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1 Introduction

The landscape paradigm for solving the cosmological constant (CC) problem requires the
existence of an enormous number of meta-stable phases (“vacua”) with differing vacuum
energies [1, 2]. For theories where the fundamental scale is of order the Planck scale there
must be Nvac & M4

Pl/ρDE ∼ 10120 such local minima of the potential, where ρDE is the
observed dark energy density. Theories complex enough to contain such a large number of
phases are in general extremely difficult to analyze at any level. Unfortunately, the dynamics
of the theory are essential to the putative solution of the CC problem. The reason is that
while small vacuum energy is necessary to allow structures to form, it is not sufficient. The
cosmological histories may be such that other effects prohibit structure formation. The
prototypical example of this is when the low-CC vacua are populated by tunneling, as one
expects to be generic in the landscape. In this case the negative curvature of the initial
universe after the tunneling inhibits structure formation even when the CC is small [3]. To
avoid this, the tunneling must be followed by ∼ 60 efolds of inflation (assuming a level of
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initial density perturbations roughly commensurate with observation). Without inflation no
structures form despite the small CC and the anthropic argument for the small CC fails.
But landscapes with small CC minima may not contain such trajectories (for instance, the
“double well to the power N” toy landscape of [4]).

In [5, 6] we developed a powerful framework for analyzing general theories involving N
axion fields θi coupled through a potential comprised of P > N non-perturbative effects, and
this is the third paper in this series. Our technique is based on identifying the set of exact and
approximate shift symmetries of the axion potential. These symmetries are an extraordinarily
powerful tool because the approximate symmetries are often extremely close to exact. For
instance, this renders the task of locating the potential’s critical points tractable, even in
field spaces with hundreds of dimensions. Once equipped with the symmetries one may apply
repeated shifts to the global minimum by the approximate symmetries, and mod out by the
exact ones, to enumerate the distinct local minima. In addition to the field space locations
of extrema, we also showed how to retrieve important features of the potential like Hessian
eigenvalues, and field ranges in the basins of attraction of minima from simple computations.
The purpose of this paper is to apply that formalism to the context of cosmology and to
determine whether axion landscapes can solve the CC problem.

The techniques developed in [6] apply to axion potentials of the form

V = V0 +
P∑
I=1

Λ4
I

[
1− cos(Qθ + δ)I

]
. (1.1)

Our notation is that of [6]: bold represents a vector or matrix. Here V0 is a constant, the Λ4
I

are the couplings of the axions to the non-perturbative effects, θ are the N axion fields, Q
is a P ×N rank N matrix containing integer charges QIj , and δI are constant phases. When

P > N and P −N � N the δI can be set to zero to a very good approximation by a shift
in field space [6]. The kinetic term is assumed to be field-independent:

Laxion =
1

2
∂θ>K∂θ − V , (1.2)

with K a positive definite N ×N matrix.
The theory (1.2) is motivated by the study of compactifications of string theory, where

there are often hundreds axion fields [7–15]. The shift symmetry of the axions is broken by
non-perturbative effects, giving rise to a potential of the form (1.1). We model this by taking
the charge matrix Q as a random matrix with independent identically distributed integer
entries QIj , with variance σ2

Q. The simplest choice for the ΛI and K is ΛI = Λ, ∀I, and

K = f21 with fixed f . In [6] we considered more general random (positive) ensembles. In
most of this paper we will stick with the simplest choice, although in section 3 we discuss
more general K, and in section 4 we consider the large hierarchy in the ΛI that can arise
when some of the terms in (1.1) come from gravitationally suppressed instantons.

Because we are motivated by string theory, we will choose all the dimensionful parame-
ters at around the same scale: Λ . f ∼MGUT ∼Mstring ∼ 10−2MPl and N ∼ few× 102. In
the later sections of the paper we will consider a minimal coupling to QCD or a U(1) with
random, MGUT-suppressed couplings, and the effects of gravitational instantons with actions
of order MPl/f . With these parameters and the techniques of [6] we can test whether this
landscape truly solves the CC problem — that is, whether those cosmological histories in
which collapsed structures form (à la [1, 3]) do in fact resemble our universe.
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Remarkably, without any model building and with only this simple requirement, typical
cosmological histories have the following features our universe:

• An extremely small CC, of order ρDE ∝ e−O(1)× MPl
MGUT .

• An age of over 10 billion years.

• Approximately 60 efolds of slow roll inflation with a primordial power spectrum δρ/ρ ∼
10−5.

• Reheating following inflation.

• Roughly the observed abundance of dark matter.

In the final work [16] of this series of papers we demonstrate how the above features arise nat-
urally in multi-axion theories simply from restricting to cosmological histories in which gravi-
tationally collapsed structures can form. For instance, the exponential suppression of the CC
in the first bullet point originates from the small dark matter density relative to the density of
radiation, which itself arises naturally from ultra-light axions that interact only with gravity.
In this paper we lay the groundwork for that analysis by studying the cosmology of multi-
axion theories more generally, including observables such as the inflationary power spectrum,
the abundance of dark matter and the status of an axion solution to the strong CP problem.

The structure of this paper follows the order of our list. In section 2 we consider vacuum
decay and demonstrate that a vast number of vacua are stable on cosmological timescales.
In section 3 we discuss how the inflationary dynamics and observables in extremely complex
multi-axion theories can be sampled efficiently, and we demonstrate that a single theory
allows for a broad range of observables. We discuss fuzzy dark matter in section 4 and show
that gravitational instantons do not spoil the axion solution of the strong CP problem.

2 Vacuum transitions

In the semiclassical approximation to the decay of de Sitter vacua, there are two mecha-
nisms at work:1 quantum tunneling through a barrier and thermal evaporation to the top
of a barrier [17]. The decay proceeds either by a Coleman-de Luccia (CdL) instanton [18]
that represents the least-action combination of these two mechanisms, or solely by thermal
evaporation via a Hawking-Moss (HM) instanton [19].

In this section we examine decays for a certain class of vacua in our axion landscape,
namely those with vacuum energy density sufficiently close to the global minimum that a
quadratic approximation of the potential is applicable. Specifically, this means we will focus
on vacua for which the arguments of the cosines, (Qθ)I , in (1.1) are close to integer multiples
of 2π (for all 1 ≤ I ≤ P ). Such vacua are under very good analytic control. We will avoid a
precise definition of the quadratic domain, i.e. which vacua we consider to be well-described
by a quadratic expansion of the potential, as our qualitative results are independent of the
precise choice.

When −V0 = |V0| � Λ4, all vacua with nearly zero or negative vacuum energy are
guaranteed to fall into the quadratic domain, because if the argument of any cosine is sub-
stantially different from zero (mod 2π) its positive contribution to the potential (1.1) renders

1TB does not concur with the results of [17–19] regarding vacuum transition rates in gravitational theo-
ries [20, 21].
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the total potential energy of order +Λ4 � 0. The size of the hierarchy required between |V0|
and Λ4 depends on the desired accuracy of the quadratic expansion. A factor of a few suffices
to estimate the decay exponents (the instanton action) to O(1) accuracy. Therefore, at least
if 0 < −V0 � Λ4 this quadratic approximation suffices for purposes of studying vacua with
small vacuum energy, and for studying the decay of such vacua to any lower energy minima.

We will see that in the parameter regime we are focusing on, CdL decays are the dom-
inant channel and vacua with small CC are typically long-lived on cosmological timescales.
However the quadratic approximation does not suffice for studying all decays into such
vacua, as those can originate from higher regions of the potential that might not fall into the
quadratic domain. For vacua in the quadratic domain, we find an upper bound on the decay
rate, and conclude that no significant fine-tuning is necessary for the vacua to be meta-stable
on cosmological timescales.

2.1 Hawking-Moss decays

HM instantons are configurations in Euclidean signature de Sitter space where the field is
constant at a saddle point of the potential. These instantons are potentially relevant for
decay only if the saddle has degree k = 1, meaning the Hessian evaluated there has exactly
one negative eigenvalue V ′′∗ < 0, and if

M2
Pl

|V ′′∗ |
V∗
≤ 4

3
, (2.1)

where V∗ is the potential energy at the saddle point supporting the instanton interpolating
between the “parent” and “target” vacua (see e.g. [17]). If these conditions are satisfied the in-
stanton has a single negative mode and contributes an imaginary part to the energy and hence
to the decay of the state. For saddle points where (2.1) is not satisfied or there is more than
one negative direction (k > 1), the HM instanton always has multiple negative modes and
presumably does not contribute to the decay. In such cases a CdL instanton always exists [17].

It is simple to estimate whether (2.1) typically holds using the results of [6] (in particular
section 3.6.2) and appendix A in this paper. The analysis there shows that the k = 1 saddles
adjacent to minima in the quadratic domain have V∗ ≈ 2Λ4 because one cosine reaches its
maximum roughly halfway in between while the rest are constant. The negative direction at
the saddle satisfies 〈|V ′′∗ |〉 ∼ Nσ2

QΛ4/2f2 ∝ N , with a standard deviation that scales only

as
√
N . We are most interested in the rough parameter regime where σQ & O(1/

√
N), N ≈

P � 1 and f �MPl, such that with (2.1) HM decays are typically suppressed,

〈M2
Pl

|V ′′∗ |
V∗
〉 ∝ Nσ2

Q

(
MPl

f

)2

� 1 . (2.2)

We conclude HM instantons are irrelevant for the decay of quadratic domain minima.

2.2 Coleman-de Luccia decays

When the condition (2.1) for HM decays is not satisfied, decays will proceed via CdL tran-
sitions. We are mainly interested in studying the decay of vacua with small vacuum energy,
those that can contain collapsed structures like galaxies. By Weinberg’s famous anthropic
argument [1] these have |Vvac| . 10−120M4

Pl. This very narrow band is nevertheless densely
populated in the landscapes we are studying [5, 6]. For |V0| � Λ4, all such vacua are in the
quadratic domain. As mentioned above this ensures the validity of the approximations we
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make to certain characteristics of the potential such as the location of critical points, their
heights and their Hessian eigenvalues.

In general little is rigorously known about tunneling in high-dimensional landscapes,
especially when the effects of gravity are included. For flat space tunneling more is known.
For instance, we can assume the dominant instanton has maximal spherical symmetry [22, 23].
In the following, we will use the thin-wall approximation to bound the decay rates. Thin-
wall should be justified when (2.1) is strongly violated, and the numerical checks described
in section 2.2.3 support this conclusion.

2.2.1 Neighboring minima

A given (quadratic domain) vacuum can tunnel into any neighboring vacuum that has lower
energy.2 A method that accurately locates the neighboring minima can be deduced from some
considerations regarding the potential (1.1). V is invariant under shifts of the arguments of
the cosines by 2πvk, where vk is an integer P -vector with k non-vanishing components of
±1. We call a degree-k neighbor a vacuum that is displaced from another vacuum by a shift
in the N -dimensional axion field space, such that k cosine arguments shift by roughly 2π, i.e.

Qθneighbor = Qθvacuum + 2πvk . (2.3)

Each vacuum has at most 3P − 1 neighboring vacua. However, since the argument of each
cosine is a linear combination of the N axion fields, shifting the cosine arguments this way
requires solving a set of P linear equations in N variables. When P ≤ N a solution always
exists. When P > N there are more equations than variables and such shifts (in general) do
not exist. Nonetheless, when P,N � P − N one can solve these equations approximately.
This shows that low-lying vacua have roughly 3P neighbors [6]. A priori, the decay could
proceed by tunneling to any of this huge number of neighboring vacua. A special class are
those separated from the decaying vacuum by shifting the argument of a single cosine by
±2π. There are 2P such k = 1 neighbors, some fraction of which have lower vacuum energy
density than the decaying vacuum.3 We refer to these k = 1 neighbors as “face neighbors”
(because they are separated from the decaying vacuum by a face of a cube in the auxiliary
field space defined in [6]).

Each face neighbor minimum is separated from the decaying vacuum by a barrier of
height approximately 2Λ4. The top of the barrier is generically a degree k = 1 saddle point.
Neighbors where k cosines shift by 2π are typically separated from the decaying vacuum by
a barrier with height approximately 2kΛ4, and by a degree-k saddle point. We will call these
“degree-k neighbors”. The typical distance to a degree-k neighbor scales as

√
k (due to a

famous result of Pythagoras). Hence in addition to being the set of minima separated from
the parent vacuum by the lowest barriers, the face neighbors are also those typically located
within the shortest distance. This makes it plausible that the dominant decay channel will
be to a face neighbor.

2There may be decay channels to minima even further away, but these are presumably suppressed. We
only consider tunneling to lower energy vacua in this paper. Upward transitions from de Sitter minima are
not impossible, but are exponentially suppressed.

3The amount depends on the height of the decaying minimum above the global minimum. The number
will be small for very low-lying minima, while for higher-lying minima (but still in the quadratic domain) it
is well-approximated by P .
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2.2.2 Thin-wall tension

We write the semiclassical bubble nucleation rate per unit four-volume as

Γ ∼ Ae−B . (2.4)

For a single scalar in flat space, and in the thin-wall approximation, we have [24]

Bflat ∼
27π2

2

σ4

ε3
, (2.5)

where ε = Vmax−Vmin is the difference in energy density between the two vacua and σ is the
tension of the bubble wall,

σ =

∫ ϕmax

ϕmin

dϕ
√

2(V (ϕ)− Vmin) . (2.6)

(ϕmin,max denote the locations of the lower-lying and higher-lying vacuum respectively.) By
introducing a minimal wall tension,

σmin ≡
∫ ϕmax

ϕ0

dϕ
√

2(V (ϕ)− Vmax) , (2.7)

where ϕ0 is defined by V (ϕ0) = Vmax, the thin-wall formula turns into a lower bound for
Bflat [25]:

Bflat ≥
27π2

2

σ4
min

ε3
. (2.8)

This inequality holds for any (single) scalar field theory — even those for which the thin-wall
approximation is not valid. Even if gravitational effects are not negligible, they only serve to
increase B for thin-wall tunneling from flat (or nearly flat) spacetime to AdS, which is the case
at hand. Finally, we have studied the instantons numerically and found that the thin-wall
approximation does seem accurate in the regime we are focusing on (see also section 3.3).

One can now use (2.6) to estimate a lower bound on B, for a decay to a minimum
separated from the parent by shifts of k cosines by approximately 2π. For the reason discussed
above the height of the saddle point along such a direction is V∗ ∼ k 2Λ4, with second
derivative |V ′′∗ | ≈ Nσ2

QΛ4/2f2. The typical field space distance across the barrier is ∆ϕ ∼
2
√

2V∗/|V ′′∗ |×π/4 ∼ π (f/σQ)
√

2k/N (where we’ve approximated the barrier as a parabola),
which gives

σmin & ∆ϕ×
√

2V∗ ∼ 2πk

√
2

N

fΛ2

σQ
. (2.9)

The energy difference ε between a zero energy vacuum and one with negative energy cannot
exceed V0 (the energy of the global minimum); ε < |V0| � Λ4.

Using these estimates in (2.8) gives

B &
27π2

2

σ4
min

ε3
&

(
900

N

)2

×
(

Λ4

V0

)3

×
(

f

σQΛ

)4

× k4 , (2.10)

which suggests that decays to face neighbors with k = 1 are dominant. Thus, even with
N ≈ 103, with Λ < f and/or V0 < Λ4 one can achieve B � 1. Stability on the order of

1010 years requires B & 103 (since 4 log 1010years
tPl

≈ 103). We have suppressed several steps
in this analysis to give the reader the option of bypassing technical details if they wish. A
thorough derivation can be found in appendices A and B. We also include an analysis of the
distribution of vacuum energy differences across the sets of degree-k neighbors in section B.2.
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2.2.3 Numerical checks and the “gradient flow approximation”

It is difficult to check these approximations numerically due to the high dimension of the field
space. Even in field theories without gravity, to our knowledge the best current codes for
studying vacuum decay can only handle roughly N = 5 field space dimensions [26]. However,
the tools developed in [6] make a semi-analytic check available for axion theories.

As we described above, out of ∼ 3P neighboring vacua the 2P “face neighbor” channels
are likely to dominate the decay rate. For those decays (or any degree-k neighbor, in general)
we can use our techniques to locate the lowest saddle point that separates the parent from
the target. We then find the gradient line that connects the parent to the target and passes
through this saddle point. The potential along this line can then be treated as if it were the
potential for a single scalar, allowing us to numerically compute the CdL instanton. We refer
to this as the “gradient flow approximation.” It is approximate because the exact instanton
does not necessarily follow the gradient flow, but we expect this method to correctly compute
the instanton action and trajectory up to O(1) corrections. The instanton computes the decay
rate and provides the initial conditions for the cosmological dynamics after the tunneling,
which we calculate using the full N -dimensional potential (see section 3.3).

We verified that the gradient flow indeed approximates the numerical results of [26] in
the “sum of cosines” example considered there, and agrees with the results of the thin-wall
analytic approximation we turn to next. At least for our class of potentials, it may be an
improvement over the “straight line” approximation introduced in [27].

3 Inflation

We now turn the topic of inflationary dynamics. Much of the discussion in this section applies
to general multi-axion theories, but we will focus particular attention on well-aligned theories
(which are generic when N ≈ P � 1) where it is a very good approximation to set the phases
in the non-perturbative axion potential to zero (see [5] for details).

Let us begin by recalling the action relevant for the inflationary dynamics driven by N
canonically normalized axions Θ ≡

√
Kθ,

S =

∫
d4x
√−g

(
M2

Pl

2
R− 1

2
∂Θ>∂Θ− Vaxion(Θ)− V0

)
. (3.1)

Here gµν is the flat FLRW metric with scale factor a(t),

ds2 = −dt2 + a(t)2dx2 . (3.2)

As above we choose V0 so that the axion contribution to the potential is non-negative, with
its global minimum at zero:

Vaxion =
P∑
I=1

Λ4
I

[
1− cos (QΘ)I

]
, (3.3)

where Q ≡QK−1/2 is the charge matrix for the canonically normalized fields Θ.
The equations of motion for the scale factor and axions are

(Θi)′′ = (ε− 3)(Θi)′ − 1

H2

∂Vaxion

∂Θi
(Θ) ,

3M2
PlH

2 =
Vaxion(Θ) + V0

1− ε/3 , (3.4)
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where ′ ≡ d/dNe, Ne = log a denotes the number of efolds, H = (da/dt)/a ≡ ȧ/a is the
Hubble scale and the Hubble slow roll parameter ε is defined by

ε = − Ḣ

H2
= −H

′

H
. (3.5)

In general the dynamics of this system are quite complicated. However, the evolution
may effectively be that of a single field if no isocurvature perturbations are sourced. To make
this manifest, following [28, 29], we decompose the fields into a basis defined by unit vectors
{Ei} along the inflationary trajectory:

Ei =
P⊥i−1Θ

(i)

‖P⊥i−1Θ
(i)‖2

, P⊥i = 1−
i∑

j=1

Ej ⊗Ej , (3.6)

where i = 1, . . . , N , P⊥0 = 1 and P⊥i is a projection operator onto the subspace perpendicular
to 〈E1,E2, . . . ,Ei〉. This decomposition of the field is very convenient: E1 corresponds
to the instantaneous direction of the field velocity, while E2 indicates the direction of the
acceleration transverse to the field velocity and signals multifield behavior. With this basis
in mind we can decompose the second slow roll parameter η into components parallel and
perpendicular to the field trajectory,

η =
1

H

Θ̈

‖Θ̇‖2
=

Θ′′ − εΘ′

‖Θ′‖2
, η‖ = η ·E1 , η⊥ = η ·E2 . (3.7)

This decomposition is particularly well-suited to study perturbations. Curvature (adiabatic)
perturbations are described by perturbations in the direction of E1 and are the only relevant
perturbations for single field inflation. In the case of single field inflation the curvature
perturbations can immediately be related to density perturbations. Isocurvature (entropy)
perturbations describe the relative decomposition of the energy density into the different field
components. In the basis we have chosen, one isocurvature mode is distinguished in that it is
the only one that couples to the adiabatic perturbation. This coupling is proportional to η⊥,
such that single field behavior is recovered when the trajectory does not turn in field space,
i.e. η⊥ = 0.

Given an initial condition, we will be concerned with solving the classical equations of
motion and evaluating some basic observables, such as the spectral index and the tensor-to-
scalar ratio, using the leading expressions in the slow roll regime. The transverse slow roll
parameter η⊥ provides us with some information about the consistency of the single field,
slow roll approximation.

We can define effective slow roll parameters by differentiating the potential along the
inflationary trajectory. These “potential slow roll parameters” are related to those defined
above by

εV ≡
M2

Pl

2

(
∂ΘV

V

)2

≈ ε , ηV ≡M2
Pl

∂2
ΘV

V
≈ ε− η‖ , (3.8)

where ∂Θ denotes differentiation in the direction of the field space velocity E1, and the
approximation is valid in slow roll. In the single field, slow roll approximation where ε and√
ε η‖ are small and η⊥ vanishes throughout the inflationary evolution, the spectral index

and tensor-to-scalar ratio are given by

ns ≈ 1− 2η‖ − 4ε , r ≈ 16ε , (3.9)
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which are evaluated at the time when the CMB modes exit the horizon. The amplitude of
scalar temperature anisotropies is

As ≡
1

24π2

V

εM4
Pl

, (3.10)

with observed values of As ≈ 2.1× 10−9, ns ≈ .965, and r . .07 [30]. Using this value for As,
the scale of inflation is related to the tensor-to-scalar ratio by (see e.g. [31])

Vinf ≈ 3.2× 10−8 rM4
Pl . (3.11)

Near low-lying minima the axion potential is approximately quadratic. For inflation,
the first requirement is that the field range be long enough to produce a sufficient number
of efolds of inflation. In [6], we estimated the “diameter” of the region surrounding a typical
minimum to be

D ≈ O(1)× Nf

σQ
, (3.12)

which is valid for P −N � N . To attain 60 efolds of quadratic inflation requires D & 10MPl,
which is possible with e.g. f ∼ 10−2MPl, N ≈ P ≈ 500, σQ ≈ 0.15 ≈

√
11/N .

In a quadratic potential, the inflaton is at a distance of about 15MPl from the minimum
when 60 efolds of inflation remain. The mass-squared of the lightest direction along which
inflation can proceed is typically on the order of [6]

m2 ∼ σ2
QΛ4

Nf2
, (3.13)

and thus the energy scale 60 efolds before the end of inflation is roughly

V60 ∼
100

N

(
MPl

f/σQ

)2

Λ4 . (3.14)

The slow roll parameter ε = 1/2Ne for a quadratic potential, so the amplitude of the observed
scalar perturbations will be approximately

As ≈
60

N

(
Λ

MPl

)2( Λ

f/σQ

)2

, (3.15)

while the scalar spectral tilt and tensor-to-scalar ratio are

ns = 1− 4ε ≈ 0.97 , (3.16)

r = 16ε ≈ 0.13 . (3.17)

For e.g. f ∼ 10−2MPl, N ≈ P ≈ 500, σQ ≈ 0.15 ≈
√

11/N and GUT scale Λ = f/4, this
gives roughly the observed As ≈ 10−9. Tensors are above the observed upper bound for
quadratic inflation. However, as we will see multi-axion theories contain many other types of
inflationary trajectories, some of which are far from quadratic, or indeed from those of any
standard inflationary potential.

In section 3.1 we discuss inflation generally in axion landscapes. In section 3.2 we numer-
ically analyze inflation in a specific example, where we sample the landscape by choosing the
starting point uniformly randomly in the field space (with zero initial velocity). In section 3.3
we discuss inflation where the initial conditions are set by tunneling from a higher minimum.
In section 3.4 we briefly sketch reheating when the axions are coupled to a gauge field.
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3.1 Sampling the theory

One could study the inflationary dynamics in multi-axion theories, or random ensembles of
such theories, in some generality by sampling over the parameters of the Lagrangian (1.2).
These consist of the metric on moduli space K, the charge matrix Q and the global minimum
of the vacuum energy density V0. The gravitational contributions to the axion potential will
be irrelevant for the dynamics, but they may vastly increase the possible discrete vacuum
energy densities in the theory, so we will assume that V0 can be tuned to arbitrary accuracy.
A choice for the parameter ensembles that is loosely inspired by explicit compactifications of
string theory [7–15] is as follows

1. The metric K is a positive definite random matrix (for instance a Wishart or inverse
Wishart matrix) with largest eigenvalue f2

N .M2
Pl.

2. The axion charge matrix Q is a sparse matrix of i.i.d. random integers with a fraction
& 3/N of non-vanishing entries.

3. The background vacuum energy density V0, uniformly distributed between ±M4
Pl.

Even after fixing an ensemble of effective theories or even a unique theory, significant
uncertainty remains due to the unknown weight with which different cosmological histories
contribute to the distributions of observables — i.e., the measure problem of inflationary
cosmology. For example, there may exist a significant selection bias towards small final
vacuum energy densities and sufficient inflation. To at least partially account for these
selection biases we only retain inflationary trajectories that satisfy the following:

1. The vacuum energy density in the minimum the trajectory ends in is not substantially
larger than the observed dark energy density in our universe [1].

2. Inflation lasts long enough to solve the horizon and flatness problems, which here for
simplicity we take to mean that Ne ≥ 60.

In the related work [16] we demonstrate how these assumptions follow from the single re-
quirement of structure formation.

Since we assume that the background vacuum energy density is roughly uniformly dis-
tributed, any of the vacua of the axion theory may correspond to the cosmologically relevant
late time vacuum. We will reject any dynamics that do not terminate in a vacuum with
vanishingly small vacuum energy density, so we can obtain a representative sample of in-
flationary observables by picking a representative sample of vacua at energy densities Vvac,i

and then setting V0 = −Vvac,i. For each i we then choose initial conditions that are uni-
formly distributed over the periodic domain of the axion potential, and reject any trajectory
that gives rise to less than 60 efolds of inflation, or does not terminate at a vacuum with
vanishing energy density, consistent with our assumptions about selection bias. In fact, it
is not necessary to sample all vacua, nor to consider initial conditions uniformly distributed
over the entire periodic domain of the potential. Merely considering the attractor regions in
the vicinity of a representative sample of potential late time vacua provides a representative
sample of the inflationary dynamics. This allows for a systematic study of potentials with
exponentially many distinct vacua. We illustrate some possible inflationary trajectories for
the specific potential discussed in the next section in figure 1.

Now that we discussed how to systematically sample ensembles of axion theories we
might embark on a detailed study of the distribution of inflationary observables. However,

– 10 –



J
C
A
P
0
9
(
2
0
1
9
)
0
6
2

Φ
2
[M

p
l]

Φ1 [Mpl]

30−30−40−50 50400−10−20 2010

−20

20

10

−10

0

Figure 1. Complete sample of inflationary trajectories with more than 60 efolds terminating at low-
CC vacua for theory defined in (3.18). The full trajectories are shown in gray, while the last 60 efolds
are colored red. The contour plot represents the axion potential. The periodic domain is highlighted
and surrounded by gray solid lines. The boundaries of all tiles are denoted by dashed lines.

0.001
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1

0.1
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Axions
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1.100.85

Figure 2. Sample of tensor-to-scalar ratios r and spectral indices ns for the particular axion theory
discussed in section 3.2. The red crosses denote trajectories with 60 or more efolds of inflation that
terminate in the set of minima with Vvac ≈ 0.64Λ4, while the blue crosses denote > 60 efold trajectories
that terminate in the vacua with all other vacuum energies in (3.19). As discussed in the text, for
a trajectory terminating in vacuum i, V0 is set equal to −Vvac,i so that the total energy density
vanishes at the endpoint. For comparison we show the observables corresponding to chaotic, natural
and hilltop inflation. Some data points are outside the range displayed.

as long as the measure-dependent weight of each inflationary trajectory is unknown such a
study is tentative to some extent, as we cannot make definite predictions for cosmological
observables. Still, it may be instructive to sample the inflationary dynamics. A comprehen-
sive study of this kind is beyond the scope of this work, so in the following section we simply
consider one particular axion theory.

3.2 An explicit example

Let us consider a particularly simple axion potential to illustrate our technique for the sys-
tematic sampling of inflationary trajectories. The theory is discussed at length in the
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appendix D of [6], but here we have set the phases to zero. The relevant parameters are

N = 2 , P = 3 , K ≈M2
Pl

(
107 41.4
41.4 48.2

)
, Q =

 1 1
2 −3
−3 0

 , ΛI = Λ , (3.18)

where we chose the largest eigenvalue of the kinetic matrix f2
2 = (11MPl)

2 to allow for
inflation, as axion alignment is inefficient at N = 2. As discussed above, V0 is chosen to suc-
cessively set each of the vacua to vanishing vacuum energy density. We chose initial positions
that are uniformly distributed over the periodic domain of the potential, and vanishing initial
velocities. Solving the equations of motion (3.4) for the classical trajectories, and selecting all
trajectories that terminate at vanishing energy density after more than 60 efolds of inflation,
we obtain a representative sample of the inflationary dynamics, as illustrated in figure 1.
There are nine stable vacua, four of which are doubly degenerate, at vacuum energy densities

Vvac ,i

Λ4
≈ {0, 0.17, 0.64, 1.3, 1.9} . (3.19)

The field ranges (defined by the distance to the edge of the “tile” surrounding the minimum,
cf. [6]) along the lightest direction around each of the vacua are given by

Rlight,+,i/MPl = {16.4, 17.8, 13.8, 19.6, 18.8} ,
Rlight,−,i/MPl = {16.4, 15, 18.9, 11.4, 4.4} . (3.20)

These field ranges can be read off from figure 1.

Since there are multiple fields active during inflation it is not easy to obtain the corre-
lation functions of perturbations. Still, we can evaluate the spectral index and the tensor-to-
scalar ratio assuming single field, slow roll inflation. The resulting observables are shown in
figure 2. Clearly a very wide range of observables is possible, even within this extremely sim-
ple theory.4 This is a very direct example of how large the theoretical uncertainties remain,
even if we were able to uniquely identify the effective theory governing our landscape.

It is important to check whether the single field, slow roll approximation is valid. In
figure 3 we display the effective potential and the slow roll parameters ε, η‖ and η⊥ for the
last 60 efolds of inflation of three specific inflationary runs. The examples were chosen to
illustrate the wide variety of dynamics: the slow roll parameter η⊥ can be large, or small,
compared to η‖. A more sophisticated multifield analysis of the perturbations is required to
study the possible non-Gaussianity signatures of these dynamics. Some of the trajectories
exhibit turns, and the tensor-to-scalar ratio can vary between 5×10−4 and 1. Considering the
effective potential along the trajectory we see that inflation does not proceed in a quadratic
potential. In part this is because we chose the scale of the kinetic matrix such that Planckian
displacements are possible, but the quadratic domain alone is not large enough to support
60 efolds of inflation. We expect this qualitative finding to hold much more generally than
in this particular example: inflation in axion theories allows for an extremely wide range of
observables and inflationary energy scales.

4That the inflationary phenomenology of multiple-axion theories is richer than that of single field natural
inflation was shown in [32] for two-axion theories (with N = P = 2).
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Figure 3. Effective potential and slow roll parameters during the last 60 efolds of three particular
trajectories. Ne − N60 denotes the number of efolds before the end of inflation. The observable
60 efolds from the end of inflation in the single field, slow roll approximation are: (a) ns = 0.73,
r = 5 × 10−4; (b) ns = 0.96, r = 0.03; (c) ns = 0.93, r = 0.03. Ticks along the potential mark
∆Ne = 10 intervals.

3.3 Inflation after tunneling

We now turn to the specific scenario where the inflationary initial conditions originate from
the decay of a meta-stable vacuum. Generally speaking, inflation after barrier tunneling
seems to require fine-tuning. The condition for thin-wall tunneling is that M2

Pl|V ′′∗ |/V∗ � 1
(cf. (2.1)), while a necessary condition for slow roll is the opposite, that ηV ≡M2

Pl|V ′′|/V � 1.
These conditions are not logically incompatible because the former applies at the maximum
of the barrier V∗ while the latter applies to the potential slope after the barrier, but there is
nevertheless a clear tension [33, 34].

One of the interesting features of random multi-axion theories is the existence of a
hierarchy of Hessian eigenvalues — the fact that at large N different directions in field space
can have very different second derivatives. Since the least-action path for tunneling tends to
coincide with directions in which the barrier is thinnest and the height is lowest, it is plausible
that tunneling will proceed in directions where |V ′′∗ |/V∗ is large. Tunneling in such a direction
can leave the field displaced from the minimum along a direction or directions with much
smaller |V ′′|/V (see also [35]). Therefore inflation after tunneling does not necessarily require
tuning beyond the large number of fields N � 1.

If the tunneling creates a region with a field value that is in or near the “quadratic
domain” of a low-lying minimum, the potential will be roughly quadratic. For a given
choice of axion parameters this makes sharp inflationary predictions, as essentially all low-
lying minima in the class of theories we are considering are very similar. For instance, the
amplitude of density perturbations will be (3.15).

As discussed in section 2, our analytic control over the potential is strongest for minima
that are “low-lying”; that is, those with vacuum energy less than Λ4 above the global min-
imum of the potential. When V0 � Λ4 this includes all small-CC vacua in which structure
can form. However, it does not include all parent vacua from which the universe might have
tunneled to a given small-CC target. Inflation following tunneling from a high minimum
could in principle take place on some feature of the potential outside the quadratic region
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surrounding the target minimum where the inflationary trajectory should end. (In section 3.1
we analyzed general inflationary trajectories.)

We cannot rule out the possibility that inflationary histories might be dominated by such
non-quadratic potentials, but for the rest of this section we will focus on inflation following
tunneling that takes place in the quadratic region. In the quadratic region a necessary
condition for at least 60 efolds of inflation is that the typical field range in (3.12) should satisfy

R ∼ D
2
> 15MPl , (3.21)

where D was estimated in (3.12). Assuming the parameters are such that R satisfies this
condition, tunneling from high minima should sometimes produce Ne > 60 efolds, with a
power spectrum set by (3.15).

We can say much more about tunneling between low-lying minima. Clearly, achieving
large amounts of inflation following a tunneling from a low-lying parent is more difficult,
because the starting point on the potential is lower. Nevertheless we will see that it is
possible, albeit with more restrictive conditions on the parameters, and we will exhibit an
explicit numerical example.

As discussed in section 2, the dominant tunneling trajectories are generally those be-
tween neighboring minima that are separated by a 2π shift in one or a few cosines (k = 1 or
k = few, respectively). The mean separation between face neighbor (k = 1) vacua is5

〈‖Θparent −Θtarget‖2〉 ≡ 〈‖∆Θ‖2〉 ≈
2πf

σQ
×O(1) . (3.22)

Importantly, the distribution of distances has a polynomial tail (see appendix section A.3).
Vacuum separations significantly larger than (3.22) are much more frequent than separations
significantly smaller than (3.22) due to this tail.

When the separation is greater than MPl (as required for inflation in the quadratic
regime), we expect roughly half of the vacuum separation to be relevant for a possible period
of inflation after the tunneling event. There are two reasons for this. First, the saddle point is
located roughly halfway in between the parent and the target vacuum. Second, the field space
distance traversed by a Coleman-de Luccia instanton is in general sub-Planckian. To see this,
note that if the instanton enters the regime of slow roll, dimensional analysis suggests that

∆φ = φ̇∆τ ≈ V ′

3H
∆τ ≤ V ′

3H2
≈
√

2εV MPl , (3.23)

where we have used the slow roll equations and the fact that the instanton exists only for
a Euclidean time of order 1/H (the radius of the four-sphere). If ∆φ & MPl, (3.23) implies
that a slow roll condition would be violated, making a significant support of the instanton
in the slow roll regime inconsistent.

If (as just argued for above) roughly half the field space separation between the minima
is available for inflation following tunneling, the probability to find at least 60 efolds of
inflation scales (for N � 1 and P −N � N) as

Prob(Ne > 60) ∼ Prob (‖∆Θ‖2 > 30MPl)

∼
(

2πf/σQ
30MPl

)P−N+1

, (3.24)

5For a neighbor of degree k, the mean vacuum separation scales ∝
√
k, see section 2.2.1.
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Figure 4. The potential between two “face neighbor” minima in an example with randomly chosen
charges Q, plotted along the gradient flow line that passes over the saddle in between. The red dots
indicate the two extreme values of the field for the approximate Coleman-de Luccia instanton found
numerically using this one-dimensional potential. There are approximately 109 efolds of inflation
following tunneling, and (as expected for inflation post-tunneling) the inflationary parameters 60
efolds from the end are close to those of standard quadratic inflation. The axion model parameters
for this example are N = 100, P = 101, σ2

Q = 1/20, f = 10−1MPl and Λ = 10−2MPl. Most randomly
drawn Q matrices with these parameters will not yield this much inflation after tunneling between
face neighbors (cf. (3.24)); this example was found after O(10) draws.

where the final scaling is estimated from numerical observations of the tail of the distribution,
as discussed in section A.3.

We have numerically tested this paradigm by constructing an effective 1D scalar po-
tential which captures the essential properties of the axion potential between the two vacua.
Using the numerical technique described in section 2.2.3, the 1D effective potential was con-
structed by following the gradient of the full N -dimensional potential starting at the parent
minimum and ending at the target minimum, and passing directly through the (degree one)
saddle in between. This 1D potential indeed has the expected shape: a super-Planckian range
slow roll regime starting at one minimum that connects to a sharp, sub-Planckian range bar-
rier with height ≈ 2Λ4, connecting back to another super-Planckian range slow roll regime
that ends at the other minimum. Using this 1D potential we solved the Euclidean Einstein
and scalar field equations in the inverted potential to find the instanton, and then solved the
Lorentzian Einstein equations in the full N -dimensional field space, using the extreme value
of the instanton as an initial condition, to find the evolution after tunneling (including any
inflation). We plot an example in figure 4.

3.4 Reheating

Axions may interact with gauge fields F via the coupling

α

8πfinfF
ΘinfFF̃ , (3.25)

where α is a dimensionless coupling constant and finfF is the effective axion decay constant for
the inflaton Θinf. The interaction (3.25) is topological when the inflaton evolves slowly, but
becomes important at the end of slow roll inflation. This allows an efficient energy transfer
from the inflationary to the gauge field sector that can drive reheating. Reheating proceeds
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through a combination of perturbative and non-perturbative processes. More details appear
in [16].

4 Light axion phenomenology

We now turn towards a brief discussion of light axion phenomenology [36–38]. In particular
we will be interested in whether a coupling between QCD and light axions can resolve the
strong CP problem and if fuzzy dark matter can be accommodated in a multi-axion theory
without fine-tuning.

Thus far we assumed that the leading non-perturbative contributions to the poten-
tial (1.1) stabilize all axions, i.e. the charge matrix Q, or equivalently the canonically nor-
malized charge matrix Q ≡ QK−1/2, is full rank. This is consistent, as very light axions
would be frozen by Hubble friction in the early cosmological evolution. In order to study ex-
tremely light states, however, let us now assume that the P leading and relatively strong non-
perturbative effects stabilize all but L ≥ 1 of the N axions, that is, Rank(Q) = N − L < N
(cf. appendix A of [6]). It is generally believed that theories of quantum gravity do not permit
global continuous symmetries [39–48]. Therefore, at least the gravitational axion potential
Vgr breaks the L remaining shift symmetries. Since we are interested in light axions, we
assume that the energy scale associated to the gravitational potential Vgr is vastly smaller
than that of the leading potential, so when the light fields are relevant we can ignore the
dynamics of fields stabilized by the P leading non-perturbative effects. The L-dimensional
subspace relevant for low energy dynamics is then the null space of the leading charge matrix
Q. We define an orthonormal basis {t1, t2, . . . , tL} of ker(Q),

Q tl = 0 , ∀ l ∈ {1, . . . , L} , (4.1)

which we extend to an orthonormal basis of the full field space RN by N − L vectors
tL+1, tL+2, . . . , tN . We further decompose the field into light and heavy components via

Θ = T

(
Θlight

Θheavy

)
=
(
T light |T heavy

)(Θlight

Θheavy

)
, (4.2)

where we have split Θ into a piece Θlight of length L and a piece Θheavy of length N − L,
and the matrices T light,heavy are composed by placing the t1,...,L respectively the tL+1,...,N on
consecutive columns, see also [6].

It will be instructive to consider two distinct sectors that contribute to the subleading
non-perturbative potential: the axions couple to QCD instantons, as well as gravitational
wormhole instantons [49]. The former coupling gives rise to a Peccei-Quinn (PQ) axion that
can solve the strong CP problem [50], while the latter coupling is motivated by popular
beliefs about quantum gravity. As pointed out in [38], gravitational strength breaking of
axion shift symmetries might result in a viable candidate for ultra-light axion dark matter.
However, the two mechanisms might seem mutually exclusive. The subleading contributions
couple to all axions, including the QCD axion and there is no reason to expect that the
relative phase between gravitational and gauge instantons is correlated. This imposes an
upper bound on the strength of gravitational instantons in order not to spoil the PQ solution
to the strong CP problem [51]. On the other hand, the QCD axion could potentially give
rise to an overwhelming amount of phenomenologically unacceptable dark matter, which in
turn strongly constrains the effective decay constant or the initial misalignment of the axion
acting as a PQ symmetry (see e.g. [52]).
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4.1 Light and lightest axions

We write the potential relevant for the L canonically normalized light axions Θlight as

Vgr(Θlight) = Λ4
QCD [1− cos (QQCDT lightΘlight + δQCD)]

+
∑
α

M4
Pl e
−Sα [1− cos (QgrT lightΘlight + δgr)

α] , (4.3)

where α is an index running over the subleading contributions to the axion potential and
Qgr and QQCD are the integer charges of the gravitational and QCD instantons, respectively.
We’ve also defined the canonical charge matrices

Qgr = QgrK
−1/2 , QQCD = QQCDK

−1/2 , (4.4)

where Qgr is the integer charge matrix of the gravitational instantons. In defining the
coordinates θ in (1.2) we assumed that any instanton has integer charges with respect to all
axions. Gravity indiscriminately couples to all axions, so we expect that Qgr contains the
entire integer lattice ZN . Since the instanton actions depend on the instanton charges, for
large instanton actions only a small number of gravitational instantons will provide a relevant
contribution. Let us consider instantons whose action can be parametrized as

Sα = SMPl‖Qα
gr‖2 + δSα = SMPl

√
Qα

gr (Qα
gr)
> + . . . , (4.5)

where the ellipses denote corrections to the classical instanton action that we will ignore and,
for clarity, Qα

gr = (Qgr)
α
i=1,...,N is the αth row of Qgr which contains the couplings of the

αth gravitational instanton to the N axions in the Θ-basis. For the example of Euclidean
wormholes the prefactor of the classical action is given by S =

√
6π/8 ≈ 1 [44, 53, 54]. We

note that while we can compute the action for Euclidean wormholes, our argument holds
more generally as long as the parametrization (4.5) is valid and S ≈ O(1).

While it is generally believed that quantum gravity breaks all continuous global sym-
metries, it is not immediately obvious to what extent these symmetries are broken. One
natural guess is to assume that all gauge interactions mediate forces that are no weaker than
the gravitational interactions. This assumption is known as the weak gravity conjecture [40].
The conjecture has been generalized to multi-axion theories in [42], where it becomes the
requirement that the convex hull of the vectors

za =
Qa

Sa
MPl , (4.6)

contains the unit ball.6 Note that for the actions (4.5) all vectors za have length 1/S, so
that whenever S < 1 the convex hull condition of the weak gravity conjecture is satisfied.
Perhaps not surprisingly, gravitational instantons roughly saturate this bound.

Consider now the case of L = 2 light axions. Whenever the QCD instantons constitute
an important contribution to the potential of the light axions we can simply write the relevant
potential as

Vgr(Θ̃light) = Λ4
QCD

[
1− cos

(
ΘQCD

fQCD
+ δQCD

)]
+M4

Pl e
−S1

[
1− cos

(
ΘDM

fDM
+ δ1

gr

)]
, (4.7)

6The index a runs over all the non-perturbative contributions to the potential, and Q here is the full
canonically normalized charge matrix (i.e. it contains the rows of what we have previously called Q, namely
the canonically normalized charge matrix of leading instantons, Qgr and QQCD).
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where S1 denotes the action corresponding to the most important gravitational instanton
contribution and we defined the fields Θ̃light = (ΘQCD,ΘDM) by the linear combinations

ΘQCD

fQCD
≡ QQCDT lightΘlight ,

ΘDM

fDM
≡ Q1

grT lightΘlight , (4.8)

and we assumed Λ4
QCD �M4

Pl e
−S1

so we can drop all other gravitational contributions. The
relevant axion decay constants are given by

fQCD = ‖QQCDT light‖−1
2 , fDM = ‖Q1

grT light‖−1
2 . (4.9)

Note that the transformations leading to the light axions ΘQCD and ΘDM are not orthogonal,
so kinetic couplings can remain to the heavy fields. However, in the parameter regime we are
interested in there is a vast hierarchy in the axion masses, such that the heavy fields will be
stationary when the light fields are dynamical and we can ignore these kinetic couplings.

4.2 Fuzzy dark matter

Let us discuss the impact of the lightest axion ΘDM on the cosmological evolution. This axion
is frozen during most of the cosmological history, but begins to oscillate when the Hubble scale
drops below the axion mass. After this time, the axion will oscillate in its approximately
quadratic potential and act as dark matter. In this section we merely comment on some
generic features, and defer a more detailed discussion to [16].

In principle, the gravitational sector contributes an infinite number of terms to the
non-perturbative potential: the charges Qgr contain all sites of the lattice ZN . However, in
the regime of perturbative control only a small number of those terms will be relevant for
low-energy physics. Given the instanton actions (4.5), the leading non-perturbative effects
correspond to those sites in the charge lattice with smallest two-length ‖Qα

gr‖2. In the simple
ensemble where K = f21 is fixed,7

min
α

(
‖Qα

gr‖2
)

= 1/f . (4.10)

With this we can estimate the most important contribution to the lightest axion ΘDM. To
that end, let us approximate the light field space directions T light as isotropic and independent
of the charges corresponding to the most important gravitational instanton. In general this
approximation is violated: both T light and Qgr depend on the kinetic matrixK, and therefore
can be correlated to some extent. Assuming this correlation can be neglected, we expect
fDM ≈

√
N/‖Q1

gr‖2. With (4.5), (4.9) and (4.10) we then have for the dark matter decay
constant and corresponding instanton action at large N ,

fDM ≈
√
Nf , S1 ≈ SMPl

f
. (4.11)

The mass of the light axion is given by

mDM =
M2

Pl

fDM
e−S

1/2 . (4.12)

7Since the dark matter mass is exponentially sensitive to ‖Qα
gr‖2 = ‖(QgrK

−1/2)α‖2, this analysis should
carefully be redone for different ensembles of K. Generally an expectation value will have to be taken on the
left-hand side of eq. (4.10) and a non-trivial N -dependence will be introduced on the right-hand side (see for ex-
ample [44] which discusses the cases whereK is a matrix drawn from the Wishart or inverse-Wishart ensemble).
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It may be instructive to consider the case of N ≈ 100 axions, a GUT scale decay
constant f ≈ 4 × 10−3MPl and S = 2.3. These values give a light axion mass mDM ≈
10−22 eV, consistent with the mass required to realize fuzzy dark matter. The expected
axion decay constant fDM ≈ 4 × 10−2MPl coincides with the value giving the desired dark
matter abundance [37, 38],

Ωaxion ∼ 0.2

(
fDM

.04MPl

)2 ( mDM

10−22 eV

)1/2
. (4.13)

4.3 QCD axion

In order to estimate the decay constant relevant to the QCD axion, we again first estimate
the two-norm ‖QQCD‖2. We have, in the K = f21 ensemble,

‖QQCD‖2 = ‖QQCDK
−1/2‖2 =

σQCD

f
, (4.14)

where σQCD denotes the root-mean-squared value of the entries in QQCD. Assuming again
that the light directions T light are uncorrelated with the canonically normalized charges of
the QCD axion we roughly expect ‖QQCDT light‖2 ∼ ‖QQCD‖2/

√
N , or equivalently

fQCD ∼
√
N

f

σQCD
. (4.15)

Finally, the non-perturbative contribution due to QCD stabilizes the corresponding axion
at −δQCDfQCD, eliminating the CP-violating phase. However, there exist a large number of
gravitational instantons that also couple to the same fields and potentially introduce a large
amount of CP violation. Very roughly, we can estimate the shift of the phase due to the
gravitational instantons as

∆ΘQCD

fQCD
.
M4

Ple
−S1

Λ4
QCD

. (4.16)

Using Λ4
QCD ≈ 10−78M4

Pl and the estimate (4.11) we have

log10

(
∆ΘQCD

fQCD

)
∼ 78− S

log 10

MPl

f
. (4.17)

Using the values from the end of section 4.2, we see that the gravitational instantons con-
tribute a CP-violating phase of roughly

∆ΘQCD

fQCD
∼ 10−172 � 10−10 , (4.18)

where the last inequality denotes the comparison to the experimental bound. Hence gravi-
tational instantons do not spoil the PQ solution to the strong CP problem.

Note that the QCD axion might also act as dark matter and potentially lead to an
overwhelming amount of phenomenologically unacceptable dark matter, depending on the
initial misalignment angle [52]. The severity of this tuning depends on the parameter choice,
and any accidental alignment between the axions. We return to this issue in the more
comprehensive discussion in [16].
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A Neighbors and saddle points

In this appendix we provide a derivation of two results used in section 2 and section 3.3.

The first result is the large N behavior of the Hessian eigenvalues of degree-k saddle
points of the potential. These eigenvalues are important because they determine the sharp-
ness of the barrier separating adjacent minima, and hence the characteristics of the instanton
that mediates the decay. This is particularly important to determine the lifetime of a low-CC
minimum (so that the “parent” minimum has nearly zero CC, and the “target” has lower,
probably negative, vacuum energy). Because of the large number of possible decay channels
the distribution of these eigenvalues is important, not just the mean.

The second result is the large N behavior of the canonically normalized field space
distance between two face neighboring, low-lying vacua. This is important for the question
of slow roll inflation following tunneling between two such neighbors (although we emphasize
again that decay from a higher minimum or other point on the potential might give rise to
inflation even when decays between face neighbors do not). Of particular importance is the
fact that the distribution of the distances between face neighbors is heavy tailed, so that the
extreme cases can be much larger than the mean. For this question the target minimum is
the one with nearly zero CC, while the parent has larger, positive CC (although small enough
for the quadratic approximation to be valid).

To avoid confusion we use subscripts A and B for the vacua, only specifying which has
higher energy when necessary. Familiarity with the geometric picture developed in [6], where
the field space is identified with an N -dimensional hyperplane Σ slicing through a uniform
lattice in P -dimensional Euclidean space, is assumed.

This appendix is organized as follows. In section A.1 we review the necessary technology
from [6], in section A.2 we study the distribution of Hessian eigenvalues in detail, and in
section A.3 we study the distribution of face neighbor distances.

A.1 Degree-k saddle points

To study tunneling to/from a quadratic domain vacuum ΘA in a tile labeled by nA, we first
identify its nearby tiles. We expect that the dominant decay channels will be between ΘA and
its neighboring vacua. What constitutes a “neighboring” vacuum is to some degree arbitrary,
but a reasonable definition adopted in [6] is to deem vacua in tiles whose P -cubes are sepa-
rated by at most one step in each of the φJ -coordinate directions as “neighbors”, i.e. those at

2πnB = 2πnA + 2πv , (A.1)

where v is any P -vector with entries in {−1, 0, 1}, and nA and nB are the integer P -vectors
for the vacuum and neighbor’s lattice points, respectively. There are a total of 3P candidates
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tiles, but only the subset of P -cubes that intersect Σ may actually correspond to neighboring
vacua of ΘA.

We can label the displacement vectors 2πv by the number of non-zero entries they
contain, i.e. the number of mutually orthogonal steps taken from 2πnA in the ambient space
to reach the center of the neighbor cube. We indicate this by a natural number subscript
k, writing vk from now on. For a given k there are a total of 2k

(
P
k

)
distinct vectors vk.

A degree-k saddle point of Vaux
8 lies exactly half-way between the pair of auxiliary minima

2πnA and 2π(nA + vk), at

πnS,k ≡ 2πnA + πvk . (A.3)

This is because nS,k contains P − k even integers and k odd integers, resulting in k of the
cosine terms of Vaux being maximized at φ = πnS,k, while the rest are minimized. In the
vicinity of the auxiliary saddle all P cosines are well-approximated by quadratics. In other
words, there are quadratic domains situated not only at the points of the auxiliary lattice
2πZP (the auxiliary minima), but more generally at the points πZP (auxiliary critical points).

For very low values of k, any of the 2k
(
P
k

)
integer displacement vectors vk will typically

identify a nonempty neighboring tile of ΘA. This follows from the fact that Σ is randomly
oriented with respect to the standard basis elements {e(J)} of RP , and so the size of P⊥e(J)

is ∼
√
ν/P � 1, for all J .9 The expected length of v⊥k ≡ P⊥vk is

‖v⊥k ‖2 ≡ ‖P⊥vk‖2 = ‖
P∑
J=1

vJkP
⊥e(J)‖2≈

√
kν/P , (A.4)

where the ≈ follows since this is a sum of k non-zero vectors P⊥e(J) of random orientation
and length ∼

√
ν/P .

The largest distance one can move away from Σ by shifting from lattice point 2πnA by
2πvk is 2π‖v⊥k ‖2. This is just a statement of the triangle inequality: the two-norm distance
of a candidate lattice point is bounded by

dB . dA + 2π
√
kν/P , (A.5)

where dA is the `2-distance between the original vacuum in Σ and its lattice point in RP ,

dA ≡ ‖QΘA − 2πnA‖2 . (A.6)

Since the vacuum ΘA admits a quadratic description, dA is small (the vacuum energy in the
V0 = 0 theory is proportional to the two-norm distance in the case of equal couplings).

8The auxiliary potential is defined as the following function of P scalars,

V (φ) ≡
P∑
I=1

Λ4
I

(
1− cos(φI)

)
. (A.2)

The axion potential can be identified as the auxiliary potential evaluated at φ = Qθ. See [6] for further
details.

9Note that this is a much weaker notion of alignment than that of the t
∦
a of the aligned lattice basis, which

have exponentially small perpendicular components.
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Concretely,
1

2
d2

A = 2π2‖P⊥nA‖22 < µmaxP , µmax � 1 .10 (A.7)

So, for kν/P � 1 we can conclude dB remains small for all the neighbor candidates defined
by (A.1).

As k increases the bound on dB from the triangle inequality weakens, but for any k one
can expect some fraction of the 2k

(
P
k

)
candidates to remain close to Σ. For such vk (those

which either have particularly short v⊥k themselves, or those whose v⊥k are largely canceled by
P⊥nA) it certainly follows that the auxiliary saddle between the neighboring lattice points
is also in close proximity to Σ. The reason is because the auxiliary saddle’s distance from Σ
is bounded above and below by dA and dB, respectively, or vice-versa.

In other words, for general k not all neighboring P -cubes defined by (A.1) necessarily
give rise to quadratic domain vacuum neighbors, but the fraction that do are separated from
2πnA by a degree-k saddle of the auxiliary potential which itself has a quadratic domain
that is intersected by Σ. Consequently, the physical potential in the region between the nA

and nB tiles is well-described by the orthogonal projection of the specific auxiliary saddle
domain. Thus, the physical potential has a degree-k saddle point with ambient coordinates
QΘS,k ≈ πnS,k, or in canonical coordinates,

ΘB ≈ ΘA + 2π(Q>Q)−1Q>vk (A.8)

ΘS,k ≈ ΘA + π(Q>Q)−1Q>vk . (A.9)

where we’ve used QΘA ≈ 2πnA.
Furthermore, the Hessian of the physical potential V evaluated at (physical) saddle

points ΘS,k can be approximated in a simple manner [6]. This was used in section 2 in
estimating the stability of quadratic domain vacua ΘA. First, note the chain rule implies
a simple expression for the Hessian of the physical potential Hij ≡ ∂i∂jV in terms of the
auxiliary one, HIJ ≡ ∂I∂JVaux. In canonical coordinates,

Hphys(Θ) = Q>Haux|φ=QΘ Q , (A.10)

where
Haux(φ) = Λ4 diag{cos(φ1), . . . , cos(φP )} . (A.11)

At the saddle points (A.3), where

QΘS,k ≈ 2πnA + πvk , (A.12)

we therefore have
Hphys(ΘS,k) ≈ Λ4Q>DQ , (A.13)

where D is a diagonal matrix containing k negative ones and P − k positive ones along the
diagonal because

Haux(QΘS,k) ≈Haux(2πnA + πvk) = Λ4D . (A.14)

10µmax is defined as the maximum quadratic domain vacuum energy, divided by the average height of the
potential, here PΛ4. For example, µmax ≡ Vmax

PΛ4 resulted in a value of about µmax = 0.014 in an N = 100
and ν = 1 theory [6]. The value is determined by the parameters and one’s choice for the threshold value on
the `∞-displacement in their definition of the quadratic domain. The quantity µ ≡ Vvac

PΛ4 is useful in that it
enables a comparison between quadratic domain vacua of different landscapes by removing the routine factor
of P arising simply from the total number of cosine terms, which may differ in the two landscapes.
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The most negative Hessian eigenvalue at saddle points of V is important in our estimate of the
CdL decay rate. Our analytical tools are only applicable to physical saddles well-described
by the orthogonal projection of auxiliary ones. As noted, this will in general include higher
values of k as well. So, we proceed by studying the eigenvalue distributions of ensembles of
matrices Q>DQ for the full range of k, from 1 to P .

A.2 Hessian eigenvalues at large N

It is conducive to pull out the overall scales introduced trivially by the random charge matrix
Q and kinetic matrix K. To that end, define Q̂ such that

Q = σQQ̂ . (A.15)

Then Q, the charge matrix in canonical coordinates, is expressed in terms of a Wigner matrix
Q̂ whose entries are normally distributed with variance 1, as follows

Q =
σQ
f

Q̂ . (A.16)

Then the (physical) Hessian is

H = Λ4

(
σQ
f

)2

Ĥ , (A.17)

where

Ĥ ≡ Q̂>DQ̂ . (A.18)

Thus it suffices to study the ensemble (A.18) generated by Q̂iJ ∼ N (0, 1) at large N (provided
σQ is not too small, &

√
3/N [6, 11]).

The spectrum of Ĥ for k < P negative signs in D must in some sense be bounded by
a pair of Marchenko-Pastur distributions; one located on the positive axis and one on the
negative axis. This is simply because in the two extremes, k = 0 or k = P , the matrix D is
either plus or minus the identity, making Ĥ exactly plus or minus the Wishart matrix Q̂>Q̂.

In fact, it suffices to study just the evolution of these distributions over half of the k
values. For even P , the range k = 0 to k = P/2 suffices, and for odd P , k = 0 to k = P−1

2

does, because DP−k = −Dk. This means the series of Ĥ eigenvalue distributions for the
second half of k values is given by reflecting each of the distributions in the first half-series
onto the negative axis (and then reordering the series of distributions in reverse).

To simplify discussion, let us take P to be even. The numerics confirm the naive
expectation of a gradual transition between the Marchenko-Pastur distribution with support
on the interval ∼ [1/N, αN ] for k = 0, to the — necessarily symmetric — distribution for k =
P/2, whilst at each k value always keeping the (possibly disjoint) support interval contained
within [−αN,αN ]. The Marchenko-Pastur distribution for the Wishart ensemble (for all fixed
ν = P −N) has a right-edge at α = 4, and this holds approximately at finite but large N .

The evolution in Ĥ eigenvalue distributions is shown in figure 5. Each time k increases
the shape of the PDF changes as follows: a layer of the once-Marchenko-Pastur distribution
on the positive axis (corresponding to k = 0) is shaved off in a uniform fashion, and its
area is deposited onto the negative axis, beginning with a small bump at −N/2 (k = 1),
which ultimately grows into the reflected Marchenko-Pastur shape (on the negative axis).
The symmetric distribution that results from flipping exactly half the signs in D is shown in
the bottom-right panel of figure 5.
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Figure 5. Spectrum of the “sign-flipped Wishart ensemble” defined by Q̂>DQ̂ where Q is an
i.i.d. P × N matrix with real, normally distributed entries and D is a P × P diagonal matrix with
entries ±1, as the number of negative signs in D increases from k = 1 to k = P/2 from the upper left
to lower right.

Turning to the behavior of the minimum eigenvalue of Ĥ, which we’ll denote by λ−,
consider again the extreme case k = P . Here the set of most negative eigenvalues of an
ensemble of Ĥ is given by the set of maximum eigenvalues of the Wishart ensemble Q̂>Q̂,
just multiplied by negative one. For N � 1 and P −N � N we have

〈λ−〉 ≈ −αN , (A.19)

with α ≈ 4, with standard deviation of order N1/3 (e.g. [55]).
This generalizes to k < P . The left edge of the full eigenvalue distribution for an

ensemble of Ĥ generated from random Q̂ using D with fixed k < P negative signs converges
to 〈λ−〉 = −c(k)N , where c(k) is an order one number less than 4. The scaling of the width
of the distribution of λ− with N is also suppressed with respect to the mean 〈λ−〉, just as
for the Tracy-Widom distribution describing the k = 0 and k = P cases. For example, when
k = 1, 〈|λ−|〉 = N/2 and the standard deviation is

√
3N/2. A sample of the λ− distributions

for varying k is shown in figure 6.
Therefore we see that for all k and at large N , the standard deviation in the smallest

(most negative) eigenvalue is much smaller than its mean.

A.3 Face neighbor distances

Each face neighbor is specified by the signed unit-normal vector to the face it shares with
vacuum A’s cube,

± e(J) = (0, 0, . . . , 0,±1, 0, . . . , 0) . (A.20)

In canonical coordinates the face neighbor vacuum’s location is well-approximated by

ΘB ≈ ΘA ± 2π(Q>Q)−1Q>e(J) . (A.21)

With the hatted notation introduced in section A.2, the mean of the distribution of the face
neighbor distances ‖ΘA −ΘB‖2 is

〈‖ΘA −ΘB‖2〉 =
2πf

σQ
× 〈‖(Q̂>Q̂)−1Q̂>e(J)‖2〉 . (A.22)
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Figure 6. Minimum eigenvalue distributions of Ĥ ensembles defined as Q̂>DQ̂ for N = 100 and
ν = 3. Moving from right to left are results for k = 1, 5, 20, 40, 75, and 100 negative signs in the
diagonal of D out of P = N + ν. A Gaussian with standard deviation

√
3N/2 centered at −N/2 is

plotted for the sake of comparison with the k = 1 data.

A non-obvious fact is that the hatted quantity on the lefthand side of (A.22) turns out to be
order one at large N ,

〈‖(Q̂>Q̂)−1Q̂>e(J)‖2〉 = O(1) . (A.23)

The resulting canonical field distances between face neighbors is

〈‖ΘA −ΘB‖2〉 ≈
2πf

σQ
×O(1) . (A.24)

Note the face neighbor distance is suppressed by a factor N relative to the tile diameters,
which go like N when σQ ∼ O(1), and N3/2 in the sparse charge matrix case where σQ =
O(1)/

√
N .

An important aspect of the distribution of ‖ΘA − ΘB‖2, and of the distribution of
maximum distances, is that it appears to be heavy-tailed for ν � N . Taking the asymptotic

form ‖ΘA −ΘB‖−f(ν)
2 for the tail, numerics suggest

f(ν) = 2 + ν , (A.25)

although we have no analytic argument for this relation. A numerical PDF of the maximum
distance is shown in figure 7. Though lacking a derivation of the fall-off exponent f(ν),
the basic fact that the distribution is heavy-tailed at all can be understood heuristically.
Moreover, this reasoning simultaneously explains the O(1) expectation for the hatted distance
between face neighbors (the quantity on the left-hand side of (A.23)).

Consider first the case when P = N , so the charge matrix is square and invertible.
Then (Q̂>Q̂)−1Q̂> reduces to Q̂−1, so we recognize the hatted distance between two face
neighboring minima

‖(Q̂>Q̂)−1Q̂>e(J)‖2 (A.26)

as the length of the Jth column of Q̂−1.
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0 2 4 6 8 10

Figure 7. Numerical probability density of the maximum 2-norm length of the columns of the matrix
(Q̂>Q̂)−1Q̂>, where the entries of Q̂ are i.i.d. according to N (0, 1). This quantity appears in an
estimate for the field space distance between face neighbor minima. In this example N = 200, P = 201,

and we have fit the tail of the distribution to the form (length)
−f(1)

, with f(1) ≈ 3.

When P > N the matrix Q̂ of course is no longer invertible, but the rectangular matrix
(Q̂>Q̂)−1Q̂> is — in a precise sense — the closest thing to the inverse of Q̂. Start with a
singular value decomposition of Q̂,

Q̂ = VΣU> . (A.27)

Here U and V are orthogonal N ×N and P ×P matrices respectively, and the P ×N matrix
Σ contains the singular values of Q̂ along the diagonal of its top N ×N diagonal subblock,
followed by P −N zero rows. In other words Σ has the form,

Σ =



σ1 0 . . . 0
0 σ2 . . . 0
...

. . .
...

0 0 . . . σN
0 0 . . . 0
...

...
...

0 0 . . . 0


. (A.28)

The first N columns of V form an orthonormal basis for the constraint surface Σ when it is
embedded in RP , while V’s remaining P −N columns do so for the orthogonal complement.

To simplify notation we label the inverse matrix as A ≡ (Q̂>Q̂)−1. Note that the
eigenvectors of A are the right-singular vectors of Q̂ (the columns of U, which we’ll label as
ui, and similarly for V). The eigenvalues of A are ai = 1/σ2

i . While Q̂ maps the unit vector
ui to the (generally not normalized) P -vector σivi, the matrix AQ̂> maps vi to 1/σiui. This
is the sense in which the pair AQ̂> and Q̂ can be thought of as the rectangular analog of a
matrix and its inverse. The rectangularity is reflected in the fact that vi plus any P -vector
in Σ⊥ still maps to 1/σiui.

Going forward we also suppress the (J) superscript on the face vector. To develop an
expectation for the magnitude of the lengths ‖AQ̂>e‖2, start by expanding Q̂>e in the
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right-singular vectors of Q̂,

Q̂>e = Q̂>e‖ =

N∑
i=1

biui . (A.29)

Then

AQ̂>e =

N∑
i=1

bi
σ2
i

ui . (A.30)

Since U is orthogonal, the length of AQ̂>e is the square root of the sum of the squares of
the expansion coefficients,

‖AQ̂>e‖2 =

√√√√ N∑
i=1

b 2
i

σ 4
i

. (A.31)

The spectrum of A is known because it is an inverse Wishart matrix (Q̂ is a Wigner matrix).
The task then amounts to correctly estimating the expansion coefficients bi. It might be
tempting to think these would be roughly equal, or, perhaps a bit more carefully, that they
be normally distributed with approximately equal variances. This is not the case, however.

The bi are strongly correlated with the ai due to the fact that e is normalized and Q̂AQ̂>
is an orthogonal projector. Qualitatively, the components of AQ̂>e in large-eigenvalued
eigendirections must be small enough that their image under Q̂ have norm ≤ 1. The cor-
relation can be understood precisely by relating the bi to the expansion coefficients of e‖ in
the left-singular vectors (vi), which we’ll denote by βi,

e‖ =

N∑
i=1

βivi . (A.32)

In light of the fact that AQ̂> : vi 7→ 1/σiui the expansion coefficients are related by
βi = bi/σi. The β2

i must sum to a value ≤ 1 because e is normalized. Recall that face
vectors generically have ‖e‖‖2 ≈ 1 and e⊥ � 1 for P −N � N because Σ is randomly ori-
ented. Likewise, the projection onto Σ itself, e‖, bears no special relation to the orthogonal
directions vi. Consequently, we expect values for these expansion coefficients — the βi —
to be comparable to one-another. They are the components of a normalized vector so the
magnitude to expect is βi ∼ 1/

√
N since,

N∑
i=1

β2
i ≈ 1 ⇒ Nβ2

i ∼ 1 . (A.33)

A rough estimate of the mean/median of ‖AQ̂>e‖2 can be obtained setting all β2
i = 1/N .

One then concludes a value of 〈‖AQ̂>e‖2〉 ≈ 〈
√
λA〉, where λA represents a blindly-drawn

eigenvalue of the matrices in an inverse Wishart ensemble.11 Numerically we find the median
of this is O(1). This is (literally) the observation (A.23).

Furthermore, the eigenvalue distribution of the inverse Wishart ensemble is heavy-tailed.
This explains the heavy tail of the PDF in figure 7, albeit without an analytic estimate of

11It should be noted that while 1/
√
N is the magnitude to expect for the βi, the upper bound on any given

|βi| is of course still 1. In terms of the |bi| this translates to a strict boundary at |bi| = 1/
√
ai. We have

confirmed numerically that a marked decrease in the |bi| is observed at 3/
√
Nai, which is consistent with

having gaussian distributed βi with variance 1/N .
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the numerically observed fall-off rate f(ν). An important conclusion is that parent-to-target
distances much larger than the median (A.22) are much more frequent than distances much
smaller than (A.22) (which appear to be exponentially suppressed).

B Refined stability bound

The purpose of this appendix is provide a more detailed version of the stability analysis
performed in section 2 for tunneling from minima with nearly zero vacuum energy. We also
account for the variations among the neighbors of a given degree-k set, which is currently
ignored in the estimate of an upper bound on thin-wall tunneling exponent B in section 2.
The result will be a more precise bound. We also study the distribution of vacuum energy
differences and show that this may improve the bound on B for tunneling to face neighbors.

B.1 Stability

The set of degree-k neighbors of a given parent are not identical. They vary both in the widths
of the barriers separating them from the parent, and in their difference in vacuum energy
density compared to the parent. The worst case scenario from the perspective of a parent’s
stability, is when the degree-k neighbor with thin-wall tension (σ) fluctuated the most toward
small values is also that with largest vacuum energy difference, ε. Any other correlation
between the two quantities would serve to increase B, and render the vacuum more stable.

Recall that

σ ≈ 2πkΛ4√
|V ′′∗ |

, (B.1)

with |V ′′∗ | well-approximated by

|V ′′∗ | = |λ−|
σ2
QΛ4

f2
, (B.2)

and where λ− is the most negative eigenvalue of Ĥ. As shown in appendix section A.2, the
mean of the distribution of the most negative eigenvalues in an Ĥ-ensemble behaves at large
N as

〈λ−〉 = −c(k)N , (B.3)

where c(k) is an O(1) constant, ranging from c(1) ≈ 1/2, to c(P ) ≈ 4. Although using 〈λ−〉
in (B.1) captures the contribution to the tension from the near-saddle region for a typical
degree-k neighbor, what matters is the extremal neighbor; the leftmost outlier λ− among the
set of about 2k

(
P
k

)
neighbors. To account for this we’ll write λedge = C1〈λ−〉. The standard

deviation of the distribution of λ− goes like
√

3N/2, which is suppressed by a power of N1/2

relative to the mean, implying C1 will tend to 1 as N →∞. However, for N = 500, a value
of about C1 = 1.5 is appropriate. Putting things together, we have

Bdegree-k &
63π6

C2
1

k4

c2(k)

Λ8f4

σ4
QN

2ε3
(B.4)

An upper bound on ε = |∆Vlowest outlier| completes the calculation. For tunneling from
a minimum with zero vacuum energy one has ε < |V0|, since the global minimum has energy
Vglobal min ≥ −|V0|. (We have stated this as an inequality to include the case of non-vanishing
phases δ in (1.1). The inequality is saturated for δ = 0.) Plugging in ε = |V0| reproduces the
bound in section 2, (2.10) provided one sets C1 = 1 and c(k) = c(1) = 1/2 (since the estimate

– 28 –



J
C
A
P
0
9
(
2
0
1
9
)
0
6
2

there ignores fluctuations in λ− and the sublinear k-dependence of the random matrix theory
coefficient c(k)).

It turns out that face neighbors have smaller ∆V outliers than−|V0| in certain parameter
regimes. This is discussed in detail in the following section. For example, for V0 = Λ4 and
P = 500 the net effect is about a factor of a half, εk=1 < |V0|/2. If the decay rate is dominated
by tunneling to these neighbors (as we expect), this factor of 2 contributes roughly an order
of magnitude increase to B, since it enters via 1/ε3.

B.2 Vacuum energy differences

The vacuum energy difference between two neighbors can be approximated by a simple Taylor
expansion of

VB = Vaux(QΘB) ≈ Vaux(QΘA + 2πPvk) . (B.5)

The result to second order in ‖v⊥k ‖2 ≡ ‖P⊥vk‖2 is

∆V = VB − VA = Λ4
(

2π
√

2µP‖v⊥k ‖2 cos(ψ) + 2π2‖v⊥k ‖22
)
, (B.6)

where ψ is the angle between n⊥A and v⊥k , and µ = 2π2‖n⊥A‖22/P . The derivation of (B.6) is
included at the end of this section for completeness.

The quadratic contribution to (B.6) is positive definite. Since the vk come in pairs that
are equal in magnitude but exactly opposite in direction,12 half of the degree-k neighbors
have cos(ψ) > 0, and half have cos(ψ) < 0. In any given model, parent vacua with sufficiently
high µ have first order contributions to the ∆V ’s that tend to dominate the quadratic ones
for most of the neighbors in a given degree-k set, resulting in the parent’s set of ∆V ’s being
approximately symmetric about zero, for each k. As a parent’s µ value decreases though,
this balance is thrown off because an increasing number of negative first order contributions
— which are proportional to

√
µ — will be partially canceled, if not entirely overwhelmed,

by the positive quadratic term.

Whether positive or negative, the ∆V to a parent’s lowest energy neighbor can be esti-
mated with relative ease because of the observation that the two-norms of the v⊥k and their
orientations with respect to the n⊥A appear to be uncorrelated in random axion landscapes.
These are the only two sources of variability in a parent’s ∆V ’s for fixed k.13 When ν ' 10 the
cos(ψ) behave like the dot products between a set delocalized unit vectors in ν dimensions, im-
plying that the cos(ψ) are approximately normal distributed with mean zero and standard de-
viation 1/

√
ν. The fall-off eventually deviates from the Gaussian, becoming sharper due to the

fact that | cos(ψ)| ≤ 1. For a sample of different low CC parents, the distribution of maximum
dot product factors — one Max(cos(ψ)) from each parent taken over its fixed k neighbors–
is peaked at x∗/

√
ν with x∗ ranging from about 2.2 to 2.9 for ν = 10 to ν = 15 and P = 400.

Now for the two-norms; the mean of the distribution of the set of ‖v⊥k ‖2 for fixed k is in
accordance with the naive prediction based on assuming P independent normal distributed
entries with standard deviation

√
νk/P , namely the mean of a χ-distribution in P variables

12Because for every nontrivial entry there is a choice of ±1.
13This applies to all neighbors for which the second order Taylor expansion (B.6) is accurate. Since we are

only interested in tunneling to lower energy neighbors, approximating the vacuum energy of the neighbor by
Λ42π2d2

B is even more accurate than the analogous expression is for the parent. The difference between these
two quadratic approximations to the vacuum energy directly gives (B.6) without further assumption.
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scaled by the standard deviation of the individual entries, i.e.

〈‖v⊥k ‖2〉 =
√
νk/P (B.7)

(cf. (A.4)). Though the means agree, the actual {‖v⊥k ‖2} are more widely distributed.14

With these considerations, the ∆V for a general degree-k neighbor can be expressed
in terms of the natural scales by setting | cos(ψ)| = x/

√
ν and ‖v⊥k ‖2 = y

√
νk/P in equa-

tion (B.6). We also take the parent’s µ to be µlow CC ≈ V0/(PΛ4) from now on. The result,
expressed as a function of the dimensionless order 1 quantities x and y that entirely capture
the variation in ∆V across neighbors of fixed k, is

∆V

Λ4
= ±2π

√
2V0/Λ4 xy

√
k

P
+ 2π2 y2 νk

P
, (B.8)

where the + applies to the half with cos(ψ) > 0 and − to those with cos(ψ) < 0, and we
bear in mind that 0 ≤ x ≤ √ν and 0 ≤ y ≤

√
P/(νk).

The optimal conditions for making ∆V as negative as possible come from x =
√
ν (and

obviously selecting the − sign), and y given by

yoptimal =

√
PV0/Λ4

π
√

2kν
. (B.9)

Evaluating ∆V (x, y) at the optimal values turns out to simply give −V0, the energy gap
to the global minimum. At higher k one can expect to saturate the inequality ∆V > −V0

because there are exponentially many neighbors, but for low k the 2k
(
P
k

)
draws of (x, y) may

be insufficient for ensuring that at least one pair of the (x, y) is close to (xoptimal, yoptimal).
Without an analytic expression for the PDF governing the {xi} and {yi} though, the

only way to determine the outlier (xi, yi) at low k is numerically. For ν = 10 to about 15
and P = 250–500 we find that the aforementioned value of x∗ together with y∗ = 1 yields a
good approximation to the ∆Voutlier for the special case of k = 1. Essentially, this is because
the wider of the two distributions controls the outlier value if there are not enough draws
to densely sample the allowed ∆V ’s, coupled to the fact that the optimal y happens to be
relatively close to 1 (unlike for high k, where it approaches zero). Hence for k = 1 we may
apply the estimate

∆Voutlier, k=1

Λ4
= −2π

√
2V0/Λ4

x∗(ν, P )√
P

+ 2π2 ν

P
(B.10)

and define

C3(V0, ν, P ) = 2π

(
−
√

2V0/Λ4 x∗ +
πν√
P

)
, (B.11)

14The spread of an actual set of ‖v⊥k ‖2 is wider than the naive expectation by a factor of 5 or so,

Std. Dev. (scaled χ) =

√
νk

P

√
P − 2

(
Γ((P + 1)/2)

Γ(P/2)

)2

∼
√

2νk

P
,

Std. Dev. (actual ‖v⊥k ‖2) ≈ 5

√
2νk

P
.

The reason for this discrepancy is that the entires of P⊥ are correlated.
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so that

∆Voutlier, k=1 =
C3Λ4

√
P

. (B.12)

For V0 = Λ4 and P = 500 this results in a value of about −12 for C3.
As k increases there is a transition from an outlier energy difference of ε = |C3|Λ4

√
k/P

for k = 1 to an outlier with ε = V0. In this parameter regime it turns out that the transition
occurs immediately at k = 2. The particular values here result in an outlier difference for
k = 1 that is about half as large as the global bound. Accounting for such order one factors at
V0 = O(1)Λ4 can be significant because they enter with a third power in the denominator of
B, and so are capable of increasing the numerical factor in the bound by orders of magnitude.

Expressing the outlier ∆V as ∼ 1/
√
P , as we’ve done in (B.12), is useful in that it

accurately reflects the N dependence for larger µ parents (where the linear term in ∆V dom-
inates). However, writing the outlier ∆V in this manner obscures the fact that the absolute
minimum value it ever takes on is −|V0|. This fact is encoded in the definition of C3 in (B.11),
but the property that the refined bound on ∆V is always stronger than the global bound can
be made manifest as follows. Evaluating (B.8) at the outlier values for x and y expressed in
terms of the optimal ones: x∗ = rxxoptimal and y∗ = ryyoptimal, results in the expression,

∆Voutlier = (r2
y − 2rxry)V0 . (B.13)

By writing the outlier energy gap between quadratic domain vacua as a fraction times
V0, one can immediately see the degree to which using the refined bound on ∆V over the
global one improves the lower bound on the tunneling exponent B. The benefit amounts to
an enhancement of Bmin by the inverse of the fraction, cubed. An expansive numerical study
the typical values of rx and ry in different parameter regimes would enable one to determine
the typical benefit of employing the refined bound for very low k neighbors (possibly only
k = 1, as the numerical survey may reveal that the transition to saturation never occurs
above k = 2).

Finally, we include the derivation of the expression we began with, (B.6). Start by
evaluating the potential at the leading order locations for the two vacua:

∆V = V (ΘB)− V (ΘA)

≈ Vaux(QΘA + 2πPvk)− Vaux(QΘA)

= Λ4
P∑
J=1

1− cos
[
2π(nA + vk − n⊥A − v⊥k )J

]
−
(

1− cos
[
2π(nA − n⊥A)J

])
= Λ4

P∑
J=1

1− cos
[
2π(nA − n⊥A − v⊥k )J

]
−
(

1− cos
[
2π(nA − n⊥A)J

])
.

Now define εJ ≡ 2π(v⊥k )J and expand the first cosine term in the sum about the argument
of the second, i.e. expand in εJ . The result is

∆V = Λ4
P∑
J=1

(
− sin[2π(nA − n⊥A)J ]εJ +

|εJ |2
2

cos[2π(nA − n⊥A)J ]

)
+O[(εJ)3] . (B.14)

Now, further expand the sine and cosine about (2πnA)J ,

∆V = Λ4
P∑
J=1

(
2π(n⊥A)JεJ + (1− (n⊥JA )2)

|εJ |2
2

)
+O[(εJ)3] . (B.15)
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Using (n⊥A)J � 1, we arrive at the following simple expression for the energy difference
between quadratic domain neighbors:

∆V = 2π2Λ4
(

2n⊥A · v⊥k + ‖v⊥k ‖22
)
, (B.16)

which we can recognize as the difference in the parent and neighbor lattice point’s two-
norm distances to the constraint surface, times 2π2 (as it had to be). Plugging in ‖n⊥A‖2 =√
µAP/2π2 and defining ψ as the angle between n⊥A and v⊥k gives equation (B.6).
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