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Hybrid Systems Differential Dynamic Programming
for Whole-Body Motion Planning of Legged Robots

Ha T1 and Patricl M Wancinao

Abstract—This paper presents a Differenti:
gramming (DDP) framework for trajectory o
of hybrid systems with state-based switchin;
Hybrid Systems DDP (HS-DDP) approach i
application to whole-body motion planning wi
Specifically, HS-DDP incorporates three algorith
impact-aware DDP step addressing the impac
locomotion, an Augmented Lagrangian (AL) me
the switching constraint, and a Switching Ti
(STO) algorithm that optimizes switching times
structure of DDP. Further, a Relaxed Barrier
used to manage inequality constraints and is in
DDP for locomotion planning. The performance
algorithms is benchmarked on a simulation m
Mini Cheetah executing a bounding gait. We
effectiveness of AL and ReB for handling switc
friction constraints, and torque limits. By comp
solutions, we show that the STO algorithm a
more reduction of total switching times, demonstrating the
efficiency of our method.

Index Terms—Optimization and Optimal Control, Legged
Robots

I. INTRODUCTION

ANY tasks in agriculture, construction, defense, and
disaster response require mobile robots to traverse
irregular terrains and move through narrow passages. The
mobility afforded by legged robots makes them exceptionally
suitable for these scenarios. Practical challenges to unlock their
mobility include the highly nonlinear and hybrid nature of
their multi-contact dynamics, a need for on-the-fly generation
of motion plans, and the management of various constraints.
Despite these difficulties, many successful algorithms have
been developed and tested in simulation and on hardware
[1]-[7]. Conventional approaches often optimize the Center
of Mass (CoM) trajectory and foothold locations using a
reduced-order model and adopt QP-based operational space
control (OSC) laws [3]-[5] to select joint torques that track
the planned trajectories. Widely used reduced-order models
include the Linear Inverted Pendulum (LIP) [2] and the Spring-
Loaded Inverted Pendulum (SLIP) [3], [4] for determining
foothold locations, with the Zero-Moment Point (ZMP) cri-
terion used to enforce admissible CoM trajectories [1]-[3].
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Fig. 1. Mini Cheetah bounding. This paper develops coordinated advances
to the Differential Dynamic Programming (DDP) algorithm for trajectory
optimization in hybrid systems. In particular, the methods focus on handling
the impact event, the associated switching constraints, and the inequality
constraints such as torque limits and friction constraints.

Centroidal dynamics models have also been used that consider
the linear and angular momentum of the system as a whole
[6]-[8]. Overall, these approaches have the advantage of fast
computation, but the complexity of the resulting motions is
limited. For example, motions such as standing up from the
ground cannot be generated with a LIP model since it neglects
all kinematics constraints and assumes constant height and
zero angular momentum.

By comparison, whole-body motion planning can gener-
ate more complex behaviors. Whereas QP-based OSC only
considers the instantaneous effects of joint torques, whole-
body motion planning finds a sequence of torques by solving
a finite-horizon trajectory optimization (TO) problem, poten-
tially enabling recovery from larger disturbances. Despite the
appeal of this approach, the curse of dimensionality caused
by the high-dimensional state space of legged robots has
prevented it from being popular. Recent results (e.g., [9])
using Differential Dynamic Programming (DDP) [10] have
shown great promise for online use. Many complementary
DDP advances have been proposed, demonstrating robustness
for disturbance rejection [11] and real-time performance for
whole-body motion planning [12]-[15].

Unlike conventional direct methods, which optimize over all
decision variables together, DDP adopts a divide and conquer
strategy by successively solving much smaller optimization
problems [10]. This feature makes DDP exceptionally suitable
for problems with long time horizons because the computa-
tional effort scales linearly with time as opposed to quadratic
or cubic growth with many nonlinear programming (NLP)
approaches to TO. Since DDP is a shooting method, the
algorithm can also be terminated at any time while still giving
a physically valid trajectory. These features and the successes
of [13]-[15] together suggest the promise of DDP for online
MPC over other direct methods.
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Despite these benefits and promise, there are some difficul-
ties for DDP to be used in legged locomotion planning, such
as dealing with the impact discontinuity and managing various
constraints. The first difficulty is addressed in [9] by approxi-
mating the impact discontinuity with a smooth transition, and
in [13] by ignoring the impact in DDP but compensating
for this simplification with a feedback controller. These ap-
proaches either do not have experimental evidence or present
a robustness issue. Other previous work has contributed to at-
tacking the second difficulty by leveraging constraint-handling
techniques from NLP. Box input constraints are handled by
solving QPs with a Projected Newton algorithm in [16]. A
penalty method is used in [13] to satisfy state constraints. This
method, however, has a numerical ill-conditioning problem
that results when penalty coefficients are large. Augmented
Lagrangian (AL) methods (e.g., [17]) resolve this issue by
adding a linear multiplier term. Lantoine et al. [18] proposed
a DDP algorithm that handles terminal state constraints using
AL, motivating their use to address the state-based switching
for hybrid systems in this work.

In this paper, we propose a Hybrid Systems DDP (HS-
DDP) approach that extends the applicability of DDP to hybrid
systems. In particular, HS-DDP includes three algorithmic
advances: an impact-aware DDP step that addresses impact
discontinuities, an AL method for switching constraints, and
a switching time optimization (STO) strategy. Further, in
order to deal with the many inequality constraints in legged
locomotion, a relaxed barrier (ReB) method [19], [20] is
adopted and is integrated within HS-DDP. The developed
algorithms are benchmarked in simulation on Mini Cheetah
bounding, as shown in Fig. 1. The developed algorithms are
extendable to general gaits such as trotting and galloping etc.,
and to other platforms such as bipeds and manipulators.

The structure of this paper is as follows. DDP background
and the hybrid dynamics formulation are given in Sections II
and III. Section IV discusses the main contributions of this
letter, which extend DDP to hybrid systems. Section V an-
alyzes the performance of the proposed algorithm in terms
of constraint handling and efficiency of the STO as applied to
quadruped bounding. Section VI provides a closing discussion.

II. BACKGROUND: DIFFERENTIAL DYNAMIC
PROGRAMMING

This section gives a brief introduction to DDP following [9].
Readers are referred to [10] for detailed derivation. The goal
of DDP is to find an optimal control sequence U* = {u}}; '
that minimizes a cost function J of the form

N-1
J(U) = > L(xx,up) + O(xn) (1)

k=0

where {xk}szo denotes the state trajectory, L denotes the
running cost, and ® denotes the terminal cost. The trajectory
{xx}2_, is subject to the discretized dynamics

X1 = £(xg, ug) 2

where x and u respectively denote the state and control
variables. DDP recursively finds U* by repeatedly executing a

forward sweep and a backward sweep. Given a nominal control
sequence, the forward sweep computes a nominal trajectory
and the associated dynamics derivatives. A backward sweep
is then executed to generate a policy that is used to update
the control sequence. As this process continues, the control
sequence (locally) converges to U*. Since DDP optimizes
only over the control sequence, it can be classified as a direct
shooting method. Interested readers may refer to [21] for a
discussion of tradeoffs with other direct methods.

Denote V' (xy) the value function (i.e., optimal cost-to-go)
at time step k. Using Bellman’s principle of optimality, V' (xy,)
is given recursively backward in time:

Vi(xk) = r{llikn[L(Xk’ ui) + V(Xpt1)] - 3)
Q(xk,ug)

Attempts to solve (3) directly are difficult since an analytical
expression for V' (xy) is rarely possible due to nonlinearity of
f(xx, ug). To avoid this problem, DDP considers the variation
of Q(xx,uy) around a nominal state-control pair (X, i) under
the perturbation (dx,du). The resulting variation 6Q (%, du)
is approximated to the second order as:

T

1 1 0 QI Qf 1
0Q (0%, 6u) =~ 3 0x Qx Qxx Tol1ox|, @

where
Qx = Lx + fgv;y (Sa)
Qu =Ly +f] V], (5b)

Qux = Lox + £V £, + VL £, (5¢)
Quu = Lyu + fzv;xfu + V;c ’ fuua (Sd)
qu = Lux + fzv;xfx + V;( : fux; (56)

in which the subscripts indicate the partial derivatives and the
prime indicates the next time step. Note that f_, f,, and
fux generally are tensors. The notation ‘-’ denotes matrix-
tensor multiplication. Omitting the third terms in the last three
equations gives rise to the iLQR algorithm, which enables
faster iterations but loses quadratic convergence properties. We
employ iLQR in this work and use the algorithm proposed in
[22], [23] to efficiently compute fy and f,,.

Optimizing §Q(dx,d6u) over du results in the optimal
control increment Ju* around the nominal control G as

ou* = _Ql_llll(Qll + Qux0x) = K + Kox, (6)

where k is the step direction and K is the feedback gain. Sub-
stituting (6) into the equation (4) results in update equations
for the local quadratic model of V' according to

AV = AV + %QE QuiQu, (7a)
Vi = Qx — QL Qua Qu, (7b)
Vxx = Qxx - EXQ;&QUX~ (70)

where AV denotes the expected cost reduction.
The equations (5) and (7) are computed recursively starting
at the final state, constituting the backward pass of DDP. The
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nominal control is then updated using the resulting control
policy (6) as follows,

ug = U + ek + K(xp — Xp), (8)

where 0 < € < 1 is a line search parameter, (X, 01) and (x, u)
respectively are the nominal and new state-control pair. A
backtracking line search method is used to select € [9] and
a regularization strategy as in [9] is employed, ensuring a
decrease of the cost in each iteration. The forward-backward
process above is repeated until the algorithm converges or a
certain number of iterations is reached.

III. BACKGROUND: DYNAMICS MODELING

This section presents a hybrid system model for bounding
quadrupeds. Figure 2 shows one gait cycle of quadruped
bounding with four continuous modes and a reset map between
every two consecutive modes. Denote P(n) = {1,--- ,n} the
mode sequence where n represents the total number of modes.
Then, P(4) denotes one gait cycle. The continuous dynamics
in mode ¢, denoted by f;, takes place on domain D;. The reset
map P; takes place on the switching surface S; at the boundary
of D;. Mathematical definitions of D; and S, are introduced
later. Denote q the generalized coordinates of the quadruped
and x = [qT, vT]7 the state vector where v = ¢. The hybrid
model is given as

X
x+

i

= E’(X,U), X € Dz

=P;x7), x" €S; ’ ©)

where ‘-’ and '+’ indicate pre- and post-transition states.

Denote ¢; the contact foot in mode ¢ and ¢; the other foot.
During a flight mode, c; represents the foot scheduled to touch
down at the end of flight. The sets D; and S; are defined for
one gait cycle as in Fig. 2,

D; ={x€TQ|ge;(x) =0,0c,(x) =0},i=1,3, (10a)
D; ={x€TQ|ge,(x) >0,9¢(x) >0},i=2,4, (10b)
Si = {X €TQ | Ye; (X) = Ov |gm (X)| 7& 0}7VZ7 (10¢)

where g(-) is a function measuring the vertical distance of the
corresponding foot to the ground, 7 Q denotes the tangent
bundle of the configuration space Q. Although the hybrid
model (9) and (10) considers one gait cycle for simplicity,
it can be extended to multiple gait cycles.

A. Continuous Dynamics

The continuous dynamics in (9) varies depending on which
legs are in stance. However, these dynamics can be formulated
with a unified structure as follows:

H —JCTi q| STT—Cq—Tg
_JCi 0 Aci o ch‘, q ’

where H, Cq, 7,4, S, and T denote the inertia matrix, Coriolis
force, gravity force, selection matrix, and actuation torque,
respectively. J., and A, represent the contact Jacobian and
contact force associated with the contact foot ¢;. The matrix
on the left side of (11) is known as the KKT matrix, since
the equation (11) can be obtained via KKT conditions [12].

Y

Back stance (1) Dy

N,

First flight (2

W

54.% /

Second flight (4) Dy

;
Front stance (3) Ds
83, Py

Fig. 2. Mode sequence of a quadruped bounding gait. The gait cycle is
assumed to start from the back stance for simplicity of presentation. The gen-
eralized coordinates for this 2D quadruped are q = [z, 2, 09, 01, 02, 03, 04]T.

When the robot is in flight, J., and A, are not meaningful
anymore, and the KKT matrix degenerates to the inertia matrix
H. The state-space representation of (11) is obtained by pre-
multiplying both sides of (11) by the inverse of the KKT
matrix and separating out the solution for q.

B. Reset Maps

While the generalized coordinates remain unchanged across
impact events, velocities change instantaneously at each fouch
down. The impact dynamics are modeled as

H -J7)[vt] [ Hv"
“Je. 0 | [A.] T [edov]”

where e € [0, 1] denotes the coefficient of restitution. Perfect
inelastic collision with e = 0 is assumed in this work, meaning
that the contact foot sticks to the ground after impact. The
vector 5\01. denotes the impulse acting on the contact foot that
is scheduled to touch down at the end of flight. Note that there
is no control present in the model (12) since the actuators
cannot generate impulsive outputs. By separating v out, the
state-space representation of the reset map at impact is xT =
P;(x~) where

(12)

I 0 _
0 T-H-J7J, H1J7)15, | X 1D

Note that the transition from stance to flight is continuous,
and, thus, P;(x~) = x~ when ¢ denotes a stance phase.

Pi (X_) =

C. Time-Switched Hybrid System

We associate the pre-determined mode sequence P (n) with
a switching time vector t = [t1,--- ,t,] where ¢; represents
the terminating time of the i mode. Along any trajectory of
the state-switched hybrid system, (9) and (10) are equivalent
to the time-switched hybrid system:

%) =Ee0.u). el ],
xt(t) =Pi(x (1), telt; tf]
with the enforced switching constraint:
ge,(x(t;)) = 0. (15)
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In this work, this time-switched reformulation is consi
where variables ¢; are optimized under switching const

IV. HYBRID SYSTEMS DIFFERENTIAL DYNAMIC
PROGRAMMING

This section discusses three algorithmic advances fc
DDP and presents the ReB method for inequality const
An overview of HS-DDP and ReB is shown in Fig.
HS-DDP algorithm takes a two-level optimization sti
In the bottom level, the switching times are fixed ar
AL algorithm is executed. This algorithm continuously
the impact-aware DDP. Once DDP converges, the con
violations are remeasured and added to the cost functio
another DDP call is executed. The AL algorithm term
when all switching constraints are satisfied. The output
this loop is then utilized by the STO algorithm to updz
switching times. This process repeats until the switching
are optimal. The ReB algorithm is executed whenever the AL
algorithm is executed. The entire framework is presented to
plan trajectories for the quadruped bounding model introduced
in the previous section.

A. Whole-body Motion Planning Problem
To find an optimal trajectory, we formulate a TO problem

zl:

1

min

min Li(x(t),u(t))dt + @;(x(t;))

(16)
where [; and ®; respectively denote the continuous-time
running cost and the terminal cost for the i mode. In whole-
body TO, the minimization of (16) is subject to the full-order
dynamics (14) and other various constraints. A common way
to solve (16) is to formulate a discrete-time optimal control
problem (OCP) with integration time step h as follows

Ilr}lil J(U,t) (17a)
subject to  Xp41 = £ (xk, ug), (17b)
x3, = Pi(xy), (17¢c)
e, (Xy,) =0, (17d)
[tk j] < Umax, (17e)
ez 20, (17%)
Azl < pAe 2, (17g)
where
n Ni—-1
J(U,t) = Z (CI%-(X&) + Z Li(Xk,uk)), (18)

i=1 k=N,;_1

and L; = hl; approximates the integral of the running cost
over integration time step h, and NN; % denotes the
number of time steps in the time horizon up to the i mode.
Equations (17b) and (17c) represent the dynamics and reset
map constraints, respectively, where f; is obtained via forward
integration of f;. This work uses a forward Euler method, but
all algorithmic advances hold with other integration schemes.
Equation (17d) represents the switching constraint, and in-
equalities (17e)-(17g) represent the torque limit, non-negative
normal GRF, and friction cone constraint, respectively.
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Fig. 3. Overview of the HS-DDP algorithmic framework.

B. Impact-Aware Value Function Update in DDP

Impact-aware DDP extends DDP to address the impact
effect, but does not consider constraints (17d) - (17g). While
the impact-aware DDP executes the same forward sweep as
DDP, it modifies the update equations (7) for the quadratic
value function model at the switching surface. Suppose that
AV, V4, and V4, are known at t:r, which can be computed
from DDP. The dependency of all variables on ¢ is ignored
here for simplicity. Since there is no control applied at ¢,

according to Bellman’s Principle of Optimality
V(x7)=®(x )+ V(x"). (19)

Since x~ and xT can be computed from the forward sweep,
the variation of (19) around x~ and x* is considered, i.e.,
V(x~ +6x7)=®(x +0x )+ V(xT+6xT), (20
where
xT =P(x™ +0x7) — P(x7) = Pydx~ 1)

in which Py is the Jacobian of P with respect to x~.
Approximating both sides of (20) to the second order, we
obtain

AV™ = AV, (22a)
V., ~ & +PIVIP,, (22b)
V, =0, +PIV] (22¢)

The equations (22) establish the model update equations at
the switching surface, which, together with (7), constitute the
model update equations of V' for hybrid systems.

C. Augmented Lagrangian for Switching Constraints

The impact-aware DDP solves unconstrained optimization
problems. Nevertheless, it can be combined with various
constraint-handling techniques from NLP for constrained op-
timization. In this section, we are particularly interested in the
switching equality constraint (17d). Penalty methods [13] to
manage this constraint add a squared term of the constraint
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Algorithm 1 Pseudocode combining AL and ReB

1: Given
Mode sequence P(n) and switching time t.
Cost function, dynamics, and switching constraints in (17).
Initial control sequence U (e.g., zeros).
Initialization
AL parameters o, \;, 3, and ReB parameters €p, 0
Run DDP to convergence and compute g,.
while 3~ g2 (x} ) > ear, do
Update o - 8o, A <~ A+ 0¢,,;, 0 < 0.26.
10: Update (23) and (26).
Update initial guess for DDP.

R e A A R o

—
—_

12: Run DDP to convergence.
13: Compute g, (Xy,)-
14: end while

violation to the cost function. However, a numerical ill-
conditioning issue could happen as the penalty increases. An
AL method is employed in this work, which, in addition to
the quadratic term, adds a linear Lagrange multiplier term to
the cost function, avoiding the numerical ill-conditioning.
With the AL technique, the cost function now becomes

2
JU0 + (5) D0 02 6ex) + 20 Anage (xy) - @23)
i€Z, i€l,

where Z. denotes the set of all touch down indices, o and A
denote the penalty and the Lagrange multipliers, respectively.
The subscript ‘n’ is the AL iteration. The AL approach begins
with certain initial values for o and A, and solves the resulting
TO problem using impact-aware DDP. The parameters o and
A are then updated and the new TO problem is re-solved
using the previous optimal control as a warm start. The update
equations are

On+1 = 60'7] and )‘77+1,i = /\n,z’ + onge, (X;\]i)> (24)

where § > 1 is the penalty update parameter. This process
is repeated until g, is within the threshold €47. To make a
distinction, one execution of the forward sweep and backward
sweep of DDP is called one DDP iteration. Pseudocode for
the AL algorithm is shown in Algorithm 1.

D. Relaxed Barrier Function for Inequality Constraints

We employ a relaxed barrier (ReB) method [19], [20] to
manage the inequality constraints in (17). Given any inequality
constrained optimization problem as below

f)

Cj(X) Z 07] = 17 , M,

min

. (25)

subject to

ReB attacks (25) by successively solving the unconstrained
optimization

m

min  f(x) +ep > Bs(cj(x)), (26)
j=1
where eg > 0 is a weighting parameter and
By(2) —log(z) z>6 o
5(2) = ko1 [/ 2eis \K ,
B (k) — 1] —logs z<4

is called a ReB function where § > 0 is the relaxation pa-
rameter. The function Bj(z) smoothly extends the logarithmic
barrier function —log(z) over the entire real domain with a
polynomial of order k. In many cases, k = 2 works well
[19]. Consequently, when applied to a TO problem, the ReB
method allows the objective function to be evaluated for an
infeasible trajectory, which cannot be done with a standard
barrier method. Note that § is updated toward zero in an outer
loop. This drives the resulting trajectory toward feasibility.

With this technique, the inequality constraints (17¢e) - (17g)
are turned into ReB functions and added to the objective
function J(U,t). Combing this technique with AL, the con-
strained TO problem (17) is converted into an unconstrained
optimization problem, which is solved using the impact-aware
DDP. The AL parameters A\, o and the ReB parameter § are
updated in an outer loop as shown in Algorithm 1.

E. Switching time optimization based on DDP

While Algorithm 1 finds the optimal control U* for the
OCP (17) (equivalently (16)) for fixed t, the switching time
optimization (STO) algorithm developed in this section up-
dates t toward an optimal value under a fixed control policy
(6). This approach is different from [24], where the control
sequence U is fixed without feedback from the state.

The STO algorithm reformulates the OCP (16) on fixed
time intervals of length one, and augments the state vector
with an extra state representing the time span of each mode.
Denote z the time state, x the scaled system state, and
X = [xT,2T]T the augmented state. Then, Algorithm 1 can
be used to find Vg, Vix, V4, V., and Vg, in the backward
sweep. Following the convergence of Algorithm 1, the values
of V, and V,, are then used to update the switching times
using Newton’s method.

We first discuss the reformulation of the OCP (16) on fixed
time intervals and then the derivation of the STO under the
new formulation. Let T; = t; —t;_1 and z = [T}, --- , T,]7.
With the change of variable 7 = —*— 4 ¢ — 1, time-scaled
dynamics are obtained as

x(1)  =Tf(x(r),u(r), T€[(@—1)*F,i7]
xH(r) =Pi(x7(r)), 7€ [i7,i"] (28)
z(t) =0, 7€0,n],
with the switching constraint
ge; (X(i7)) = 0. (29)

The timing state z has the initial condition z(0) = z. The
cost function in the OCP (16) now becomes

> [ /( b Tili(%(7), u(r))dr + @;(%(i7)) (30)

i=1 i—

We can now apply Algorithm 1 to minimize (30) under
the fixed initial condition z(0). Once Algorithm 1 converges,
it implies that 1) the control sequence and trajectory are
(locally) optimal and 2) the quadratic model of V' is a valid
approximation of V. The gradient V, and Hessian V,, are
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Algorithm 2 STO algorithm

1: Given

2: Mode sequence P(n).

3: Cost function (30), scaled dynamics (28) and switching
constraints (29).

Initialization

Initialize control sequence U and time state zg.
Execution

Execute Algorithm 1 to obtain optimal control U*, feed-
back gain K in (6), V, and V.

8: Line search using z(0) = z(0) — €.V, (0)V ().

A

then obtained from the quadratic model. Since z only affects
the dynamics via its initial condition, z(0) is updated using

Znew (O) = Zold (O) - 6z\/’zizl (O)VZ (O) (31)

where 0 < e, < 1 denotes the switching time line search
parameter. Similar to DDP, we perform a backtracking line
search to select €, and ensure cost reduction with (31).

Algorithms 1 and 2 are combined to solve the OCP (17)
simultaneously for optimal U* and t*, as shown in Fig. 3,
constituting HS-DDP. Note that the STO algorithm is executed
after the AL algorithm converges, which implies that the
feedforward term in equation (8) becomes zero, and, thus, the
control policy ug = 1 +KdXy, is used in the line search for
the timing variables and in the next forward sweep. The major
difference between our method and the approach in [24] is the
inclusion of this feedback term in the control law. The control
policy used in this work allows (31) to make more aggressive
updates, and consequently achieves faster convergence. The
reason behind this is that any change in z(0) will create
perturbations to the locally optimal trajectory. The effect of
the change in z(0) on optimality is reduced by including the
feedback term in control to account for perturbations. More
details on this aspect are discussed in Sec. V-D.

V. RESULTS: BOUNDING WITH A 2D QUADRUPED
A. Model and Simulation

The developed HS-DDP algorithm is tested on a 2D model
of the simulated MIT Mini Cheetah [25], as in Fig. 2. We
consider two trajectory optimization tasks. The first task fixes
the switching times and applies Algorithm 1 on quadruped
bounding for five gait cycles. We compare the results with
those when AL + ReB is disabled and demonstrate satisfaction
of constraints (17d) - (17g) within four AL iterations. The
second task applies the HS-DDP to quadruped bounding for
one gait cycle and demonstrates the efficiency of the STO.

B. Five Gait Cycle Bounding with AL and ReB

In this task, Algorithm 1 is applied to 2D quadruped
bounding for five gait cycles. The robot starts in the back-
stance mode and is desired to run at an average forward speed
of 1.0 m/s. A constant reference configuration is assigned to
each mode, which mimics the robot’s posture at the end of the
mode and is selected heuristically. All desired joint velocities
and the desired body vertical velocity are set to zero.

Quadratic running cost and terminal cost are used in (16),

li (X, 11) = (X - Xref,i)TQi (X - Xref,i) + uTRi,ua
®;(x(t:)) = (x(t:) — Xrer.i) T Qri(X(t;) — Xret.),

where QQ; and R; are weighting matrices for state deviation
and energy consumption in running cost, respectively, and Q f;
is the weighting matrix for the terminal cost (of the i mode).
In this simulation, we have zero penalty on forward position,
and relatively larger penalty on forward speed, body height,
and joint velocities than the other states. The integration time
step h = 1 ms is used, and the switching times are selected
such that the flight mode (and the front-stance mode) runs
for 72 ms and the back stance mode runs for 80 ms. The
initial guess for Algorithm 1 is given by a heuristic controller,
which implements the PD control in flight mode such that a
predefined joint configuration is maintained. In stance mode,
the heuristic controller constructs stance leg forces following
a SLIP model and converts the Ground Reaction Force (GRF)
thus obtained to joint torques. The AL and ReB parameters
are initialized as 0 =5, A\; =0, 8 =8, and ¢ = 0.5, and the
convergence threshold is set to €47, = 10~4.

(32)
(33)

C. AL and ReB Simulation Results

When AL is active and ReB is disabled, it takes three AL
iterations for the constraint violation to decrease within €47,.
The convergence of the total cost (excluding the penalty term
and the Lagrangian term) and switching constraint violation
are shown in Fig. 4. The blue square markers and the red
circle markers indicate the beginning of the corresponding
AL iteration. Figure 4 demonstrates that at least one of the
total cost and the constraint violation is reduced at every
DDP iteration. Further, the algorithm spends more effort in
minimizing the total cost at the beginning and switches to the
constraint violation after the total cost is converged.

Figure 5 compares the bounding gaits that are generated
by three methods: 1) A heuristic controller that is used to
warm start the optimization, 2) DDP (with impact-aware value
function update) that ignores switching constraints, and 3) AL
that enforces switching constraints. It demonstrates that the
developed AL algorithm achieves the desired performance.
Though the motion generated by DDP is more smooth and
realistic compared to the heuristic controller, the robot still
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Fig. 4. Convergence of the total cost and constraint violation.
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violates the switching constraints, and the error accumulates
over time. This behavior is because the first two methods do
not enforce switching constraints, and thus, the robot does not
correctly recognize the ground, but the simulator still resets
the dynamics.

Figure 6 depicts the normal and tangential GRF for the
front leg (top), and the torques for every joint (bottom) when
the ReB is activated. The algorithm terminates at four AL
iterations. It shows that the normal GRF is always non-
negative and that the friction and joint torques are confined
within their boundaries, demonstrating effectiveness of the
ReB method. Similar results are observed for the back leg.

D. One-Gait Bounding with Time Optimized

In this task, HS-DDP is applied to the generation of one
bounding gait for the Mini Cheetah. Different from the previ-
ous task, where only the control is optimized, switching times
are also optimized in this task. Only one gait cycle is studied
here in the sense that, in many situations, the switching times
found for one gait cycle can be extended to the succeeding
gait cycles. The cost function, initial control sequence, initial

200 F 400
100 F il 4300
= - = ——uF: i -
5 0 uF. i/ {200 &
&) —F ; : &
100 MV Ll F, \ i 4100
.
-200 £ ‘ . ‘ g 0
0 0.1 0.3 0.4 0.5 0.6
time (s)
40 T T
/g Tlim,upper
s 20 r\\ / Thip,f ]
é 0 Ay,\ i\ [/\ «\/ Tknee,f ! A i
% V 1 Thip,b A%\
3 -20 Tknee,b I b
= Tlim,lower | |
40 w . i ‘ .
0 0.1 0.2 0.3 0.4 0.5 0.6

time (s)

Fig. 6. GRF and joint toques for 2D Mini Cheetah bounding. Top: Normal
and tangential GRF for the front leg. Bottom: Joint torques. With AL and
ReB, the non-negativity of normal GREF, friction, and torque limit constraints
are satisfied in four AL iterations.

switching times, AL parameters, and terminating conditions
all remain the same in this task as in the previous one.

E. HS-DDP Simulation Results

The optimal switching times obtained via the STO algorithm
in HS-DDP are shown in Fig. 7. The algorithm reduces the
time of the first flight mode and the front-stance mode. Figure
7 also compares the switching times obtained via the STO
algorithm with the algorithm proposed in [24] where the
feedback control is not used. Both algorithms are terminated
at the 30*" iteration. With HS-DDP, the overall time spent
on the entire motion is 0.2335 s, a 21.1% reduction of the
initial overall time, whereas only a 6.3% reduction is observed
with the algorithm in [24], showing that the HS-DDP is more
efficient in the sense of taking larger steps.

Figure 8 explains why the two-level optimization strategy
is adopted in HS-DDP. With the scaled optimization structure
(28), (29), and (30), it is reasonable to update the control using
(8) and the switching times using (31) simultaneously since
the gradient and Hessian information are all available in the
backward sweep of DDP. If the actual cost reduction is less
than zero and is close to the predicted cost reduction, then
the quadratic model of the value function is considered valid.
The quadratic approximation, however, is more sensitive to the
switching time line search parameter e, than the control line
search parameter €, as shown in Fig. 8. This figure indicates
that ¢ has to be as small as ¢, if (8) and (31) are executed
simultaneously, at the price of much less cost reduction per
iteration, thus decreasing the convergence rate. Although this
behavior is not observed for all iterations, it can significantly
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Fig. 7. Time spent in each mode for the one-gait-cycle bounding task.
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slow down the optimization if a small step size is continuously
used for multiple iterations.

VI. CONCLUSIONS AND FUTURE WORKS

The proposed HS-DDP framework combines three algorith-
mic advances to DDP for legged locomotion. It addresses
the discontinuity at impacts by incorporating an impact-
aware value function update in the backward sweep. By
combing AL and DDP, HS-DDP reduces either the total cost
or the constraint violation in every iteration, enforcing the
switching constraint as the algorithm proceeds. Further, with
the developed STO algorithm, HS-DDP can efficiently find
the optimal switching times alongside the optimal control.
A ReB method is combined with HS-DDP to manage the
inequality constraints. The five-gait-cycle bounding example
shows the promise of HS-DDP in rapidly satisfying the
switching constraint in just a few iterations, and demonstrates
the effectiveness of ReB for enforcing inequality constraints.
The one-gait-cycle bounding example compares the developed
STO algorithm to the previous solutions, demonstrating that
our method is more efficient due to the inclusion of the
feedback control in the forward sweep.

Though forward Euler integration is used in this work for
dynamics simulation, the developed HS-DDP is independent
of the integration scheme. Implicit or higher-order methods
can be used if the computation time is not the primary
concern. The current implementation of HS-DDP is MATLAB
based, and so future work will benchmark its computational
performance with C++ and realize the developed algorithm in
experiments for real-time control with the Mini Cheetah. We
are also interested in comparing ReB and AL in terms of their
abilities for inequality constraint management.
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