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ABSTRACT This paper presents a control strategy for quadruped balancing that enables postural control
in underactuated contact configurations (e.g., when standing on two point feet). Underactuated balancing
has received considerable attention with prototype control models such as the cart pendulum or acrobot.
Yet, when attempting to transition these solutions to balance in legged robots, technical challenges related to
friction-limited contacts and the underlyingmanifold structure of the configuration space prevent straightfor-
ward application. This paper presents a new balance control framework that combines constrained optimal
control strategies with recent variational-based linearization approaches to solve the balancing problem for
a common simplified quadruped model. The controller is implemented as a convex quadratic program (QP)
that uses an unconstrained optimal control solution to approximate a friction-constrained optimal policy.
Unlike state-of-the-art QP-based balance controllers, the method is able to handle balance in underactuated
regimes. Via comparison to model-predictive control strategies, the proposed formulation is highly compact,
requiring less computation, while still showing the ability to handle extreme friction limitations. Simulation
and hardware results with the MIT Mini Cheetah demonstrate the capabilities of the controller to exploit
body angular momentum for disturbance recovery on two feet, and to recover from cases where the center
of mass exits the support polygon. These results and the generality of the formulation suggest exploration
for further application to bipeds and humanoids.

INDEX TERMS Dynamics, legged locomotion, linearization techniques, optimal control, robot control.

I. INTRODUCTION
The development of robot platforms capable of dynamic
legged locomotion offers a solution to the mobility bottleneck
currently limiting the impact of mobile robots. The ability to
negotiate challenging terrains, both natural and constructed,
with high speed and agility will allow robots to work seam-
lessly alongside humans as well as in places too dangerous
for humans. There are a number of technical challenges that
prevent current platforms from fulfilling this goal. Features
of underactuation, friction limited contacts, and nonlinear
hybrid dynamics complicate the control problem, motivat-
ing substantial research into locomotion control algorithms
in the past decades. In this work, we focus specifically
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on the challenging problem of underactuated balancing for
quadruped robots (Fig. 1). This canonical problem, and the
proposed algorithms to solve it, are more generally applicable
to other dynamic behaviors and platforms (e.g., bipeds and
humanoids).

Quadratic programming (QP) based approaches to con-
trol have driven considerable progress in the field of legged
robots [1]–[5]. Existing QP-based controllers are attractive
due to their ability to be run in real time while simultaneously
reasoning about control input constraints. Balance control
QPs are generally based on the idea of optimizing the dis-
tribution of ground reaction forces, subject to contact force
constraints, to produce motions of the body that track a refer-
ence state [1], [2]. Whole-body inverse-dynamics control via
QP has produced perturbation robust balancing for bipeds [6],
[7] as well as quasi-static quadruped walking [8], [9].
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FIGURE 1. The proposed control framework for balancing in
underactuated contact configurations achieves two-leg
balance of the MIT Mini Cheetah quadruped.

Although the walking in these cases is slow, the quadrupeds
are capable of navigating challenging sloped terrains due to
the ability of the QP to effectively handle friction constraints.

Despite the numerous advantages of QP-based approaches
to whole-body control, these methods are limited by their
failure to look beyond satisfaction of instantaneous desired
dynamics. The challenge of avoiding undesired myopic
behaviors has motivated the increasingly widespread use of
model predictive control (MPC). MPC involves computing
control inputs through repeated solution of a receding horizon
optimal control problem (OCP) [10]. For quadruped balance
control and related locomotion problems, classic optimal
control approaches for underactuated balancing of nonlinear
systems [11] provide important insights for real-time solu-
tions to the OCP. Using a model of the system, optimal
controllers find the control policy that minimizes some objec-
tive function over a prescribed time horizon. Many strategies
involve feedback linearization [11] to avoid dealing with
complex nonlinear dynamics. The resulting linear dynam-
ics and often-assumed quadratic cost functions pose a well
known optimal control problem, solvable backward in time
via a Ricatti equation. The drawback of using these optimal
controllers for legged systems is the difficulty of enforcing
constraints on control inputs and ground forces.

Other recent controllers for nonlinear dynamic systems
have shown the ability to solve these optimal control prob-
lems using differential dynamic programming (DDP) [12].
DDP uses locally quadratic models of the cost function
and dynamics to iteratively sweep backward over the cost
and forward through the dynamics until convergence to
a locally optimal policy. Such controllers have produced
dynamic quadruped gaits [13] and humanoid balance for
reaching tasks [14]. The accommodation of box inequality
constraints into theDDP formulation has enabled the enforce-
ment of control constraints [15]. Other recent work [16]
has introduced coordinate-free extensions for application
to Lie groups, increasing the suitability of the method for
locomotion tasks. Despite these advances, however, DDP,
like other nonlinear-based approaches [17], is complicated
by non-convexity that leads to potential issues with local
optima and computational challenges that pose an obstacle
to real-time implementation.

To avoid non-convexity in the MPC formulation, other
MPC strategies often make model simplifications to work
with linear dynamic models [18], [19]. The linear dynamic
model allows the OCP to be posed as a single convex opti-
mization problem, which avoids the issue of local optima
and allows for enforcement of inputs constraints. These con-
trollers have demonstrated impressive locomotion capabili-
ties, but their performance depends on the robot’s state being
contained within the small locally valid region around the
reference trajectory. Additional measures like regularization
can improve solution quality when nonlinearities remain [20],
but the fundamental challenge of computational cost posed by
model complexity and horizon length persists.

This work proposes an alternative control algorithm that
synthesizes optimal control and quadratic programming,
as inspired by the approach demonstrated in [21]. The
approach involves solving an unconstrained linear quadratic
regulator (LQR) problem to compute the optimal cost-to-
go. Solving the LQR also yields a linear optimal controller,
but constraints may prevent this policy from being achieved.
Instead, cost-to-go information can be re-purposed to design
an input-constrained control law that is able to consider the
long-term consequences of present actions. In this previous
work [21], the unconstrained cost-to-go was used to control
the fully-actuated zero moment point (ZMP) and Center of
Mass (CoM) dynamics for a humanoid, which are equivalent
to those of the common Linear Inverted Pendulum (LIP)
model [22]–[24]. Quadruped dynamics, however, are not
easily captured by a fully-actuated LIP model since many
contact configurations (e.g., on two feet) are underactauted,
and orientation dynamics play a significant role in center of
mass regulation.

Traditional linearization techniques also cannot be applied
to the quadruped dynamics because even for single rigid-body
models [25], the orientation dynamics evolve on the
nonlinear manifold SE(3) = SO(3) × R3. We address this
challenge by applying variational-based linearization (VBL)
techniques [26] to a reduced-order model of the quadruped
and using that linear model for the unconstrained LQR. This
new application of VBL and the resulting variational-based
optimal controller for underactuated balancing of nonlinear
control-constrained systems in SE(3) constitutes the main
contribution of this paper. Our VBL-QP control law, as it
is referred to, captures the benefits of larger-scale MPC for-
mulations while maintaining fast solve times and loop rates
via a compact formulation. We demonstrate its viability via
full-body dynamic simulation as well as in hardware experi-
ments with the MIT Mini Cheetah quadruped.

The remainder of the paper is organized as follows.
Section II details the proposed controller design and
highlights the paper’s technical contributions. Section III
describes the rigid-body model used for control, motivated
by the design of the Mini Cheetah. Section IV overviews the
criteria and steps for applying variational-based linearization
on manifolds as well as how the linear variation dynamics are
used in control. Section V presents and discusses simulation
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FIGURE 2. Control architecture for the proposed balance controller.

and hardware results demonstrating the capabilities of the
controller, and Section VI concludes with a summary.

II. CONTROLLER DESIGN
The proposed VBL-QP framework is predicated on an
approximation of a cost-to-go using an unconstrained LQR
to drive the linearized state error of the system to zero. The
unconstrained cost-to-go from the LQR is used to formulate
a QP that descends this cost-to-go while enforcing input
constraints. This section motivates the two-leg balance task
as a relevant problem in legged locomotion and overviews the
two key components of the VBL-QP framework: linearized
dynamics on SE(3) and a QP formulation. The architecture
for the proposed VBL-QP controller is shown in Fig. 2.

A. TWO-LEG BALANCE
The viability of the VBL-QP controller is demonstrated by
its ability to negotiate the control challenges presented when
transitioning from four-leg balance to two-leg balance. The
first of these challenges arises from the reduced support poly-
gon created by taking two feet out of contact with the ground.
Rather than the broad support polygon afforded by four stance
feet, the set of stable positions for the CoM when balancing
on two point feet becomes the ‘‘supporting line’’ between the
two feet in contact. The second challenge comes as a result
of the loss of actuation. With only two feet in contact with
the ground, the system is underactuated and the set of feasible
wrenches that the stance feet can exert on the body is reduced.
For instance, a pure moment about the supporting line can no
longer be generated. This challenge presents a problem not
only for achieving desired orientation changes, but also for
stability, since the limited set of wrenches hinders the ability
to recover from disturbances.

Addressing this underactuated balancing problem requires
exploitation of system dynamics beyond the current instant.
The key advantage of the VBL-QP controller’s compact for-
mulation is that it offers these predictive capabilities while
maintaining efficient solve times (0.1-1 ms) comparable
to those of conventional, non-predictive balance QPs [25].
Unlike constrained MPC approaches that involve nonlin-
ear optimization like DDP or comparatively high dimen-
sional convex optimizations, VBL-QP only requires solving
a Ricatti equation and using that solution in an efficiently
solvable QP. As a result, VBL-QP can be run at a higher
frequency (500 Hz vs. 20-30 Hz) and does not suffer from

the same prediction horizon limitations. Simulation results
presented in Section V demonstrate why this is advantageous
for a task like two-leg balance.

B. LINEARIZED DYNAMICS
The optimal control strategies for balance control proposed
in this paper require a linear dynamic model. In order to
implement these strategies, a variational-based approach [26]
to linearization is applied to the Mini Cheetah’s nonlinear
reduced-order model dynamics. The aim of the VBL is to
express the dynamics of the system in the form

ṡ = A(xd (t))s+ B(xd (t))δu, (1)

where s approximates the error between the actual and ref-
erence states of the system, xd is a time-varying desired
reference trajectory, and δu is a variation to the reference
control input ud such that

u = ud + δu. (2)

Note, however, the challenge to conventional linearization
approaches in coordinates if the state x contains an element
of SO(3), as it does in our case. With this challenge in mind,
the variations s can roughly be considered as a local approx-
imation of the displacement between two points on a mani-
fold. The VBL exploits specific variation expressions on the
nonlinear manifold SO(3), which allows for parameterization
of the error directly based on infinitesimal rotations [26]. The
ability to parameterize the error in this way offers a significant
advantage over typical dynamic models that employ Euler
angles, which can suffer from singularities, or quaternions,
which are significantly more complex to deal with and suffer
from issues like the unwinding phenomenon.

The VBL, meanwhile, is able to offer a compact linear
model that is singularity-free and that describes error in a
manner that is invariant to the orientation of the coordinate
frame attachment. Furthermore, the resulting linear dynam-
ics from the VBL are controllable for all possible refer-
ence trajectories about which the system is linearized [26].
The locally valid region of attraction for the linearization,
however, varies depending on the dynamic system. In the
case of two-leg balance, we empirically find that the region
of attraction is suitably large to capture most kinematically
feasible translations and rotations of the robot.

C. OPTIMAL VALUE APPROXIMATION
The main contribution of this paper is a control strategy for
underactuated balancing in input-constrained systems using
an approximation of the optimal cost-to-go. The optimal
cost-to-go is a function that represents the minimum cost,
according to an objective function, associated with mov-
ing from a given time-dependent state to a desired final
state [27]. The approximation proposed in this paper involves
using the unconstrained cost-to-go (UCTG) as a proxy for
the constrained cost-to-go (CCTG) and then formulating a
QP that descends the UCTG while enforcing constraints.
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Using the UCTG offers the advantage of considering the
effect of system dynamics on current and future costs. Empir-
ically, we find that the additional information afforded by
using the UCTG enables underactuted balancing in extreme
low-friction regimes, suggesting that underactuation, not fric-
tion, can be attributed as the main challenge for balance on
two legs.

The computation of the UCTG is enabled by the VBL,
which allows the OCP to be posed in a conventional
linear-quadratic form [27]

V ∗unc(s0) = min
δu(·)

∫
∞

0
[s(t)TQs(t)+ δu(t)TRδu(t)]dt,

s.t. ṡ(t) = A s(t)+ B δu(t),

s(0) = s0, (3)

where Q ∈ R12×12 and R ∈ R12×12 are positive-definite
weighting matrices. With the control problem posed in this
form, the UCTG takes the form V ∗unc(s) = sTPs, where
P ∈ R12×12 is found via solution of the continuous-time
algebraic Ricatti equation [27]

0 = Q− PBR−1BTP+ PA+ ATP. (4)

Introducing the contact force constraints into (3) creates an
OCP that is not tractable to solve

V ∗(s0) = min
δu(·)

∫
∞

0
[s(t)TQs(t)+ δu(t)TRδu(t)]dt,

s.t. ṡ(t) = A s(t)+ B δu(t),

δu(t) ∈ U (ud ),
s(0) = s0, (5)

where U (ud ) represents a linear approximation of the friction
cone

U (ud ) = {δu | d ≤ C(ud + δu) ≤ d} .

The CCTG, V ∗, and optimal variational control pol-
icy, δu∗(s), for this new control problem might be sought
by solving the time-invariant form of Hamilton-Jacobi-
Bellman (HJB) Equation

0 = min
δu∈U (ud )

[
l(s, δu)+

∂V ∗

∂s
[As+ Bδu]

]
, (6)

where l(s, δu) is the running cost term that comes from the
objective function.

The advantage of the minimization on the right hand side
of the HJB equation is that it considers both the costs incurred
at the current moment in time as well as the effect on the low-
est possible costs incurred in the future. This consideration
of long and short-term costs is incorporated in the VBL-QP
approach, which makes the approach well suited for handling
the challenge of underactuation when balancing on two feet.

The HJB partial differential equation (6), however, is
difficult to solve even approximately, and approximating
an infinite horizon solution numerically is computationally
expensive for real-time control. Rather than solve this partial
differential equation to get the CCTG and the optimal control

policy, the known UCTG V ∗unc is used as a proxy for V
∗, and

the optimal control policy for (5) is then approximated via the
constrained optimization

min
δu∈U (ud )

[
l(s, δu)+

∂V ∗unc
∂s

[As+ Bδu]
]
. (7)

This strategy of the replicating the minimization step of
the HJB equation allows for rapid execution of the control
loop, while still providing approximations of the constrained
optimal control policy that account for the system dynam-
ics. Perhaps surprisingly, the approximate optimal policy
from (7) is found to be sufficiently accurate for balancing
across a range of typical operating conditions in simulation
as well as on hardware. It is noted that in cases where there
exists a variational control input δu∗ that satisfies the fric-
tion constraints with a zero objective function value in (7),
the solution to the minimization (7) is equal to unconstrained
optimal policy. Otherwise, the control law will provide a
variational control input with lowest long-term anticipated
cost that satisfies the current friction constraints.

Applying the objective function, dynamics, and UCTG
from (3), the HJB minimization step takes the form

min
δu∈U (ud )

[
sTQs+ δuTRδu+ 2sTP[As+ Bδu]

]
. (8)

The quadratic state error terms sTQs and 2sTPAs are indepen-
dent of δu and can thus be removed from the optimization.
Future state costs are captured by UCTG via the Ricatti
solution P in 2sTPBδu. Additionally, experimentation proved
that adding a penalty for deviations from the previous optimal
solution improved stability. The resulting optimization prob-
lem is solved every control loop

min
δu∈U (ud )

[
δuTRδu+ 2sTPBδu+ β||δu− δu∗prev||

2
]
, (9)

where δu∗prev is the previous optimal solution and β > 0
dictates the strength of solution filtering. Since the dynamics
are affine and the cost is quadratic, this problem is a QP.

The VBL-QP policy (8) can be viewed as the limiting case
of a one-step horizon constrained discrete-time LQR prob-
lem [28] as time discretization becomes infinitely fine. For
any fixed time discretization, constraints can be enforced over
a longer horizon without disrupting this QP form [28], and
explicit solutions exist [29] for the case when the cost func-
tion and dynamic matrices A,B,Q,R remain fixed. In these
cases, there further exist algorithms to determine a predic-
tion horizon [30], [31] that ensures persistent feasibility by
considering the concatenation of a finite horizon constrained
solution with a subsequent infinite horizon unconstrained
solution. The approach here is similar in spirit, but instead
employing the shortest prediction horizon possible. Perhaps
surprisingly, the information-rich nature of the UCTG and
use of the HJB minimization step enables the quadruped to
maintain balance on two legs across a wide range of operation
and under stringent frictional limitations.
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III. SIMPLIFIED DYNAMICS
This section overviews the design of the MIT Mini
Cheetah quadruped [32] and justifies a reduced-order
dynamic model for control design. The simplified dynam-
ics of the reduced-order model are able to significantly
reduce solution times for the constrained optimization in the
VBL-QP while minimally affecting the performance of the
controller. The impact of assumptions made by the simpli-
fied model is reduced by quasi-static compensation for the
neglected effect that leg mass has on the dynamics.

A. ROBOT DESIGN OVERVIEW
The MIT Mini Cheetah is a low-cost, lightweight quadruped
intended to facilitate hardware experimentation for control of
dynamic legged robots [32]. Standing 0.3 m tall with a mass
of 9 kg, the Mini Cheetah is significantly smaller than its
relative, the MIT Cheetah 3, yet the two share key design
features [33]. Both robots feature backdriveable actuators
capable of controlling ground reaction forces through propri-
oception [34], including a hip abduction/adduction actuator
that enables full 3D control of ground reaction forces. The
majority the Mini Cheetah’s mass, roughly 90%, is contained
in the trunk, with the leg design optimized to reduce limb
inertia while maximizing range of motion at all joints. The
Mini Cheetah has replicated numerous of the Cheetah 3’s
highly dynamic behaviors such as trot, trot-run, bounding,
and pronking as well as novel behaviors such as a 360◦

backflip from standing [32].

B. REDUCED-ORDER MODEL
The design of the Mini Cheetah allows for its dynamics to
be approximated as a single rigid body with massless legs
and the CoM at the geometric center of the body. Using
this representation for the dynamics, the state of the robot is
abstracted by

x := [pc ṗc Rb ω], (10)

where pc ∈ R3 is the position of the CoM; ṗc ∈ R3 is the
velocity of the CoM; Rb ∈ SO(3) is the orientation of the
body frame {B} with respect to the inertial frame {0}, and
Bω ∈ R3 is the body’s angular velocity. Variables without
a superscript are assumed to be expressed in the inertial
frame. Variables expressed in the body-fixed frame will have
a leading superscript B. For example, Bω is the body’s angu-
lar velocity expressed in the body frame, while ω is the
body’s angular velocity in the inertial frame. An illustration
of these coordinate frames and other relevant vectors is shown
in Fig. 3.
The position and orientation of the body are controlled via

the ground reaction forces fi ∈ R3 applied at the contact
locations of the feet pi ∈ R3. Contacts are assumed to be
stationary. The subscripts i are indices for each foot, with
i = 1, 2, 3, 4 denoting the front right, front left, back right,
and back left feet, respectively. The locations of these feet
relative to the body’s CoM are denoted by ri = pi − pc.

FIGURE 3. Illustration of the rigid-body model and the body- and
earth-fixed coordinate frames. The vectors ri and fi represent the vectors
from the CoM to the feet and the ground reaction forces, respectively.

These ground reactions forces produce a net external
wrench on the body consisting of a net force, f , and a net
moment about the CoM, τ , given by[

f
τ

]
=

4∑
i=1

[
I3
r̂i

]
fi, (11)

where I3 is the 3 × 3 identity matrix, and r̂i maps R3
→

so(3) such that r̂iy = ri × y for all ri, y ∈ R3. The resulting
rigid-body dynamics are given by

ẋ =
d
dt


pc
ṗc
Rb
Bω

 =


ṗc
1
m
f−g

Rb Bω̂
BI−1(RTb τ −

Bω̂ BI Bω)

, (12)

wherem is the mass of the body, g ∈ R3 is the acceleration of
the body due to gravity, and BI ∈ R3×3 is the inertia tensor
about the CoM. The rotational inertia is assumed constant in
this work. The contact location at each foot will remain fixed
as long as the ground reaction forces lie within the friction
cone {

(fx , fy, fz) ∈ R3
∣∣∣∣√f 2x + f 2y ≤ µfz}, (13)

where fx and fy are tangential components of the ground
reaction force at a given leg, fz is the normal force, andµ is the
coefficient of static friction between the foot and the ground.
The linear approximation of this friction cone constraint used
by the OCP (5) is an inscribed friction pyramid, defined by

−
1
√
2
µfz ≤ fx , fy ≤

1
√
2
µfz. (14)

C. LEG MASS COMPENSATION
Controller performance can be significantly improved by
a simple technique that partially captures the effect of leg
mass on the robot’s dynamics while minimally impacting
computational cost. The technique involves the low-level
torque controller that converts commanded ground reaction
forces to joint torques. In addition to converting forces to
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torques, the controller also adds configuration-dependent
gravity compensation torques that account for the mass of the
legs. The joint torques at leg i are computed via

τi = JTi fi + τg,i, (15)

where Ji ∈ R3×3 is the foot Jacobian for leg i and g ∈ R18 is
the generalized gravity vector for the full-body dynamics of
the quadruped

τg =


τg,fb
τg,1
...

τg,4

 . (16)

The vector τg,fb ∈ R6 is the gravity compensation wrench
for the floating base and is not used for low-level torque
control. The vectors τg,i ∈ R3 for i = 1, 2, 3, 4 are the gravity
compensation torques for the joints of each leg.

This generalized gravity vector can be computed via the
inverse dynamics algorithm in [35]. This computation takes
on the order of 10µs and requires only the body orienta-
tion from the state estimation and joint position information
that comes from the leg controller. Rather than dramatically
increase the solve time of the constrained optimization by
accounting for the effect of leg mass on the dynamics, this
method allows for rapid QP solution and quasi-static com-
pensation for leg mass.

IV. VARIATIONAL-BASED LINEARIZATION
The concept of variational-based linearization for dynamics
evolving on nonlinear manifolds was introduced in Section II.
As was mentioned, a linear dynamic model in the form (1) is
critical for implementation of the VBL-QP controller, specif-
ically for solving the unconstrained OCP (3). This section
explains the criteria and steps required to apply VBL to a
nonlinear system, and then carries out those steps for the
reduced-order dynamic model of the Mini Cheetah (12).

A. ERROR PARAMETERIZATION ON MANIFOLDS
Linearization along a reference trajectory on a manifold
involves taking the variation of the state with respect to that
reference trajectory. The variation can roughly be considered
as a local approximation of the displacement between two
points on a manifold. On the manifold SO(3), the manifold of
interest for theMini Cheetah’s orientation dynamics, the vari-
ation with respect to a reference trajectory Rdb is given by [36]

δRb =
d
dε

∣∣∣∣
ε=0

Rdb exp (ε
Bη̂) = Rdb

Bη̂, (17)

where Bη ∈ R3 is an approximation of the angle-axis error
describing the rotation necessary to achieve the desired ori-
entation. The exponential map exp : so(3) → SO(3) maps a
skew-symmetric matrix to a rotation matrix such that

exp (̂η) = I3 +
η̂

||η||
sin ||η|| +

η̂2

||η||2
(1− cos ||η||). (18)

The subsequent variation in angular velocity, expressed in
body coordinates, is given by

δBω = Bω̂d Bη + Bη̇. (19)

For sufficiently close Rb and Rdb , the variations Bη and δBω
can be treated as a linear approximation of the exact error, e,
between the desired and actual state defined by

eR =
1
2
((Rdb )

TRb − RTb R
d
b )
∨,

eω = Bω − (RTb R
d
b )
Bωd . (20)

where the vee map, ∨ : so(3) → R3, is such that x̂∨ = x,
∀x ∈ R3. Additionally, although not developed here, simi-
lar parameterizations for variations on the manifold S2 also
exist [26].

B. VARIATION DYNAMICS
For a given dynamically feasible reference trajectory xd (t)
and the nominal control input ud (t) to follow this trajectory,
the linear variation dynamics for the system can be found
in the following manner [26]. This technique is valid only
when the system is control affine with respect to u and when
the dynamic model of the system consists only of vector addi-
tion, dot product, cross product, and matrix multiplication
with a matrix or vector. The first step is to take the varia-
tion on both sides of the dynamic equations, which involves
recursively applying the following formulae

δ(x + y) = δx + δy,
δ(x × y) = δx × yd + xd × δy,
δ(x · y) = δx · yd + xd · δy,
δ(R1x) = δR1 xd + R1,d δx,
δ(R1R2) = (δR1)R2,d + R1,d (δR2) (21)

where x, y ∈ R3, R1,R2 ∈ SO(3), and δ represents the
variation. For all systems satisfying the given criteria,
the variation will be linear with respect to the state error s
and the variational control input δu. These terms can then be
rearranged into a linear system that forms the variation-based
dynamics (1).

All of the above linearization steps, as well as the VBL-QP
controller in general, are applicable to both time-varying
and time-invariant systems. The time dependence of the
system becomes especially relevant when dealing with the
solution to the unconstrained OCP (3). In the time-invariant
infinite-horizon case, the UCTG is computed via the form of
the continuous-time algebraic Ricatti equation given by (4).
In the finite-horizon case, the OCP can still be solved with
a differential Ricatti equation, but some additional measures
are required. For a prediction horizon T , a terminal condition
P(t = T ) = Pf , where Pf = PTf ≥ 0 ∈ Rn×n, must
be specified for the terminal state s(t = T ). This terminal
condition is used to solve the following Ricatti equation in
backwards in time

−Ṗ(t) = Q− P(t)B(t)R−1B(t)TP(t)

+P(t)A(t)+ A(t)TP(t). (22)
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Depending on the problem, numerical solutions to this equa-
tion may be significantly less computationally expensive than
conventional finite-horizon optimal control solutions in exist-
ing MPC approaches, both linear and nonlinear, which would
allow the VBL-QP controller to predict over longer horizons.

C. APPLICATION TO MINI CHEETAH DYNAMICS
These principles of variations along a reference trajectory
are next applied to the reduced-order dynamics of the Mini
Cheetah in order to complete the linearization. Using the
variation formulae in (17) and (19), the approximate linear
error s ∈ R12 for the state of the reduced-order model of the
quadruped (10) is given by

s :=


δpc
δṗc
Bη

δBω

 ≈

ep
ev
eR
eω

 =


pc − pdc
ṗc − ṗdc

1
2
((Rdb )

TRb − RTb R
d
b )
∨

Bω − (RTb R
d
b )
Bω

d

. (23)

Because the variations δpc and δṗc remain strictly on the
linear manifold R3, these variations actually match the exact
errors ep and ev regardless of proximity to the reference
trajectory. The next step is to recursively apply the variation
formulae (21) to the reduced order dynamics (12). The result-
ing variation dynamics take the form

d
dt


δp
δṗ
Bη

δBω

 =


δṗ
1
m

∑
δfi−g

−B̂ωd Bη + δBω

BI
−1

(δRTb
∑

τ di + (Rdb )
T
∑

δτi)− c

,
(24)

where the following terms can be rewritten as

δu = [δf T1 δf T2 δf T3 δf T4 ]T , (25)∑
δfi =

4∑
i=1

δfi, (26)

δRTb = −
Bη̂ (Rdb )

T , (27)∑
τ di =

4∑
i=1

(̂rdi f
d
i ), (28)

∑
δτi =

4∑
i=1

f̂ di δp+
4∑
i=1

(̂rdi δfi), (29)

c = BI
−1

(B̂I Bωd − B̂ωd BI ) δBω. (30)

In order to express the dynamics in the linear form offered
by (1), the variation dynamics are factored with respect to
the error state s and the variational control input δu. The
resulting state-space matrices A and B, which depend only

on the reference trajectory, are given by

A =


03 I3 03 03
03 03 03 03
03 03 −B̂ωd I3
A4,1 03 A4,3 A4,4

 , (31)

where

A4,1 = BI
−1

(Rdb )
T
∑

f̂ di , (32)

A4,3 = BI
−1 ̂

(Rdb )
T
∑

τ di , (33)

A4,4 = BI
−1

(B̂I Bωd − B̂ωd BI ), (34)

and

B =


03 . . . 03
1
m
I3 . . .

1
m
I3

03 . . . 03
BI
−1

(Rdb )
T r̂d1 . . . BI

−1
(Rdb )

T r̂d4

 . (35)

For cases where a leg is taken out of contact with the ground
and therefore no longer capable of contributing to the net
wrench on the body, the corresponding columns of B are set
to zero.

D. REFERENCE CONTROL INPUT
The reference forces f di that appear in the A matrix describe
the ground reaction forces necessary to achieve the reference
motion xd and are related to ud via

ud =
[
(f d1 )

T (f d2 )
T (f d3 )

T (f d4 )
T ]T . (36)

For the balance control application, the trajectory of the
robot is treated as a series of discrete reference states. To real-
ize the desired accelerations for each reference state, a refer-
ence input ud is found such that[

I3 I3 I3 I3
r̂d1 r̂d2 r̂d3 r̂d4

]
︸ ︷︷ ︸

Hd

ud =
[

m(p̈d + g)
Igω̇d + ω̂d Igωd

]
︸ ︷︷ ︸

bd

, (37)

where Hdud is the wrench produced by the ground reaction
forces, bd is the desired spatial acceleration, and Ig is the
inertia tensor about the CoM expressed in the world frame.
To find forces that best satisfy this equation, the following
friction constrained QP is formulated:

min
ud

(Hdud − bd )T S(Hdud − bd )

s.t. d < Cud < d (38)

where S ∈ R6×6 is a positive-definite weighting matrix
and d,C, d comprise the matrix form of (14). This paper
assumes static reference states with no desired linear or angu-
lar accelerations of the body. Consequently, the optimization
simply involves finding the normal forces f di,z that support the
robot’s weight without generating moments about its CoM.
This optimization need only be carried out when the desired
x − y position of the CoM changes.
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TABLE 1. Mini cheetah controller parameters.

V. RESULTS AND DISCUSSION
This section presents the results from simulation and hard-
ware experiments of the Mini Cheetah using the proposed
balance controller. The results demonstrate the comparative
benefits of VBL-QP over MPC-based approaches as well
as the broader advantages of weighing short- and long-term
costs via approximation of the CCTG. Additional results are
presented to validate that the approximation holds across the
range of terrains the robot can expect to see as well across the
robot’s kinematic workspace.

A. SIMULATOR/EXPERIMENTAL SETUP
The balance control algorithm proposed in this paper is
implemented both on the Mini Cheetah hardware [32] as
well as in simulation via the open-source dynamic simula-
tion software for the MIT Mini Cheetah developed in col-
laboration between MIT and Notre Dame.1 For hardware
experimentation, high-level control is executed on an UP
Board low-power single-board computer with a quad-core
Intel Atom CPU and 4 GB RAM, running Linux with the
CONFIG_PREEMPT_RT patch for soft-realtime operation.
Communication between the computer and actuators is car-
ried out using a custom quad CAN bus interface. The actuator
communication loops, as well as the control and state estima-
tion loops run at 500 Hz.

The dynamic simulation software simulates the full-body
dynamics of the quadruped and is meant to mimic real-world
experimentation as closely as possible. Similar to the hard-
ware, information about the robot’s state comes from a
state estimator that decouples the estimation of position and
velocity from orientation [33]. Uniformly distributed noise
is introduced to the accelerometer, gyroscope, and quater-
nion readings with variances based on the specifications of
the IMU. The simulator uses a time-stepping scheme with
a hard contact model for the ground and treats the robot’s
feet as point contacts. The results presented in this paper
include actuator models that account for motor inertia and
torque/speed limits. The system parameters used in simu-
lation are given by Table 1. The LQR gains used by the
VBL-QP controller for all simulation and hardware testing
are given by Table 2.

B. COMPARISON TO MPC
The primary advantage of the VBL-QP controller lies in its
compact formulation. Tasks such as underactuated balancing

1https://github.com/mit-biomimetics/Cheetah-Software

TABLE 2. LQR weighting matrices. Matrix Q corresponds to components
of the state and matrix R to x, y, z components for each foot.

FIGURE 4. Simulated reference trajectory tracking for the VBL-QP and
MPC controllers. The robot starts on four legs and after tracking
orientation changes attempts to transition to two-leg balance.

on two legs are achievable using VBL-QP, but to the authors’
best knowledge have never been demonstrated via conven-
tional MPC-based approaches. The challenges to MPC-based
control are twofold. The small base of support on two legs
along with uncertainty from state estimation and imperfect
modeling necessitates a sufficiently high control frequency
to handle these uncertainties. Furthermore, underactuation
requires suitably long prediction horizons be considered to
ensure that balance can be sustained indefinitely. Even when
a reduced-order model is used, computational cost prevents
solving the OCP (5) over suitably long prediction horizons in
the requisite amount of time.

The compact formulation of the VBL-QP allows the
controller to negotiate these challenges with greater suc-
cess than MPC-based approaches. The VBL-QP controller
was compared to the MIT Mini Cheetah’s standard lin-
ear MPC locomotion controller [18]. The simulation results
in Fig. 4 show that while both control approaches are able
to successfully track reference trajectories on four legs,
only the VBL-QP controller can handle the transition to
two legs. Furthermore, Fig. 5 shows a comparison of the
solve times corresponding to the motion in Fig. 4. Only
solve times for the stable, four-leg portion of the MPC tra-
jectory are shown in this figure. The transition from four
legs to two, demonstrated on the hardware, is depicted
in Fig. 6
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FIGURE 5. Solve times for the VBL-QP and MPC controller as the robot
tracks a reference trajectory.

FIGURE 6. Transition from four-leg to two-leg balance using the VBL-QP
controller.

C. REFERENCE TRACKING
A comparison between the ability of a conventional QP-based
balance controller [25] and the VBL-QP controller to track
reference trajectories on four legs illustrates the versatility of
the controller, showing its effectiveness on four legs as well as
two. The VBL-QP controller is able to track trajectories with
comparable fidelity to the conventional controller [25]. Fig. 7
compares the set of achievable states as well as the position
tracking error to reach those states for the two controllers fol-
lowing a range of step-input change commands for the desired
position. The predictive nature of the VBL-QP controller
affords it greater consistency over the range of desired states.
To account for the sensitivity of the conventional controller
to gain tuning, the results present two different sets of gains:
(A), which maximizes the set of achievable states, and (B),
which minimizes tracking error.

The set of achievable states for the two controllers is eval-
uated by measuring the approximate area of safely reachable
x − y positions for each controller. For the given motion,
the approximate areas of the conventional (A), conventional
(B), and VBL-QP were 5.65 cm2, 1.66 cm2, and 3.77 cm2,
respectively. The larger area offered by the conventional
(A) comes with the drawbacks of significantly higher track-
ing error as well as inconsistent performance. The overall

FIGURE 7. Points represents a desired change in xy position. Desired
orientation of the body involved a 10◦ pitch and a yaw in the direction of
the movement, max 17.5◦.

position tracking error for states within 5cm of the starting
position, measured according to

etr =
∫ tsettle

0
||p− pd ||dt, (39)

was 1.39 cm·s for conventional (A), compared 0.64 cm·s for
conventional (B) and 0.59 cm·s for VBL.

In addition to the increased error, the inconsistent perfor-
mance of conventional (A) is highlighted by how the error
does not strictly increase with displacement and how the
tracked set points do not form the the neat half-oval that
the other two do. The conventional (B) controller is able to
improve consistency and lower the error, but at the cost of
a 56% reduction in the size of achievable sets. So although
gain dependencies make overall performance comparison
between the controllers difficult, these results indicate that
the VBL-QP is generally able to handle the trade-off between
tracking error and achievable positions better than any set of
gains attempted for the conventional QP.

D. OVERCOMING UNDERACTUATION
In addition to the challenge of maintaining balance over
a dramatically reduced base of support, two-leg balance is
further complicated by loss of actuation, which reduces set of
external wrenches the robot can produce via ground reaction
forces at the feet. Due to this loss of actuation, pure rolling
and pitching are not possible for the robot’s base. The pre-
dictive nature of the controller, however, is able to exploit the
dynamics of the system, specifically by sacrificing short-term
orientation, and achieve these desired orientation changes.
The simulation and hardware results in Fig. 8 illustrate the
response of the controller to a reference state calling for pure
rolling of the body, and Fig. 9 shows the robot achieving
desired pitches and rolls.
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FIGURE 8. Simulation and hardware responses to desired 20◦ roll on two
legs.

FIGURE 9. VBL-QP controller achieving desired pitching (left) and
rolling (right) of the robot on two legs.

The results demonstrate the ability of the controller to han-
dle underactuation. For example, when a pure rolling of the
body is commanded, the controller accepts initial, short-term
errors in pitch and yaw before settling the body into its desired
state. This subtlety is best observed in the simulation results,
which lack the noise seen in the hardware implementation.
Nevertheless, for both simulation and hardware, the inclusion
of the cost-to-go term in the optimization (8) makes these
orientation changes possible.

E. PUSH DISTURBANCE RECOVERY
Robustness to perturbations is crucial for a successful bal-
ance controller. The optimal-control-based approach of the
VBL-QP controller equips the robot to handle significant
perturbations not only on four legs, but also on two legs.
To measure the controller’s disturbance robustness, the max-
imum instantaneous change in velocity that the robot could
withstand without falling over was determined for each direc-
tion of velocity perturbation. The results of these simulation
experiments are illustrated in Fig. 10.
In the direction of the FL and BR feet, the feet in contact

when on two legs, the controller can handle roughly the
same magnitude of kick on four legs and on two. In the
direction of the FR and BL feet, however, the maximum
tolerable kick magnitude when on two legs is 85% smaller

FIGURE 10. Maximum instantaneous change in velocity the robot can
experience in each direction without falling.

FIGURE 11. Mini Cheetah’s response to 0.15 m s−1 change in x velocity
and 0.05 m s−1 change in y while balancing on two legs. (Top) 2D
projection of the CoM trajectory onto the ground plane. (Bottom)
Corresponding orientation error as the robot recovers from push.

than for the four-leg case. Considering that any movement
in this direction is purely outside of and away from the sta-
ble region, this basin of attraction still represents significant
recovery capability. To more closely highlight the challenge
of recovering from outside the stable region, Fig. 11 shows
simulation results for the response of the controller to a single
push disturbance on two legs. Notice that after the CoM is
perturbed from the supporting line, the orientation of the
robot is sacrificed in the short term so that the robot can return
to a stable position. This ability to recover from unstable
states is made possible by the controller’s consideration of
both immediate and future effects of control inputs. This
consideration effectively allows the controller to recognize
and avoid the control inputs that will lead to instability.

This robustness to perturbations was also demonstrated on
the hardware. The controller was able to stabilize the robot
after a series of manual pushes applied to different parts of the
robot and in different directions. The results in Fig. 12 show
the controller’s response to one such push recovery test, and
Fig. 13 provides a visualization of the robot recovering from
a push.
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FIGURE 12. Mini Cheetah’s response to two push disturbances (at
t = 68 s and t = 74 s) while balancing on two legs. (Left) 2D projection of
the CoM trajectory onto the ground plane. (Right) Corresponding angular
velocity of the robot as it recovers from the pushes.

FIGURE 13. Recovery from push disturbance.

The hardware results are not able to as clearly show
the controller’s ability to sacrifice short orientation error to
ensure stability because, unlike in simulation, it is difficult
to impart a pure change in the linear velocity of the robot
without also affecting its angular velocity. Regardless, these
results show that with the VBL-QP controller implemented
on the robot, it can withstand significant push disturbances
while balancing on two legs.

F. REGION OF ATTRACTION
A critical component of the proposed balance controller
is the QP implementation of the HJB minimization step
that approximates the optimal control policy. This modified

FIGURE 14. Simulated UCTG response to 20◦ roll and pitch and −20◦ yaw
on two legs for various static coefficients of friction. Red dots indicate
active friction constraints.

implementation is made possible by the substitution of the
CCTGwith the UCTG, a quantity easily computed by solving
an algebraic Ricati equation. In the case of two-leg balance,
the viability of this optimal value approximation is chal-
lenged by friction constraints and the limits of the dynamic
linearization. In theory, one or both of these factors can
prevent the UCTG from being a good predictor of long-term
costs of staying balanced, rendering the controller ineffective.
In practice however, we find that the approximated solution
to the HJB equation used in the VBL-QP control law is
robust enough that for friction coefficients as low as 0.05
(10% of nominal) and for nearly all references states within
the robot’s kinematic workspace, the controller is able to
maintain balance.

We evaluate the impact of friction constraints by observing
the response of the UCTG to a change in the desired reference
state. In Fig. 14, the UCTG response to a desired roll, pitch,
and yaw of the body with various coefficients of friction is
presented. In the case of perfect modeling and an exact solu-
tion to the constrained OCP (5), the ‘‘ideal’’ cost-to-go would
strictly decrease with time. The results in Fig. 14 show that
as the coefficient of friction decreases and friction constraints
are more frequently active throughout the robot’s motion,
the response deviates from this ideal response. However,
despite the spikes in UCTG and the slower rates of decrease,
the VBL-QP controller maintains the ability to reach the
desired reference state.

In Section II.B, we briefly discussed the concept of region
of attraction (ROA) as it relates to the linearization of the
dynamics about a reference trajectory. We here present the
effective region of attraction (ROA*) of the controller and
demonstrate that it sufficiently covers the set of feasible
reference states the robot can expect to encounter. The ROA*
differs from the ROA in that the ROA* considers the effect
of friction constraints and kinematic limits on the set of
reachable states. In other words, the ROA provides the states
about which the system’s dynamics can be linearized with
sufficient accuracy, while the ROA* provides the states that
1) can be linearized about with sufficient accuracy, 2) are
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TABLE 3. Effective region of attraction, ROA*, for two-leg balance using
VBL-QP controller.

kinematically feasible, and 3) can be reached in the presence
of friction constraints starting from the base state. The size
of the ROA* validates that the approximations used in the
VBL-QP controller, specifically the linearized dynamics and
the cost-to-go approximation, are viable.

The ROA* for two-leg balance of the Mini Cheetah was
evaluated in simulation for two different friction coefficients,
µ = 0.6 and µ = 0.1. To reiterate, a reference state is
considered to be in the ROA* if the robot can start at its
base position, linearize about that desired reference state, and
then successfully reach the reference state. Simple orientation
changes like roll, pitch, and yaw are quantified in terms
of degrees, while combinations of the rotations (roll+pitch,
roll+yaw, pitch+yaw) are quantified by percent of maximum
rotation. For example, saying that the ROA* for maximum
roll and pitch is 75% is equivalent to saying the robot can
successfully perform a combined roll and pitch of 75% its
maximum kinematically feasible roll and 75% its maximum
kinematically feasible pitch. The results presented in Table 3
show that the ROA*’s for both the nominal and reduced
friction case span well over the majority of the kinematic
workspace.

VI. CONCLUSION
We have presented a novel variational-based optimal con-
troller for underactuated dynamic balancing of a quadruped
and demonstrated its viability in simulation and experiments
through two-leg balance on point feet. The application of
VBL to quadruped dynamics enabled the use of optimal
control strategies for computing the UCTG of the system.
The inclusion of this UCTG in the objective function of a
QP that replicates the minimization step of the HJB equation
sufficiently captures future effects of present control inputs.
This crucial predictive element of the controller allows it
to navigate complex trade-offs between short-term track-
ing and long-term balance. The power of this approach is
demonstrated through experiments of two-leg balance that
show robustness to perturbations and the ability to over-
come underactuation via exploitation of angular momentum.
Finally, an analysis of the cost-to-go response for various
environmental conditions and desired motions shows that the
the linearized model and HJB minimization are valid for
the terrains and tasks that the Mini Cheetah can expect to
encounter. More broadly, the extension of our approaches to
other legged systems, such as biped and humanoids, presents

future opportunity to address the coordination of center of
mass and body posture as a mechanism to enhance balance
control.
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