn

n!

n∏
i=1

∫
µloop(γi)dγi (1.1)

where one integrates over all possible planar loops γ and loops are weighted according to

the Brownian loop measure µloop studied in [2]. In the BLS, the weights of loops are chosen

in such a way as to make the model conformally invariant. Requiring conformal invari-

ance essentially determines the measure µloop uniquely, up to a multiplicative parameter.

Because of scale invariance, the total weight of all loops contained in any region of space

is infinite, so µloop is an infinite measure (this is the reason it is only determined up to a

multiplicative constant). In this paper, we adopt the standard normalization from [1].

A realization of the BLS consists of a countable collection of loops. In a bounded

domain, when λ ≤ 1/2 the loops form separate clusters. The collection of outer boundaries
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of the clusters of touching loops is a Conformal Loop Ensemble (CLEκ) [3, 4] with parameter

8/3 < κ ≤ 4 related to the BLS intensity λ according go the equation λ = (3κ−8)(6−κ)
4κ . CLEs

are conjectured, and in some cases proven, to describe the scaling limit of cluster boundaries

in various critical models of statistical mechanics, such as the critical Potts models for

q ∈ (1, 4]. For example, the continuum scaling limit of the collection of all macroscopic

boundaries of critical Ising spin clusters corresponds to CLE3 and to a Brownian loop soup

with λ = 1/4 [5].

The intensity λ of the Brownian loop soup is related to the central charge c of the

corresponding statistical mechanical model according to the relation c = 2λ. A discussion

of the central charge of the Brownian loop soup can be found in section 6 of [6]. Since c is

continuous and can be less than one, this demonstrates that the model cannot be unitary

for all values of λ (the minimal models are the only unitary conformal field theories with

c < 1, and they come in a discrete series). Nevertheless, we were able to identify a set

of conformal primary operators with positive conformal dimensions. These operators are

exponentials of the form eiβN(z), where β is a real number (the “charge”) and N(z) is an

integer-valued operator that counts some characteristics of the loops.

In this paper, we will consider the case where N(z) counts the “layering number.” For

each configuration of loops in the ensemble (1.1) defining the BLS, every loop is assigned a

value ±1 with equal probability. Each loop that encircles the point z contributes this value

±1 to N(z).1 For instance, if z lies inside two loops, N(z) will take the value ±2,±1, or 0

depending on what value was assigned to each loop (see figure 1 for an example). Note that

these layering vertex operators are sensitive only to the outer boundary of each Brownian

loop (figure 1b).

Because the BLS is a Poissonian ensemble of loops (that is, each loop is independent

of the others), the probabilities of events in the BLS can be expressed in terms of µloop.

Specifically, we can obtain certain correlation functions in the BLS with suitable cutoffs

simply by taking the exponential of λ times the µloop-weights of certain sets of loops.

In [6], we demonstrated that, after removing the cutoff, eiβN(z) is a scalar primary

with conformal weights that are periodic functions of β, ∆ = ∆̄ = λ
10(1− cosβ), and that

correlation functions of products of these operators vanish unless
∑

i βi = 0 mod 2π. We

computed the two- and three-point functions, but only up to multiplicative constants.

In this paper, we use the results of [8] to determine various expressions for the two-

and three-point correlation functions. Together with a result of [9], we use these results

to compute analytically and in closed form the full four-point correlation function of the

layering vertex operators in the plane, as a function of the positions of the four points, the

intensity λ, and the four charges βi.

The results of [9] were obtained by taking the limit n→ 0 of the critical O(n) model,

which is conformally invariant and describes a single self-avoiding loop in this limit. As just

mentioned, the layering vertex operators in the BLS are sensitive only to the outer boundary

of each Brownian loop, and the outer boundary is by definition self-avoiding. Furthermore,

1In [7], two of us consider a generalization of this procedure where the loops are assigned more general

random values.
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(a) Two Brownian loops. (b) The outer boundaries of the same loops.

Figure 1. Two random Brownian loops with identical parameters. For z within its outer boundary,

each loop contributes ±1 to the layering number N(z), where the sign is chosen randomly and

uniformly. If the purple loop is assigned +1 and the green loop −1, N(z) = 0 for z in the white or

dark green areas, +1 in the purple, and −1 in the light green.

a result of [2] guarantees that there is a unique (up to an overall multiplicative constant)

conformally invariant measure on self-avoiding loops (this is in fact the measure induced by

µloop on the outer boundaries of Brownian loops). Therefore, since every loop in the BLS

is independent of every other loop, we can use results from the n→ 0 of the critical O(n)

model to determine correlation functions in the BLS. Specifically, correlation functions of

the operator eiπN(z) in the BLS are the exponentials of the intensity λ times the correlation

functions of the twist operators considered in [9], and correlation functions of more general

BLS operators can be deduced as well.

With the four-point function in hand, we can expand it in conformal blocks. This

reveals a new set of previously unknown conformal primary operators and their three-

point function coefficients with the layering vertex operators. The physical interpretation

and meaning of these operators is left to future work.

Using the results of [8] we also compute the two-point function in the upper half-plane

(subject to a certain boundary condition on the real axis), as a function of the positions of

the two points, the intensity λ, and the two charges βi. The results of [8] are rigorous and

based on SLE theory [10]. They do not rely on the n→ 0 limit of the O(n) model used in [9].

Limits of this two-point function help determine various constants in the four-point func-

tion. In particular, we obtain the interesting result that the three-point function coefficient

for the canonically normalized layering vertex operators is exactly 1. This is consistent with

our results for the conformal block expansion of the four-point function. Here, by canonical

normalization we mean that the operators are normalized so that the coefficients of the one-

point function in the upper half-plane and the two-point function in the plane are equal to 1.

We also determine the weights for Brownian loops to wind around one point and not

another in the upper half-plane and full plane, and for several other configurations.

– 3 –
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2 Summary and results

Our main result is the derivation of new correlation functions of exponentials of the layering

operators in the BLS. In [6], three of us showed that the conformal dimensions of the

operators eiβN(z) are

∆ = ∆̄ =
λ

10
(1− cosβ). (2.1)

In this work, we obtain the two-point function of these operators in the upper half-plane

with the boundary condition that any loop intersecting the real axis is erased, and the

four-point function in the full plane.

The two-point function in the upper half-plane H (section 3) is given by〈
Õβ1(z1)Õβ2(z2)

〉
H

= |z1−z2|−2(∆1+∆2−∆12)|z1−z2|2(∆1+∆2−∆12)|z1−z1|−2∆1 |z2−z2|−2∆2

×exp

[
−(∆1 +∆2−∆12)(1−σ)3F2

(
1,1,

4

3
;2,

5

3
;1−σ

)]
, (2.2)

where Õβ(z) ∝ eiβN(z) are exponentials of layering operators normalized so that〈
Õβ(z)

〉
H

= |z − z̄|−2∆, and σ, ∆i, and ∆ij are defined in (3.6) and (3.11).

The four-point function of these operators in the full plane C (section 5) is given by〈
4∏
i=1

Oβi(zi)

〉
C

= exp

−2A(x)

 4∑
i=1

∆i −
4∑
j=2

∆1j

 ∣∣∣∣z13z24

z12z34

∣∣∣∣−2∆12
∣∣∣∣z13z24

z14z23

∣∣∣∣−2∆14

×
∣∣∣∣z12z14

z24

∣∣∣∣−2∆1
∣∣∣∣z12z23

z13

∣∣∣∣−2∆2
∣∣∣∣z23z34

z24

∣∣∣∣−2∆3
∣∣∣∣z14z34

z13

∣∣∣∣−2∆4

,

(2.3)

with zij = |zi − zj | and

A(x) =
1

4

[
x 3F2

(
1, 1,

4

3
; 2,

5

3
;x

)
+ x 3F2

(
1, 1,

4

3
; 2,

5

3
;x

)]
− 2 · 2

1
3π2

√
3Γ
(

1
6

)2
Γ
(

4
3

)2 |x(1− x)|
2
3

∣∣∣∣2F1

(
2

3
, 1 :

4

3
;x

)∣∣∣∣2 , (2.4)

where the operators are canonically normalized, so that 〈Oβ1(z1)Oβ2(z2)〉C = |z1−z2|−2∆1 ,

and x is the cross-ratio (5.5).

All n-point functions in the full plane vanish unless a (periodic) charge conservation

condition is satisfied:
n∑
i=1

βi = 2πk, k ∈ Z. (2.5)

The conformal block expansion of the four-point function (2.4) (section 6) reveals

the spectrum of conformal primaries and associated three-point function coefficients. We

find an apparently infinite new set of primary operators of integer spin in the BLS, with

conformal dimensions

∆(p,p′) =
λ

10
(1− cos(β1 + β2)) +

p

3

∆̄(p,p′) =
λ

10
(1− cos(β1 + β2)) +

p′

3
,

(2.6)

where p and p′ are non-negative integers satisfying p− p′ = 0 mod 3.
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Weights for Brownian loops to encircle various subsets of points in the plane or upper

half-plane can be found in (B.1), (B.3), and (5.8).

2.1 Motivation and previous work

In [11], Freivogel and Kleban considered a toy model intended to capture the late-time

physics of cosmic bubble nucleation in eternally inflating or de Sitter spacetime. In a

spacetime with one time and two space dimensions, these bubbles will be disks (with

random fluctuations to their shape) that expand exponentially after their nucleation due

to the expansion of the ambient spacetime. This turns out to imply that on a late time

slice the distribution of disks will be invariant under translations, scale transformations,

rotations, and special conformal transformations [12]. This “disk soup” has intensity λFK

that is equal to the bubble production rate per Hubble time per Hubble volume.

It is widely believed that theories with Poincaré and scale invariance are fully con-

formally invariant. However, the disk soup model of [11] appears to be an exception.

Operators of the form eiβN(z), where N(z) now counts the number of disks that overlap

the point z (the “layering” operator in the parlance of this paper) exhibit the behavior

of primary operators with dimension ∆ = ∆̄ = π
2λFK(1 − cosβ) — explicit computation

shows that their two- and three-point functions have the appropriate z-dependence. How-

ever, the four-point function, while crossing symmetric, is a non-analytic function of the

zi. For this reason there is no conformal block expansion. Presumably, this is because

general conformal transformations do not map disks into disks, so the disk distribution is

not invariant under local conformal transformations.

A primary motivation for [6] was to obtain a full-fledged conformal field theory by

replacing the disk distribution of [11] with the Brownian loop measure [2]. The analog of

the disk model with the disk distribution replaced by the Brownian loop measure is precisely

the BLS [1]. Since the BLS is known to be locally conformally invariant, a theory defined

by it should be a full-fledged local conformal field theory. While [6] demonstrated that

the exponentials of the (loop) layering operators are conformal primary operators, we were

unable to compute the three-point function coefficients or four-point correlation functions.

In this work, we take a major step beyond [6] by obtaining explicit results for the

four-point function in the plane — which indeed is an analytic function of the cross ratio

and has a conformal block expansion — as well as the three-point function coefficients, and

the two-point function on the upper half-plane.

Models with similar properties of our model have been studied in the literature. An

example of an infinite discrete set of primary operators is found in Liouville theory, which

also allows a description in terms of loop ensembles [13]. A very powerful tool in the study

of Liouville theory is the DOZZ formula [14, 15] and its extensions which allow for analytic

expressions of the three-point function coefficients.

As mentioned previously, other conformal theories in two dimensions that can be un-

derstood in terms of random loops are the so-called random cluster models, of which the

q-state Potts model and percolation are special cases. Some recent results in these theories

include [16, 17].

– 5 –
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At this point it is not evident how the BLS model studied here relates to other known

2D conformal theories, except in its explicit connection to the ensemble of a single self-

avoiding random loop that can be obtained from the n → 0 limit of the O(n) model.2

However the periodic-in-β conformal dimensions (2.1) and the infinite set of primary op-

erators with integer spin but dimensions separated by integers/3 (2.6) that we identify

via the conformal block expansion appear to be novel features with no known analogs. It

would be very interesting to explore the connection to the O(n) model in greater depth,

and we intend to do so in future work.

3 The two-point function in the upper half-plane

In this section, we will use the results of [6, 8] to derive the general two-point function of

layering vertex operators in the upper half-plane H. In this section, and in the rest of the

paper, we will make extensive use of a main result from [6]:〈
n∏
j=1

eiβjN(zj)

〉
=

∏
S⊆{z1,...,zn}

S 6=∅

exp

−λα(S|Sc)

1− cos
∑
k∈IS

βk

 . (3.1)

Here the product is over all nonempty subsets S ⊂ {z1, . . . , zn} and IS denotes the set

of indices corresponding to the points of {z1, . . . , zn} contained in S. The α(S|Sc) are

the weights, according to the Brownian loop measure, of the sets of loops that encircle the

points in S but not those in Sc. The loops need to be contained in some domain D, which in

this paper is either the upper half-plane or the full plane. We will denote weights in the up-

per half-plane by αH and weights in the full plane simply by α, and correlation functions by

〈. . .〉H and 〈. . .〉C, respectively. In words, (3.1) states that a general n-point function of lay-

ering vertex operators in the BLS equals the exponential of terms consisting of the weights

for loops that encircle various subsets of the points times the associated conformal weights.

The two-point function in any simply connected domain of the plane can be obtained

from that in H by a conformal transformation, so computing the two-point function in H in

principle gives the two-point function in a domain of any shape. The boundary condition

is that all loops must be confined entirely to the interior of H (that is, one could consider

the BLS on the full plane and remove all loops that intersect the lower half-plane).

Our strategy is to first find the weights of loops that encircle one or both points in

H. Once we have these weights we can immediately write down the two-point function

for general βi using (3.1). We adopt a notation related to that of [6]. For two points

z1 = x1 + iy1, z2 = x2 + iy2 ∈ C let

αH(z1|z2) = µloop{γ : diam(γ) > δ, γ ⊆ H, z1 ∈ γ, z2 6∈ γ}
αH(z1, z2) = µloop{γ : diam(γ) > δ, γ ⊆ H, z1, z2 ∈ γ}.

(3.2)

2As mentioned above, the precise relation is that correlation functions of the operator eiπN(z) in the

BLS are the exponential of the intensity λ times the correlation functions of the twist operators considered

in [9] that were obtained from the n→ 0 limit of the O(n) model.

– 6 –
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Here δ > 0 is a short-distance regulator that we will later take to zero, γ is a loop (left

panel of figure 1), γ is the interior of γ (right panel of figure 1, shaded region), and diam(γ)

is its diameter (the largest distance between any two points on the loop).

In general, the weights of loops that encircle only one point (such as (3.2), first line)

diverge as δ → 0 due to contributions from arbitrarily small loops, infinitely many of which

encircle any given point. Weights of loops that encircle two or more points (such as (3.2),

second line) are finite as δ → 0 because only loops whose diameter is larger or equal to the

distance between the two closest points encircle them.

For |z1 − z2| ≥ δ, using equations (1.5) and (1.3) of [8] (the first multiplied by 6π/5),

we have that

αH(z1, z2) = − π

5
√

3
− 1

10
η3F2

(
1, 1,

4

3
; 2,

5

3
; η

)
− 1

10
log(η(η − 1)) (3.3)

+
Γ(2

3)2

5Γ(4
3)

(η(η − 1))
1
3 2F1

(
1,

2

3
;

4

3
, η

)
= − 1

10

[
log σ + (1− σ)3F2

(
1, 1,

4

3
; 2,

5

3
; 1− σ

)]
, (3.4)

where

η = −(x1 − x2)2 + (y1 − y2)2

4y1y2
=

(z1 − z2)(z1 − z2)

(z1 − z1)(z2 − z2)
(3.5)

and

σ =
|z1 − z2|2

|z1 − z2|2
=

(x1 − x2)2 + (y1 − y2)2

(x1 − x2)2 + (y1 + y2)2
. (3.6)

Notice, for future reference, that η − 1 = (z1−z2)(z1−z2)
(z1−z1)(z2−z2) .

We can use (3.4) and properties of the weight of the loops around z1 in the Brownian

loop measure to get an expression for αH(z1|z2). By using scale and translation invariance

of the Brownian loop measure, and Lemma A1 of [6], if δ ≤ y1, we have

αH(z1) = µloop{γ : diam(γ) > δ, γ ⊆ H, z1 ∈ γ} (3.7)

=
1

5
log

y1

δ
+ α̂ =

1

5
log
|z1 − z1|

2δ
+ α̂, (3.8)

where α̂ = µloop{γ : diam(γ) > 1, γ ⊆ H, z1 ∈ γ̄} is the weight of the loops with diameter

greater than or equal to 1 contained in H and winding around the point z = i. On the

other hand, if |z1 − z2| ≥ δ, then

αH(z1) = αH(z1|z2) + αH(z1, z2); (3.9)

hence, for δ ≤ min(|z1 − z2|, |z1 − z1|/2) we finally obtain

αH(z1|z2) = −αH(z1, z2) +
1

5
log |z1 − z1| −

1

5
log(2δ) + α̂. (3.10)

Using (3.1) and denoting the conformal dimensions by

∆j =
λ

10
(1− cosβj)

and ∆ij =
λ

10
(1− cos(βi + βj)),

(3.11)

– 7 –
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we have〈
eiβ1N(z1)eiβ2N(z2)

〉
H

= exp[−λ((1−cosβ1)αH(z1|z2)+(1−cosβ2)αH(z2|z1)+(1−cos(β1 +β2))αH(z1,z2))]

=
(

2δe−5α̂
)2(∆1+∆2)

|z1−z2|−2(∆1+∆2−∆12)|z1−z2|2(∆1+∆2−∆12)|z1−z1|−2∆1 |z2−z2|−2∆2

×exp

[
−(∆1 +∆2−∆12)(1−σ)3F2

(
1,1,

4

3
;2,

5

3
;1−σ

)]
. (3.12)

This equation implies that the canonical normalization in the upper half-plane is obtained

by multiplying the normalizing factor δ2∆j used in [6] by (2e−5α̂)2∆j . Defining Õβ(z) ≡(
2δe−5α̂

)−2∆
eiβN(z), the two-point function becomes

〈
Õβ1(z1)Õβ2(z2)

〉
H
≡ lim
δ→0

〈
eiβ1N(z1)eiβ2N(z2)

〉
H

(2δe−5α̂)
2(∆1+∆2)

= |z1−z2|−2(∆1+∆2−∆12)|z1−z2|2(∆1+∆2−∆12)|z1−z1|−2∆1 |z2−z2|−2∆2

×exp

[
−(∆1 +∆2−∆12)(1−σ)3F2

(
1,1,

4

3
;2,

5

3
;1−σ

)]
. (3.13)

Note that the one-point function can be immediately obtained from (3.13) by setting, e.g.,

β2 = 0: 〈
Õβ1(z1)

〉
H

= |z1 − z1|−2∆1 . (3.14)

4 The two- and three-point functions in the full plane

In this section, we compute the two- and three-point functions of layering vertex operators

in the full plane. A major difference from the half-plane is that in the full plane all

correlation functions go to zero because of the contribution from large loops, unless the

charge conservation condition
n∑
i=1

βi = 2πk, k ∈ Z (4.1)

is satisfied [6, 11]. This is reminiscent of momentum or charge conservation for the vertex

operators of the free boson, where the condition arises from integration over the zero mode.

Note that this condition would also be clearly necessary were we to define these corre-

lation functions on the sphere rather than the plane, because on a sphere a loop that covers

a subset of points can equally well be interpreted as a loop that covers the complement

of that set (on a compact space there is no notion of the “inside” versus the “outside” of

the loop). Since the plane and the sphere are conformally equivalent, (4.1) is necessary for

consistency (cf. section 5).

The zi dependence of the two- and three-point functions in the full plane follow from

conformal invariance and the fact that the layering vertex operators are conformal pri-

maries [6]. However, this argument does not fix the constant prefactors, which were not

computed in [6]. As we show in appendix A, by taking the limit that the points are far from

– 8 –
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the boundary, we can use our results from the upper half-plane to determine the multiplica-

tive prefactors left undetermined in [6]. We find that the most convenient normalization

in the plane is

Oβ(z) ≡
(

2δe
− π√

3
−5α̂
)−2∆

eiβN(z) = e
− π√

3 Õβ(z), (4.2)

where again α̂ is a constant equal to the weight of loops in the upper half-plane with

diameter larger than 1 and that encircle z = i. Comparing (4.2) to (3.13) shows that the

difference between the canonical normalizations in the half-plane and in the plane is simply

the factor e
2π√
3

∆
.

The two- and three-point functions of Oβ(z) in the limit δ → 0 are

〈Oβ1(z1)Oβ2(z2)〉C = |z1 − z2|−4∆1 (4.3)

and

〈Oβ1(z1)Oβ2(z2)Oβ3(z3)〉C
= |z1 − z2|−2(∆1+∆2−∆3)|z1 − z3|−2(∆1+∆3−∆2)|z2 − z3|−2(∆2+∆3−∆1),

(4.4)

as shown in appendix A. The calculation leading to (4.4) is possible because, when the

three-point function is expressed in terms of α(z1, z2) and α(z1, z2, z3), the coefficient of

α(z1, z2, z3) turns out to be zero thanks to charge conservation (see appendix A). Remark-

ably, the three-point function coefficients are precisely 1 for all values of the βi satisfy-

ing (4.1).

In the notation of [6], these results are equivalent to

C2 =
(

2e
− π√

3
−5α̂
)2(∆1+∆2)

, C3 =
(

2e
− π√

3
−5α̂
)2(∆1+∆2+∆3)

. (4.5)

5 The general four-point function in the plane

In this section, we will compute the general four-point function for the layering operators

in the whole plane. As before, the computation uses (3.1) and the derivation of the weights

of various collections of loops. But while all results presented so far were mathematically

rigorous, this time we rely on a non-rigorous result of [9] obtained taking the n→ 0 limit of

quantities computed for the O(n) model. We also point out, however, that in appendix B

we give a rigorous derivation of a similar result from [9], obtained there with the same

n → 0 technique. This provides additional evidence in favor of the validity of the O(n)

expansion and n→ 0 limit used in [9].
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Consider four points z1, z2, z4, z4 and assume in what follows that the letters i, j, k, ` ∈
{1, 2, 3, 4} are always different. Using (3.1), the four-point function can be written as〈

4∏
i=1

eiβiN(zi)

〉
C

= exp

[
− λ

(
4∑
i=1

(1− cosβi)α(zi|zj , zk, z`)

+
4∑

i,j=1
i<j

(1− cos(βi + βj))α(zi, zj |zk, z`)

+
4∑
i=1

(1− cos(βj + βk + β`))α(zj , zk, z`|zi)

+ (1− cos(β1 + β2 + β3 + β4))α(z1, z2, z3, z4)

)]
,

(5.1)

where the weights α of loops encircling points in the full plane are defined analogously

to (3.2). Imposing the charge conservation condition (4.1), the four-point function becomes〈
4∏
i=1

eiβiN(zi)

〉
C

= exp

[
− λ

(
4∑
i=1

(1− cosβi)αS(zi|zj , zk, z`)

+
4∑
j=2

(1− cos(β1 + βj))αS(z1, zj |zk, z`)

)]
,

(5.2)

where we introduced the weights

αS(S|Sc) ≡ α(S|Sc) + α(Sc|S) (5.3)

for subsets of points S ⊆ {z1, z2, z3, z4}, with Sc denoting the complement of S. For

instance, αS(z1|z2, z3, z4) = α(z1|z2, z3, z4) + α(z2, z3, z4|z1).

As previously mentioned, if we consider the BLS on a sphere rather than the plane,

charge conservation is necessary for consistency because there is no distinction between the

inside and outside of a loop on a sphere. Another implication of this fact is that both “sides”

of the loop must contribute equally to the correlation functions. Under stereographic

projection to the plane, the “outside” of the loop is the side that contains the point that

projects to infinity of the plane, but it remains the case that both the inside and the outside

must contribute. This explains why only the paired weights αS appear in (5.2).

There are a total of seven pairs αS that contribute. Six of these can be determined

from the results we have already obtained for the two-point functions (we can also obtain

relations from the three-point functions, but they are not independent). For the seventh

relation we will use a result of [9].

Choosing β1 = β2 = π, β3 = β4 = 0 in (5.2) reproduces the two-point function. Hence

comparing (5.2) with (3.1) gives the relation

αS(z1|z2, z3, z4) + αS(z2|z1, z3, z4) + αS(z1, z3|z2, z4) + αS(z1, z4|z2, z3)

= 2α(z1|z2) =
2

5
log |z1 − z2|+ 2Q,

(5.4)
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where we used (B.1) in the last equality and Q is defined in (B.2). Five other independent

equations can be obtained by choosing other pairs of the βi equal to π and 0.

The system of six equations we obtain from (5.4) and its permutations has rank six.

An additional independent relation is necessary to solve for the seven αS, and is provided

by [9]. Defining zjk = zj − zk, the cross-ratio

x =
z12z34

z13z24
, 1− x =

z14z23

z13z24
, (5.5)

and the function

A(x) =
1

4

[
x 3F2

(
1, 1,

4

3
; 2,

5

3
;x

)
+ x 3F2

(
1, 1,

4

3
; 2,

5

3
;x

)]
− 2 · 2

1
3π2

√
3Γ
(

1
6

)2
Γ
(

4
3

)2 |x(1− x)|
2
3

∣∣∣∣2F1

(
2

3
, 1;

4

3
;x

)∣∣∣∣2 , (5.6)

equations (21) and (22) of [9] imply that

4∑
i=1

αS(zi|zj , zk, z`) = P (log |xz23z14|+ 2A(x)) + 4(Q+R). (5.7)

Cardy and Gamsa derived this result by solving a linear differential equation that does not

fix the overall normalization or the additive constant, so we have included an overall coeffi-

cient P , and retained an additive constant that we denote 4(Q+R) for future convenience

(we will see shortly that R = 0, and Q is defined by (B.2)).

To determine P we can examine the scaling behavior of the four-point function (5.2)

where we set βi = π and therefore ∆i = λ/5, ∆ij = 0. In general, if O∆,∆ is a pri-

mary of dimension (∆,∆), rescaling zi → ρzi takes log 〈O4
∆,∆〉 → −8∆ log ρ + log 〈O4

∆,∆〉.
Using (5.2), this fixes P = 2/5.

We now have seven independent equations for the seven αS. The solutions are

αS(z1|z2, z3, z4) =
1

5

(
log

∣∣∣∣z12z14

z24

∣∣∣∣+A(x)

)
+Q+R (5.8a)

αS(z2|z1, z3, z4) =
1

5

(
log

∣∣∣∣z12z23

z13

∣∣∣∣+A(x)

)
+Q+R (5.8b)

αS(z3|z1, z2, z4) =
1

5

(
log

∣∣∣∣z23z34

z24

∣∣∣∣+A(x)

)
+Q+R (5.8c)

αS(z4|z1, z2, z3) =
1

5

(
log

∣∣∣∣z14z34

z13

∣∣∣∣+A(x)

)
+Q+R (5.8d)

αS(z1, z2|z3, z4) = −1

5
(log |x|+A(x))−R (5.8e)

αS(z1, z3|z2, z4) = −1

5
A(x)−R (5.8f)

αS(z1, z4|z2, z3) = −1

5
(log |1− x|+A(x))−R (5.8g)

We can now show that R = 0. Consider the four points zi arranged in a rectangle in

cyclical order. If we let a pair of points approach the other pair by taking z1 → z4 and
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z2 → z3 it is clear that α(z1, z3|z2, z4)→ 0, since the measure of loops passing between the

pairs of points goes to zero. In the same limit we have that x→ 1, A(x)→ 0. Comparing

this with (5.8f) shows that R = 0. The weights (5.8e)–(5.8g) coincide with those given in

(29)-(31) of [9], after multiplication by an overall factor 6π/5.

This allows us to write the fully general, normalized four-point function as〈
4∏
i=1

Oβi(zi)

〉
C

= lim
δ→0

(
2δe
−5ᾱ− π√

3

)−2
∑4
j=1 ∆j

〈
4∏
i=1

eiβiN(zi)

〉
C

= exp

−2A(x)

 4∑
i=1

∆i −
4∑
j=2

∆1j

 ∣∣∣∣z13z24

z12z34

∣∣∣∣−2∆12
∣∣∣∣z13z24

z14z23

∣∣∣∣−2∆14

×
∣∣∣∣z12z14

z24

∣∣∣∣−2∆1
∣∣∣∣z12z23

z13

∣∣∣∣−2∆2
∣∣∣∣z23z34

z24

∣∣∣∣−2∆3
∣∣∣∣z14z34

z13

∣∣∣∣−2∆4

,

(5.9)

where A(x) is defined by (5.6) and the ∆i,∆ij by (3.11).

With some algebra and using the identity

A(x)−A(1/x) + log |x| = 0 (5.10)

one can check that the four-point function is invariant under exchange of any pair of indices,

establishing crossing invariance.

5.1 Free-field limit

There is a limit in which the correlators in the full plane become those of free field vertex

operators (the same limit was considered and the same result obtained in [11], for the disk

model studied there). Consider taking βi → 0 and λ→∞ with the product λβ2
i fixed. We

define the field ψ by βN(z) =
√

2γψ(z) with

γ =

√
λ

20
β (5.11)

such that the conformal dimension of the operator eiβN(z) = ei
√

2γψ(z) becomes

∆ =
λ

10
(1− cosβ)→ λ

20
β2 = γ2. (5.12)

This is the correct dimension for a canonically normalized free-field vertex operator ei
√

2γψ.

Now consider (5.9) and note that

4∑
i=1

∆i −
4∑
j=2

∆1j →
4∑
i=1

γ2
i −

4∑
j=2

(γ1 + γj)
2 = 0, (5.13)

where we used the fact that
∑4

i=1 γi = 0. Therefore the factor in (5.9) involving hyper-

geometric functions goes to 1 in this limit, and the remainder reduces immediately to the

correct form for the four-point function of free-field vertex operators:〈
4∏
i=1

Oβi(zi)

〉
C

→
4∏

i,j=1
i<j

|zij |4γiγj =

〈
4∏
j=1

ei
√

2γjψ(zj)

〉
. (5.14)

– 12 –



J
H
E
P
0
7
(
2
0
2
0
)
0
6
7

This same limit should reduce the n-point function in the plane for all n to the free-field

case.

Interestingly, the correlators in the upper half-plane do not reduce to those of free

fields in the same limit. To see this, note that the coefficient of the hypergeometric function

in (3.13), ∆1 + ∆2−∆12, does not vanish in the limit described above. (This is in contrast

to the coefficient of the hypergeometric functions in (5.9), see (5.13).) Since the two-point

function of free-field vertex operators in the upper half-plane is simply a product of powers

of distances between z1 and z2 and their images in the lower half-plane z̄1 and z̄2, (3.13)

does not reduce to the free-field result. Apparently, the boundary condition on the real

axis induces interactions between the bulk operators. The same limit considered here, but

in domains conformally equivalent to a disc (which include the upper half-plane), is studied

in detail in [18].

6 Expansion in conformal blocks

The four-point function of a conformal field theory contains information about the three-

point function coefficients, as well as the spectrum of primary operators. To obtain this

data, one makes use of the operator algebra by performing a conformal block expansion.

By a global conformal transformation, one can always map three of the points appear-

ing in the four-point function to fixed values. The remaining dependence is only on the

cross-ratio (5.5)

x =
z12z34

z13z24
, (6.1)

and its conjugate x̄. Each cross-ratio is invariant under global conformal transformations.

Following the notation of [19] section 6.6.4, we set z1 = ∞, z2 = 1, z3 = x and z4 = 0,

and define

G21
34(x) = lim

z1→∞
z2∆1

1 z̄2∆1
1 〈Oβ1(z1)Oβ2(1)Oβ3(x)Oβ4(0)〉C (6.2)

where ∆1 = ∆1 in our case (note that later on we will consider operators with spin,

∆(p,p′) 6= ∆̄(p,p′)).

We can now proceed to expand the four-point function in Virasoro conformal blocks

G21
34(x) =

∑
P
CP34C

P
12F21

34 (P|x)F̄21
34 (P|x̄). (6.3)

The sum over P runs over all primary operators in the theory, and the CPij are the three-

point function coefficients of the operators labeled by i, j with P. Each P with a non-zero C

contributes a term consisting of a holomorphic function times an anti-holomorphic function

of the cross-ratio. These functions — the Virasoro conformal blocks — depend only on x,

the central charge c, and the conformal dimensions ∆i,∆P of the five operators.

The conformal blocks are given perturbatively by a power series

F21
34 (P|x) = x∆P−∆3−∆4

∞∑
K=0

FKxK , (6.4)
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where the coefficients FK are determined by the Virasoro algebra. The first three terms

are given by (see [19, 20])

F0 = 1

F1 =
(∆P + ∆2 −∆1)(∆P + ∆3 −∆4)

2∆P

F2 =
A+B

C
,

(6.5)

with

A = (∆P + ∆2 −∆1)(∆P + ∆2 −∆1 + 1)

× [(∆P + ∆3 −∆4)(∆P + ∆3 −∆4 + 1)(4∆P + c/2)− 6∆P(∆P + 2∆3 −∆4)]

B = 4∆P(2∆P + 1)(4∆P + c/2)− 36∆2
P (6.6)

C = (∆P + 2∆2 −∆1)

× [4∆P(2∆P + 1)(∆P + 2∆3 −∆4)− 6∆P(∆P + ∆3 −∆4)(∆P + ∆3 −∆4 + 1)].

We now take the limit in the four-point function (5.9) to obtain

G21
34(x) = |x|2(∆12−∆3−∆4)|1− x|2(∆14−∆2−∆3) exp

[
2∆̃A(x)

]
, (6.7)

where A(x) is given by (5.6) and

∆̃ = ∆12 + ∆13 + ∆14 −∆1 −∆2 −∆3 −∆4,

=
λ

10
[−1 + cosβ1 + cosβ2 + cosβ3 + cosβ4

− cos(β1 + β2)− cos(β1 + β3)− cos(β1 + β4)] .

(6.8)

Any consistent four-point function of scalar primary operators must obey the crossing

relations:

G21
34(x) = G41

32(1− x) (6.9a)

= |x|−4∆3G24
31

(
1

x

)
. (6.9b)

These relations follow from the invariance of (5.9) under exchange of any pair of indices,

which we have already verified. However as a check, we can verify (6.9a) directly. By

taking different limits of the four points we obtain

G41
32(x) = |x|2(∆14−∆2−∆3)|1− x|2(∆12−∆3−∆4) exp

[
2∆̃A(x)

]
(6.10)

G24
31(x) = |x|2(∆13−∆1−∆3)|1− x|2(∆14−∆2−∆3) exp

[
2∆̃A(x)

]
. (6.11)

It is easy to see that (6.7), (6.10) and (6.11) indeed satisfy (6.9a) (again making use of the

identity (5.10)).
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6.1 Primary operator spectrum

As explained above, the expansion of G21
34(x) around x = 0 reveals the spectrum of dimen-

sions of the primary operators that couple to the layering vertex operators. The hyperge-

ometric functions appearing in A(x) are regular as x → 0. As a result, the leading power

comes from the term |x|2(∆12−∆3−∆4), where ∆12 = ∆34 = λ
10(1 − cos(β3 + β4)). There-

fore, the lightest operator with non-zero three point function with eiβ3N(z3)eiβ4N(z4) and

eiβ1N(z1)eiβ2N(z2) has dimension ∆12 = ∆34, the dimension of the operator e−i(β3+β4)N(z).

Furthermore, the three-point function coefficient is equal to 1. Presumably, this operator

is indeed e−i(β3+β4)N(z) = ei(β1+β2)N(z), although we cannot be certain as we do not have

complete knowledge of all its three-point function coefficients.

The next term in the expansion of G21
34(x) comes from the x1/3

2F1(2/3, 1; 4/3;x) =

x1/3(1 + O(x)) term. Since there are no other terms with the power x1/3, there must

be at least one primary operator with dimension ∆12 + 1/3. Similarly, expanding the

exponential to quadratic order gives a term proportional to the square of the previous

one, x2/3
2F1(2/3, 1; 4/3;x)2/2. This indicates the existence of a primary with dimension

∆12 + 2/3.

The question of whether there is a primary with ∆12 + 3/3 = ∆12 + 1 is more subtle,

because this power of x also appears in the expansion of the ∆12 conformal block. To

see that such an operator indeed exists, we could compute (the square of) its three-point

function coefficient by subtracting the contribution from that of the ∆12 block, and see

that the result is non-zero.

Let us now make this procedure systematic for the first few levels of operators. As

noted before, it appears there exist operators of dimension (∆p,p′ , ∆̄p,p′) with

∆(p,p′) = ∆12 +
p

3
= ∆34 +

p

3
=

λ

10
(1− cos(β1 + β2)) +

p

3

∆̄(p,p′) =
λ

10
(1− cos(β1 + β2)) +

p′

3

(6.12)

for some non-negative integers p, p′ that couple to eiβ3N(z3)eiβ4N(z4) and eiβ1N(z1)eiβ2N(z2).

We need to compare the expansion of

G21
34(x) = |x|−2(∆3+∆4)

∞∑
m,n=0

amnx
m/3x̄n/3 (6.13)

to the conformal block expansion (6.3) in which we must allow the operators to have non-

zero spin (∆p,p′ may be different from ∆̄p,p′). To accommodate the previous results we write

G21
34(x) = |x|−2(∆3+∆4)

∞∑
p,p′,
i,j=0

C
(p,p′)
34 C

(p,p′)
12 F (p)

i F̄
(p′)
j xi+p/3x̄j+p

′/3, (6.14)

where we now sum over all non-negative integers i, j, p, p′. Here F
(p)
i F̄

(p′)
j denote the

conformal block coefficients evaluated at (6.12).

By identifying the coefficients order by order in x and x̄ we can find the products of

three-point coefficients C
(p,p′)
34 C

(p,p′)
12 . Every non-zero combination shows the existence of
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(c) β1 = β2 = β3 = β4 = π
2 .

Figure 2. The non-zero products C
(p,p′)
34 C

(p,p′)
12 are shown for different choices of βi.

an operator with dimensions (∆p,p′ , ∆̄p,p′) in the operator spectrum to which two layering

vertex operators fuse.

We use a code developed by Matt Headrick [20] to generate the conformal block co-

efficients up to third order, which allows us to consider terms up to order O(x11/3). The

non-zero three point coefficients are marked in figure 2. We denote µ = 21/3π2

3
√

3Γ(1/6)2Γ(4/3)2
.

Below, we give the first few three-point function coefficients from different blocks. These

grow very rapidly in complexity with increasing p, p′.

C
(0,0)
34 C

(0,0)
12 = 1

C
(1,1)
34 C

(1,1)
12 = −48

5
µλ sin

β1

2
sin

β2

2
sin

β3

2
sin

β1 + β2 + β3

2

C
(2,2)
34 C

(2,2)
12 =

1

2

(
C

(1,1)
34 C

(1,1)
12

)2

C
(3,3)
34 C

(3,3)
12 =

1

3!

(
C

(1,1)
34 C

(1,1)
12

)3
.

(6.15)

C
(4,4)
34 C

(4,4)
12 and the following terms are very lengthy. The first few off-diagonal terms of

the form C(n,n+3) = C(n+3,n) are

C
(0,3)
34 C

(0,3)
12 = 0 (6.16)

C
(1,4)
34 C

(1,4)
12 =

24µλ2

5

(
cos β32 −cos

(
β1 +β2 + 3β3

2

))
sin β1

2 sin
(
β1−β2

2

)
sin β2

2 sin β3
2

−10−3λ(1−cos(β1 +β2))

C
(2,5)
34 C

(2,5)
12 =

1152µ2λ3

25

(cos(β1 +β3)−cos(β2 +β3))
(

sin β1
2 sin β2

2 sin β3
2 sin

(
β1+β2+β3

2

))2

−20−3λ(1−cos(β1 +β2))

C
(3,6)
34 C

(3,6)
12 =−9216µ3λ4

125

(cos(β1 +β3)−cos(β2 +β3))
(

sin β1
2 sin β2

2 sin β3
2 sin

(
β1+β2+β3

2

))3

−10−λ(1−cos(β1 +β2))
.
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The first term of the form C(n,n+6) = C(n+6,n) is

C
(0,6)
34 C

(0,6)
12 = − λ2

200
[11 + 5(cos β1 + cosβ2 − cos(β1 + β2)]

× sin
β1

2
sin

β2

2
sin

β3

2

[
6 sin

β1 + β2 − β3

2
+ 17 sin

β1 + β2 + β3

2

+ 5 sin
3(β1 + β2 + β3)

2
− 6 sin

3(β1 + β) + β3

2
+ 5 sin

β1 + β2 + 3β3

2

]
× [25 + 14λ+ cos(β1 + β2)(25− λ(18− 4 cos2(β1 + β2)))]−1. (6.17)

We now analyze two special cases for which the three-point coefficients simplify consid-

erably. Consider first the case β1 = β2 = β3 = β4 = π. We denote C
(p,p′)
34 = C

(p,p′)
12 = C(p,p′).

The first few diagonal terms C(n,n) are given for 0 ≤ n ≤ 6 by(
C(n,n)

)2
=

1

n!

(
C(1,1)

)2n
, (6.18)

with (
C(1,1)

)2
=

48

5
λµ. (6.19)

The term with n = 7 is(
C(7,7)

)2
=

768µλ3

19140625

(
125

(7− 15λ)2
+ 37158912µ6λ4

)
. (6.20)

The first few off-diagonal terms are of the form C(n,n+6) = C(n+6,n)

(
C(6,0)

)2
= 0(

C(7,1)
)2

= −192

875

λ2µ

15λ− 7(
C(8,2)

)2
=

288

4375

161λ− 50

21λ+ 2
λ2µ2(

C(9,3)
)2

=
1536

21875

59λ− 25

λ+ 1
λ3µ3.

(6.21)

Now consider the case β1 = β2 = β3 = β4 = π
2 . The diagonal terms for 0 ≤ n ≤ 5 are

(
C(n,n)

)2
=

1

n!

(
C(1,1)

)2n
(6.22)

with (
C(1,1)

)2
= −12

5
λµ. (6.23)

The n = 6 term is (
C(6,6)

)2
=

λ2

1250000
(125 + 331776µ6λ4). (6.24)
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The first few off-diagonal terms C(n,n+6) are(
C(6,0)

)2
= − λ

100(
C(7,1)

)2
=

3λ2µ

1750

2268λ2 + 5835λ− 1450

162λ2 + 390λ− 175(
C(8,2)

)2
= −9λ2µ2

4375

1134λ3 + 5835λ2 + 2350λ+ 1250

81λ2 + 390λ+ 25(
C(9,3)

)2
=

36λ3µ3

21875

252λ3 + 1945λ2 + 2050λ+ 1250

18λ2 + 130λ+ 75
.

(6.25)

6.2 Interpretation

We leave the physical interpretation of these new primaries to future work. A hint is

provided by [21], which considers the O(n) model as n→ 0. There the four-point function

is essentially the log of the one considered here for βi = π, and only a finite number of

primaries appear in the fusion products. The primary corresponding to (p = 1, p′ = 1)

in our notation has dimension
(

1
3 ,

1
3

)
when βi = π, and is identified as the leading order

energy density operator of the O(n) model (in the limit n→ 0).

One important caveat to our results in this section is that the three-point function

coefficients obtained from the conformal block expansion do not entirely determine the

spectrum of primaries. Clearly, there could be primaries in the theory with vanishing

three-point coefficients with the layering vertex operators, and these would be invisible to

us. A more subtle issue can also arise in the other direction if there are multiple operators

with the same conformal dimensions that couple to the vertex operators. In that case

one can only determine the sum of the squares of the three-point coefficients. Since these

squared coefficients can evidently be negative, there could be cancellations. Therefore it

is logically possible we are missing some operators in the theory that couple to the vertex

operators, as there could be multiple degenerate primaries that couple with three-point

coefficients with squares that sum to zero.

6.3 Null descendant states

Some of the three-point function coefficients we have calculated diverge at special values

of λ, βi. For instance, with all βi = π we have(
C(1,7)

)2
=
(
C(7,1)

)2
= −192

875

λ2µ

15λ− 7
. (6.26)

This coefficient diverges when λ = 7/15, or c = 14/15. One expects CFTs with c < 1

to contain null descendants of primaries with certain conformal dimensions. Indeed, at

c = 14/15 the Kac determinant vanishes at second level for a primary with dimension

∆ = 1/3 (h2,1 in standard notation, see for instance [19]). Vanishing at second level means

a state with dimension 1/3 should become null. When this happens the corresponding three

point coefficient diverges, because the norm of the state appears in the denominator. The

dimension of the operator corresponding to C(1,7) is indeed ∆(1,7) = (λ/10)(1 − cos(β1 +

β2)) + p/3 = 1/3 for βi = π and p = 1, as expected from this argument.3

3We thank Alex Maloney and Liam Fitzpatrick for discussions on this point.
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The four-point function (5.9) is an analytic function of all its parameters and ar-

guments. In particular, the conformal block expansion (6.14) remains finite even when

three-point coefficients diverge due to a null state. This occurs because the conformal

blocks F (p)
i vanish so that the product C

(p,p′)
34 C

(p,p′)
12 F (p)

i F
(p′)
j remains finite, which is the

expected behavior in general for the conformal block expansion of correlation functions of

primary operators with null descendant states.

7 Outlook

Our results for the correlation functions raise many interesting questions. First, it is

possible that we can extend our techniques to compute n-point correlation functions for

arbitrary n. This would provide new results for the winding probabilities of Brownian

loops. The spectrum of new primary operators we discovered needs investigation, as we do

not know how to identify these operators either in terms of a previously known CFT, or in

terms of the BLS.

Another interesting direction is to generalize the random variables assigned to the

loops. Here we considered the layering operator and assigned a random ±1 to each loop.

In ongoing work to appear soon, two of us (Foit and Kleban) have considered more general

distributions of random weights. This gives rise to an infinite class of new conformally

invariant systems for which we can compute exact four-point functions that depend on

additional continuous parameters characterizing the distribution of weights.
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A Full-plane limits

In this appendix, we derive the results of section 4 by taking limits of our results from the

upper half-plane.

We consider the two-point function first and apply charge conservation, which implies

∆12 = 0. Taking

ζ1(t) = x1 + i(y1 + t), ζ2(t) = x2 + i(y2 + t) (A.1)

with t ≥ 0 and z1 = x1 + iy1, z2 = x2 + iy2, we can express the two-point function in the

complex plane as the limit of two-point functions in the upper half-plane, as follows:〈
eiβ1N(z1)eiβ2N(z2)

〉
C

= lim
t→∞

〈
eiβ1N(ζ1(t))eiβ2N(ζ2(t))

〉
H
. (A.2)
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To see this, note that〈
eiβ1N(ζ1(t))eiβ2N(ζ2(t))

〉
H

=
〈
eiβ1N(z1)eiβ2N(z2)

〉
Ht

= e−λαHt (z1|z2)(1−cosβ1)e−λαHt (z2|z1)(1−cosβ2),
(A.3)

where Ht is the half-plane {(x, y) : y ≥ −t}. The weights αHt(zj |zk), for unequal j, k = 1, 2,

are increasing in t and bounded above by α(zj |zk), which is finite by thinness of the

Brownian loop measure µloop [22]; this implies that they have a finite limit as t → ∞.

Moreover

α(zj |zk)− αHt(zj |zk) ≤ µloop(γ : diam(γ) ≥ t, γ intersect z1z2)→ 0, (A.4)

as t→∞, where z1z2 is the segment connecting z1 and z2, again by thinness. This shows

that limt→∞ αHt(zi|zj) = α(zi|zj) and proves (A.2).

We are interested in calculating

〈Oβ1(z1)Oβ2(z2)〉C = lim
δ→0

〈
eiβ1N(z1)eiβ2N(z2)

〉
C(

2δe
− π√

3
−5α̂
)2(∆1+∆2)

= lim
δ→0

lim
t→∞

〈
eiβ1N(ζ1(t))eiβ2N(ζ2(t))

〉
H(

2δe
− π√

3
−5α̂
)2(∆1+∆2)

.

(A.5)

For any δ < |z1−z2|, using Lemma A1 of [6] and letting α|zi−zj |,Ht(zi|zj) denote the weight

of all loops of diameter at least |zi− zj | contained in Ht and winding around zi but not zj ,

we have that

αHt(z1|z2) =
1

5
log
|z1 − z2|

δ
+ α|z1−z2|,Ht(z1|z2), (A.6)

which allows us to write

δ−2(∆1+∆2)
〈
eiβ1N(ζ1(t))eiβ2N(ζ2(t))

〉
H

= δ−2(∆1+∆2)
〈
eiβ1N(z1)eiβ2N(z2)

〉
Ht

= e−λαHt (z1|z2)(1−cosβ1)e−λαHt (z2|z1)(1−cosβ2)

=
e−10∆1α|z1−z2|,Ht (z1|z2)e−10∆2α|z1−z2|,Ht (z2|z1)

|z1 − z2|2(∆1+∆2)
,

(A.7)

which is independent of δ. Because of this, we can exchange the limits in (A.5) and write

〈Oβ1(z1)Oβ2(z2)〉C = lim
t→∞

lim
δ→0

〈
eiβ1N(ζ1(t))eiβ2N(ζ2(t))

〉
H(

2δe
− π√

3
−5α̂
)2(∆1+∆2)

= lim
t→∞
〈Oβ1(ζ1(t))Oβ2(ζ2(t))〉H .

(A.8)

Notice also that

lim
t→∞

ζ1(t)− ζ1(t)

ζ1(t)− ζ2(t)
= lim

t→∞

2i(y1 + t)

(x1 − x2) + i(y1 + y2 + 2t)
= 1,

lim
t→∞

ζ2(t)− ζ2(t)

ζ1(t)− ζ2(t)
= lim

t→∞

2i(y2 + t)

(x1 − x2) + i(y1 + y2 + 2t)
= 1.

(A.9)
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It follows that

lim
t→∞

η = 0, lim
t→∞

σ = 0, lim
t→∞

σ

η
= 1 (A.10)

and

lim
η→0

η3F2

(
1, 1,

4

3
; 2,

5

3
; η

)
= lim

η→0
η2F1

(
1,

2

3
;

4

3
, η

)
= 0. (A.11)

From the equality of (3.3) and (3.4) we have that

lim
t→∞

(1− σ)3F2

(
1, 1,

4

3
; 2,

5

3
; 1− σ

)
=

2π√
3
. (A.12)

Applying charge conservation β1 +β2 = 2πZ, from (3.13), (A.8) and (4.2) we have that〈
Õβ1(z1)Õβ2(z2)

〉
C

= lim
t→∞

〈
Õβ1(ζ1(t))Õβ2(ζ2(t))

〉
H

= lim
t→∞
|ζ1(t)− ζ2(t)|−2(∆1+∆2)|ζ1(t)− ζ2(t)|2(∆1+∆2)

× |ζ1(t)− ζ1(t)|−2∆1 |ζ2(t)− ζ2(t)|−2∆2

× exp

[
−(∆1 + ∆2)(1− σ)3F2

(
1, 1,

4

3
; 2,

5

3
; 1− σ

)]
=
(
e
π√
3

)−4∆1

|z1 − z2|−4∆1 ,

(A.13)

where we used the fact that ∆1 = ∆2. This gives an expression in terms of α̂ for the

constant appearing in the full-plane two-point function in [6]; with the normalization used

in [6] (see the Summary and Results section, below (2.3)) the constant C2 defined there is

C2 =
(

2e
− π√

3
−5α̂
)2(∆1+∆2)

=
(

2e
− π√

3
−5α̂
)4∆1

. (A.14)

Absorbing the constants
(

2e
− π√

3
−5α̂
)2∆j

into the definition of Oβj (see (4.2)) gives the

canonically normalized two-point function in the plane:

〈Oβ1(z1)Oβ2(z2)〉C = |z1 − z2|−4∆1 . (A.15)

It turns out that we can also compute the three-point functions in the full plane

using only the Brownian loop weights of the collections of loops encircling one and two

points in the upper half-plane. Given zi, zj , zk ∈ C, for distinct i, j, k ∈ {1, 2, 3} and

δ ≤ minij |zi − zj |, we have the six relations

αH(zi) = αH(zi|zj , zk) + αH(zi, zj |zk) + αH(zi, zk|zj) + αH(z1, z2, z3)

αH(zi, zj) = αH(zi, zj |zk) + αH(z1, z2, z3)
(A.16)

which give

αH(zi, zj |zk) = αH(zi, zj)− αH(z1, z2, z3)

αH(zi|zj , zk) = αH(zi)− αH(zi, zj)− αH(zi, zk) + αH(z1, z2, z3).
(A.17)

– 21 –



J
H
E
P
0
7
(
2
0
2
0
)
0
6
7

It follows from (3.1) that

〈
eiβ1N(z1)eiβ2N(z2)eiβ3N(z3)

〉
H

= exp

[
− λ

(
3∑
j=1

(1− cosβj)αH(zj |zi, zk) +

3∑
j,k=1
j<k

(1− cos(βj + βk))αH(zj , zk|zi)

+ (1− cos(β1 + β2 + β3))αH(z1, z2, z3)

)]

= exp

[
− λ

(
3∑
j=1

(1− cosβj)αδ,H(zj) (A.18)

+

3∑
j,k=1
j<k

(
− (1− cosβj)− (1− cosβk) + (1− cos(βj + βk))

)
αH(zj , zk)

+

( 3∑
j=1

(1− cosβj)−
3∑

j,k=1
j<k

(1− cos(βj + βk)) + 1− cos(β1 + β2 + β3)

)
αH(z1, z2, z3)

)]
.

Charge conservation, β1 + β2 + β3 = 2πZ, implies that cos(βi + βj) = cos(βk), and hence

the coefficient of αH(z1, z2, z3) is identically zero. Using (3.7) and letting σjk =
|zj−zk|2
|zj−zk|2

,

this gives

〈
eiβ1N(z1)eiβ2N(z2)eiβ3N(z3)

〉
H

=
(

2δe−5α̂
)2(∆1+∆2+∆3)

3∏
i=1

|zi−zi|−2∆i

3∏
j,k=1
j<k

(
|zj−zk|−2(∆j+∆k−∆jk)|zj−zk|2(∆j+∆k−∆jk)

×exp

[
−λ(∆j +∆k−∆jk)(1−σjk)3F2

(
1,1,

4

3
;2,

5

3
;1−σjk

)])
. (A.19)

The three-point function in the full plane can be obtained as a limit of three-point functions

in the upper half-plane, as in the case of the two-point function treated above (see (A.8)).

Using charge conservation and the full-plane canonical normalization factor, and letting
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ζj(t) = zj + it, this leads to

〈Oβ1(z1)Oβ2(z2)Oβ3(z3)〉C

= lim
δ→0

lim
t→∞

(
2δe
−5α̂− π√

3

)−2
∑3
j=1 ∆j

〈
eiβ1N(ζ1(t))eiβ2N(ζ2(t))eiβ3N(ζ3(t))

〉
H

= lim
t→∞

lim
δ→0

(
2δe
−5α̂− π√

3

)−2
∑3
j=1 ∆j

〈
eiβ1N(ζ1(t))eiβ2N(ζ2(t))eiβ3N(ζ3(t))

〉
H

= lim
t→∞

(
e
− π√

3

)−2
∑3
j=1 ∆j

3∏
i=1

|ζi(t)− ζi(t)|−2∆i

×
3∏

j,k=1
j<k

(
|ζj(t)− ζk(t)|−2(∆j+∆k−∆jk)|ζj(t)− ζk(t)|2(∆j+∆k−∆jk)

× exp

[
−(∆j + ∆k −∆jk)(1− σ)3F2

(
1, 1,

4

3
; 2,

5

3
; 1− σ

)])
= |z1 − z2|−2(∆1+∆2−∆12)|z1 − z3|−2(∆1+∆3−∆13)|z2 − z3|−2(∆2+∆3−∆23)

= |z1 − z2|−2(∆1+∆2−∆3)|z1 − z3|−2(∆1+∆3−∆2)|z2 − z3|−2(∆2+∆3−∆1), (A.20)

where we have used (A.12) to compute the t→∞ limit. Surprisingly, the overall coefficient

of the three-point function is simply 1, and does not depend on the βi. (This was also the

case for the three-point functions in the disk model of [11]).

From (A.20) we obtain an expression in terms of α̂ for the constant appearing in the

three-point function in [6]; with the normalization used there (see the Summary and Results

section, below (2.3))

C3 =
(

2e
− π√

3
−5α̂
)2(∆1+∆2+∆3)

. (A.21)

B Weights of loops covering one point and not a second

With an ultraviolet cutoff δ, the weight α(z1|z2) of loops in the plane that encircle z1

but not z2 is finite as a consequence of the thinness of the loop soup (see [22]). Starting

from (3.10) and (3.4), one can derive an explicit expression for α(z1|z2) in terms of α̂, as

follows. For two points z1, z2 ∈ C, δ ≤ |z1 − z2|, and z1(t), z2(t) as in appendix A, we have

α(z1|z2) = α(z2|z1) = lim
t→∞

αH(ζ1(t)|ζ2(t))

= lim
t→∞

[
−αH(ζ1(t), ζ2(t)) +

1

5
log |ζ1(t)− ζ1(t)| − 1

5
log(2δ) + α̂

]
=

1

5
log |z1 − z2| −

1

5
log(2δ) + α̂

+
1

5
lim
t→∞

[
log
|ζ1(t)− ζ1(t)|
|ζ1(t)− ζ2(t)|

+
1

2
(1− σ)3F2

(
1, 1,

4

3
; 2,

5

3
; 1− σ

)]
=

1

5
log |z1 − z2|+Q,

(B.1)
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where we defined the constant

Q =
π

5
√

3
− 1

5
log(2δ) + α̂ (B.2)

and again α̂ is the weight of loops in the upper half-plane with a diameter larger than 1

and that encircle z = i. Note that the analogous calculation of α(z1|z2, z3) from (A.17) is

not possible as α(z1, z2, z3) is not known.

A similar computation, this time combining (3.10) with (3.3), provides an explicit

expression for the linear term of the O(n) expansion in [9], namely

αH(z1|z2) + αH(z2|z1)

= −2αH(z1, z2) +
1

5
log(|z1 − z1||z2 − z2|)−

2

5
log(2δ) + 2α̂

=
2π

5
√

3
+

1

5
η3F2

(
1, 1,

4

3
; 2,

5

3
; η

)
+

1

5
log(η(η − 1))−

2Γ
(

2
3

)2
5Γ(4

3)
(η(η − 1))

1
3 2F1

(
1,

2

3
;

4

3
; η

)
+

1

5
log(|z1 − z1||z2 − z2|)−

2

5
log(2δ) + 2α̂ (B.3)

= −1

5

[
− η3F2

(
1, 1,

4

3
; 2,

5

3
; η

)
+

2Γ
(

2
3

)2
Γ
(

4
3

) (η(η − 1))
1
3 2F1

(
1,

2

3
;

4

3
; η

)
− log(η(z1 − z2)(z2 − z1))

]
+ 2Q.

This coincides with the expression in square brackets at the end of p. 12998 of [9] multiplied

by −3π/5, which confirms the validity of the O(n) expansion used in [9], at least in the case

of the two-point function. While we cannot rigorously verify the validity of the expansion

in the crucial case of the four-point function, the calculation above provides additional

evidence in favor of the general validity of the O(n) expansion and n→ 0 limit.

Open Access. This article is distributed under the terms of the Creative Commons

Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in

any medium, provided the original author(s) and source are credited.
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