Synthetic Intrusion Alert Generation through
Generative Adversarial Networks

Christopher Sweet, Stephen Moskal, Shanchieh Jay Yang
Department of Computer Engineering
Rochester Institute of Technology
Rochester, New York 14623
Email: Jay.Yang@rit.edu

Abstract—Cyber Intrusion alerts are commonly collected by
corporations to analyze network traffic and glean information
about attacks perpetrated against the network. However, datasets
of true malignant alerts are rare and generally only show one
potential attack scenario out of many possible ones. Furthermore,
it is difficult to expand the analysis of these alerts through
artificial means due to the complexity of feature dependencies
within an alert and lack of rare yet critical samples. This work
proposes the use of a Mutual Information constrained Generative
Adversarial Network as a means to synthesize new alerts from
historical data. Histogram Intersection and Conditional Entropy
are used to show the performance of this model as well as
it’s ability to learn intricate feature dependencies. The proposed
models are able to capture a much wider domain of alert feature
values than standard Generative Adversarial Networks. Finally,
we show that when looking at alerts from the perspective of
attack stages, the proposed models are able to capture critical
attacker behavior providing direct semantic meaning to generated
samples.

Keywords—Cyber Intrusion Alerts, GANs, Attack Stages

I. INTRODUCTION

The use of Network Intrusion Detection Systems (NIDS)
has become widely adopted by private corporations, gov-
ernment agencies, and research laboratories to monitor and
analyze traffic flowing through their respective networks. The
data collected from these systems allows system administrators
and security professionals to identify typical versus anomalous
traffic [1], [2], potential vulnerabilities in the network [3], and
profile the behavior of adversaries [4]. Despite the depth of
data provided through alert analysis, there is a low signal to
noise ratio with respect to malignant traffic. Further, the low
amount of malignant alerts may not provide analysts with the
full picture of possible vulnerabilities or attack patterns.

This work seeks to solve this problem by introducing a
framework for synthesizing new alerts from historical malig-
nant data. Through the use of Generative Adversarial Net-
works (GANSs) [5], alerts are synthesized with a high degree
of fidelity. The models used also employ a neural Mutual
Information constraint [6], forcing better coverage of feature
value domains and critical feature interactions.

Generative Adversarial Networks were first proposed by
Goodfellow er al. [S] and have since been improved through
the minimization of the Wasserstein Distance with adaptive
gradient penalty [7], [8]. Since, they have been expanded upon
and used for data generation with respect to images [9], text
[10], and sound [11]. Additionally, GANs have been applied to

This research is supported by NSF SaTC Award #1526383.

Alerts

Alert Signature | Alert Action | Event Type | Flow ID
[Alert Category | AlertGID | Index | Linecount
10.0.0.1

® Alert Severity | AlertRev | App | Payload

Source IP | Destination Port

Source Port | Destination IP

Timestamp | Packet_Info.LinkType

Alert Signature_ID

]
]
HTTPHTTP_Content
. —
| Ezrrn)

HTTPHostname | HTTPHTTP_User_Agent
10.0.0.100

App_Proto | Eventtype | In_IFace | Host | Change_Type

HTTPHTTP_Method | HTTPHTTP_Refer [HTTPStatus

HTTP.Redirect HTTPURL I

Fig. 1: Individual GAN models may be used to synthesize alerts based
off Target IP and historical data.

network traffic to modify and obfuscate malicious traffic [12],
[13]. The traffic modified by these networks has been shown
to successfully avoid detection by NIDS.

Despite these successes, GANs suffer from several patho-
logical issues when generating data. Namely, mode dropping
is common for samples which occur with low probability in
the training dataset. Failing to cover the entirety of the output
domain is especially problematic in the field of cybersecurity
as samples that occur with low probability may still contain
significant data, such as critical vulnerabilities. By applying the
work of Belghazi er al. [6], a Mutual Information constraint
may be imposed on the GAN to encourage outputting all
modes within the feature domain of the training dataset.
Additionally, this constraint is shown to improve the model’s
ability to learn interactions between the features within a given
alert compared to traditional GANSs.

Using the Mutual Information Constrained GAN, alerts
may be generated with a high degree of realism. Additionally,
by organizing alerts on a per Target IP instance, individual
models may learn to synthesize alerts for each possible target
in a network as shown in Fig. 1. This allows a collection of
models to be structured with inherent labels and provides data
which may be analyzed directly for possible vulnerabilities on
a target by target basis.

The remainder of the paper is structured as follows: Section
IT provides an overview of some of the existing challenges
in Machine Learning for Cyber Security as well as existing
applications of GANs for Cyber Security data. Section III and
Section IV discusses the GAN model as well as preprocessing
and analysis methods employed for CPTC’ 17 data respectively.
Section V reviews the results of the trained models. Finally,
Section VI gives the concluding remarks and future works of
this research.

II. RELATED WORK

With the regularity and complexity of cyber attacks increas-
ing, so has the interest in applying Machine Learning tech-
niques to classify and predict attack actions. Several ongoing
works in this field cite the need for more data as a limitation to
their current research [14], [15], [16]. Specifically, Amit et al.
[17] raise concerns about modern, openly available datasets,
and the certainty of labels provided by the datasets which do
exist.

Shen et al. [15] directly question the generalizability of
their models despite having access to a dataset with over
3 billion individual alerts; unseen behaviors and alerts com-
pletely confound data driven models. Perry et al. [14] show
a significant decrease in attack prediction and classification
when models are trained with insufficient data.

Despite the challenge of limited datasets, multiple works
have made use of alerts for anomaly detection and attack pre-
diction. For example, Veeramachaneni et al. [1] used LSTMs
to identify anomalous behavior given historical data. The
anomalous behavior was then analyzed by experts to identify
whether the anomaly was truly malicious, and the type of
attack action taken in the alert. Shen et al. [15] also use LSTM,
however they train their models to predict future attack actions
given a sequence of prior alerts. Their models show promising
ability to learn complex chains of alerts when trained with
sufficient data.

Another avenue for research applying Machine Learning to
cyber-security data has been the generation of adversarial traf-
fic. Specifically, GANs have been used to obfuscate malicious
traffic through the modification of packet behavior.

Rigaki et al. [12] proposed the use of GANs in generating
network traffic which mimics other types of network traffic.
In particular, real malware traffic was modified by a GAN to
appear as legitimate network traffic. This allowed the malware
to avoid detection from the Stratosphere Behavioral Intrusion
Prevention System through the modification of three network
traffic parameters; total byte size, duration of network flow,
and time delta between current network flow and the last
network flow. They showed that through the modification of
these parameters detection rate could be dropped to 0%.

Similarly, Lin et al. [13] apply GANs to obfuscate traffic
with the intention of directly deceiving a NIDS. Available at-
tack actions include denial of service and privilege escalation.
Their model is shown to drastically increase the evasion rate
of malicious network traffic across several classifiers when
benchmarked using the NSL-KDD benchmark provided in
[18].

Despite the successes of these works, no current GAN
model has been applied to recreation or expansion of Cyber
Attack alert data. This research aims at generating malicious
NIDS samples from the target perspective to expand limited
datasets and enable further experiments using Machine Learn-
ing algorithms trained on intrusion alerts. Similar to the work
provided by Veeramachaneni et al. our results could also be
handed off to expert analysts to identify the attacker behavior
or vulnerabilities within the network.

III. GAN MODEL

A Generative Adversarial Network is a class of neural
network where two networks are pitted against each other. One
network, the generator (G), attempts to create samples which
emulate a dataset. The other network, the discriminator (D),
takes inputs from the ground truth dataset as well as G, and
flags samples as either real or fake. This structure minimizes
the generator loss each time G successfully generates a sample
that tricks D into marking the sample as real. Conversely, the
discriminator loss is minimized when all samples from the
ground truth set are marked as real and all samples created by
G are marked as fake.

The Wasserstein GAN, proposed by Arjovsky et al. [7]
extends the concept of a GAN but with increased stability
during training. This was subsequently improved by Gulrajani
et al. [8] by adding a gradient penalty term (WGAN-GP) to
regularize the gradients of D, resulting in the loss function
given by (1) .

Despite these improvements to the loss function for the
discriminator, the generator loss was left mostly unmodified.
Belghazi et al. [6] changed this by adding a mutual information
term to the generator’s loss. This contribution maximized the
mutual information between the generator’s noise input and
it’s output samples by minimizing the Donsker-Varadhan (DV)
representation of the Kullback-Leibler (KL) divergence. This
modification is shown in (2). The DV-KL term was added
by using a neural network to learn how to estimate Mutual
Information between two distributions. The rationale behind
this added constraint was that it would force the generator to
further explore the domain of the data when generating new
samples; not exploring the dataset would result in a limit to the
amount of mutual information which could be found between
input noise and the output samples. Herein this model will be
referred to as the WGAN-GPMI model.

Dross = E[D(Py)] — E[D(Py)] + AE[(||VaD(P2)||> — 1)°]

Wasserstein Distance Gradient Penalty

(1)
Glross = —E[D(Py)] +E[P,.] + log(E[F*®F]) (2)

Adversarial Loss DV KL Divergence

A WGAN-GPMI was implemented with the intention of
learning to synthesize intrusion alerts. A A value of 0.4 and
hidden dimension size of 128 was used. G was configured
to sample 64 points of Gaussian noise per alert generated.
Both G and D were two-layer fully connected neural networks.
The generator featured 4 independent fully connected layers
in parallel on the output. These generate each of the 4 feature
values used in the experiments discussed later on.

Due to the categorical nature of the data being generated,
all features were one hot encoded and concatenated into a
single vector per alert. These values were then transformed into
real-world values by segmenting the vector into subcompo-
nents whose length’s equal the number of unique values for the
given feature. The argmax of each of these subcomponents was
then taken as a post-processing step to find the corresponding
real world value generated.

The estimator (E) featured two independent inputs layers
which mapped the noise and samples from G to a hidden
representation. These hidden representation were then added
together and then transformed into a mutual information es-
timate by the output layer. The network architecture may be
seen visually in Fig. 2.

Discriminator {D) Back-Propegation

4L l Dioss ‘

Fully Connected Fully Connected | Gross ‘

A+B+C+D x 128 128x1 | J

Fully Connected
128xA

Fully Connected
128xB

Fully Connected
128xC

Fully Connected
128xD

‘ Back-Propegation
Fully Connected
A+B+C+Dx128
Fully Connected

64x128

Fig. 2: Each network is trained end to end in order to create alerts
which model the ground truth distribution as closely as possible.

Real Sample (s)
BatchSize x
A+B+C+D

Generator (G)

Concat
Batch Size x
A+B+C+D

Moise (z) N Fully Connected
BatchSize x 64 64x128

Estimator (E)

Fully Connected
128x1

Given that G receives gradient feedback from two inde-
pendent loss functions, the adversarial loss and the mutual
information estimate, the values of the gradient must be
balanced to provide equal feedback to the network. Following
the methodology of Belghazi ef al. [6] all gradient updates to
G were adaptively clipped to ensure that the Frobenius norm
of the gradient resulting from the mutual information was at
most equal to the adversarial gradient.

IV. DATASET FOR EVALUATION

This work assesses how well WGAN-GPMI, in comparison
with WGAN-GP, learns and generates synthetic intrusion alerts
using the data collected through the 2017 National Collegiate
Penetration Testing Competition (CPTC). For the competition,
teams were tasked with penetrating into a mock network of
election systems. The network topology featured several server
systems hosted across a variety of subnets. Students were
tasked with scanning, infiltrating, and exploiting vulnerabilities
in the network within approximately 9 hours to exfiltrate and
modify voter data. The dataset provides a unique opportunity
for experimentation as it is completely comprised of actions
known to be malicious. Though this data is unique to the
competition it is worth noting that the preprocessing described
herein is applicable to other datasets consisting of NIDS alerts.

The first preprocessing step applied to the data was to
separate alerts on a per Destination IP basis. This allowed
individual models to be trained for each system on the network,
typifying the type of traffic seen at that target. Additionally,
data from all of the teams could be compounded, allowing
for the number of potential attacks taken on a single target
to be more fully expressed during training. Segmentation

on a per-target basis has several intuitive benefits: First, it
allows for different vulnerabilities to be highlighted on each
machine given commonly occurring alert features at that target.
Additionally, it helps to remove noisy alert influence, such
as scanning externally facing systems, from critical nodes in
the network. Table I shows 2 Target IP addresses selected
for experimentation from the CPTC’17 dataset; the operating
system, high-level purpose, and number of alerts for the
machine is also given.

TABLE I: Mapping of IP Address to Machine use/Purpose

IP Address | Operating System Machine use Number of Alert
10.0.0.27 Ubuntu HTTP Server 3186
10.0.0.22 Ubuntu MySQL Server 2974

Next, the dimensionality of the destination port feature was
reduced based off common service categories run across a
collection of ports provided by the Internet Assigned Numbers
Authority [19]. This reduction drops the number of unique
values from 1516 destination ports to 69 target services.
Contextually, this has the effect of indicating what service is
being targeted by attackers, rather than just knowing a specific
port number.

Finally, a set of simple statistical criterion were used to
segment timestamps into bins. Traditional modeling of cyber
attacks use attack stages to segment actions into a series of
contiguous stages with dependencies on previous stages. The
beginning of an attack may consist of reconnaissance based
actions, yielding information about which IP to target in later
attack stages. Similarly, the CPTC dataset may be segmented
to try and capture unique behaviors into different Time Bins.

Following the methodology shown by [14] bins were
generated by smoothing the histogram timestamps and taking
the first derivative to identify local minima and maxima. Then
stages were cut if they contained at least 10% of the total
data and consecutive events at the candidate point contained
less than 0.5% of the total data. The goal of this ruleset was to
capture significantly different types of traffic while not splitting
bursts of data into multiple stages.

Table II shows the number of unique values present for
each Target IP address tested after preprocessing the data.
Additionally a single character symbol is defined for each
feature in parenthesis to compact future plot labels.

TABLE II: Number of Unique Feature Values for Assorted target IPs

Machine IP Address

\ 10.0.0.27 10.0.0.22 \
Alert Signatures (A) 41 34
Dest. Port Category (D) 27 21
Source IPs (S) 6 6
Timebins (T) 8 8

V. EXPERIMENTS & RESULTS

Assessing the GAN models using the CPTC dataset was
broken up into 4 stages. First, a GAN was trained to learn
the distribution of the input data on a per Target IP basis and
recreate it. Then a Histogram Intersection Score was calculated
for all combinations of features to express how well the GAN
had learned to recreate the dataset. Next, feature dependencies

for varying numbers of feature permutations were verified
using the weighted, normalized, Conditional Entropy. Finally,
the number of output modes dropped for each model was
compared to show that the WGAN-GPMI model covered
a larger percentage of the alert feature domain. To further
demonstrate the value of improved output mode coverage,
alerts were mapped to attack stages, showing that the output
of the WGAN-GPMI model outputs attack stages not captured
by the WGAN-GP model.

The WGAN-GPMI model was trained on each Target IP’s
alerts for a total of 300 epochs using the ADAM optimizer
with a learning rate of 5e — 5, #; = 0.5, and 8, = 0.8 with
batches of 100 alerts.

Analyzing the degree of realism for artificially generated
alert data is non-trivial. While other fields such as Computer
Vision have created well defined metrics such as Inception
Score [20] or allow for direct human analysis of image
quality, no analogue exists for NIDS alerts. Several works have
proposed the use of graph based metrics such as comparing
nodes and their connectivity for both generated and real
network traffic [21], or looking at low level parameters such
as distributions of packets [22]. However, despite these works,
there is no widely accepted methodology. To address this,
we propose using the two aforementioned metrics, Histogram
Intersection and Condition Entropy, to gauge the fidelity of our
models. Additionally, we review the distributions directly and
note the output modes and attacker behaviors captured by the
models.

A. Histogram Intersection

The Histogram Intersection metric compares the similarity
of two histograms within the same domain by computing
the amount of overlap between them. It is naturally bounded
between 0 and 1, intuitive to understand, extends to joint dis-
tributions of features, and may be graphed to directly visualize
results. Let P represents the ground truth data histogram and Q
represents the generated data histogram, each with NV samples.
The Histogram Intersection (G) is defined as

SN min(P;, Qi)
maw(Zfio P, Zi\;o Qi)

The Histogram Intersections (G-scores) were computed
for several targets when using both WGAN-GP and WGAN-
GPMI. This paper reports the results for the Target IPs pre-
sented in Tables I and II: 10.0.0.27 and 10.0.0.22. Each model
was sampled 1000 times to compute the standard deviation
of the G-scores. Table III shows the average and standard
deviation of these results. First, note that both WGAN-GP and
WGAN-GPMI achieves reasonably good performance, even
when considering the combination of all 4 feature values;
Samples from WGAN-GP are able to achieve up to 60%
intersection with the ground truth distribution while samples
generated by the WGAN-GPMI model achieve up to 71%
intersection. Secondly, note that for both IP addresses the
Mutual Information constraint is able to increase the G-score.
This is a direct reflection of the model having a closer match
to the probability distribution of the ground truth due to
the increase in output mode coverage. These results will be
reviewed fully in Section V-C.

TABLE III: Histogram Intersection for all Feature Combinations

Target Machine IP Address

WGAN-GP WGAN-GPMI
Features 10.0.0.27 10.0.0.22 10.0.0.27 10.0.0.22
A 0.658 £ 0.007 | 0.844 £ 0.005 | 0.833 £ 0.005 | 0.847 & 0.006
D 0.660 + 0.006 | 0.843 £ 0.005 | 0.846 £ 0.005 | 0.823 £ 0.007
S 0.867 + 0.009 0.846 £ 0.008 0.909 £ 0.005 | 0.755 £ 0.005
T 0.760 + 0.007 | 0.818 + 0.008 | 0.815 £ 0.007 | 0.844 + 0.008
AS,D,T 0.548 + 0.007 | 0.601 £ 0.007 | 0.718 £ 0.006 | 0.626 + 0.008

B. Conditional Entropy

We introduce the use of weighted conditional entropy
as a means to analyze how well WGAN-GPMI learns the
dependencies between the features. The weighted conditional
entropy (4) provides a numerical value expressing the amount
of randomness in an output feature given another feature(s)
value. This calculation weights the entropy of each possible
input combination based off the probability that input ¢ occurs
as ‘ﬁ”ﬂ' il‘ in order to obtain a single value expressing the weighted
average conditional entropy for all values of a given feature.

N z
Hy\x,xy,... X, = E <||w| * E (pi\j * log(—))) “
i=0 ‘

§j=0 Dij;

In order to provide a consistent comparison between dif-
ferent feature combinations, the result of (4) is normalized by
the entropy maximizing distribution for a discrete distribution
with the same finite support, i.e., the uniform distribution U
with cardinality equal to the number of unique values in the
conditional distribution. This bounds the metric between 0 and
1.

TABLE 1V: Weighted Normalized Conditional Entropy for two Targets
using WGAN-GPMI.

Target Machine IP Address

Ground Truth Results Generated Results
Features | 10.0.0.27 10.0.0.22 10.0.0.27 | 10.0.0.22
AlT 0.238 0.153 0.238 0.153
T|S 0.463 0.515 0.463 0.516
T|A 0.339 0.695 0.339 0.695
S|T 0.252 0.263 0.186 0.252
S|A 0.752 0.831 0.239 0.526
D|S 0.445 0.253 0.385 0.207
A|D 0.222 0.070 0.026 0.007
T|D 0.346 0.655 0.346 0.655
D|T 0.234 0.152 0.234 0.152
AlS 0.385 0.271 0.376 0.214
S|D 0.779 0.856 0.260 0.474
DA 0.246 0.006 0.009 0.048
S|A,D 0.747 0.829 0.226 0.474
D|S,T 0.118 0.013 0.118 0.013
S|D,T 0.025 0.101 0.025 0.101
T|A,D 0.335 0.650 0.335 0.650
A|S,D 0.206 0.056 0.003 0.007
AlS,T 0.117 0.013 0.117 0.013
A|D,T 0.018 0.001 0.018 0.001
D|A,S 0.243 0.005 0.007 0.003
T|S,D 0.340 0.587 0.144 0.334
D|A,T 0.238 0.003 0.006 0.010
S|A,T 0.178 0.100 0.012 0.100
T|A,S 0.312 0.561 0.144 0.328
A|S,D, T 0.172 0.028 0.003 0.006
D|A,S,T 0.232 0.002 0.004 0.008
T|A,D,S 0.167 0.498 0.144 0.328
S|A,T,D 0.306 0.558 0.004 0.100

The weighted and normalized Conditional Entropy was tab-
ulated in Table IV to demonstrate the WGAN-GPMI model’s

ability to learn feature dependencies within an alert. Samples
where Source IP is dependent upon other features within an
alert are bolded. This feature in particular is not typically de-
pendent upon other features within the dataset. Samples where
the model distribution was significantly more deterministic
than the ground truth distribution were highlighted in red. For
the remaining features, the model performs well at learning
feature dependencies within the data. In fact, there are 23
cases where the model learned dependencies within 10% of
the ground truth conditional entropy.

C. Generated Attack Behavior Analysis

An important feature of this work is to leverage the learning
capabilities of a GAN to generate diverse artificial attack data
that is reflective of the behaviors observed in the ground truth
dataset. We define the attacker behavior based off the type
of actions taken, such as reconnaissance and data exfiltration.
Alert attributes such as category or signature gives the inclina-
tion of attack type; however, the category is an arbitrary high-
level description of the attack type that may not accurately
represent the outcome of the action whereas the signature may
be at too fine of granularity to depict the attack behavior.
Thus, this work also assess the synthetically generated alerts
by mapping the alert signatures to one of the defined attack
stages given in Table V, by manually examining the objective
and outcome described in the signature description.

TABLE V: Attack Stage Types

[Attack Stage T

IP Scan

Service Scan
Targeted Scan
Social Engineering
Surfing

Specific Exploits
Escalate Privledges
Zero Day

Malware Injection
Degrade Operations
Data Exfiltration

Description]

Scan to reveal IP addresses

Scan to reveal services active on a target

A targeted and specific scan on a machine

Deceiving / manipulating individuals for malicious intent
Browsing publicly available information to research target
Using a specific vulnerability on a target

Gaining unauthorized privileges

Conducting an action not recorded and/or observed before
Delivering malware to target

Reduce or interrupt “normal” functionality of a target
Steal and extract sensitive information

Using this mapping we can see if GAN captures latent
behaviors within the dataset even when it fails to output
specific alert signatures that occurred explicitly in the dataset.
Additionally, the output domain coverage for each model is
shown to compare the model’s performance on fine grained
generation to that of the attack action distribution.

Figure 3 shows the attack stage coverage within the ground
truth data as well as those generated from WGAN-GP and
WGAN-GPMI. Note that the WGAN-GPMI model shows al-
most identical attack stage distribution as the ground truth data,
exhibiting improvement over the WGAN-GP case. Specifically,
it generated alerts pertaining to the Targeted Scanning stage
with probability very close to the ground truth distribution.
Meanwhile, the standard WGAN-GP model could not capture
this output mode with probability greater than 1.8%, leaving
a large gap in the generated data sample.

We further examine the number of output modes dropped
or added by WGAN-GPMI. This was done by looking at all the
unique alert feature combinations across A/D/S/T values that
existed in the ground truth dataset versus those existed in the

generated dataset. These sets of unique values were compared
to see which modes were dropped, which were covered, and
which existed in the generated set but not the ground truth
set. We refer to these values as Dropped, Covered, and Noisy
respectively.

Figure 4 shows these results for the two Target IPs as a
series of bars. The bars marked ”Coverage” show the number
of unique alert combinations (modes) that fall into each
category. The bars marked “’Distribution” show the percentage
of alerts from the generated distribution belonging to each
category. Note that Dropped samples are not shown in the
distribution as they inherently have 0% probability of occurring
in the generated dataset.

First, note that a large percentage of alerts were covered
for both Target IPs, accounting for 78~83% of the generated
output distributions. A detailed look at the results reveal
differences in the two Target IP cases. Target 10.0.0.22 shows
superior coverage with only 4 output modes being dropped
while adding a larger number of novel modes (though the
percentage of alerts is still a minority). On the other hand,
Target 10.0.0.27 has less noisy modes and alerts but still
drops 14 modes from the ground truth data. It is possible
that these dropped modes represent samples which have an
extremely low probability of occurring; so much so that the
mutual information constraint is insufficient to encourage the
generation of these values. Further supporting this is the fact
that even with less than half of the total output modes covered
there is still an 83% chance that the outputs from this model
do exist in the ground truth distribution.

VI. CONCLUDING REMARKS

This work shows the promise of using Generative Ad-
versarial Networks as a means to expand Cyber Intursion
Alert datasets. The fidelity of generated data was measured
through Histogram Intersection and Conditional Entropy, both
of which show the potential for GANs in Cyber Security.
Through the use of a Mutual Information constraint on the
generator critical output modes from the ground truth dataset
are also generated by the proposed models. This work has
provided the basis for future experimentation with larger cyber
intrusion alert datasets. Additionally, using Recurrent GANs
would allow for the generation of alert sequences, accounting
for temporal dependencies in the data. Finally, modification
of the Mutual Information constraint could allow for expert’s
to guide generator output. This would allow for targeted
generation of particularly interesting aspects of the network,
such as specific vulnerabilities or a particular type of attacker
behavior.

REFERENCES

[1] K. Veeramachaneni, I. Arnaldo, V. Korrapati, C. Bassias, and K. Li,
“Al2 : Training a big data machine to defend,” in Proceedings of IEEE
2nd International Conference on Big Data Security on Cloud, Beijing,
China, June 2016, pp. 49-54.

[2] P. Filonov, F. Kitashov, and A. Lavrentyev, “RNN-based early cyber-
attack detection for the tennessee eastman process,” in Proceedings of
ICML Time Series Workshop, Sydney, Australia, August 11 2017.

[3] S. Noel and S. Jajodia, “Advanced vulnerability analysis and intrusion
detection through predictive attack graphs,” Critical Issues in C4I,
AFCEA Solutions Series. International Journal of Command and Con-
trol, 2009.

[A]: Ground Truth AS Distribution
ESCALATE
PRIVLEDGES

ESCALATE
PRIVLEDGES

SERVICE
SCAN

DEGRADE SERVICE
OPERATIONS SCAN

TARGETED
SCAN

Other

TARGETED
SCAN

[B]: WGAN-GP AS Distribution [C]: WGAN-GPMI AS Distribution
PRIVLEDGES

SERVICE

SCAN
DEGRADE
OPERATIONS

DEGRADE
OPERATIONS

TARGETED
SCAN

Other

Fig. 3: Distribution of Attack Stages (AS) on Target IP 10.0.0.22. Note that the WGAN-GPMI model results [C] have a much closer probability

distribution to the ground truth data [A] then the WGAN-GP Model [B].

WGAN-GPMI Output Modes

10.0.0.22 Distribution

10.0.0.22 Coverage|

== Dropped
= Covered
- Noise

10.0.0.27 Distribution

10.0.0.27 Coverage|

o
N
S
.
8

60 80
Unique Outputs

Fig. 4: The WGAN-GPMI model features less mode dropping than the
WGAN-GP model, however the amount of probability mass assigned
to noisy samples also increases.

[4] D.S. Fava, S. R. Byers, and S. J. Yang, “Projecting cyberattacks through
variable-length markov models,” IEEE Transactions on Information
Forensics and Security, vol. Vol. 3, no. 3, pp. 359-369, September
2008.

[5] L Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley,
S. Ozair, A. Courville, and Y. Bengio, “Generative adversarial nets,”
in Proceedings of Advances in Neural Information Processing Systems
27, 2014, pp. 2672-2680.

[6] 1. Belghazi, S. Rajeswar, A. Baratin, R. D. Hjelm, and A. C. Courville,
“MINE: mutual information neural estimation,” in Proceedings of

International Conference on Machine Learning, Stockholmsmssan,
Stockholm Sweden, July 10-15 2018.

[71 M. Arjovsky, S. Chintala, and L. Bottou, “Wasserstein generative adver-
sarial networks,” in Proceedings of the 34th International Conference
on Machine Learning, ICML, Sydney, NSW, Australia, August 6-11
2017, pp. 214-223.

[8] I Gulrajani, F. Ahmed, M. Arjovsky, V. Dumoulin, and A. Courville,
“Improved training of wasserstein gans,” in Proceedings of Advances
in Neural Information Processing Systems 30, Long Beach, California,
USA, December 4-9 2017, pp. 5769-5779.

[9] T. Karras, S. Laine, and T. Aila, “A style-based generator architecture
for generative adversarial networks,” in Proceedings of The IEEE
Conference on Computer Vision and Pattern Recognition (CVPR), (To
Appear), vol. abs/1812.04948, Long Beach, California, USA, June
15-21 2019. [Online]. Available: http://arxiv.org/abs/1812.04948

[10] H. Su, X. Shen, P. Hu, W. Li, and Y. Chen, “Dialogue generation with
gan,” in Proccedings of AAAI Conference on Artificial Intelligence, New
Orleans, Louisiana, USA, February 2-7 2018.

[11] H.-W. Dong, W.-Y. Hsiao, L.-C. Yang, and Y.-H. Yang, “Musegan:
Multi-track sequential generative adversarial networks for symbolic mu-

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

sic generation and accompaniment,” in Proccedings of AAAI Conference
on Artificial Intelligence, New Orleans, Louisiana, USA, February 2-7
2018.

M. Rigaki and S. Garca, “Bringing a gan to a knife-fight: Adapting
malware communication to avoid detection,” in Proceedings of IEEE
Security and Privacy Workshops (SPW), San Francisco, California,
USA, May 24 2018.

Z. Lin, Y. Shi, and Z. Xue, “IDSGAN: generative adversarial
networks for attack generation against intrusion detection,” CoRR, vol.
abs/1809.02077, 2018. [Online]. Available: http://arxiv.org/abs/1809.
02077

I. Perry, L. Li, C. Sweet, S. Su, F. Cheng, S. J. Yang, and A. Okutan,
“Differentiating and predicting cyberattack behaviors using Istm,” in
IEEE Conference on Dependable and Secure Computing, Kaohsiung,
Taiwan, December 10-13 2018.

Y. Shen, E. Mariconti, P. A. Vervier, and G. Stringhini, “Tiresias:
Predicting security events through deep learning,” in Proceedings of
the 2018 ACM SIGSAC Conference on Computer and Communications
Security, ser. CCS *18. New York, NY, USA: ACM, 2018, pp. 592—
605.

1. Faber and G. Malloy, “Deep security: Cyber security threat behavior
classification,” "http://cs230.stanford.edu/projects_spring_2018/reports/
8285947.pdf”, 2018.

1. Amit, J. Matherly, W. Hewlett, Z. Xu, Y. Meshi, and Y. Weinberger,
“Machine learning in cyber-security - problems, challenges and
data sets,” vol. abs/1812.07858, 2019. [Online]. Available: http:
//arxiv.org/abs/1812.07858

L. Hu, Z. Zhang, H. Tang, and N. Xie, “An improved intrusion detection
framework based on artificial neural networks,” in Proceedings of
2015 11th International Conference on Natural Computation (ICNC),
Zhangjiajie, China, August 15-17 2015, pp. 1115-1120.

J. Touch, E. Lear, A. Mankin, M. Kojo, K. Ono,
M. Stiemerling, L. Eggert, A. Melnikov, W. Eddy, A. Zimmermann,
B. Trammell, J. Iyengar, A. Mankin, M. Tuexen, E. Kohler, and
Y. Nishida, “Service name and transport protocol port number
registry,” 2018. [Online]. Available: https://www.iana.org/assignments/
service-names-port-numbers/service-names-port-numbers.xhtml

T. Salimans, I. Goodfellow, W. Zaremba, V. Cheung, A. Radford, and
X. Chen, “Improved techniques for training gans,” in Proceedings
of Conference on Neural Information and Processing Systems, vol.
abs/1701.00160, Barcelona, Spain, December 2016, pp. 2234-2242.

S. Iannucci, H. Kholidy, A. Dhakal Ghimire, R. Jia, S. Abdelwahed,
and I. Banicescu, “A comparison of graph-based synthetic data genera-
tors for benchmarking next-generation intrusion detection systems,” in
Proceedings of IEEE Cluster Conference, Hawaii, USA, September 5-8
2017.

A. Botta, A. Dainotti, and A. Pescapé, “A tool for the generation

of realistic network workload for emerging networking scenarios,”
Computer Networks, vol. Vol. 56, no. 15, October 2012.

