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Abstract

Inherent vulnerabilities in a cyber network’s constituent machine services can be exploited by malicious agents. As a
result, the machines on any network are at risk. Security specialists seek to mitigate the risk of intrusion events through
network reconfiguration and defense. When dealing with rare cyber events, high-quality risk estimates using standard
simulation approaches may be unattainable, or have significant attached uncertainty, even with a large computational
simulation budget. To address this issue, an efficient rare event simulation modeling and analysis technique, namely,
importance sampling for cyber networks, is developed. The importance sampling method parametrically amplifies certain
aspects of the network in order to cause a rare event to happen more frequently. Output collected under these ampli-
fied conditions is then scaled back into the context of the original network to provide meaningful statistical inferences.
The importance sampling methodology is tailored to cyber network attacks and takes the attacker’s successes and fail-
ures as well as the attacker’s targeting choices into account. The methodology is shown to produce estimates of higher

quality than standard simulation with greater computational efficiency.
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I Introduction

Security in cyber space has become an increasingly critical
concern as the world tends toward omnipresent digital
integration. All cyber networks have inherent vulnerabil-
ities, which can be targeted and exploited by any mali-
cious agent. The contemporary cyber-adversary may have
a diverse range of intents. Some may seek to steal the pri-
vate data of key institutions, while others may simply want
to demonstrate their abilities. These activities and the
selection of targets may or may not have ideological moti-
vations. Regardless, the actions of all attackers result in
significant financial loss: damaged systems must be
repaired, intellectual property may be lost, etc. Security
specialists seek to mitigate these financial impacts and
work to protect their networks. Thus, one could say that
specialists and attackers are at odds in a so-called ‘‘battle
of wits” where the resulting conflict sees the application
of complex tactics as each faction attempts to gain an
advantage.' During such conflicts, an attacker may suc-
ceed in fulfilling their intent, which will impact the tar-
geted institution. The National Institute of Standards and

Technology (NIST) represents the synthesis of an adverse
impact and its associated likelihood of occurrence as net-
work risk. In other words, risk measures the extent by
which an entity is threatened by a potential circumstance
or event.”

The implicit goal behind mitigating financial impacts
due to cyber attacks is minimizing network risk. Therefore,
the network must be changed in some way: this can be
done through simple reconfiguration or through the imple-
mentation of defensive measures. Either approach will
change or obfuscate the set of attack actions that are feasi-
ble. To this end, deciphering a transformed network’s risk
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relative to its original state provides the needed context to
a security specialist when assessing a variety of potential
security countermeasures.

The complex behavior of attacks on cyber networks
and the lack of closed-form methods for analyzing network
risk has made computer simulation a leading analysis
method. However, given that the objective of network
security analysts is to make successful malicious events
rare in the system, occurrences of these events in simulated
cyber attacks are also rare. As a result, an extraordinary
number of simulated attacks may need to be generated to
produce enough observations of the rare event of interest
to have sufficient data to produce a high-quality estimate
of network risk. In this research, we design and develop an
efficient rare event simulation (RES) modeling and analy-
sis technique, namely, importance sampling (IS) for cyber
networks. The IS method parametrically amplifies certain
aspects of the network in order to cause a rare event to
happen more frequently. Output collected under these
amplified conditions are then scaled back into the context
of the original network to provide meaningful statistical
estimates and inferences of network risk. The IS methodol-
ogy is tailored to cyber network attacks and takes the
attacker’s successes and failures as well as the attacker’s
targeting choices into account. The methodology is shown
to produce estimates of higher quality than standard simu-
lation with greater computational efficiency.

The remainder of this paper is organized as follows. In
Section 2 we review the relevant related work in the area
of network risk assessment and RES. The IS methodology
designed for cyber networks is discussed in Section 3. In
Section 4 the experimental evaluation procedure is pre-
sented; and the results of these experiments are presented
in Section 5. Finally, conclusions and future work are pre-
sented in Section 6.

2 Related work

In this section, we discuss relevant related work relative to
the assessment of network risk and RES methods.

2.1 Network risk

The risk of an event is defined by its likelihood and
impact, which are the focus of this research. However,
additional network metrics could be considered alongside
risk. McQueen et al.® consider the time to compromise a
target as a potential metric to track due to its representa-
tion of the effort expended by a malicious agent. Their
study on Supervisory Control and Data Acquisition
(SCADA) systems show that the time to compromise is
related to the same machine’s risk of being compromised.
When the machine’s risk decrease, its time to compromise
increases.’

The likelihood of an event is dependent on three factors
pertinent to an attacker: the attacker’s intent, capability,
and targeting.> The intent behind an attack is what an
attacker seeks to accomplish with its malicious activity.
Capability is synonymous with an attacker’s available
skillset, while targeting explicitly pertains to an attacker’s
movement through a network. In addition to these
attacker-centric features, there is a temporal nature
attached to likelihood. However, if an event is certain to
occur at a given rate, the frequency of occurrence can be
utilized to replace likelihood in the calculation of risk.>
Each action performed by the attacker has a given time-
frame of execution. According to Dell Secure Works,*
each of these actions fall within one of 12 sequential cate-
gories, known as a kill chain. These categories can be seen
in Figure 1. A preliminary study conducted by Rege et al.
determined the time consumed by an attacker at various
steps in a kill chain. The findings showed that attack
reconnaissance and exploitation each took 42% of the time
of the attacks.

Within the scope of cyber security, the occurrence of
an intrusion event is dependent on the successful exploita-
tion of vulnerabilities present on machines in the network.
A vulnerability is defined as a defect in a component or an
erroneous or malicious behavior performed by a user.’
The Common Vulnerability Scoring System (CVSS) rates
all known vulnerabilities in terms of their severity on a
scale from 1 to 10; higher scores indicate an increased
probability of exploitation.” CVSS version 3 scores are
assigned using four metrics: the access vector (AV),
access complexity (AC), privileges required (PReq), and
user interaction (UI).® AV refers to the context in which
the vulnerability’s exploitation is feasible. AC acknowl-
edges the necessity of conditions beyond an attacker’s
control. PReq reflects the level of privileges an attacker
must acquire prior to exploiting a vulnerability success-
fully. Ul identifies any necessary interaction from a user
that is not the attacker.® It is also possible for the attacker
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Figure I. The different stages of the Dell kill chain.
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to change a component whose authority is different to that
of the vulnerable component. Such an instance is known
as a change in scope and can affect the calculation of the
PReq metric.® FIRST® details a methodology by which
each of these metrics can be gauged. Furthermore, the use
of CVSS scores can inform the development of a probabil-
istic representation of a network topology,® based on the
services present on all machines.

In addition to assessing likelihood, a cyber attack can
result in a diverse set of impacts. The exfiltration of sensi-
tive information is known as a confidentiality impact. An
integrity impact is the result of an asset being placed into
a non-recoverable state. Lastly, the placement of an asset
into a temporarily inaccessible state is known as an avail-
ability impact.>'® In addition to its type, an impact can be
gauged with respect to certain predefined categorical mea-
sures. MITRE'! assess impact with respect to cost, techni-
cal performance, and scheduling as part of their risk
management assessment scale. Each category is ranked
from minimal to severe on a 1-5 scale. The aggregate of
each category’s score is utilized as the event’s numeric
impact score.'! Given the possibility for multiple events of
interest, NIST states that impact can be represented as a
vector, which can be combined with a corresponding like-
lihood vector to produce a risk vector.>

One methodology to reduce network risk is through the
removal of attack paths.'? Optimization can be employed
to determine the pairwise connectivity between machines,
which can then be minimized.'* In addition, the use of
alerts from network sensors in conjunction with knowl-
edge of a network’s attack graph can be utilized to corre-
late isolated alerts to attack scenarios.'* Attack graphs can
also be evaluated with respect to various categorical
metrics, identified by Noel and Jajodia.'> These include
victimization, size, containment, and topology. The victi-
mization metric pertains to a network’s inherent vulner-
abilities. The size family reflects the overall size of the
attack graph. Containment refers to the compartmentaliza-
tion of the network. Topology refers to the interactions
between machines.'> The implementation of advanced
defensive measures, such as moving target defense
(MTD), may also mitigate a network’s risk. The MTD
causes a network to periodically reconfigure itself to
increase reconnaissance periods and make it necessary for
an attacker to regain privileges.'®

2.2 Rare event simulation

Simulation provides a means to derive performance statis-
tics for stochastic systems. However, assessing risk may be
computationally intensive if an event is sufficiently rare.
Thus, RES techniques are often employed when dealing
with rare events.
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Figure 2. Example of the splitting technique in rare event
simulation. The simulation’s state is saved at given thresholds of
“closeness” to the rare event. Should the state of a particular
run drift “further” from the rare event, it can be restarted from
the saved state that is “closest” to the event of interest.

There are two RES techniques that have seen wide-
spread historic use. These are splitting and IS. However,
each of these techniques has seen limited application to
cyber security, as a greater focus has traditionally been
placed on attack detection and prevention.'” Splitting oper-
ates by creating copies of the simulation at various states
and those able to obtain a sufficient level of ““closeness”
to the rare event are saved. The simulation utilizes these
copies as starting points to improve the efficiency of
experimentation.'® Application of splitting to worm attacks
shows that the technique yields superior estimations of a
rare event’s likelihood when compared to standard simula-
tion.'”!? The overall concept of the splitting technique can
be seen in Figure 2.

IS operates on the notion of amplifying features of a
network to cause increased incidence of a rare event.
Amplification entails increasing the probability of one or
more of a system’s stochastic features.?’ For example, sup-
pose probability p is equal to 0.15. If one were to amplify
the value of p, its amplified counterpart, p’, may take some
value greater than 0.15, but less than 1. Output that is col-
lected under these enhanced conditions is translated back
into the context of the network’s original conditions in
order to produce usable statistics.”® The process of feature
amplification is performed by altering the probability of
obtaining a certain value for a predetermined random vari-
able and is known as a change of measure. Performing a
change of measure runs the risk of increasing the likeli-
hood of one event, but not another, or causing the absence
of an event of interest to become rare.?’ The cross-entropy
(CE) method seeks to address this concern as it can pro-
duce optimal changes of measure automatically through an
iterative process,”' but is not suitable for all probability
distributions. A preliminary application of IS to model
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cyber intrusion attacks, performed by Krall et al.,** demon-
strates that quality estimates of event likelihood can be
obtained with less computational effort than standard
simulation.

2.3 Discussion

In this work, we consider a novel application of IS to the
assessment of risk in computer networks. The use of simu-
lation allows for explicitly modeling network details and
allows for the assessment of risk by evaluating dynamic
network attacks. As networks are designed for successful
attacks to be rare, the number of simulated attacks needed
for a high-quality assessment is large. The IS algorithms
that we have developed enable risk assessment with less
simulation effort than traditional simulation approaches.

3 Network risk estimation methodology

We have designed the following methodology to evaluate
the risk of successful execution of an attack of interest
within a cyber network. Within this context, the attack sur-
face is defined by the services present on the various phys-
ical machines that comprise the network. We first present
an overview of the IS simulation method for assessing net-
work risk. We then present a brief overview of IS followed
by a detailed discussion of the application of IS in the con-
text a cyber network. We then present our simulation mod-
eling approach relative to attacker behavior and attack
progression through the network, including the selection
of target machines and vulnerabilities and likelihood of
success. Next, we discuss how the impact assessment is
combined with the likelihood to produce the estimate of
network risk. Finally, we present our methodology for
assessing the performance of the IS method.

3.1 Importance sampling for cyber networks

Consider cyber attacks where an attacker moves through a
network. In these cases, the events of interest from the
defensive side entail an attacker being able to reach certain
machines. Given that networks may be highly intercon-
nected, it may be difficult to distinguish an attacker’s
“closeness” to an event. The obfuscation of event ““close-
ness’’ makes splitting unfavorable for such attack scenar-
ios. Thus, IS is used in lieu of splitting. The path taken by
an attacker is determined by the choices of targets as well
as the successes and failures during a particular attack sce-
nario. CVSS scores inform the probabilistic nature of the
successes and failures when attempting to compromise a
machine by means of exploiting its available services.
Note that, without loss of generality, all attackers are
assumed to start in a single position that is external to the
network.

The proposed IS methodology will generate a risk vec-
tor for a cyber network. Each element within the risk vec-
tor corresponds to the risk of an attacker reaching a
machine:

R=LxI. (1)

In the above representation, R is the risk vector while
L is the likelihood vector. The likelihood vector is held
with respect to the same time threshold, 7. The impact
vector is given by I. For the purposes of this methodology,
each entry of I is predetermined and is treated like a para-
meter. If desired, impact could follow its own distribution.
The generalized IS methodology will calculate I by con-
ducting the following:

obtain probabilistic network parameters;

assess candidates for amplification;

perform the amplification;

simulate using the amplified network; and

scale the output into the context of the original
network.

MRS

3.2 General importance sampling

The generalized IS methodology, shown in Figure 3, first
considers a metric of interest ¥ with possible outcomes
Y (x). Each outcome, x, occurs with probability f(x). Using
standard simulation, one can determine the expected value
of Y at density f, which is represented as E/(Y ).2° The fol-
lowing equation shows this calculation:

E/(Y)= J Y () (). )

Network parameters are then assessed as candidates for
amplification. Performing a change of measure on these
parameters will also modify density f into g. Therefore,
under amplified conditions, each outcome Y(x) would
occur at probability g(x). Thus, the expected value of Y at
density g is given by E (Y ).2° Note that multiplying den-
sity f in Equation (2) by % is the same as multiplying by
one:

_ &
E(Y)= Jy(x) ol B (3)

Removing the term L

- from Equation (3) gives a frame-
work by which one would simulate under amplified

conditions:

B, = | Ywgeds. 4)

The ratio of density f to density g, given by W, can then
be utilized to translate the output of the amplified



Krall et al.

Obtain Probabilistic I Assess Ca.m':llda!tes for »| Performthe Amplification |—
Network Parameters Amplification
Y(x), f(x) g9(x) fG)> g(x)
(x)
B = [ Y @)ix ) = [ 0L gwyax
R Simulate Using the R Scale the Output |r3t<.) the
> cgr P»| Context of the Original
Amplified Network
Network
f&)
B 1) = [ Y9G W =173

Figure 3. Importance sampling methodology flowchart for a single simulation replication. If utilizing multiple replications, the last

two steps are repeated for each new replication.

simulation back into the context of the original network
such that:

S

W (x) 200’ (5)
This translation works by multiplying each outcome Y (x)
by each corresponding W (x). Essentially, W is utilized to
remove the impact of g on Y such that the final output is
only held with respect to £, which is the original context.?
Scaling the amplified output by W produces the same
expected value as in Equation (2):

E,(YW) = J Y(x)@g(x)dx =E(Y). (6)

g(x)

3.3 Cyber security IS framework

The generalized IS methodology is tailored into a security
framework that represents an attacker moving through a
network. The calculations for the likelihood of an attacker
reaching a particular target machine utilizes the following
information.

SETS

M set of all machines.

Z set of all target machines, Z C M.

M,, set of machines accessible from machine m,
M, CM.

M () set of vulnerable machines accessible from
machine m during attempt j, M), (j) C M,,.

A, set of services on machine n visible from
machine m.

VARIABLES

uun(j) probability of targeting machine »n from
machine m on attempt ;.

Vimn ~ probability of targeting service & on machine n
from machine m.

q(j) machine/service selection probability during

attempt j.
p(j) success/failure probability during attempt ;.
1 If service kiscompromised during
x = attempt J,
0 Otherwise.

T, compromising time of machine z.

f(t2) probability that an attacker has reached
machine z at compromising time t,.

g.(t;) probability under amplified conditions.

A visualization of the various defined machine sets is
shown in Figure 4.

The adversary leverages attack attempts against the ser-
vices present on machines in the network. Within the total
time horizon, T, the attacker can execute a maximum of J
attempts. It is assumed that the attacker has both the skill
and desire to continue the attack until time 7. Each attempt
consumes the same amount of time. During a given repli-
cation, there are W trials. Should a target, z, be
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Figure 4. A visualization of the various defined machine sets.

compromised during a particular trial ¢y € U, the associated
indicator variable will take a value of 1. Otherwise, it will
take a value of and 0, such that:

1 If target z is compromised during trial
¥ within time horizon T, (7)
0 Otherwise.

Ly=

When utilizing standard Monte Carlo simulation, the
likelihood, L., that target z is compromised can be found
by calculating the expected value of the indicator vari-
able.?! It is represented as follows:

1 v
L=E()= 3> Ly (®)
v=1

The likelihood of reaching a target machine is held
with respect to each trial ¥. Thus, likelihood is dependent
on the targeting, successes, and failures an attacker experi-
ences while moving through the network. Targeting refers
to how the attacker moves through the network and is
always done in two phases. The first phase entails the
selection of an available target machine. Available
machines are either connected to machines the attacker
controls or publicly facing. Given a network movement
strategy, the attacker will consider machines that are both

accessible and vulnerable. For example, an attacker seek-
ing to maximize the depth of their penetration into the net-
work will only consider machines accessible from the
most recent machine that has been compromised. An
attacker prioritizing breadth of expansion will not be held
to such a restriction and can consider all accessible un-
compromised machines.

Each available machine under consideration of the
attacker may have a unique selection probability.
However, for the purposes of this methodology, each con-
sidered machine is given an equal likelihood of selection:

Umn(f) = |M;1(],) VneM,) (). (9)
Once a machine has been targeted, the attacker will
select a vulnerable service. Each service is given a selec-
tion weight. These weights correspond to both an attack-
er’s interests and current capabilities. The probability of
selecting a service is calculated by dividing the service’s
individual weight by the aggregated weights of all consid-
ered services on the machine:

Wi

VkeAuy,meM,neM,. (10)

Vimn =
ZiedmWi
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Figure 5. Probabilities for (a) machine selection, (b) service
(d) combined machine and service attack success.

Thus, targeting as a whole can be represented as the
product of both the machine and service selection steps:
vje{l,2,..J}. (11)

After targeting has been completed, an attack attempt
will be leveraged against the selected machine. The
attacker will either have a success or failure at each
attempt. The probability that an attacker succeeds or fails

during an attempt is dependent on the probability of suc-
cessfully compromising the selected service:

q(]) = ViennUmn (])

P =P —p0'™  Vje{l,2,..J}.  (12)

Should an attack on a machine’s service fail, the
attacker is free to perform the same attack again. The
probability that an attack succeeds is assumed to be inde-
pendently and identically distributed. Figure 5 illustrates
how probabilities are determined for machine selection;
service selection; combined machine and service selection;
and combined machine and service attack success.

If given an indefinite timeframe, an attacker would be
able to reach every target. Given that the simulation has an
established time horizon, T, there will be cases where 7, is

unknown for a particular machine. The number of attempts

selection, (c) combined machine and service selection, and

required to compromise a machine of interest is utilized in
calculating the corresponding likelihood value. To this
end, when . is unavailable, T is used in its place, which
corresponds with J attempts. This concession is done for
the sake of practicality when conducting the simulation’s
calculations. Any incomplete path to a machine will result
in I,y =0, which will drive the final likelihood calculation
to zero. Thus, the number of attempts required to compro-
mise a machine of interest is shown by the following:

J.(t;) = min (Attemptstoreachzattime ., J). (13)

The attacker’s path through the network is represented
by the machine/service selections and success/failure of
each attempt. The product of the two components ¢(;) and
p(j) gives the probability of adding the particular choice
and outcome to the path. Let this product for each attempt
be known as the movement factor. The product of all
movement factors determines the probability of generating
a successful path to a machine of interest:

Ji(1)

)= 1] ptrati)

Jj=1

VzeZ. (14)
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Amplifying any of the associated success/failure or
choice parameters will also affect the probability of gener-
ating an attack path. When any component of p(j) or ¢(j)
are amplified, then each become p'(j) and ¢ (j), respec-
tively. The probability of generating an amplified path is
given by the following:

Jo(T2) , ,
g@= [P ()

Jj=1

VzeZ (15)

The ratio of probability density f to density g for each
target machine is shown by the following:

w. L)

= VzeZ.
2:(12)

(16)

The ratio W, is employed when utilizing IS due to the
calculation of L, being held with respect to density g rather
than density f. Scaling the simulation under amplified con-
ditions must make use of each .. Thus, a modified ver-
sion of Equations (6) and (8) produces the likelihood
calculation for IS:

1Y
L. =E,(LW,)= — LyW,y. 17
g( ) \Ill[; YV zy ( )

Tailoring the probability distribution into this security
framework enables the application of IS to this context as
it provides a clear framework for conducting parametric
amplification. Furthermore, classification of the probabil-
ity density function enables conversion to the original state
from an amplified state. Thus, the likelihood a machine of
interest is compromised can be determined. Figure 6
depicts how the IS methodology was formally implemen-
ted. The inputs for the methodology are as follows:

number of trials and replications;

network topology and services;

impact and target data;

default service selection weights;

default service success probabilities;
amplifications to weights and success probabilities;
and

7. attacker movement strategy.

SN hA D=

3.4 Attacker movement

Various machine movement strategies can be implemented
as part of the attacker’s behavior. The depth-based search
(DBS) is one such strategy where targeting is taken with
respect to the most recently compromised machine. As
depicted in Algorithm 1, several parameters are initialized
prior to attacker movement. These include the number of

Number of
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Replications

Network
Topology &
Services

Impact &
Target Data

Risk Assessment

Importance
Sampling
MODEL

Service
Selection P
Weights

Service Success
Probabilities

Amplifications  fr—

Movement
Strategy

Figure 6. Model implementation structure.

attempts (), attacker starting position, attacker knowledge,
set of target machines, and success/failure indicator. The
attacker knowledge is represented as the set of all
machines that have been compromised by the attacker at a
given number of attempts. Each machine within the
attacker’s knowledge will remain under the attacker’s con-
trol until reaching the maximum number of attempts, J.
The attacker will scan all outgoing connections from its
current position. Should all outgoing connections lead to
machines within the attacker’s knowledge, the attacker
will backtrack through its path so far. Backtracking will
continue until there is at least one outgoing machine that
has not been compromised. If the attacker backtracks to its
starting location, then the infiltration event will terminate.

On the contrary, an available machine will be selected
if available. Once the machine selection is complete, the
attacker will target a service on the machine and initiate
an attack. Regardless of the outcome, the success/failure
indicator will be updated appropriately. Once the attack
has ceased, the total number of attempts will be incremen-
ted by one. Should the attack be successful, the attacker’s
current position will be updated and the attacker knowl-
edge will be updated accordingly. After updating the
knowledge, the algorithm will check if the compromised
machine is within the set of target machines. Should this
be the case, the likelihood of reaching the target will be
calculated. if all target machines are compromised, the
infiltration event will stop and the replication will come to
an end.

The breadth-based search (BBS) is another type of
attacker movement strategy and is similar to the DBS. The
main difference between the two strategies is the choice of
targeting. The BBS does not utilize a single source node
as a pivot point. In lieu of this, all machines within the
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Algorithm I: Depth-based movement

lij—1

2: SourceNode «— Internet

3: Knowledge < addKnowledge(Internet)
4: TargetMachines < addTargets()

5: whilej < do

6:  MachineOptions < availableConnections(SourceNode)
7:  If isDeadEnd(MachineOptions) then
8: If isNewSourceAvailable(Knowledge) then
9: SourceNode «— chooseNewSource(Knowledge)
10: MachineOptions « scanConnections(SourceNode)
I else
12: break
13: end if
14. else
15: SelectedMachine < machineSelection(MachineOptions)
16: SelectedService < serviceSelection(SelectedMachine)
17: AttackStatus < attackMachine(SelectedService)
18: je—j+1
19: if isAttackSuccessful(AttackStatus) then
20: SourceNode «— updateSourceNode(SelectedMachine)
21: Knowledge <+ Knowledge + addKnowledge
(SelectedMachine)
22: if isTarget(SelectedMachine, TargetMachines) then
23: recordLikelihood(SelectedMachine)
24: if isAllTargetsCompromised(Knowledge,
TargetMachines) then
25: break
26: end if
27: end if
28: end if
29: endif
30: end while

attacker’s knowledge are treated like a collective source.
Thus, every un-compromised machine that is connected to
a machine in the attacker’s knowledge will be considered
for selection. The distinction between attacker targeting
strategies is displayed in Figures 7 and 8.

3.5 Impact, selection, and CVSS heuristics

The impact of events of interest is also fed into the IS
model as an input. One possible way that these impact rat-
ings can be assigned to machines of interest is through the
heuristic defined in Table 1, which is based on similar
work done by MITRE.!' Each category in the heuristic
(operational, financial, and schedule) is rated on a scale
from 1 to 5, with 5 being the most severe rating. The
operational categories refer to the impact of an event on
the ability of the organization to perform its core func-
tions. The financial category assesses the direct implica-
tions to budgeting, while the schedule category reflects
any required adjustments to project timelines.

The probability of successfully compromising a suscep-
tible service can be determined by assessing the service’s
present vulnerabilities utilizing CVSS version 3.% For each

Not targeted and not compromised
Targeted, but not compromised

Compromised

00O

Compromised, used as pivot point

Figure 7. Depth-based machine selection example. The
numeric labels indicate the sequence in which machines were
compromised. Only machines connected to the most recently
compromised machine are targeted.

O Not targeted and not compromised

@ Targeted, but not compromised

O Compromised

Figure 8. Breadth-based machine selection example. The
numeric labels indicate the sequence in which machines were
compromised. However, this order does not matter for
targeting since all accessible machines can be targeted.

CVSS category (AV, AC, PReq, and Ul), the vulnerability
is assigned a severity value based on Table 2. For the
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Table I. Impact heuristic.

Impact Operational Financial Schedule

5 Severe Ability to perform core business Exceptional budget impact. Exceptional scheduling
function completely crippled. adjustments required.

4 Ability to perform core business Budget significantly exceeds Major scheduling adjustments

Significant function is significantly impaired. planned amounts. required.

3 Ability to perform core business Budget moderately exceeds Moderate scheduling

Moderate function is moderately impaired. planned amounts. adjustments required.

2 Ability to perform core business Budget slightly exceeds planned Minor scheduling adjustments

Minor function is slightly impaired. amounts. required.

I No impact on ability to perform Budget is not affected. No Schedule is not affected. No

Minimal core business function. planning adjustments required. planning adjustments required.

purposes of this investigation, the vulnerabilities present
in a particular service’s version are treated as a singularity.
FIRST classifies a methodology for assigning categories
to vulnerabilities.” With regards to AV, if the attacker
exploits a vulnerable component via the network stack, the
service is either placed into the “Network” or ‘“Adjacent”
classification. Within this domain, if the vulnerability can
be exploited from a routed network the classification will
be “Network’; otherwise, the classification will be
“Adjacent.” If the vulnerable component is not exploited
via the network stack, then AV will be classified as
“Local” or “Physical.”” If the attack requires physical
access to the network, then the classification will be
“Physical.”

AC can take one of two values: it will be High if the
attacker cannot exploit the vulnerability at will; otherwise,
it will be “Low.”” PReq can take one of three classifica-
tions: ‘“None,” “Low,” or “High.” if the attacker does
not need to be authorized, then PReq is ““None.”” If admin-
istrator privileges are required, PReq is High. Ul is either
assigned “Required” or ““None.” The Required classifica-
tion is assigned only if the attacker requires another user
to perform an action to exploit a vulnerability.

Each of the scores seen in Table 2 are derived from
Zhang et al.® and define one possible way to assigning
success probabilities. These scores are given a high and
low value to provide a level of stochasticity to the model.
A uniform distribution is then utilized to give each service
a single score for each of the main CVSS version 3 cate-
gories. The final probability is then calculated for each
service, 1, ..., K, by the following:

P =211 x AV} x ACy x PReqy x Ul,  Vke{l,2,..,K}.

(18)

An attacker must choose which machine to target while
moving through the network. In addition, once a machine
is chosen, the adversary must then choose which service
on the machine to compromise. The process by which this

Table 2. Common Vulnerability Scoring System categorization
values.

Metric Category Low value High value
Access complexity High 0.4180 0.4620
Low 0.7315 0.8085
Access vector Physical 0.1900 0.2100
Local 0.5225 0.5775
Adjacent 0.5890 0.6510
Network 0.8075 0.8925
Privileges required None 0.8075 0.8925
Low 0.5890 0.6510
High 0.2565 0.2835
User interaction None 0.8075 0.8925
Required 0.5890 0.6510

selection takes place utilizes a heuristic that quantifies the
attacker’s interest, which is dependent on the attacker’s
capability and intent. These numeric representations of
interest are known as service weights. For the purposes of
this investigation, interest is partitioned into four cate-
gories: low, medium, high, and very high. Each of these
categories has a range of possible values. The minimum
and maximum values for each range are shown in Table 3.
Service weights are calculated using a uniform distribution
with parameter values derived from the corresponding
interest category.

3.6 Assessment strategy

The performance of the proposed IS methodology can be
assessed via two perspectives. The first perspective con-
trasts the quality of risk estimates between methods. A
(1 — @)% confidence interval can be produced for a static
number of runs per replication, where « is the probability
of Type I error. Risk estimates at different degrees of
amplification should be roughly the same. Nonetheless,
the bounds of their confidence intervals should be
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Table 3. Interest rating.

Interest Lower bound Upper bound
Very high 6.4 9.9
High 1.6 3.2
Moderate 0.4 0.8
Low 0.1 0.2

different. Confidence intervals with smaller halfwidths are
considered to be more accurate estimates.

The second perspective assesses the computational
effort required to ascertain a quality estimate of risk. A
quality estimate is defined to have a confidence interval
that falls within some percentage of the mean. Trials will
be run until all risk estimates converge to the quality cri-
teria. Expedient convergence indicates lesser computa-
tional effort. To increase the efficiency of the simulation,
convergence is not checked after each trial. Instead, a mile-
stone system is employed. These milestones represent a
specific number of trials during a replication that will trig-
ger a convergence check. If convergence is not reached at
a milestone, another milestone will be computed based on
current statistics.

CONVERGENCE

A, set of likelihoods of compromising target z.

L. average likelihood of compromising z.

s, likelihood standard deviation for machine z.

fe |a.|-1 t-statistic.

6 likelihood quality threshold (%).

¥¢ number of trials needed before re-checking con-

z
vergence for machine z.

The confidence interval for the likelihood must con-
verge to be within some 6% of the mean. Therefore, one
can determine the number of trials needed to obtain a qual-
ity estimate. For each machine of interest:

- - s
LA+0) =L+t o -1 ——- (19)
% A ﬂ:
Solving for ¢, we get the following:
fe |A.|-152 2
‘=) . 20
= () (20)

Likelihood convergence must be reached for all
machines of interest. Therefore, the milestone will be the
maximum of all y/;.

Trials run from both evaluation perspectives are given
additional utility by allowing the attacker to compromise
multiple machines of interest within a single path. Under
this framework. statistics are collected about all events of
interest simultaneously. Since each event is not considered

in isolation, fewer experimental replications are required
by the simulation.

4 Experimentation
4.1 Experimental network

To evaluate the capabilities and limitation of the IS metho-
dology, we compare a base network (Figure 9) with four
alternative network configurations (Figure 10). The base
configuration is derived from the Collegiate Penetration
Testing Competition held in 2016.** Arcs in the network
are directed, but come with a few caveats. The presence of
an arc means that the two machines are capable of com-
munication with each other. The direction of an arc, how-
ever, represents a firewall rule that governs the capability
to write data to a machine via one of its services. It is
assumed under the conditions of the experiment that an
attacker must be able to change another machine’s state
through writing data under the assumption that the appro-
priate machine-to-machine permissions are valid.

The network has four interconnected sub networks and
represents a hypothetical healthcare-oriented facility. Only
certain machines are publicly facing. Subnet 1 contains
machines common to a doctor’s office. Workstation WRK
EMR handles electronic medical records (EMRs), whereas
workstation WRK BILL is responsible for billing.
Workstation WRK IT deals with information technology-
related issues. DCO1 is a domain controller that authenti-
cates access to the subnet file share, which is represented
as FILES. The network also has a network printer, PRINT,
and an x-ray machine, XRAY-13.

Subnet 2 handles the EMR functionality of the entire
facility. WEBO2 is the EMR application server, where
information is stored on the DB02 database. Subnet 3 hosts
a diverse set of functionality. WEBO1 is a billing applica-
tion server that stores its information on the DBO1 data-
base. OP & WIKI hosts an IT Wiki, while PR operates a
public relations Twitter bot that publishes protein folding
research.

The final subnet, Subnet 4, handles the aforementioned
protein folding research as well as the remote desktop cap-
abilities between workstations. TS01 is a terminal services
application server that enables workstation WRK IT
remote access into the other workstations on the network.
FOLDING represents an application server that conducts
the protein folding research. Information from this appli-
cation server is stored within STORAGE. CI is a continu-
ous integration server and works in conjunction with the
GIT repository server for code development. BASTION
acts as a protective layer that strictly limits access into the
subnet.

All services present on the network must be assigned a
probability of becoming compromised if attacked. These
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Figure 10. Alternative network configurations: (a) modify connection; (b) move connection; (c) add new machine; (d) change
machine access from public to private.
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Table 4. Service Common Vulnerability Scoring System categorization.

Services Locations Interest Access complexity ~ Access vector
Domain controller DCOl High Low Network
Domain file share FILES, STORAGE Very high Low Adjacent
EMR web application WEB02 High High Adjacent
FreeBSD 9.1 BASTION Moderate  High Network
GitLab GIT Moderate  Low Adjacent
Internal IT Wiki OPS & WIKI Low High Adjacent
Jenkins CI Cl Low High Adjacent
MySQL DB02, STORAGE Very high High Adjacent
NodeJS web application PR Low High Adjacent
Non-HIPAA/PCI compliant billing application ~ WEBOI High High Network
Picture archive and communication system XRAY-13 High High Network
PostgreSQL DBOI Very high High Adjacent
Print application PRINT Low Low Adjacent
Protein folding application FOLDING High High Adjacent
Remote desktop TSOI Moderate  High Adjacent
SSH BASTION High High Network
Telnet STORAGE Low Low Adjacent
Terminal services TSOI Moderate  High Adjacent
Tomcat Cl Moderate  High Adjacent
Ubuntu 16.04-1 WEBO02, DB02, DBOI, PR, CI, Low High Adjacent
GIT, FOLDING, STORAGE
Ubuntu 16.04-2 WEBOI, OPS & WIKI Low High Network
Windows 7 WRK EMR, WRK BILL High Low Network
Windows 8 WRK IT High Low Network
Windows Server 2003 XRAY-13 Moderate  Low Network
Windows Server 2008 R2-1 DCOl Moderate  High Adjacent
Windows Server 2008 R2-2 FILES Moderate  High Network
Windows Server 2012 TSOI Moderate  High Network
EMR: electronic medical record.
as&gnmen.ts mus‘F be corpphant W¥th CVSS version 3. e s. Impact assignments.
Table 4 displays information regarding each network ser-
vice, including their machine locations and CVSS categor-  Machine Impact score
ization. Ul is set to “None” and PReq is set to ngh. Operational Financial Schedule
for all machines. Table 4 also shows the interest categori-
zations utilized for assigning services selection weights. FILES 2 I 3
Within the context of this network example, events of ggg é : i g
interest are limited to an attacker exfiltrating data stores STORAGE 4 s i

on the four database servers: FILES, DB01, DB02, and
STORAGE. These impact ratings can be seen in Table 5.
Four configuration alternatives to the base case are
explored. The first alternative can be seen in Figure 10(a)
and modifies the connection between PR and FOLDING to
be unidirectional. Under this ‘“Modify Connection” case,
data can only be sent from FOLDING to PR. The second
alternative is shown in Figure 10(b) and is identified as
“Move Connection.”” The connection between WRK IT to
BASTION is moved such that it now exists between WRK
IT and TSO1. The third case, ““Add Machine,” sees the
addition of a second BASTION server to the network,
shown as BASTION2 in Figure 10(c). The data contained
on STORAGE is important to the organization, and thus an
additional layer of authentication may be desired. The final

alternative changes the BASTION server such that it is no
longer publicly facing. This “Public to Private” case is
shown in Figure 10(d).

4.2 Experimental setup

Each experimental case is run with 30 replications to
ensure a large number of possible scenarios is observed.
When analyzing computational efficiency, reasonable
computer memory constraints are considered. Thus, the
maximum number of trials is 1 x 10% for both DBS and
BBS. The convergence criteria is set to be a confidence
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Figure 11. Convergence in the depth-based case

computational savings.

interval falling within =+ 10% of the mean estimate. This
criterion ensures the halfwidth stays well within an order
of magnitude of the estimate. When testing for estimation
quality, the DBS receives a static 50, 000 trials, while the
BBS is given 4 x 10° trials. These two numbers are differ-
ent because the BBS requires significantly more trials
before reaching a quality estimate. In all cases, « =0.05
and the maximum number of attack attempts is J =10,
which allows for the occurrence of multiple events of
interest during a single trial. Different levels of amplifica-
tion are tested and are carried forth by multiplying all suc-
cess probabilities by a given factor. Amplification levels
of 1x, 1.25x%x, 1.5x, 1.75x, and 2 x will be tested.
Amplification above 2 x runs the risk of assigning prob-
ability values greater than one. The 1 x case corresponds
to no network amplification and is representative of stan-
dard simulation.

5 Results
5.1 Computational savings versus estimation
performance

The number of trials required to converge to a quality like-
lihood estimation exponentially decreases as the degree of
amplification increases. The trend for the DBS is shown in
Figure 11. As the degree of amplification increases from
1 x to 2x, the reduction in computational effort is
approximately 83.5%.

Preliminary experimentation revealed that compromis-
ing STORAGE happens with the smallest likelihood.
Thus, STORAGE is given the primary focus for the
remainder of this investigation. Figure 12 shows that the
confidence interval of STORAGE remains constant across
all degrees of amplification. In all cases, the confidence
interval falls within the established bounds of quality.
Nonetheless, one can see in Figure 13 that the confidence
interval of FILES widens as the degree of amplification
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Figure 12. Convergence in the depth-based case — STORAGE
likelihood.
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Figure 13. Convergence in the depth-based case — FILES
likelihood.
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increases. The trend seen in FILES is repeated for DBO1
and DB02.

The variance in estimates of STORAGE’s likelihood
can be seen in Figure 14. As the degree of amplification
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likelihood.

increases, the variance exponentially decreases. This var-
iance trend for STORAGE corresponds to the trend seen
for the computational efficiency. By contrast, the variance
of FILES, seen in Figure 15, appears to be parabolic. Once
again, the patterns in variance seen for FILES are repeated
for DBO1 and DB02.

The same trends in likelihood and variance seen for the
DBS are also observed for the BBS, although the BBS
yields different estimates. In addition, the number of trials
required for convergence is several orders of magnitude
greater for the BBS.

5.2 Estimate quality

When utilizing a static number of trials under the DBS,
the halfwidth of the confidence intervals for STORAGE’s
likelihood are shown to decrease as the degree of amplifi-
cation increases. This trend can be observed in Figure 16.
The confidence interval for FILES first narrows and then
widens again as the degree of amplification increases, as

Figure 17. Static in the depth-based case — FILES likelihood.
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based case — STORAGE.

shown in Figure 17. The pattern in confidence interval
seen for FILES is repeated for DBO1 and DB02.

The variance patterns seen using a static number of
trials mirrors trends seen when assessing computational
efficiency. In addition, similar trends in likelihood and
variance can be seen for the BBS, albeit with different
estimates for each.

5.3 Risk assessment for reconfigurations

The effects of reconfiguration alternatives on the likeli-
hood of compromising STORAGE when using the DBS
are seen in Figure 18. An amplification level of 1.75 x is
utilized alongside a static number of trials. All cases except
the “Move Connection” yielded a significant reduction in
likelihood when compared to the base case. The “Modify
Connection” alternative displayed the largest decrease in
likelihood. ““New Machine” and ‘““Public to Private” did
not differ significantly from each other. Analysis of Figure
19 shows that there can be some unintended consequences
to reconfiguration alternatives that seek to offer additional
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breadth-based case — STORAGE.

comparison in

protection to STORAGE. The “Move Connection” and
“Public to Private” alternatives cause the likelihood of
compromising DBO1 to increase. The “Public to Private”
case has similar impacts to the likelihood of compromising
FILES and DB02.

Similar results are obtained with assessing reconfigura-
tion with respect to the BBS. The primary differences,
seen in Figure 20, show that the “New Machine” alterna-
tive provides the greatest likelihood of reduction. In addi-
tion, “‘Public to Private” causes a significant increase in
the likelihood of compromising DBO1, DB02, and FILES.
This trend can be seen in Figure 21. Other reconfiguration
alternatives under the BBS did not show a profound an
impact on likelihood estimates.

5.4 Discussion

Utilization of the convergence method shows that the rate
of convergence is dependent on the rarest event and is due

Figure 21. Configuration likelihood the

breadth-based case — FILES.

comparison in

to the simultaneous assessment of all events of interest. As
the degree of amplification increases, the rarest event
always has a confidence interval that just meets the bare
minimum quality requirements. In contrast, all other
events experience widening confidence intervals that con-
verge to the same minimum quality requirements. These
widening confidence intervals are ultimately impacted by
the decreasing number of trials required before conver-
gence. Recall that a halfwidth is equal to fz | - \}w_
Thus, the rarest event can be seen as a limiting factor to
the method.

Since the number of trials is static when assessing esti-
mation quality, the confidence intervals are only impacted
by variance. Amplification has the greatest impact on the
variance of STORAGE’s likelihood estimates.

Every reconfiguration alternative has the potential to
have no effect or have unintended trade-offs. “Move
Connection” never produced a meaningful change in the
likelihood of compromising STORAGE. Therefore, a net-
work analyst would not implement this alternative. In the
case of the DBS, implementing ‘“Modify Connection”
increased the likelihood of compromising DB0O1. Making
the connection between PR and FOLDING unidirectional
caused PR to become a dead-end if not reaching PR from
FOLDING. Therefore, an attacker would be more likely to
reach a closer machine of interest; in the case of this net-
work example, this would be DBO1. A similar phenom-
enon can be seen when looking at ‘“‘Public to Private.”
Making BASTION private means that Subnet 4 is not pub-
licly visible from the attacker’s starting position. Thus,
STORAGE is placed deeper within the network than the
other machines of interest. From these results, one can
glean that keeping BASTION publicly facing draws
attacks away from the other machines of interest.

The ““Add Machine” option operates off a similar prin-
ciple as “‘Public to Private.” However, the key difference
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Table 6. Depth — risk reduction.

Machine Impact Base case New machine % Change

Likelihood Risk Likelihood Risk

FILES 6 2.06E-01 1.24E+ 00 2.07E-01 1.24E+ 00 0.22%
DBOI 9 6.49E-02 5.84E-01 6.46E-02 5.82E-01 —0.40%
DBO02 I 3.24E-02 3.57E-01 3.26E-02 3.59E-01 0.48%
STORAGE 14 4.63E-03 6.49E-02 3.34E-03 4.68E-02 —27.80%
Table 7. Breadth — risk reduction.

Machine Impact Base case New machine % Change

Likelihood Risk Likelihood Risk

FILES 6 3.60E-02 2.16E-01 3.65E-02 2.19E-01 1.33%
DBOI 9 2.32E-02 2.09E-01 2.35E-02 2.12E-01 1.39%
DBO02 I 1.23E-02 1.36E-01 1.25E-02 1.37E-01 1.13%
STORAGE 14 3.16E-05 4.43E-04 1.20E-05 1.69E-04 —61.92%

is that the original BASTION server is able to draw in
attacks under the ““Add Machine” case. BASTION2 then
acts as a secondary barrier and funnels the attacker into a
position where it must keep attacking or abandon its cur-
rent path. As a result, ““Add Machine” is the best alterna-
tive from the perspective of trade-offs in likelihood.

Tables 6 and 7 show the relative risk reduction when
reconfiguring the base case to ‘““New Machine.” The DBS
and BBS both show a significant reduction in the risk of
STORAGE becoming compromised. Nonetheless, there
are slight increases in risk of both FILES and DB02 for
both the DBS and BBS. In addition, the risk of DBO1
decreases slightly for the DBS, whereas it slightly
increases for the BBS.

Standard simulation produces wider confidence inter-
vals than IS when utilizing the same number of trials.
Thus, to generate estimates of similar quality as IS, more
trials must be run under standard simulation. Once again,
the rarest event is the limiting factor, since all standard
simulation confidence intervals must be either equal in size
to or tighter than those produced by IS. Thus, trials must
be run until the confidence interval of STORAGE suffi-
ciently narrows. The number of additional trials required
by standard simulation is shown in Figure 22 for the DBS.

For comparison purposes, all reconfiguration alterna-
tives must be run with the same number of trials.
Therefore, the maximum number of additional trials
required among all alternatives is utilized when generating
confidence intervals. Figure 23 shows the difference in
confidence intervals between standard simulation when
running a differing number of trials. The difference in con-
fidence intervals displays the utility of utilizing IS.

Total Additional Trials Required to Achieve Amplified
Confidence Interval for all Events of Interest
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Figure 22. Additional trials required — depth.
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Essentially, halfwidths can be decreased without needing
to run more trials.

6 Conclusions and future work

Determining the risk of cyber attacks is a primary security
interest. The investigation has applied a tailored IS metho-
dology to a security framework, which is capable of analy-
tically comparing network configurations against each
other. The risk of data theft on a healthcare-oriented net-
work was assessed utilizing this tailored method. Overall,
it was able to show that the IS methodology is capable of
delivering higher quality estimates with greater computa-
tional efficiency when compared to standard simulation.

So far, the IS methodology has only been tested with
respect to a single network and a handful of potential
reconfigurations. Testing the methodology with other net-
works, featuring diverse configuration alternatives, would
be necessary for further vetting. Future applications may
also explore the stochastic assignment of impact and
attack success probability that may be dependent on the
adversary’s actions while moving through the network.
The attacker logic may also be upgraded to accommodate
more advanced search methodologies, which may reveal
new trends between output statistics as a result of amplifi-
cation. For example, the attacker may probabilistically or
contextually shift between different search paradigms. The
IS methodology may also be improved by allowing for
individual vulnerability selection once a service is selected
for targeting. This inclusion would necessitate some modi-
fication to the assignment of selection weights as well as
the calculations of the aggregated selection probability.
These relationships may be utilized in a small pilot study
to automate the determination of optimal degrees of
amplification.

The current investigation did not assess any
performance-based trade-offs associated with reducing
network risk as a result of network reconfiguration.
Security specialists must strike a balance between network
performance and network susceptibility. Thus, future
investigations should define some heuristic to quantify the
relative impact on network functionality when considering
reconfiguration to reduce risk.

The simulation could be configured to store scenarios
that result in an attacker reaching a machine of interest.
Should reaching the machine be sufficiently rare, only a
few scenarios will cause the event to occur. Thus, one can
track this limited set of scenarios and gain insight into
which configuration alternatives would be worth assessing.
This type of additional information would enable a net-
work analyst to make more informed decisions.
Nonetheless, the scope of this investigation has established

the advantages and potential of utilizing IS to assess net-
work risk.
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