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Abstract
Inherent vulnerabilities in a cyber network’s constituent machine services can be exploited by malicious agents. As a
result, the machines on any network are at risk. Security specialists seek to mitigate the risk of intrusion events through
network reconfiguration and defense. When dealing with rare cyber events, high-quality risk estimates using standard
simulation approaches may be unattainable, or have significant attached uncertainty, even with a large computational
simulation budget. To address this issue, an efficient rare event simulation modeling and analysis technique, namely,
importance sampling for cyber networks, is developed. The importance sampling method parametrically amplifies certain
aspects of the network in order to cause a rare event to happen more frequently. Output collected under these ampli-
fied conditions is then scaled back into the context of the original network to provide meaningful statistical inferences.
The importance sampling methodology is tailored to cyber network attacks and takes the attacker’s successes and fail-
ures as well as the attacker’s targeting choices into account. The methodology is shown to produce estimates of higher
quality than standard simulation with greater computational efficiency.
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1 Introduction

Security in cyber space has become an increasingly critical

concern as the world tends toward omnipresent digital

integration. All cyber networks have inherent vulnerabil-

ities, which can be targeted and exploited by any mali-

cious agent. The contemporary cyber-adversary may have

a diverse range of intents. Some may seek to steal the pri-

vate data of key institutions, while others may simply want

to demonstrate their abilities. These activities and the

selection of targets may or may not have ideological moti-

vations. Regardless, the actions of all attackers result in

significant financial loss: damaged systems must be

repaired, intellectual property may be lost, etc. Security

specialists seek to mitigate these financial impacts and

work to protect their networks. Thus, one could say that

specialists and attackers are at odds in a so-called ‘‘battle

of wits’’ where the resulting conflict sees the application

of complex tactics as each faction attempts to gain an

advantage.1 During such conflicts, an attacker may suc-

ceed in fulfilling their intent, which will impact the tar-

geted institution. The National Institute of Standards and

Technology (NIST) represents the synthesis of an adverse

impact and its associated likelihood of occurrence as net-

work risk. In other words, risk measures the extent by

which an entity is threatened by a potential circumstance

or event.2

The implicit goal behind mitigating financial impacts

due to cyber attacks is minimizing network risk. Therefore,

the network must be changed in some way: this can be

done through simple reconfiguration or through the imple-

mentation of defensive measures. Either approach will

change or obfuscate the set of attack actions that are feasi-

ble. To this end, deciphering a transformed network’s risk
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relative to its original state provides the needed context to

a security specialist when assessing a variety of potential

security countermeasures.

The complex behavior of attacks on cyber networks

and the lack of closed-form methods for analyzing network

risk has made computer simulation a leading analysis

method. However, given that the objective of network

security analysts is to make successful malicious events

rare in the system, occurrences of these events in simulated

cyber attacks are also rare. As a result, an extraordinary

number of simulated attacks may need to be generated to

produce enough observations of the rare event of interest

to have sufficient data to produce a high-quality estimate

of network risk. In this research, we design and develop an

efficient rare event simulation (RES) modeling and analy-

sis technique, namely, importance sampling (IS) for cyber

networks. The IS method parametrically amplifies certain

aspects of the network in order to cause a rare event to

happen more frequently. Output collected under these

amplified conditions are then scaled back into the context

of the original network to provide meaningful statistical

estimates and inferences of network risk. The IS methodol-

ogy is tailored to cyber network attacks and takes the

attacker’s successes and failures as well as the attacker’s

targeting choices into account. The methodology is shown

to produce estimates of higher quality than standard simu-

lation with greater computational efficiency.

The remainder of this paper is organized as follows. In

Section 2 we review the relevant related work in the area

of network risk assessment and RES. The IS methodology

designed for cyber networks is discussed in Section 3. In

Section 4 the experimental evaluation procedure is pre-

sented; and the results of these experiments are presented

in Section 5. Finally, conclusions and future work are pre-

sented in Section 6.

2 Related work

In this section, we discuss relevant related work relative to

the assessment of network risk and RES methods.

2.1 Network risk

The risk of an event is defined by its likelihood and

impact, which are the focus of this research. However,

additional network metrics could be considered alongside

risk. McQueen et al.3 consider the time to compromise a

target as a potential metric to track due to its representa-

tion of the effort expended by a malicious agent. Their

study on Supervisory Control and Data Acquisition

(SCADA) systems show that the time to compromise is

related to the same machine’s risk of being compromised.

When the machine’s risk decrease, its time to compromise

increases.3

The likelihood of an event is dependent on three factors

pertinent to an attacker: the attacker’s intent, capability,

and targeting.2 The intent behind an attack is what an

attacker seeks to accomplish with its malicious activity.

Capability is synonymous with an attacker’s available

skillset, while targeting explicitly pertains to an attacker’s

movement through a network. In addition to these

attacker-centric features, there is a temporal nature

attached to likelihood. However, if an event is certain to

occur at a given rate, the frequency of occurrence can be

utilized to replace likelihood in the calculation of risk.2

Each action performed by the attacker has a given time-

frame of execution. According to Dell Secure Works,4

each of these actions fall within one of 12 sequential cate-

gories, known as a kill chain. These categories can be seen

in Figure 1. A preliminary study conducted by Rege et al.5

determined the time consumed by an attacker at various

steps in a kill chain. The findings showed that attack

reconnaissance and exploitation each took 42% of the time

of the attacks.

Within the scope of cyber security, the occurrence of

an intrusion event is dependent on the successful exploita-

tion of vulnerabilities present on machines in the network.

A vulnerability is defined as a defect in a component or an

erroneous or malicious behavior performed by a user.6

The Common Vulnerability Scoring System (CVSS) rates

all known vulnerabilities in terms of their severity on a

scale from 1 to 10; higher scores indicate an increased

probability of exploitation.7 CVSS version 3 scores are

assigned using four metrics: the access vector (AV),

access complexity (AC), privileges required (PReq), and

user interaction (UI).8 AV refers to the context in which

the vulnerability’s exploitation is feasible. AC acknowl-

edges the necessity of conditions beyond an attacker’s

control. PReq reflects the level of privileges an attacker

must acquire prior to exploiting a vulnerability success-

fully. UI identifies any necessary interaction from a user

that is not the attacker.8 It is also possible for the attacker

Figure 1. The different stages of the Dell kill chain.
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to change a component whose authority is different to that

of the vulnerable component. Such an instance is known

as a change in scope and can affect the calculation of the

PReq metric.8 FIRST9 details a methodology by which

each of these metrics can be gauged. Furthermore, the use

of CVSS scores can inform the development of a probabil-

istic representation of a network topology,8 based on the

services present on all machines.

In addition to assessing likelihood, a cyber attack can

result in a diverse set of impacts. The exfiltration of sensi-

tive information is known as a confidentiality impact. An

integrity impact is the result of an asset being placed into

a non-recoverable state. Lastly, the placement of an asset

into a temporarily inaccessible state is known as an avail-

ability impact.2,10 In addition to its type, an impact can be

gauged with respect to certain predefined categorical mea-

sures. MITRE11 assess impact with respect to cost, techni-

cal performance, and scheduling as part of their risk

management assessment scale. Each category is ranked

from minimal to severe on a 1–5 scale. The aggregate of

each category’s score is utilized as the event’s numeric

impact score.11 Given the possibility for multiple events of

interest, NIST states that impact can be represented as a

vector, which can be combined with a corresponding like-

lihood vector to produce a risk vector.2

One methodology to reduce network risk is through the

removal of attack paths.12 Optimization can be employed

to determine the pairwise connectivity between machines,

which can then be minimized.13 In addition, the use of

alerts from network sensors in conjunction with knowl-

edge of a network’s attack graph can be utilized to corre-

late isolated alerts to attack scenarios.14 Attack graphs can

also be evaluated with respect to various categorical

metrics, identified by Noel and Jajodia.15 These include

victimization, size, containment, and topology. The victi-

mization metric pertains to a network’s inherent vulner-

abilities. The size family reflects the overall size of the

attack graph. Containment refers to the compartmentaliza-

tion of the network. Topology refers to the interactions

between machines.15 The implementation of advanced

defensive measures, such as moving target defense

(MTD), may also mitigate a network’s risk. The MTD

causes a network to periodically reconfigure itself to

increase reconnaissance periods and make it necessary for

an attacker to regain privileges.16

2.2 Rare event simulation

Simulation provides a means to derive performance statis-

tics for stochastic systems. However, assessing risk may be

computationally intensive if an event is sufficiently rare.

Thus, RES techniques are often employed when dealing

with rare events.

There are two RES techniques that have seen wide-

spread historic use. These are splitting and IS. However,

each of these techniques has seen limited application to

cyber security, as a greater focus has traditionally been

placed on attack detection and prevention.17 Splitting oper-

ates by creating copies of the simulation at various states

and those able to obtain a sufficient level of ‘‘closeness’’

to the rare event are saved. The simulation utilizes these

copies as starting points to improve the efficiency of

experimentation.18 Application of splitting to worm attacks

shows that the technique yields superior estimations of a

rare event’s likelihood when compared to standard simula-

tion.17,19 The overall concept of the splitting technique can

be seen in Figure 2.

IS operates on the notion of amplifying features of a

network to cause increased incidence of a rare event.

Amplification entails increasing the probability of one or

more of a system’s stochastic features.20 For example, sup-

pose probability p is equal to 0:15. If one were to amplify

the value of p, its amplified counterpart, p0, may take some

value greater than 0:15, but less than 1. Output that is col-

lected under these enhanced conditions is translated back

into the context of the network’s original conditions in

order to produce usable statistics.20 The process of feature

amplification is performed by altering the probability of

obtaining a certain value for a predetermined random vari-

able and is known as a change of measure. Performing a

change of measure runs the risk of increasing the likeli-

hood of one event, but not another, or causing the absence

of an event of interest to become rare.20 The cross-entropy

(CE) method seeks to address this concern as it can pro-

duce optimal changes of measure automatically through an

iterative process,21 but is not suitable for all probability

distributions. A preliminary application of IS to model

Figure 2. Example of the splitting technique in rare event
simulation. The simulation’s state is saved at given thresholds of
‘‘closeness’’ to the rare event. Should the state of a particular
run drift ‘‘further’’ from the rare event, it can be restarted from
the saved state that is ‘‘closest’’ to the event of interest.
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cyber intrusion attacks, performed by Krall et al.,22 demon-

strates that quality estimates of event likelihood can be

obtained with less computational effort than standard

simulation.

2.3 Discussion

In this work, we consider a novel application of IS to the

assessment of risk in computer networks. The use of simu-

lation allows for explicitly modeling network details and

allows for the assessment of risk by evaluating dynamic

network attacks. As networks are designed for successful

attacks to be rare, the number of simulated attacks needed

for a high-quality assessment is large. The IS algorithms

that we have developed enable risk assessment with less

simulation effort than traditional simulation approaches.

3 Network risk estimation methodology

We have designed the following methodology to evaluate

the risk of successful execution of an attack of interest

within a cyber network. Within this context, the attack sur-

face is defined by the services present on the various phys-

ical machines that comprise the network. We first present

an overview of the IS simulation method for assessing net-

work risk. We then present a brief overview of IS followed

by a detailed discussion of the application of IS in the con-

text a cyber network. We then present our simulation mod-

eling approach relative to attacker behavior and attack

progression through the network, including the selection

of target machines and vulnerabilities and likelihood of

success. Next, we discuss how the impact assessment is

combined with the likelihood to produce the estimate of

network risk. Finally, we present our methodology for

assessing the performance of the IS method.

3.1 Importance sampling for cyber networks

Consider cyber attacks where an attacker moves through a

network. In these cases, the events of interest from the

defensive side entail an attacker being able to reach certain

machines. Given that networks may be highly intercon-

nected, it may be difficult to distinguish an attacker’s

‘‘closeness’’ to an event. The obfuscation of event ‘‘close-

ness’’ makes splitting unfavorable for such attack scenar-

ios. Thus, IS is used in lieu of splitting. The path taken by

an attacker is determined by the choices of targets as well

as the successes and failures during a particular attack sce-

nario. CVSS scores inform the probabilistic nature of the

successes and failures when attempting to compromise a

machine by means of exploiting its available services.

Note that, without loss of generality, all attackers are

assumed to start in a single position that is external to the

network.

The proposed IS methodology will generate a risk vec-

tor for a cyber network. Each element within the risk vec-

tor corresponds to the risk of an attacker reaching a

machine:

R=L× I: ð1Þ

In the above representation, R is the risk vector while

L is the likelihood vector. The likelihood vector is held

with respect to the same time threshold, T . The impact

vector is given by I. For the purposes of this methodology,

each entry of I is predetermined and is treated like a para-

meter. If desired, impact could follow its own distribution.

The generalized IS methodology will calculate L by con-

ducting the following:

1. obtain probabilistic network parameters;

2. assess candidates for amplification;

3. perform the amplification;

4. simulate using the amplified network; and

5. scale the output into the context of the original

network.

3.2 General importance sampling

The generalized IS methodology, shown in Figure 3, first

considers a metric of interest Y with possible outcomes

Y (x). Each outcome, x, occurs with probability f (x). Using

standard simulation, one can determine the expected value

of Y at density f , which is represented as Ef (Y ).
20 The fol-

lowing equation shows this calculation:

Ef (Y )=
ð
Y (x)f (x)dx: ð2Þ

Network parameters are then assessed as candidates for

amplification. Performing a change of measure on these

parameters will also modify density f into g. Therefore,

under amplified conditions, each outcome Y (x) would

occur at probability g(x). Thus, the expected value of Y at

density g is given by Eg(Y ).
20 Note that multiplying den-

sity f in Equation (2) by g

g
is the same as multiplying by

one:

Ef (Y )=
ð
Y (x)

f (x)

g(x)
g(x)dx: ð3Þ

Removing the term f

g
from Equation (3) gives a frame-

work by which one would simulate under amplified

conditions:

Eg(Y )=
ð
Y (x)g(x)dx: ð4Þ

The ratio of density f to density g, given by W , can then

be utilized to translate the output of the amplified

4 Journal of Defense Modeling and Simulation: Applications, Methodology, Technology 00(0)



simulation back into the context of the original network

such that:

W (x)= f (x)

g(x)
: ð5Þ

This translation works by multiplying each outcome Y (x)

by each corresponding W (x). Essentially, W is utilized to

remove the impact of g on Y such that the final output is

only held with respect to f , which is the original context.20

Scaling the amplified output by W produces the same

expected value as in Equation (2):

Eg(YW )=
ð
Y (x)

f (x)

g(x)
g(x)dx=Ef (Y ): ð6Þ

3.3 Cyber security IS framework

The generalized IS methodology is tailored into a security

framework that represents an attacker moving through a

network. The calculations for the likelihood of an attacker

reaching a particular target machine utilizes the following

information.

SETS

M set of all machines.

Z set of all target machines, Z⊆M .

Mm set of machines accessible from machine m,

Mm ⊆M .

Mv
m(j) set of vulnerable machines accessible from

machine m during attempt j, Mv
m(j)⊆Mm.

Amn set of services on machine n visible from

machine m.

VARIABLES

umn(j) probability of targeting machine n from

machine m on attempt j.

vkmn probability of targeting service k on machine n

from machine m.

q(j) machine/service selection probability during

attempt j.

p(j) success/failure probability during attempt j.

x =
1 If service k is compromised during

attempt j,

0 Otherwise:

8<
:

τz compromising time of machine z.

fz(τz) probability that an attacker has reached

machine z at compromising time τz.

gz(τz) probability under amplified conditions.

A visualization of the various defined machine sets is

shown in Figure 4.

The adversary leverages attack attempts against the ser-

vices present on machines in the network. Within the total

time horizon, T , the attacker can execute a maximum of J

attempts. It is assumed that the attacker has both the skill

and desire to continue the attack until time T . Each attempt

consumes the same amount of time. During a given repli-

cation, there are � trials. Should a target, z, be

Figure 3. Importance sampling methodology flowchart for a single simulation replication. If utilizing multiple replications, the last
two steps are repeated for each new replication.

Krall et al. 5



compromised during a particular trial ψ∈�, the associated

indicator variable will take a value of 1. Otherwise, it will

take a value of and 0, such that:

Izψ =
1 If target z is compromised during trial

ψwithin time horizon T ,

0 Otherwise:

8<
: ð7Þ

When utilizing standard Monte Carlo simulation, the

likelihood, Lz, that target z is compromised can be found

by calculating the expected value of the indicator vari-

able.21 It is represented as follows:

Lz =Ef (Iz)= 1

�

X�
ψ= 1

Izψ: ð8Þ

The likelihood of reaching a target machine is held

with respect to each trial ψ. Thus, likelihood is dependent

on the targeting, successes, and failures an attacker experi-

ences while moving through the network. Targeting refers

to how the attacker moves through the network and is

always done in two phases. The first phase entails the

selection of an available target machine. Available

machines are either connected to machines the attacker

controls or publicly facing. Given a network movement

strategy, the attacker will consider machines that are both

accessible and vulnerable. For example, an attacker seek-

ing to maximize the depth of their penetration into the net-

work will only consider machines accessible from the

most recent machine that has been compromised. An

attacker prioritizing breadth of expansion will not be held

to such a restriction and can consider all accessible un-

compromised machines.

Each available machine under consideration of the

attacker may have a unique selection probability.

However, for the purposes of this methodology, each con-

sidered machine is given an equal likelihood of selection:

umn(j)= 1

jMv
m(j)j

8 n∈Mv
m(j): ð9Þ

Once a machine has been targeted, the attacker will

select a vulnerable service. Each service is given a selec-

tion weight. These weights correspond to both an attack-

er’s interests and current capabilities. The probability of

selecting a service is calculated by dividing the service’s

individual weight by the aggregated weights of all consid-

ered services on the machine:

vkmn= wk

�i∈Amn
wi

8 k ∈Amn,m∈M, n∈Mm: ð10Þ

Figure 4. A visualization of the various defined machine sets.
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Thus, targeting as a whole can be represented as the

product of both the machine and service selection steps:

q(j)= vkmnumn(j) 8 j∈ f1, 2, :::, Jg: ð11Þ

After targeting has been completed, an attack attempt

will be leveraged against the selected machine. The

attacker will either have a success or failure at each

attempt. The probability that an attacker succeeds or fails

during an attempt is dependent on the probability of suc-

cessfully compromising the selected service:

p(j)= pxk(1� pk)
1�x 8 j∈ f1, 2, :::, Jg: ð12Þ

Should an attack on a machine’s service fail, the

attacker is free to perform the same attack again. The

probability that an attack succeeds is assumed to be inde-

pendently and identically distributed. Figure 5 illustrates

how probabilities are determined for machine selection;

service selection; combined machine and service selection;

and combined machine and service attack success.

If given an indefinite timeframe, an attacker would be

able to reach every target. Given that the simulation has an

established time horizon, T , there will be cases where τz is

unknown for a particular machine. The number of attempts

required to compromise a machine of interest is utilized in

calculating the corresponding likelihood value. To this

end, when τz is unavailable, T is used in its place, which

corresponds with J attempts. This concession is done for

the sake of practicality when conducting the simulation’s

calculations. Any incomplete path to a machine will result

in Izψ = 0, which will drive the final likelihood calculation

to zero. Thus, the number of attempts required to compro-

mise a machine of interest is shown by the following:

Jz(τz) = min (Attempts to reach z at time τz, J ): ð13Þ

The attacker’s path through the network is represented

by the machine/service selections and success/failure of

each attempt. The product of the two components q(j) and

p(j) gives the probability of adding the particular choice

and outcome to the path. Let this product for each attempt

be known as the movement factor. The product of all

movement factors determines the probability of generating

a successful path to a machine of interest:

fz(τz)=
YJz(τz)
j= 1

p(j)q(j) 8 z∈ Z: ð14Þ

Figure 5. Probabilities for (a) machine selection, (b) service selection, (c) combined machine and service selection, and
(d) combined machine and service attack success.

Krall et al. 7



Amplifying any of the associated success/failure or

choice parameters will also affect the probability of gener-

ating an attack path. When any component of p(j) or q(j)

are amplified, then each become p
0
(j) and q

0
(j), respec-

tively. The probability of generating an amplified path is

given by the following:

gz(τz)=
YJz(τz)
j= 1

p
0
(j)q

0
(j) 8 z∈ Z: ð15Þ

The ratio of probability density f to density g for each

target machine is shown by the following:

Wz = fz(τz)

gz(τz)
8 z∈ Z: ð16Þ

The ratio Wz is employed when utilizing IS due to the

calculation of Lz being held with respect to density g rather

than density f . Scaling the simulation under amplified con-

ditions must make use of each Wz. Thus, a modified ver-

sion of Equations (6) and (8) produces the likelihood

calculation for IS:

Lz =Eg(IzWz)= 1

�

X�
ψ= 1

IzψWzψ: ð17Þ

Tailoring the probability distribution into this security

framework enables the application of IS to this context as

it provides a clear framework for conducting parametric

amplification. Furthermore, classification of the probabil-

ity density function enables conversion to the original state

from an amplified state. Thus, the likelihood a machine of

interest is compromised can be determined. Figure 6

depicts how the IS methodology was formally implemen-

ted. The inputs for the methodology are as follows:

1. number of trials and replications;

2. network topology and services;

3. impact and target data;

4. default service selection weights;

5. default service success probabilities;

6. amplifications to weights and success probabilities;

and

7. attacker movement strategy.

3.4 Attacker movement

Various machine movement strategies can be implemented

as part of the attacker’s behavior. The depth-based search

(DBS) is one such strategy where targeting is taken with

respect to the most recently compromised machine. As

depicted in Algorithm 1, several parameters are initialized

prior to attacker movement. These include the number of

attempts (j), attacker starting position, attacker knowledge,

set of target machines, and success/failure indicator. The

attacker knowledge is represented as the set of all

machines that have been compromised by the attacker at a

given number of attempts. Each machine within the

attacker’s knowledge will remain under the attacker’s con-

trol until reaching the maximum number of attempts, J .

The attacker will scan all outgoing connections from its

current position. Should all outgoing connections lead to

machines within the attacker’s knowledge, the attacker

will backtrack through its path so far. Backtracking will

continue until there is at least one outgoing machine that

has not been compromised. If the attacker backtracks to its

starting location, then the infiltration event will terminate.

On the contrary, an available machine will be selected

if available. Once the machine selection is complete, the

attacker will target a service on the machine and initiate

an attack. Regardless of the outcome, the success/failure

indicator will be updated appropriately. Once the attack

has ceased, the total number of attempts will be incremen-

ted by one. Should the attack be successful, the attacker’s

current position will be updated and the attacker knowl-

edge will be updated accordingly. After updating the

knowledge, the algorithm will check if the compromised

machine is within the set of target machines. Should this

be the case, the likelihood of reaching the target will be

calculated. if all target machines are compromised, the

infiltration event will stop and the replication will come to

an end.

The breadth-based search (BBS) is another type of

attacker movement strategy and is similar to the DBS. The

main difference between the two strategies is the choice of

targeting. The BBS does not utilize a single source node

as a pivot point. In lieu of this, all machines within the

Figure 6. Model implementation structure.
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attacker’s knowledge are treated like a collective source.

Thus, every un-compromised machine that is connected to

a machine in the attacker’s knowledge will be considered

for selection. The distinction between attacker targeting

strategies is displayed in Figures 7 and 8.

3.5 Impact, selection, and CVSS heuristics

The impact of events of interest is also fed into the IS

model as an input. One possible way that these impact rat-

ings can be assigned to machines of interest is through the

heuristic defined in Table 1, which is based on similar

work done by MITRE.11 Each category in the heuristic

(operational, financial, and schedule) is rated on a scale

from 1 to 5, with 5 being the most severe rating. The

operational categories refer to the impact of an event on

the ability of the organization to perform its core func-

tions. The financial category assesses the direct implica-

tions to budgeting, while the schedule category reflects

any required adjustments to project timelines.

The probability of successfully compromising a suscep-

tible service can be determined by assessing the service’s

present vulnerabilities utilizing CVSS version 3.8 For each

CVSS category (AV, AC, PReq, and UI), the vulnerability

is assigned a severity value based on Table 2. For the

Algorithm 1: Depth-based movement

1: j 1
2: SourceNode Internet
3: Knowledge addKnowledge(Internet)
4: TargetMachines addTargets()
5: whilej< J do
6: MachineOptions availableConnections(SourceNode)
7: If isDeadEnd(MachineOptions) then
8: If isNewSourceAvailable(Knowledge) then
9: SourceNode chooseNewSource(Knowledge)
10: MachineOptions scanConnections(SourceNode)
11: else
12: break
13: end if
14: else
15: SelectedMachine machineSelection(MachineOptions)
16: SelectedService serviceSelection(SelectedMachine)
17: AttackStatus attackMachine(SelectedService)
18: j j+ 1
19: if isAttackSuccessful(AttackStatus) then
20: SourceNode updateSourceNode(SelectedMachine)
21: Knowledge Knowledge+ addKnowledge

(SelectedMachine)
22: if isTarget(SelectedMachine,TargetMachines) then
23: recordLikelihood(SelectedMachine)
24: if isAllTargetsCompromised(Knowledge,

TargetMachines) then
25: break
26: end if
27: end if
28: end if
29: end if
30: end while

Figure 7. Depth-based machine selection example. The
numeric labels indicate the sequence in which machines were
compromised. Only machines connected to the most recently
compromised machine are targeted.

Figure 8. Breadth-based machine selection example. The
numeric labels indicate the sequence in which machines were
compromised. However, this order does not matter for
targeting since all accessible machines can be targeted.
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purposes of this investigation, the vulnerabilities present

in a particular service’s version are treated as a singularity.

FIRST classifies a methodology for assigning categories

to vulnerabilities.9 With regards to AV, if the attacker

exploits a vulnerable component via the network stack, the

service is either placed into the ‘‘Network’’ or ‘‘Adjacent’’

classification. Within this domain, if the vulnerability can

be exploited from a routed network the classification will

be ‘‘Network’’; otherwise, the classification will be

‘‘Adjacent.’’ If the vulnerable component is not exploited

via the network stack, then AV will be classified as

‘‘Local’’ or ‘‘Physical.’’ If the attack requires physical

access to the network, then the classification will be

‘‘Physical.’’

AC can take one of two values: it will be High if the

attacker cannot exploit the vulnerability at will; otherwise,

it will be ‘‘Low.’’ PReq can take one of three classifica-

tions: ‘‘None,’’ ‘‘Low,’’ or ‘‘High.’’ if the attacker does

not need to be authorized, then PReq is ‘‘None.’’ If admin-

istrator privileges are required, PReq is High. UI is either

assigned ‘‘Required’’ or ‘‘None.’’ The Required classifica-

tion is assigned only if the attacker requires another user

to perform an action to exploit a vulnerability.

Each of the scores seen in Table 2 are derived from

Zhang et al.8 and define one possible way to assigning

success probabilities. These scores are given a high and

low value to provide a level of stochasticity to the model.

A uniform distribution is then utilized to give each service

a single score for each of the main CVSS version 3 cate-

gories. The final probability is then calculated for each

service, 1, :::,K, by the following:

pk = 2:11×AVk ×ACk ×PReqk ×UIk 8 k ∈ f1, 2, :::,Kg:
ð18Þ

An attacker must choose which machine to target while

moving through the network. In addition, once a machine

is chosen, the adversary must then choose which service

on the machine to compromise. The process by which this

selection takes place utilizes a heuristic that quantifies the

attacker’s interest, which is dependent on the attacker’s

capability and intent. These numeric representations of

interest are known as service weights. For the purposes of

this investigation, interest is partitioned into four cate-

gories: low, medium, high, and very high. Each of these

categories has a range of possible values. The minimum

and maximum values for each range are shown in Table 3.

Service weights are calculated using a uniform distribution

with parameter values derived from the corresponding

interest category.

3.6 Assessment strategy

The performance of the proposed IS methodology can be

assessed via two perspectives. The first perspective con-

trasts the quality of risk estimates between methods. A

(1� α)% confidence interval can be produced for a static

number of runs per replication, where α is the probability

of Type I error. Risk estimates at different degrees of

amplification should be roughly the same. Nonetheless,

the bounds of their confidence intervals should be

Table 1. Impact heuristic.

Impact Operational Financial Schedule

5 Severe Ability to perform core business
function completely crippled.

Exceptional budget impact. Exceptional scheduling
adjustments required.

4
Significant

Ability to perform core business
function is significantly impaired.

Budget significantly exceeds
planned amounts.

Major scheduling adjustments
required.

3
Moderate

Ability to perform core business
function is moderately impaired.

Budget moderately exceeds
planned amounts.

Moderate scheduling
adjustments required.

2
Minor

Ability to perform core business
function is slightly impaired.

Budget slightly exceeds planned
amounts.

Minor scheduling adjustments
required.

1
Minimal

No impact on ability to perform
core business function.

Budget is not affected. No
planning adjustments required.

Schedule is not affected. No
planning adjustments required.

Table 2. Common Vulnerability Scoring System categorization
values.

Metric Category Low value High value

Access complexity High 0.4180 0.4620
Low 0.7315 0.8085

Access vector Physical 0.1900 0.2100
Local 0.5225 0.5775
Adjacent 0.5890 0.6510
Network 0.8075 0.8925

Privileges required None 0.8075 0.8925
Low 0.5890 0.6510
High 0.2565 0.2835

User interaction None 0.8075 0.8925
Required 0.5890 0.6510
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different. Confidence intervals with smaller halfwidths are

considered to be more accurate estimates.

The second perspective assesses the computational

effort required to ascertain a quality estimate of risk. A

quality estimate is defined to have a confidence interval

that falls within some percentage of the mean. Trials will

be run until all risk estimates converge to the quality cri-

teria. Expedient convergence indicates lesser computa-

tional effort. To increase the efficiency of the simulation,

convergence is not checked after each trial. Instead, a mile-

stone system is employed. These milestones represent a

specific number of trials during a replication that will trig-

ger a convergence check. If convergence is not reached at

a milestone, another milestone will be computed based on

current statistics.

CONVERGENCE

�z set of likelihoods of compromising target z.
�Lz average likelihood of compromising z.

sz likelihood standard deviation for machine z.

tα
2
, j�zj�1 t-statistic.

θ likelihood quality threshold (%).

ψc
z number of trials needed before re-checking con-

vergence for machine z.

The confidence interval for the likelihood must con-

verge to be within some θ% of the mean. Therefore, one

can determine the number of trials needed to obtain a qual-

ity estimate. For each machine of interest:

�Lz(1+ θ)ø �Lz + tα
2
, j�zj�1

szffiffiffiffiffiffi
ψc

z

p : ð19Þ

Solving for ψc
z , we get the following:

ψc
z ø

tα
2
, j�zj�1sz

θ�Lz

� �2

: ð20Þ

Likelihood convergence must be reached for all

machines of interest. Therefore, the milestone will be the

maximum of all ψc
z .

Trials run from both evaluation perspectives are given

additional utility by allowing the attacker to compromise

multiple machines of interest within a single path. Under

this framework. statistics are collected about all events of

interest simultaneously. Since each event is not considered

in isolation, fewer experimental replications are required

by the simulation.

4 Experimentation
4.1 Experimental network

To evaluate the capabilities and limitation of the IS metho-

dology, we compare a base network (Figure 9) with four

alternative network configurations (Figure 10). The base

configuration is derived from the Collegiate Penetration

Testing Competition held in 2016.23 Arcs in the network

are directed, but come with a few caveats. The presence of

an arc means that the two machines are capable of com-

munication with each other. The direction of an arc, how-

ever, represents a firewall rule that governs the capability

to write data to a machine via one of its services. It is

assumed under the conditions of the experiment that an

attacker must be able to change another machine’s state

through writing data under the assumption that the appro-

priate machine-to-machine permissions are valid.

The network has four interconnected sub networks and

represents a hypothetical healthcare-oriented facility. Only

certain machines are publicly facing. Subnet 1 contains

machines common to a doctor’s office. Workstation WRK

EMR handles electronic medical records (EMRs), whereas

workstation WRK BILL is responsible for billing.

Workstation WRK IT deals with information technology-

related issues. DC01 is a domain controller that authenti-

cates access to the subnet file share, which is represented

as FILES. The network also has a network printer, PRINT,

and an x-ray machine, XRAY-13.

Subnet 2 handles the EMR functionality of the entire

facility. WEB02 is the EMR application server, where

information is stored on the DB02 database. Subnet 3 hosts

a diverse set of functionality. WEB01 is a billing applica-

tion server that stores its information on the DB01 data-

base. OP & WIKI hosts an IT Wiki, while PR operates a

public relations Twitter bot that publishes protein folding

research.

The final subnet, Subnet 4, handles the aforementioned

protein folding research as well as the remote desktop cap-

abilities between workstations. TS01 is a terminal services

application server that enables workstation WRK IT

remote access into the other workstations on the network.

FOLDING represents an application server that conducts

the protein folding research. Information from this appli-

cation server is stored within STORAGE. CI is a continu-

ous integration server and works in conjunction with the

GIT repository server for code development. BASTION

acts as a protective layer that strictly limits access into the

subnet.

All services present on the network must be assigned a

probability of becoming compromised if attacked. These

Table 3. Interest rating.

Interest Lower bound Upper bound

Very high 6.4 9.9
High 1.6 3.2
Moderate 0.4 0.8
Low 0.1 0.2
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Figure 9. Network example – base case.

Figure 10. Alternative network configurations: (a) modify connection; (b) move connection; (c) add new machine; (d) change
machine access from public to private.
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assignments must be compliant with CVSS version 3.

Table 4 displays information regarding each network ser-

vice, including their machine locations and CVSS categor-

ization. UI is set to ‘‘None’’ and PReq is set to ‘‘High’’

for all machines. Table 4 also shows the interest categori-

zations utilized for assigning services selection weights.

Within the context of this network example, events of

interest are limited to an attacker exfiltrating data stores

on the four database servers: FILES, DB01, DB02, and

STORAGE. These impact ratings can be seen in Table 5.

Four configuration alternatives to the base case are

explored. The first alternative can be seen in Figure 10(a)

and modifies the connection between PR and FOLDING to

be unidirectional. Under this ‘‘Modify Connection’’ case,

data can only be sent from FOLDING to PR. The second

alternative is shown in Figure 10(b) and is identified as

‘‘Move Connection.’’ The connection between WRK IT to

BASTION is moved such that it now exists between WRK

IT and TS01. The third case, ‘‘Add Machine,’’ sees the

addition of a second BASTION server to the network,

shown as BASTION2 in Figure 10(c). The data contained

on STORAGE is important to the organization, and thus an

additional layer of authentication may be desired. The final

alternative changes the BASTION server such that it is no

longer publicly facing. This ‘‘Public to Private’’ case is

shown in Figure 10(d).

4.2 Experimental setup

Each experimental case is run with 30 replications to

ensure a large number of possible scenarios is observed.

When analyzing computational efficiency, reasonable

computer memory constraints are considered. Thus, the

maximum number of trials is 1× 108 for both DBS and

BBS. The convergence criteria is set to be a confidence

Table 4. Service Common Vulnerability Scoring System categorization.

Services Locations Interest Access complexity Access vector

Domain controller DC01 High Low Network
Domain file share FILES, STORAGE Very high Low Adjacent
EMR web application WEB02 High High Adjacent
FreeBSD 9.1 BASTION Moderate High Network
GitLab GIT Moderate Low Adjacent
Internal IT Wiki OPS & WIKI Low High Adjacent
Jenkins CI CI Low High Adjacent
MySQL DB02, STORAGE Very high High Adjacent
NodeJS web application PR Low High Adjacent
Non-HIPAA/PCI compliant billing application WEB01 High High Network
Picture archive and communication system XRAY-13 High High Network
PostgreSQL DB01 Very high High Adjacent
Print application PRINT Low Low Adjacent
Protein folding application FOLDING High High Adjacent
Remote desktop TS01 Moderate High Adjacent
SSH BASTION High High Network
Telnet STORAGE Low Low Adjacent
Terminal services TS01 Moderate High Adjacent
Tomcat CI Moderate High Adjacent
Ubuntu 16.04-1 WEB02, DB02, DB01, PR, CI,

GIT, FOLDING, STORAGE
Low High Adjacent

Ubuntu 16.04-2 WEB01, OPS & WIKI Low High Network
Windows 7 WRK EMR, WRK BILL High Low Network
Windows 8 WRK IT High Low Network
Windows Server 2003 XRAY-13 Moderate Low Network
Windows Server 2008 R2-1 DC01 Moderate High Adjacent
Windows Server 2008 R2-2 FILES Moderate High Network
Windows Server 2012 TS01 Moderate High Network

EMR: electronic medical record.

Table 5. Impact assignments.

Machine Impact score

Operational Financial Schedule

FILES 2 1 3
DB01 4 3 2
DB02 4 4 3
STORAGE 4 5 5
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interval falling within ± 10% of the mean estimate. This

criterion ensures the halfwidth stays well within an order

of magnitude of the estimate. When testing for estimation

quality, the DBS receives a static 50, 000 trials, while the

BBS is given 4× 106 trials. These two numbers are differ-

ent because the BBS requires significantly more trials

before reaching a quality estimate. In all cases, α= 0:05
and the maximum number of attack attempts is J = 10,

which allows for the occurrence of multiple events of

interest during a single trial. Different levels of amplifica-

tion are tested and are carried forth by multiplying all suc-

cess probabilities by a given factor. Amplification levels

of 1× , 1.25× , 1.5× , 1.75× , and 2× will be tested.

Amplification above 2× runs the risk of assigning prob-

ability values greater than one. The 1× case corresponds

to no network amplification and is representative of stan-

dard simulation.

5 Results
5.1 Computational savings versus estimation

performance

The number of trials required to converge to a quality like-

lihood estimation exponentially decreases as the degree of

amplification increases. The trend for the DBS is shown in

Figure 11. As the degree of amplification increases from

1× to 2× , the reduction in computational effort is

approximately 83.5%.

Preliminary experimentation revealed that compromis-

ing STORAGE happens with the smallest likelihood.

Thus, STORAGE is given the primary focus for the

remainder of this investigation. Figure 12 shows that the

confidence interval of STORAGE remains constant across

all degrees of amplification. In all cases, the confidence

interval falls within the established bounds of quality.

Nonetheless, one can see in Figure 13 that the confidence

interval of FILES widens as the degree of amplification

increases. The trend seen in FILES is repeated for DB01

and DB02.

The variance in estimates of STORAGE’s likelihood

can be seen in Figure 14. As the degree of amplification

Figure 11. Convergence in the depth-based case –
computational savings.

Figure 12. Convergence in the depth-based case – STORAGE
likelihood.

Figure 13. Convergence in the depth-based case – FILES
likelihood.

Figure 14. Convergence in the depth-based case – STORAGE
variance.

14 Journal of Defense Modeling and Simulation: Applications, Methodology, Technology 00(0)



increases, the variance exponentially decreases. This var-

iance trend for STORAGE corresponds to the trend seen

for the computational efficiency. By contrast, the variance

of FILES, seen in Figure 15, appears to be parabolic. Once

again, the patterns in variance seen for FILES are repeated

for DB01 and DB02.

The same trends in likelihood and variance seen for the

DBS are also observed for the BBS, although the BBS

yields different estimates. In addition, the number of trials

required for convergence is several orders of magnitude

greater for the BBS.

5.2 Estimate quality

When utilizing a static number of trials under the DBS,

the halfwidth of the confidence intervals for STORAGE’s

likelihood are shown to decrease as the degree of amplifi-

cation increases. This trend can be observed in Figure 16.

The confidence interval for FILES first narrows and then

widens again as the degree of amplification increases, as

shown in Figure 17. The pattern in confidence interval

seen for FILES is repeated for DB01 and DB02.

The variance patterns seen using a static number of

trials mirrors trends seen when assessing computational

efficiency. In addition, similar trends in likelihood and

variance can be seen for the BBS, albeit with different

estimates for each.

5.3 Risk assessment for reconfigurations

The effects of reconfiguration alternatives on the likeli-

hood of compromising STORAGE when using the DBS

are seen in Figure 18. An amplification level of 1.75× is

utilized alongside a static number of trials. All cases except

the ‘‘Move Connection’’ yielded a significant reduction in

likelihood when compared to the base case. The ‘‘Modify

Connection’’ alternative displayed the largest decrease in

likelihood. ‘‘New Machine’’ and ‘‘Public to Private’’ did

not differ significantly from each other. Analysis of Figure

19 shows that there can be some unintended consequences

to reconfiguration alternatives that seek to offer additional

Figure 15. Convergence in the depth-based case – FILES
variance.

Figure 16. Static in the depth-based case – STORAGE
likelihood.

Figure 17. Static in the depth-based case – FILES likelihood.

Figure 18. Configuration likelihood comparison in the depth-
based case – STORAGE.
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protection to STORAGE. The ‘‘Move Connection’’ and

‘‘Public to Private’’ alternatives cause the likelihood of

compromising DB01 to increase. The ‘‘Public to Private’’

case has similar impacts to the likelihood of compromising

FILES and DB02.

Similar results are obtained with assessing reconfigura-

tion with respect to the BBS. The primary differences,

seen in Figure 20, show that the ‘‘New Machine’’ alterna-

tive provides the greatest likelihood of reduction. In addi-

tion, ‘‘Public to Private’’ causes a significant increase in

the likelihood of compromising DB01, DB02, and FILES.

This trend can be seen in Figure 21. Other reconfiguration

alternatives under the BBS did not show a profound an

impact on likelihood estimates.

5.4 Discussion

Utilization of the convergence method shows that the rate

of convergence is dependent on the rarest event and is due

to the simultaneous assessment of all events of interest. As

the degree of amplification increases, the rarest event

always has a confidence interval that just meets the bare

minimum quality requirements. In contrast, all other

events experience widening confidence intervals that con-

verge to the same minimum quality requirements. These

widening confidence intervals are ultimately impacted by

the decreasing number of trials required before conver-

gence. Recall that a halfwidth is equal to tα
2
, j�zj�1

szffiffiffiffi
ψc
z

p .

Thus, the rarest event can be seen as a limiting factor to

the method.

Since the number of trials is static when assessing esti-

mation quality, the confidence intervals are only impacted

by variance. Amplification has the greatest impact on the

variance of STORAGE’s likelihood estimates.

Every reconfiguration alternative has the potential to

have no effect or have unintended trade-offs. ‘‘Move

Connection’’ never produced a meaningful change in the

likelihood of compromising STORAGE. Therefore, a net-

work analyst would not implement this alternative. In the

case of the DBS, implementing ‘‘Modify Connection’’

increased the likelihood of compromising DB01. Making

the connection between PR and FOLDING unidirectional

caused PR to become a dead-end if not reaching PR from

FOLDING. Therefore, an attacker would be more likely to

reach a closer machine of interest; in the case of this net-

work example, this would be DB01. A similar phenom-

enon can be seen when looking at ‘‘Public to Private.’’

Making BASTION private means that Subnet 4 is not pub-

licly visible from the attacker’s starting position. Thus,

STORAGE is placed deeper within the network than the

other machines of interest. From these results, one can

glean that keeping BASTION publicly facing draws

attacks away from the other machines of interest.

The ‘‘Add Machine’’ option operates off a similar prin-

ciple as ‘‘Public to Private.’’ However, the key difference

Figure 19. Configuration likelihood comparison in the depth-
based case – DB01.

Figure 20. Configuration likelihood comparison in the
breadth-based case – STORAGE.

Figure 21. Configuration likelihood comparison in the
breadth-based case – FILES.
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is that the original BASTION server is able to draw in

attacks under the ‘‘Add Machine’’ case. BASTION2 then

acts as a secondary barrier and funnels the attacker into a

position where it must keep attacking or abandon its cur-

rent path. As a result, ‘‘Add Machine’’ is the best alterna-

tive from the perspective of trade-offs in likelihood.

Tables 6 and 7 show the relative risk reduction when

reconfiguring the base case to ‘‘New Machine.’’ The DBS

and BBS both show a significant reduction in the risk of

STORAGE becoming compromised. Nonetheless, there

are slight increases in risk of both FILES and DB02 for

both the DBS and BBS. In addition, the risk of DB01

decreases slightly for the DBS, whereas it slightly

increases for the BBS.

Standard simulation produces wider confidence inter-

vals than IS when utilizing the same number of trials.

Thus, to generate estimates of similar quality as IS, more

trials must be run under standard simulation. Once again,

the rarest event is the limiting factor, since all standard

simulation confidence intervals must be either equal in size

to or tighter than those produced by IS. Thus, trials must

be run until the confidence interval of STORAGE suffi-

ciently narrows. The number of additional trials required

by standard simulation is shown in Figure 22 for the DBS.

For comparison purposes, all reconfiguration alterna-

tives must be run with the same number of trials.

Therefore, the maximum number of additional trials

required among all alternatives is utilized when generating

confidence intervals. Figure 23 shows the difference in

confidence intervals between standard simulation when

running a differing number of trials. The difference in con-

fidence intervals displays the utility of utilizing IS.

Table 6. Depth – risk reduction.

Machine Impact Base case New machine % Change

Likelihood Risk Likelihood Risk

FILES 6 2.06E-01 1.24E+ 00 2.07E-01 1.24E+ 00 0.22%
DB01 9 6.49E-02 5.84E-01 6.46E-02 5.82E-01 − 0.40%
DB02 11 3.24E-02 3.57E-01 3.26E-02 3.59E-01 0.48%
STORAGE 14 4.63E-03 6.49E-02 3.34E-03 4.68E-02 − 27.80%

Table 7. Breadth – risk reduction.

Machine Impact Base case New machine % Change

Likelihood Risk Likelihood Risk

FILES 6 3.60E-02 2.16E-01 3.65E-02 2.19E-01 1.33%
DB01 9 2.32E-02 2.09E-01 2.35E-02 2.12E-01 1.39%
DB02 11 1.23E-02 1.36E-01 1.25E-02 1.37E-01 1.13%
STORAGE 14 3.16E-05 4.43E-04 1.20E-05 1.69E-04 − 61.92%

Figure 22. Additional trials required – depth.

Figure 23. Standard simulation in the depth-based case:
comparison – STORAGE.
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Essentially, halfwidths can be decreased without needing

to run more trials.

6 Conclusions and future work

Determining the risk of cyber attacks is a primary security

interest. The investigation has applied a tailored IS metho-

dology to a security framework, which is capable of analy-

tically comparing network configurations against each

other. The risk of data theft on a healthcare-oriented net-

work was assessed utilizing this tailored method. Overall,

it was able to show that the IS methodology is capable of

delivering higher quality estimates with greater computa-

tional efficiency when compared to standard simulation.

So far, the IS methodology has only been tested with

respect to a single network and a handful of potential

reconfigurations. Testing the methodology with other net-

works, featuring diverse configuration alternatives, would

be necessary for further vetting. Future applications may

also explore the stochastic assignment of impact and

attack success probability that may be dependent on the

adversary’s actions while moving through the network.

The attacker logic may also be upgraded to accommodate

more advanced search methodologies, which may reveal

new trends between output statistics as a result of amplifi-

cation. For example, the attacker may probabilistically or

contextually shift between different search paradigms. The

IS methodology may also be improved by allowing for

individual vulnerability selection once a service is selected

for targeting. This inclusion would necessitate some modi-

fication to the assignment of selection weights as well as

the calculations of the aggregated selection probability.

These relationships may be utilized in a small pilot study

to automate the determination of optimal degrees of

amplification.

The current investigation did not assess any

performance-based trade-offs associated with reducing

network risk as a result of network reconfiguration.

Security specialists must strike a balance between network

performance and network susceptibility. Thus, future

investigations should define some heuristic to quantify the

relative impact on network functionality when considering

reconfiguration to reduce risk.

The simulation could be configured to store scenarios

that result in an attacker reaching a machine of interest.

Should reaching the machine be sufficiently rare, only a

few scenarios will cause the event to occur. Thus, one can

track this limited set of scenarios and gain insight into

which configuration alternatives would be worth assessing.

This type of additional information would enable a net-

work analyst to make more informed decisions.

Nonetheless, the scope of this investigation has established

the advantages and potential of utilizing IS to assess net-

work risk.
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