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ABSTRACT 
As Mobility as a Service (MaaS) systems become increasingly popular, travel is changing from 

unimodal trips to personalized services offered by a platform of mobility operators. Evaluation of 

MaaS platforms depends on modeling both user route decisions as well as operator service and 

pricing decisions. We adopt a new paradigm for traffic assignment in a MaaS network of multiple 

operators using the concept of stable matching to allocate costs and determine prices offered by 

operators corresponding to user route choices and operator service choices without resorting to 

nonconvex bilevel programming formulations. Unlike our prior work, the proposed model allows 

travelers to make multimodal, multi-operator trips, resulting in stable cost allocations between 

competing network operators to provide MaaS for users. An algorithm is proposed to efficiently 

generate stability conditions for the stable outcome model. Extensive computational experiments 

demonstrate the use of the model to handling pricing responses of MaaS operators in technological 

and capacity changes, government acquisition, consolidation, and firm entry, using the classic 

Sioux Falls network. The proposed algorithm replicates the same stability conditions as explicit 

path enumeration while taking only 17 seconds compared to explicit path enumeration timing out 

over 2 hours.  

 

Keywords: Mobility-as-a-Service, network design, traffic assignment, stable matching, 

assignment game 

 

 

1. INTRODUCTION 
 

There is a growing need to focus on managing the capacities, allocation, and pricing of mobility 

services in a Mobility-as-a-Service (MaaS) (Hensher, 2017; Djavadian and Chow, 2017) 

ecosystem. Under this ecosystem, city agencies play a key role as facilitators in either economic 

deregulation through relationships with suppliers, or through government contracting with the 

operators, as illustrated by the evolution from Figure 1a to 1b or 1c (Wong et al., 2019). As such, 

city agencies need to be able to assess the impact on other mobility operators and travelers when 

a new mobility operator enters the market, or an existing one changes their service capacity, 

routing algorithm, or pricing mechanism. A new mobility service or change to an existing one can 

cause travelers to switch routes or combine the service of one operator with those of other operators 

to fulfill their trips. It can lead to certain routes becoming unstable to operate. Changes in 
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algorithms (e.g. Stiglic et al., 2015) or government policies like ride surcharges (e.g. Hu, 2019) 

can alter the allocation of costs between travelers and operators. Any MaaS market equilibrium 

model developed for the public policymaker needs to be sensitive to both traveler 

(multimodal/multi-operator routes) and operator (service coverage, fleet, pricing) decisions.  

 

 
Figure 1. Evolution from current service delivery model (A) to two alternative models under MaaS (B, C) 

(source: Wong et al., 2019). 

 

For this purpose, classic traffic assignment models that emphasize only traveler route 

decision-making are not effective tools. In a MaaS setting the policy questions are not focused on 

congestion on the roadway, but instead on how travelers match to different combinations of fixed 
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route public transit and/or various mobility options (e.g. bikeshare, ride-hail, microtransit, among 

others) considering capacities of these systems and their cost allocation policies (e.g. fares transfer 

dollars to service, stop locations trade-off between access time). For capacity we consider effective 

planning-level service capacities; i.e. a bike share service that uses a certain rebalancing algorithm 

would provide a certain maximum flow from one location to another.  

Rasulkhani and Chow (2019) proposed such a method for evaluating unimodal trip systems, 

where each operator acts as a set of service routes and each traveler matches “many-to-one” to one 

route while ensuring the line capacities are not violated and stability conditions from the core 

(Shapley and Shubik, 1971) are met. The model is computationally tractable and can be solved 

using classic algorithms for capacitated assignment and linear programming (for the stable 

outcome problem). Unlike network flow games (e.g. Bird, 1976; Derks and Tijs, 1985; Fragnelli 

et al., 2001; Agarwal and Ergun, 2008) that form coalitions between operators, the model matches 

between travelers and operators so that it explicitly captures both operator and travel behavior in 

a network of mobility markets. The model from Rasulkhani and Chow (2019) does not handle 

matching of travelers’ paths to multiple operators for modeling MaaS platforms. Use cases for 

such models abound: city agencies may act as cyber-physical platform providers in which mobility 

operators and travelers match with transaction fees that depend on the design of the built 

environment (see Chow, 2018). MaaS policy-makers, including government agencies and 

transport providers, can then use the solution of such a model to make trade-offs for designing 

their platform under different cost allocation policies and algorithms, link capacities, and 

determine negotiating power of different operators for the purpose of forming coalitions or 

justifying subsidies between operators to match with traveler paths. We illustrate these use cases 

that need to be modeled in Table 1. 

 
Table 1. Sample use cases for a planning model for a public-operated MaaS platform 

Use case Model parameters Required model output 

Technology: evaluate/regulate 

market due to new algorithm or 

operating policy from an operator 

Changes to travel disutilities of 

travelers (which may be in-vehicle, 

access, or wait time), link operating 

costs, or link capacities of operators 

Impact on operator-routes that stay 

in market, passenger link flows, and 

how their stable price range 

changes 

Subsidy: platform may subsidize 

one or more of the operators 

Change in threshold for an operator 

to leave a market (they might be 

able to operate at a loss up to a 

threshold); cost allocation for that 

operator may align with welfare 

maximizing instead of profit 

maximizing 

Links that can be operated in this 

setting, revenues and flows under 

the changed setting 

Tax: platform may impose a 

surcharge on a subset of operators 

Changes to operating cost for the 

operators 

Changes in operating links, flows, 

and shifts in stable pricing range as 

a result of surcharge 

Merger: two or more operators in a 

platform may merge or ally 

The stability conditions would treat 

those operators as a single operator 

Changes in revenue and ridership 

due to the merger 

Investment: evaluate/regulate 

market due to increased investment 

by an operator on their fleet size, 

new service coverage area, etc. 

New candidate links/nodes in 

network, changes to link capacities 

Whether those links stay in the 

market, subsequent flows, prices for 

new services as well as impacts on 

other operators 

Disruption: links may be closed or 

degraded 

Closure of links/nodes in network, 

changes to link capacities 

Whether those links stay in the 

market, subsequent flows, prices for 

new services as well as impacts on 

other operators 
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The challenge of matching multiple links of different traveler paths to multiple operators is a 

many-to-many assignment game. In such a game, the stability conditions become more complex 

because they need to be considered from both a user’s path level as well as an operator’s level in 

serving that user. In a MaaS market, each operator owns one or more links and may choose not to 

serve that link (i.e. exit the market) if there is insufficient incentive to provide service there. Each 

link is capacitated with planning-level service capacities. Furthermore, each operator can choose 

a price to charge for using their link to the users. How should competing operators sharing different 

legs of a traveler’s trip set their prices? Blocking pairs” may form to prevent a stable path from 

forming, which are not trivial to model in this setting. 

We propose a model for this many-to-many assignment game and show how to derive an 

optimal assignment flow and corresponding stable outcome space between the operators and the 

travelers or users. If a stable outcome space exists, it provides boundaries over which a city agency 

can work with competing operators to allocate costs between users and each operator to set prices, 

as illustrated in the use cases in Table 1. The model does not assume any specific cost allocation 

mechanism or policy used by each operator; it only determines the thresholds within which such 

mechanisms are stable. An empty stable outcome space implies the unsustainability of the platform 

as designed, which would warrant further planning (e.g. changing travel costs through 

infrastructure investments or policies, adding further capacities, or introducing additional 

candidate routes for operators to serve).  

 

 

2. LITERATURE REVIEW 
 

While several studies have examined demand for MaaS services (Strömberg et al., 2018; 

Matyas and Kamargianni, 2019a,b), these studies have not sought to quantify or structure the 

relationships between decisions made by operators and users in providing and consuming routes 

in a MaaS market. Earlier research on coexisting operators (see Chow and Sayarshad, 2014, for a 

review) consider noncooperative games, including a generalized Nash equilibrium for a 

duopolistic market of private mass transit operators (Harker, 1988) and toll pricing operators 

(Yang and Woo, 2000; Zhang et al., 2011). Cooperative game research, on the other hand, 

determines the cost allocations necessary to support cooperation as a coalition formation problem. 

Examples of cooperative games include Agarwal and Ergun (2008) and Lu and Quadrifoglio 

(2019), as well as the network flow games cited earlier. Cooperative games within a transportation 

environment to support multimodal trips are called collaborative transportation problems.  

Collaborative transportation problems have been studied (Schulte et al., 2019) primarily in 

truck and airline scheduling. Furthermore, profit allocations for collaborative transportation 

systems have been studied (Algaba et al., 2019). However, the models are from the perspective of 

the operators as specific allocations are assumed using simple mechanisms such as equalitarian 

and proportional profit divisions between operators. We study collaborative transportation for 

MaaS from the perspective of the platform provider, where stable core allocations are obtained by 

solving a mathematical program that incorporates stability conditions. 

 The basis for this latter type of model is a stable matching model that forms coalitions between 

users and operators that no user or operator has incentive to break. Stable matching models in 

which utilities are transferable (TU-games) between buyers and sellers are called assignment 

games, first formulated as linear programs (LPs) by Shapley and Shubik (1971).  
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In the basic model from Shapley and Shubik (1971), there is a set of buyers 𝑃 and sellers 𝑄. 

A buyer 𝑖 ∈ 𝑃 that matches with a seller 𝑗 ∈ 𝑄 providing the product at cost 𝑐𝑗 earns a utility of 

𝑈𝑖𝑗. The difference between the utility and cost of production is the payoff 𝑎𝑖𝑗 = max(0, 𝑈𝑖𝑗 − 𝑐𝑗). 

A successful match means the seller transfers the utility to the buyer with a price 𝑝. The buyer 

earns utility equal to 𝑢𝑖 = 𝑈𝑖𝑗 − 𝑝 while the seller profits 𝑣𝑗 = 𝑝 − 𝑐𝑗. The basic assignment game 

is shown in Eq. (1). 

 

max ∑ ∑ 𝑎𝑖𝑗𝑥𝑖𝑗

𝑗∈𝑄𝑖∈𝑃

 (1a) 

Subject to  

∑ 𝑥𝑖𝑗

𝑖∈𝑃

≤ 𝑞𝑗 , ∀𝑗 ∈ 𝑄 (1b) 

∑ 𝑥𝑖𝑗

𝑗∈𝑄

≤ 𝑤𝑖, ∀𝑖 ∈ 𝑃 (1c) 

𝑥𝑖𝑗 ∈ {0,1}, ∀𝑗 ∈ 𝑄, 𝑖 ∈ 𝑃 (1d) 

 

where 𝑥𝑖𝑗 is a binary variable whether a match occurs, and 𝑞𝑗 and 𝑤𝑖 are quotas for each side. If 

𝑞𝑗 and 𝑤𝑖 are equal to one, the assignment game is one-to-one. Nonsingular integers reflect many-

to-one or many-to-many games. An outcome ((𝑢, 𝑣); 𝑥) of the game is feasible if 𝑢𝑖 ≥ 0 and 𝑣𝑗 ≥

0 and satisfies the constraints (1b) – (1d) as well as ∑ 𝑢𝑖𝑖∈𝑃 + ∑ 𝑣𝑗𝑗∈𝑄 = ∑ ∑ 𝑎𝑖𝑗𝑥𝑖𝑗𝑗∈𝑄𝑖∈𝑃 . A 

feasible payoff is stable if 𝑢𝑖 + 𝑣𝑗 ≥ 𝑎𝑖𝑗 when 𝑥𝑖𝑗 = 0. The core of the assignment game 

corresponds to the solutions of the dual of the LP.  

 In the multiple partner assignment game (Sotomayor, 1992), the values to the buyers and 

sellers are distributed to different matching partners: 𝑢𝑖𝑗 is the utility gained by buyer 𝑖 when 

matched to seller 𝑗 and 𝑣𝑖𝑗 is the profit gained by seller 𝑗 when matched to buyer 𝑖. A feasible 

outcome ((𝑢, 𝑣); 𝑥) is stable if 𝑢𝑖 + 𝑣𝑗 ≥ 𝑎𝑖𝑗 when 𝑥𝑖𝑗 = 0, where min
j

{𝑢𝑖𝑗} ≥ 0 and min
i

{𝑣𝑖𝑗} ≥

0. Under these games, two extreme vertices of the stable outcome space can be identified as the 

“buyer optimal” and the “seller optimal” outcomes reflecting ideal outcomes for each side between 

which cost allocation mechanisms can be negotiated. If the outcome space is empty, it means the 

optimal assignment is not stable.  

 Several studies have been conducted using stable matching (e.g. Cseh and Skutella, 2014; 

Wang et al., 2017; Lin et al., 2018; Peng et al., 2018; Zhang and Zhao, 2018; Lu and Quadrifoglio, 

2019; Yang et al., 2019) generally as a mechanism for optimizing ridesharing services, in a 

normative sense. These have not considered evaluation of a city platform design by modeling a 

market equilibrium for a MaaS system of multiple operators.   

 Rasulkhani and Chow (2019) proposed such a descriptive assignment game model where 

buyers are traveler OD pairs and sellers are bundles of service routes. In this case, each operator 

𝑓 ∈ 𝐹 owns a set of one or more routes 𝑅𝑓, where 𝑅 = ⋃ 𝑅𝑓𝑓∈𝐹 . Each service route 𝑟 consists of 

a set of links 𝐴𝑟 owned by an operator; one operator may own multiple service routes. The resulting 
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many-to-one assignment game between multiple user OD pairs and different links of each service 

route is characterized by Eq. (2) for a set of users 𝑆, demand 𝑑𝑠, and a service route capacity 𝑤𝑟 

defined as the load that cannot be exceeded anywhere along a route. The index {𝑘} is used to refer 

to a dummy user that is matched to unused routes. Eq. (2d) ensures that routes that are unused are 

matched to the dummy user. The parameter 𝛿𝑎𝑠𝑟 is set to 1 if a match between user 𝑠 and route 𝑟 

uses link 𝑎 and 0 otherwise. 𝑀 is a big constant. 𝑎𝑠𝑟 = max(0, 𝑈𝑠𝑟 − 𝑡𝑠𝑟), where 𝑡𝑠𝑟 is the 

generalized travel disutility for user 𝑠 matched to route 𝑟.  

 

max ∑ ∑ 𝑎𝑠𝑟𝑥𝑠𝑟

𝑟∈𝑅𝑠∈𝑆

 (2a) 

Subject to  

∑ 𝑥𝑠𝑟

𝑟∈𝑅

≤ 𝑑𝑠, ∀𝑠 ∈ 𝑆\{𝑘} (2b) 

∑ 𝛿𝑎𝑠𝑟𝑥𝑠𝑟

𝑠∈𝑆\{𝑘}

≤ 𝑤𝑟 , ∀𝑎 ∈ 𝐴𝑟 , 𝑟 ∈ 𝑅 (2c) 

∑ 𝑥𝑠𝑟

𝑠∈𝑆\{𝑘}

≤ 𝑀(1 − 𝑥𝑘𝑟), ∀𝑟 ∈ 𝑅 (2d) 

𝑥𝑠𝑟 ∈ {0, ℤ+}, ∀𝑠 ∈ 𝑆\{𝑘}, 𝑟 ∈ 𝑅 (2e) 

𝑥𝑘𝑟 ∈ {0,1}, ∀𝑟 ∈ 𝑅 (2f) 

 

A fare 𝑝𝑠𝑟 is charged to each member of user group 𝑠 for matching to route 𝑟. The operating 

cost of a route 𝑟 is set to 𝐶𝑟 and is distributed to each user as 𝑐𝑠𝑟. 𝐵(𝑟, 𝑥) (𝐵(𝑠, 𝑥)) is the set of 

users (routes) matched to route 𝑟 (user 𝑠) in assignment 𝑥. 𝑅̅ is the set of routes matched to at least 

one user. 𝐺𝑟 is the set of user groups that can be feasibly matched to route 𝑟. 𝑣𝑟 = ∑ 𝑣𝑟𝑠𝑠∈𝐶(𝑟,𝑥)  is 

the total benefit that route 𝑟 gains from matches in assignment 𝑥. The stable outcome space 

corresponding to this assignment game is defined by the following set of constraints in Eq. (3), 

where Eq. (3a) – (3d) represent the feasibility conditions and Eq. (3e) is the stability condition. 

 

∑ 𝑢𝑠

𝑠∈𝐵(𝑟,𝑥)

+ 𝑣𝑟 = ∑ 𝑎𝑠𝑟

𝑠∈𝐵(𝑟,𝑥)

− 𝐶𝑟 , ∀𝑟 ∈ 𝑅̅ (3a) 

𝑣𝑟 = 0, ∀𝑟 ∈ 𝑅\𝑅̅ (3b) 

𝑢𝑠 = 0, ∀𝑠: 𝐵(𝑠, 𝑥) = ∅ (3c) 

𝑢𝑠 ≥ 0, 𝑣𝑠𝑟 ≥ 0, ∀𝑟 ∈ 𝑅̅, 𝑠 ∈ 𝑆 (3d) 



  

7 

 

∑ 𝑢𝑠

𝑠∈𝐺𝑟′ 

+ 𝑣𝑟 ≥ ∑ 𝑎𝑠𝑟

𝑠∈𝐺𝑟′

− 𝐶𝑟 , ∀𝐺𝑟′: 𝑟′ ∉ 𝑅𝑓 , 𝑟 ∈ 𝑅𝑓 , 𝑓 ∈ 𝐹 (3e) 

 

The buyer-optimal and seller-optimal vertices of the space can be found by maximizing 𝑍 =
∑ 𝑢𝑠𝑠∈𝑆  (buyer-optimal) or 𝑍 = ∑ 𝑣𝑟𝑟∈𝑅  (seller-optimal) as LPs, and any solution within the space 

can be interpolated since the space is convex. Specific cost allocation mechanisms can also be 

sought by setting the appropriate objective 𝑍. While different mechanism designs can be 

incorporated, the scope of this work is on defining the stable outcome space, so a comprehensive 

review of such studies is not provided. Readers are referred to Rasulkhani and Chow (2019) 

instead. 

 As shown in the formulations, each user 𝑠 is treated as an OD pair as opposed to a path of 

multiple operator routes with transfers. This would therefore not model a MaaS setting. The 

assignment game needs to be redefined from a link-based perspective, where each operator owns 

a set of links (each link connecting two stops, zone centroids, or transfer points) and users are now 

distributed over different paths consisting of links involving transfers from one collaborative 

operator to another. 

 

 

3. PROPOSED METHODOLOGY 
 

Problem notation  

𝐹: set of operators, where 𝑓 = 0 is a dummy operator representing no operator in the 

platform 

𝑁: set of nodes in the platform 

𝐴: set of links in the network  

𝐴𝑓: a disjoint subset of 𝐴 owned by operator 𝑓 ∈ 𝐹 

𝑁𝑖(+),𝑁𝑖(−): the set of heads (+) and tails (-) that are formed by links connected to 

node 𝑖 ∈ 𝑁 

𝑆: set of traveler groups represented by OD from one node to another 

𝑂(𝑠), 𝐷(𝑠): origin-destination nodes of 𝑠 ∈ 𝑆 

𝑅𝑠: set of feasible paths that can serve OD 𝑠 ∈ 𝑆 

𝑅𝑠
∗: set of optimal paths for which there may be flow for OD 𝑠 ∈ 𝑆 

𝐴𝑟: set of links that form path 𝑟 ∈ 𝑅𝑠 

𝑅𝑓: set of routes in which operator 𝑓 ∈ 𝐹 operates one or more links 

𝑥𝑖𝑗
𝑠 : flow variable for link (𝑖, 𝑗) ∈ 𝐴 and OD 𝑠 ∈ 𝑆 

𝑡𝑖𝑗: generalized link travel cost (𝑖, 𝑗) ∈ 𝐴, in units of $ 

𝑐𝑖𝑗: link operating cost (𝑖, 𝑗) ∈ 𝐴, in the same units of $ 

𝑦𝑖𝑗: binary variable indicates if link (𝑖, 𝑗) ∈ 𝐴 has flow 

𝑑𝑠: number of homogeneous travelers for OD 𝑠 ∈ 𝑆 

𝑤𝑖𝑗: capacity of link (𝑖, 𝑗) ∈ 𝐴 
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𝑈𝑠: utility of 𝑠 ∈ 𝑆, in units of $ 

𝑢𝑠: consumer surplus  𝑠 ∈ 𝑆, in units of $ 

𝑝𝑟𝑓: price of operator 𝑓 ∈ 𝐹 on path 𝑟 ∈ 𝑅𝑠, in units of $ 

𝑧𝑟
∗: flow on path 𝑟 ∈ 𝑅𝑠 

𝜇𝑖𝑗
∗ : capacity dual variable of (𝑖, 𝑗) ∈ 𝐴, in units of $ 

𝛾𝑖𝑗: a link-level subsidy that effectively reduces the cost of operation for link (𝑖, 𝑗) ∈

𝐴, in units of $ 

𝛿𝑟𝑓: binary parameter to indicate whether operator 𝑓 ∈ 𝐹 is on path 𝑟 ∈ 𝑅𝑠 

 

 

3.1. Model formulation 

We present a many-to-many assignment game model to be used to evaluate MaaS networks 

for planning and evaluation of public agency platforms. We define two disjoint sets of players: the 

first set includes all network users 𝑠 ∈ 𝑆 that represent distinct O-D demand pairs and the second 

set includes all the operators 𝑓 ∈ 𝐹 that provide transportation services on network links. Some 

links may not be owned by any operator; we assume these are owned by the platform. Examples 

include transfer links between two operators, which may involve walking or waiting in between 

services. Those links are owned by a dummy operator 𝑓 = 0.  

In this assignment users are matched to a feasible user path 𝑟 from an origin node 𝑂(𝑠) to a 

destination node 𝐷(𝑠) by being served by a set of operators 𝐹𝑟 for the links forming that path. In a 

capacitated network, a user group 𝑠 may be distributed over a path set 𝑅𝑠
∗ among a feasible set 𝑅𝑠. 

The network is defined as 𝐺(𝑁, 𝐴) where 𝐺 is composed of a set of mutually exclusive operator-

owned subgraphs 𝐺𝑓, 𝑓 ∈ 𝐹, and 𝐺 = ⋃ 𝐺𝑓𝑓∈𝐹 . Let 𝑁𝑖(+) and 𝑁𝑖(−) respectively be the sets of 

heads and tails formed from links connected to node 𝑖 ∈ 𝑁.  

The output for a given set of operator service links and users along with operating costs 𝑐𝑖𝑗 

and link capacities 𝑤𝑖𝑗 for each link (𝑖, 𝑗) ∈ 𝐴 and user travel disutilities 𝑡𝑖𝑗 is a set of link flows 

𝑥𝑖𝑗
𝑠  per user group 𝑠, identity of unmatched operator links, and corresponding stable outcome 

((𝑢, 𝑣), 𝑥) space for user value 𝑢, operator profits 𝑣, and fares 𝑝𝑟𝑓 paid by each user-path 𝑟 to each 

operator 𝑓. In the case where a fixed fare is assumed, one can add an additional constraint to require 

all 𝑝𝑟𝑓 ≡ 𝑝𝑓 (which reduces the feasible outcome space). The model assumes costs are transferable 

between users and operators, so the operating costs, fares, and travel disutilities should all be in a 

common monetary unit ($). The fare represents the generalized cost allocation from user to 

operator, and can represent not only monetary fare, but also an increase of user access cost to the 

operator, for example. 

The behavioral interpretation of this model structure is the same as that of the assignment 

game from Shapley and Shubik (1971): the matching problem identifies the optimal assignment 

between multiple operators and multiple travelers while the behavioral incentives of the travelers 

and operators are determined in the stable outcome subproblem to ensure they would match only 

if there’s a benefit to do so. Other model structures for markets of operators and travelers have 

been proposed in the past. For example, centralized operators with travelers have been modeled as 

bilevel optimization problems (see Yang and Bell, 1998), and markets of multiple operators as a 

generalized Nash equilibrium with a bilevel structure for travelers (Zhou et al., 2005). A bilevel 

optimization suggests a leader-follower relationship that assumes an agency makes the decisions 
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first. This makes sense in the case where the agency is making capital expenditure decisions that 

can take years to complete. In the case of a MaaS platform, services are decided in a much shorter, 

tactical planning level time horizon (most MaaS markets today did not exist five years ago), and 

in competitive response from one operator to another. By the same token, it would not make sense 

for platforms like Airbnb to model its sellers as leaders and its buyers as followers, which is why 

models for those follow a two-sided market structure instead (see Rochet and Tirole, 2003).  

Shapley and Shubik (1971) showed the assignments are obtained from the primal matching 

problem and the stable outcomes are determined from the dual problem forming the core. 

Rasulkhani and Chow (2019) proposed an integer program for the assignment and a linear program 

that captured the stability conditions of the integer program. We similarly propose an integer 

program for the flow assignment and a linear program for the corresponding stable cost allocations 

of user value and operator profit.  

 

3.1.1. Matching problem 

We propose to formulate the matching problem using a familiar formulation from network 

design (Magnanti and Wong, 1984; Gendron and Larose, 2014): the multicommodity capacitated 

fixed-charge network design problem (MCND). Each commodity corresponds to user group 𝑠. 

Each user group 𝑠 is characterized by demand 𝑑𝑠 for that unique O-D pair. A binary variable 𝑦𝑖𝑗 =

1 if link (𝑖, 𝑗) is operated by its owner and 0 otherwise. Since we seek the optimal flow assignment, 

the identification of operators for the links are not needed at this stage.  

 

𝜙(𝑁) = min ∑ ∑ 𝑡𝑖𝑗𝑥𝑖𝑗
𝑠

𝑠∈𝑆(𝑖,𝑗)∈𝐴

+ ∑ 𝑐𝑖𝑗𝑦𝑖𝑗

(𝑖,𝑗)∈𝐴

 (4a) 

Subject to  

∑ 𝑥𝑖𝑗
𝑠

𝑗∈𝑁𝑖(+)

− ∑ 𝑥𝑗𝑖
𝑠

𝑗∈𝑁𝑖(−)

= {
𝑑𝑠,            𝑖𝑓 𝑖 = 𝑂(𝑠)

−𝑑𝑠,         𝑖𝑓 𝑖 = 𝐷(𝑠)

0              𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

, ∀𝑖 ∈ 𝑁, 𝑠 ∈ 𝑆 (4b) 

∑ 𝑥𝑖𝑗
𝑠

𝑠∈𝑆

≤ 𝑤𝑖𝑗𝑦𝑖𝑗 , ∀(𝑖, 𝑗) ∈ 𝐴 (4c) 

𝑥𝑖𝑗
𝑠 ≥ 0,       ∀(𝑖, 𝑗) ∈ 𝐴, 𝑠 ∈ 𝑆 (4d) 

𝑦𝑖𝑗 ∈ {0,1}, ∀(𝑖, 𝑗) ∈ 𝐴 (4e) 

             

Objective function (4a) minimizes total costs which includes the generalized travel costs of 

passenger and operation costs of operators. Constraint (4b) ensures the feasibility of flow in the 

network. Constraint (4c) is the capacity constraint for each link and constraints (4d) and (4e) are 

the non-negativity and integral constraints. The model is an extension of the original assignment 

game from Shapley and Shubik (1971) to a MaaS setting, where travelers between OD pairs are 

the buyers and operator-links are the sellers. The many-to-many matching occurs through the 

formation of user path flows. The relationships between the matching sets are shown in Figure 2, 
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where the basic buyer-to-seller matching is extended to be between many paths of users to many 

links of operators. 

 

 
Figure 2. Illustration of the many-to-many matching structure in the MaaS market model. 

 

The model as formulated assumes all demand is assigned onto the network. Elastic demand 

can be modeled. As noted earlier, links assigned to a dummy operator 𝑓 = 0 are used for transfers 

by noting that stability conditions do not need to be applied to 𝑓 = 0. These links can also be used 

to connect an OD 𝑠 directly to represent all alternative mobility options outside of the platform: 

competing platforms or operators, staying at home, or having the travelers go by personal car 

instead of using a mobility service. The maximum utility of all those options can be represented 

by subtracting that from the utility 𝑈𝑠 and applying that difference as the link cost. If there are no 

other options available, the link cost can be set to 𝑈𝑠.  

Unlike the conventional use of the MCND, which is to find a subset of new links within a 

budget to build out, this use of the model determines which operator-links should enter the market 

under optimal market matching. For example, conventional use of MCND assumes some existing 

network upon which a subset of new candidate links is being considered. In our use of the model, 

all links are treated as candidate links and are each owned by one operator. 

By casting the matching problem in a MCND structure, it can be solved using conventional 

MCND solution methods like branch-and-bound-and-cut algorithms (Gendron and Larose, 2014).  

 

3.1.2. Stable outcome problem 

The more novel contribution of this study is to propose a corresponding stable outcome model 

to the MCND to establish the stability conditions for the operators that choose to stay in the market. 

The binary parameter 𝛿𝑖𝑗𝑟 indicates whether a user path 𝑟 ∈ 𝑅 is incident on link (𝑖, 𝑗) ∈ 𝐴. The 

link set 𝐴𝑟 ⊆ 𝐴 consists of links included in path 𝑟 ∈ 𝑅𝑠, while 𝐴𝑓 ⊆ 𝐴 consists of links owned by 

operator 𝑓 ∈ 𝐹. The set of links owned by operator 𝑓 ∈ 𝐹 along path 𝑟 ∈ 𝑅𝑠 is formed by the 

User 

groups 𝑆 

… 

… 

… 

User paths 

𝑅𝑠, 𝑠 ∈ 𝑆 

Operators 

𝐹 

Operators links 

𝐴𝑓 , 𝑓 ∈ 𝐹 

… 

… 

… 

Formation of these user paths constitute the 

many-to-many matching 
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intersection 𝐴𝑓 ∩ 𝐴𝑟. Each user 𝑠 generates payoff (trip utility) 𝑈𝑠 to realize their trip. Let 𝑅𝑓 be 

the set of routes in which operator 𝑓 serves.  

The constraints of the corresponding stable outcome problem are derived as follows. For each 

user group 𝑠 ∈ 𝑆 the core payoff is denoted as 𝑢𝑠, the utility surplus from making a trip. For each 

operator 𝑓 ∈ 𝐹, a price 𝑝𝑟𝑓 is charged once per path. The operator’s payoff is the total revenue 

collected from network users ∑ 𝑝𝑟𝑓𝑧𝑟𝑟∈𝑅𝑓
 based on the price 𝑝𝑟𝑓 charged to user-path 𝑟 by operator 

𝑓. This revenue formulation assumes if a user traverses two separate links owned by the same 

operator along a route, they would only pay 𝑝𝑟𝑓 to that operator once. For a user flow assignment 

and link operation solution to Eq. (4) there exists one or more corresponding path flow solutions. 

For a given path flow {𝑧𝑟
∗}𝑟∈𝑅 we define the outcomes based on this flow, ((𝑢, 𝑝), 𝑧). 

Stability conditions need to ensure that no player in a coalition has incentive to generate a 

higher payoff by forming another coalition, whether it is a user with another feasible route or an 

operator with other users in the network. A feasible outcome is presented in Definition 1. 

 

Definition 1. The outcome ((𝑢, 𝑝); 𝑧) is feasible for the corresponding matching problem in Eq. 

(4) if: 

 

𝑢𝑠 + ∑ 𝑝𝑟𝑓

𝑓∈𝐹𝑟

= 𝑈𝑠 − ∑ 𝑡𝑖𝑗

(𝑖,𝑗)∈𝐴𝑟

, ∀ 𝑟 ∈ 𝑅𝑠
∗, 𝑠 ∈ 𝑆 (5a) 

𝑢𝑠 ≥ 0,     ∀ 𝑠 ∈ 𝑆 (5b) 

𝑝𝑟𝑓 ≥ 0, ∀ 𝑟 ∈ 𝑅, 𝑓 ∈ 𝐹 (5c) 

∑ 𝑝𝑟𝑓𝑧𝑟
∗

𝑟∈𝑅𝑓

≥ ∑ 𝑐𝑖𝑗𝑦𝑖𝑗
∗

(𝑖,𝑗)∈𝐴𝑓

,    ∀ 𝑓 ∈ 𝐹 (5d) 

 

where Eq. (5a) ensures that the cost allocations are divided from the surplus of the utility less the 

travel disutilities and costs (which is shown in Rasulkhani and Chow (2019) to be equivalent to 

the 𝑎𝑖𝑗 in Shapley and Shubik (1971). Eq. (5b) and (5c) make sure the cost allocations are non-

negative. Eq. (5d) requires the operator payoffs to meet the operating cost threshold, where 𝑦𝑖𝑗
∗  is 

the optimal binary decisions from the matching problem for an operator to serve a link (𝑖, 𝑗) and 

𝑧𝑟
∗ is the flow on an optimal path 𝑟 ∈ 𝑅𝑠

∗. In the case where subsidies 𝛾𝑖𝑗 ≤ 𝑐𝑖𝑗 exist, Eq. (5d) may 

have a lower threshold (∑ 𝑝𝑟𝑓𝑧𝑟
∗

𝑟∈𝑅𝑓
≥ ∑ (𝑐𝑖𝑗 − 𝛾𝑖𝑗)𝑦𝑖𝑗

∗
(𝑖,𝑗)∈𝐴𝑓

). 

The condition ensuring a stable outcome space that is feasible in Eq. (5a) – (5d) is shown in 

Eq. (6) for any given path 𝑟′ ∈ 𝑅𝑠\𝑅𝑠
∗ with respect to each path 𝑟 ∈ 𝑅𝑠

∗.  

 

𝑢𝑠 + ∑ 𝑝𝑟𝑓

𝑓∈(𝐹𝑟∩𝐹𝑟′)

≥ 𝑈𝑠 − ∑ (𝑡𝑖𝑗 + 𝜇𝑖𝑗
∗ + 𝑐𝑖𝑗(1 − 𝑦𝑖𝑗

∗ ))
(𝑖,𝑗)∈𝐴𝑟′

,   

∀𝑟′ ∈ 𝑅𝑠\𝑅𝑠
∗, 𝑟 ∈ 𝑅𝑠

∗, 𝑠 ∈ 𝑆 

(6) 
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The stability condition of Eq. (6) ensures that travelers and operators costs are transferred between 

operators and users such that neither have incentive to deviate from the optimal assignment given 

by the matching problem (4a) - (4e). The user payoff is denoted by the surplus 𝑢𝑠 and 
∑ 𝑝𝑟𝑓𝑓∈(𝐹𝑟∩𝐹𝑟′)  is the profit of operators earned on the optimal path 𝑟 ∈ 𝑅𝑠

∗.  

 

Proposition 1. The stability condition for the matching problem in Eq. (4), given feasibility 

conditions in Eq. (5), is expressed as Eq. (6). 

 

Proof. 

The proof requires demonstrating that Eq. (6) satisfies stability in the same way that the 
(𝑢, 𝑣; 𝑥) stability is achieved with 𝑢𝑖 + 𝑣𝑗 ≥ 𝑎𝑖𝑗 for unmatched pairs in the basic assignment 

game from Shapley and Shubik (1971).  

Consider an unmatched path 𝑟′ ∈ 𝑅𝑠\𝑅𝑠
∗. As shown in Rasulkhani and Chow (2019), the 

𝑎𝑖𝑗 in the RHS in Shapley and Shubik’s model can be represented as the utility less the travel 

disutility. For an unused path to be switched over to, the disutility needs to consider two other 

conditions. 

Condition 1: If a link on the unused path has binding capacity (because of use by another 

path), the cost to switch over requires moving a passenger off the binding link to another link. 

This cost is the dual variable 𝜇𝑖𝑗 corresponding to a binding capacity at link (𝑖, 𝑗), where it is 

equal to zero when capacity is nonbinding. The 𝜇𝑖𝑗
∗  can be found after solving Eq. (4) by 

setting the values 𝑦𝑖𝑗
∗  in Eq. (4a) – (4d) constant and finding the capacity dual variables in the 

LP subproblem. 

Condition 2: If a link is not matched to any paths (an unmatched path may have links 

matched to other paths), then the cost of switching to that unmatched path needs to include a 

fixed charge of 𝑐𝑖𝑗. The condition of a link (𝑖, 𝑗) not being matched to any other path is 

indicated by the optimal solution 𝑦𝑖𝑗
∗  from the matching problem in Eq. (4). As such, the RHS 

surplus utility switching to an unmatched path is shown in Eq. (7).  

 

𝑈𝑠 − ∑ (𝑡𝑖𝑗 + 𝜇𝑖𝑗
∗ + 𝑐𝑖𝑗(1 − 𝑦𝑖𝑗

∗ ))
(𝑖,𝑗)∈𝐴𝑟′

, 𝑠 ∈ 𝑆, 𝑟′ ∈ 𝑅𝑠\𝑅𝑠
∗ (7) 

 

 The payoffs in the LHS (𝑢𝑖 + 𝑣𝑗) of the stability condition represent what the operators 

and user group get when matched. For user group 𝑠, this is simply 𝑢𝑠. The payoffs for 

operators 𝑓 ∈ 𝑅𝑠\𝑅𝑠
∗, however, need to consider the fares that they currently get. The payoff 

should be the supremum of all the payoffs sup
𝑟∈𝑅𝑠

∗
𝛿𝑟𝑓𝑝𝑟𝑓, where 𝛿𝑟𝑓 = 1 if operator 𝑓 is on path 

𝑟, the minimum amount needed to switch one user from one of the optimal paths operated by 

𝑓 to the new path. When evaluating all operators and adding the user payoff, this becomes Eq. 

(8). 

 

𝑢𝑠 + ∑ sup
𝑟∈𝑅𝑠

∗
𝛿𝑟𝑓𝑝𝑟𝑓

𝑓∈𝐹𝑟′

 (8) 
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Combining with Eq. (7) leads to the following inequality in Eq. (9). 

 

𝑢𝑠 + ∑ sup
𝑟∈𝑅𝑠

∗
𝛿𝑟𝑓𝑝𝑟𝑓

𝑓∈𝐹𝑟′

≥ 𝑈𝑠 − ∑ (𝑡𝑖𝑗 + 𝜇𝑖𝑗
∗ + 𝑐𝑖𝑗(1 − 𝑦𝑖𝑗

∗ ))
(𝑖,𝑗)∈𝐴𝑟′

, 𝑠 ∈ 𝑆, 𝑟′ ∈ 𝑅𝑠\𝑅𝑠
∗ (9) 

  

The supremum is nonlinear but can be removed by replacing Eq. (9) with a set of constraints 

comparing 𝑟′ ∈ 𝑅𝑠\𝑅𝑠
∗ with each 𝑟 ∈ 𝑅𝑠

∗. In addition, the following relationship for the set of 

prices holds in Eq. (10). 

 

∑ 𝑝𝑟𝑓

𝑓∈𝐹𝑟′

= ∑ 𝑝𝑟𝑓

𝑓∈𝐹𝑟′∩𝐹𝑟

+ ∑ 𝑝𝑟𝑓

𝑓∈𝐹𝑟′\𝐹𝑟

 (10) 

  
∑ 𝑝𝑟𝑓𝑓∈𝐹𝑟′\𝐹𝑟

= 0 since these prices belong on the unmatched paths. Eq. (9) is then 

equivalent to the linear set of Eq. (6).  ∎ 

 

 

 The stable outcome problem is then defined as a mathematical program with linear constraints 

formed by Eq. (5) – (6). The objective can be set to maximize user cost allocation (seller-optimal: 

max 𝑍 = ∑ ∑ 𝑝𝑟𝑓𝑧𝑟𝑟∈𝑅𝑓 ) or to maximize operator cost allocation (buyer-optimal: max 𝑍 = ∑ 𝑢𝑠𝑠 ), 

both of which lead to linear objectives. Since the first two objectives are linear, determining the 

stable outcome space between them can therefore be done using linear programming. 

 

3.1.3. Model properties and limitation considerations 

 The proposed model is static and designed for planning purposes. Much like how dynamic 

traffic can be modeled by static models for some purposes (e.g. link expansions and pricing 

decisions) but dynamic models are needed for other purposes (e.g. dynamic route guidance 

technologies or traffic control strategies), this model can be used to capture certain aspects of 

dynamic MaaS services like ride-hail, demand responsive transit, or shared vehicles. For example, 

shared vehicles fundamentally operate in a dynamic manner with capacities that change throughout 

the day based on pickups and drop-offs and rebalancing strategy. Nonetheless, one can observe 

such a system over multiple days and use the maximum flows between nodes to model the steady 

state of such a system as a complete graph with those steady state capacities. Such a model can be 

used to evaluate the propensity for the service to serve traveler demand, although it would not be 

adequately sensitive to comparing rebalancing strategies in an operational setting. Like the 

progression of traffic assignment toward dynamic traffic assignment, a dynamic assignment game 

model would be needed for this purpose. 

Proper calibration of the model parameters is essential to provide empirical validation. The 

link travel costs should correspond to average undersaturated flow travel costs. Capacity may be 

obtained from service frequency or based on observed steady state maximum flows. Operating 

costs can also be obtained from data directly. The most challenging parameter to calibrate is the 

utility 𝑈𝑠, which is generally a latent and heterogeneous attribute. One way to calibrate it is to use 
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an existing market scenario. That was the approach adopted by Rasulkhani and Chow (2019) in 

their case study of NYC taxis, using the existing operations to determine the lower bound utilities.  

A better approach is to estimate the utilities with a random utility model estimated from data. 

Utility can be modeled as the sum of the generalized route cost, a constant term (which is also 

calibrated) plus a random error term: 𝑈𝑠𝑟 = 𝑈𝑠
0 + 𝑡𝑠𝑟 + 𝜀𝑠𝑟. We investigated this in a separate 

study of applying the model from Rasulkhani and Chow (2019) to real data in Ma et al. (2020). In 

that study, stochastic utility was used to account for heterogeneous user preferences in an 

assignment game. The challenge in that approach is that the stability condition previously used is 

no longer applicable, and alternative stochastic stability conditions are needed (e.g. 𝜖-stability 

(Wang et al., 2018)). We intend to investigate such extensions for the proposed model in future 

research. 

 

3.2. Closed form examples using proposed model 

The model is used to provide a closed-form solution to stylized settings to illustrate its 

capabilities. Two cases are shown in Figure 3. 

 

 
 
Figure 3. (a) choosing between cooperation and competition; (b) small operator against a larger operator. 
 

 

3.2.1. Case 1: Choosing cooperation over competition 

In this example, the orange operator can choose between serving a link in competition or one 

in cooperation. In order to serve users travelling from node 1 to node 3 the orange operator must 

choose between operating link 13 directly or cooperating with the blue operator and operate link 

23. Suppose capacity is sufficiently large for all links. 

 

Lemma 1. In a 2-operator game as shown in Figure 3a, let 𝑦12 be the binary decision for an 

operator without the option of providing solo service; and let 𝑦23 be the cooperation decision and 

𝑦13 be the solo operating decision of a separate operator. A lower bound for the stable outcome 

for the latter operator to enter a cooperative multimodal solution with the former operator (𝑦12 =
𝑦23 = 1) instead of providing solo service (𝑦13 = 1) is shown in Eq. (11). 

 

𝑝𝑜 ≥
𝑐12 + 𝑐23

𝑑
− 𝑡13 − 𝑐13 + 𝑡12 + 𝑡23, if 𝑡12𝑑 + 𝑡23𝑑 + 𝑐12 + 𝑐23 ≤ 𝑡13𝑑 + 𝑐13 (11) 

1 2 3 

1 2 3 4 

(a) 

(b) 
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The proof is Appendix A. 

 

Lemma 1 provides a bound that is independent of the cost allocation of the other operator or 

users, or their utilities. It provides insight for operators that have a choice of operating alone or 

teaming with other operators that may not have the option to choose to serve solo. This may prove 

insightful when considering MaaS markets and when it is worthwhile for an operator to team with 

another, particularly in fulfilling last mile service. 

 

3.2.2.  Case 2: Bargaining power of small operators (orange) serving a segment of a larger 

transit line (blue) 

Consider Figure 3b, which represents a smaller operator (orange) serving one segment of a 

multi-segment route operated by a larger operator (blue). There may be multiple OD pairs, but 

given that there’s only one segment that differs, we can express all the OD pairs equivalently as 

one OD pair for (1,4) with two paths. Path 1 is operated by the blue operator without making any 

transfers. Path 2 involves having travelers transfer at node 2 to the orange operator and back to the 

blue at node 3.  

We study the pricing power of a smaller operator (orange) compared to a larger (blue) that 

has more access to right of way. We assume that capacity is not binding, i.e. 𝜇23
𝑏𝑙𝑢𝑒 = 0. Path 2 is 

optimal when: 𝑡23
𝑜 ≤ 𝑡23

𝑏 , where 𝑡23
𝑜  (travel time for orange operator) may include transfer times.  

 

Lemma 2. For the 2-operator assignment game in Figure 3b with demand for (1,4) and non-

binding capacities, the upper bound on the stable outcome for a smaller operator is shown in Eq. 

(12) if 𝑡23
𝑜 ≤ 𝑡23

𝑏 . 

 

𝑝2𝑜 ≤ {
𝑡23

𝑏 − 𝑡23
𝑜 + 𝑐23

𝑏 , if 𝑥23
𝑏 = 0

0, if 𝑥23
𝑏 > 0

 (12) 

 

The proof of Lemma 2 is Appendix B. The lemma suggests that a small operator can only reach a 

positive stable outcome if they are strictly improved in travel time than the larger operator, and the 

pricing they set cannot exceed the difference in performance. For example, as the travel time 

difference 𝑡23
𝑏 − 𝑡23

𝑜  decreases toward zero, the upper bound is primarily influenced by the cost of 

the larger operator. Noting the feasibility condition 𝑝2𝑜𝑑 > 𝑐23
𝑜 , then a stable outcome can only 

exist for this extreme setting if 
𝑐23

𝑜

𝑑
< 𝑐23

𝑏 . On the other hand, if the links are collectively so long 

that there is room for 𝑡23
𝑏 − 𝑡23

𝑜  to dominate, then a stable outcome can exist with 
𝑐23

𝑜

𝑑
< 𝑡23

𝑏 − 𝑡23
𝑜 . 

 

3.3. Non-uniqueness discussion 

Since we propose to use this model as a descriptive tool for policymakers, the issue of non-

uniqueness needs to be discussed. An outcome depends on a path flow assignment. However, a 

path flow solution is non-unique to Eq. (4). Due to the non-uniqueness of paths in the matching 

solution, the set of operator-routes that enter the market at equilibrium, and the corresponding cost 
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allocations, is not unique. As discussed in Rasulkhani and Chow (2019), many-to-many 

assignment games (of which this model belongs) are known not to have one-to-one correspondence 

between the matching solutions and the outcomes. Still, some quantities (and their associated 

measures) are unique: e.g. link flows and sum of capacity dual variables along each path, and 

consequently the total revenues that can be gained by all operators and total consumer surplus 

gained by users are also unique. These measures are still useful for comparing between alternative 

platform designs. 

In addition, the outcomes depend on the selection of links to serve (the 𝑦𝑖𝑗
∗  in Eq. (6)), the path 

flows (𝑧𝑟
∗ in Eq. (5d)), and the capacity dual variables (the 𝜇𝑖𝑗

∗  in Eq. (6)). This means that there is 

a unique stable outcome space for a given matching, even if we cannot guarantee the opposite. 

Figure 4 illustrates how two different matches may lead to one outcome space each. For example, 

we might assume a market is under Match 1 and quantify its measures based on Outcome Space 

1. If such an outcome is implemented based on this result but it turns out to be stable for another 

optimal Match 2, the solution is still optimal, but the measures may not reflect values from original 

assumed Match 1. However, Match 2 should still lead back to Outcome Space 1. 

 

 
Figure 4. The many-to-one association of matches to outcomes due to the non-unique matches in the 

many-to-many assignment game. 

 

 The implication of this many-to-one correspondence between optimal matches and outcome 

spaces is that sampling of MaaS operators’ user data to obtain the realized MaaS paths after 

implementation (which is possible under a unified platform that tracks service usage through 

mobile apps, for example) provides a means to update the measures to the new matching solution. 

In this latter use, the model provides ex post evaluation. 

 In summary, many-to-many assignment games like the proposed model are limited in the 

interpretation of stable outcomes because of non-uniqueness. Nonetheless we can still learn much 

in terms of unique link measures, aggregate measures, and can justify using the model in ex post 

analysis to explain effects. 

  

 

4. CONSTRAINT GENERATION ALGORITHM USING 

LEXICOGRAHPIC CORE ALLOCATIONS 
 

It is not practical to explicitly enumerate all feasible paths 𝑅𝑠 to construct the stability 

constraints in Eq. (6). We develop a method similar to Bahel and Trudeau (2014) to identify only 

Match 1 

Match 2 

…
 

Outcome 

Space 1 
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the paths that form the extreme boundaries of the shortest path problem cooperative game to 

determine a subset 𝑅̃𝑠 ⊂ 𝑅𝑠 that can produce an equivalent set of constraints to Eq. (6). The 

algorithm leads to exact solutions. 

 
4.1. Solution algorithm 

 We propose an algorithm that generates a subset of feasible routes. This subset is chosen such 

that they form the extreme points of a core of a shortest path game. A shortest path game involves 

a set of operators forming coalitions to provide shortest paths to connect sources to sinks. The core 

is the set of cost allocations that ensure no player in a coalition would break away. Fragnelli et al. 

(2000) provide an overview of this class of problems.  

 In generating the alternative paths, we define a cost for a set of links corresponding to a 

shortest path game as 𝜔𝑟   shown in Eq. (13).  

 

 𝜔𝑟 = ∑ (𝑡𝑖𝑗 + 𝜇𝑖𝑗
∗ + 𝑐𝑖𝑗(1 − 𝑦𝑖𝑗

∗ ))
(𝑖,𝑗)∈𝐴𝑟

, ∀𝑟 ∈ 𝑅 (13) 

 

We express a solution to the shortest path problem (SPP) in coalitional form. The optimal path 

that corresponds to a user 𝑠 ∈ 𝑆 is 𝑟 = arg min{𝜔𝑠(𝑟′)|𝑟′ ∈ 𝑅𝑠}. The coalition formed is 𝑉∗ =
𝐹𝑟 ∪ {𝑠}. Given an optimal path 𝑟 ∈ 𝑅𝑠

∗ and the set of operators 𝐹𝑟, the extreme points of the core 

are defined by 𝑎𝜋 for a lexicographically ordered subcoalition 𝜋 ∈ Π(𝐹𝑅𝑠
∗). These permutations 

are expressed by a set of indexed operators that are listed in lexicographical ordering shown in Eq. 

(14). 

 

∅ ≠ {𝑓 ∈ 𝐹𝑟} = {𝑓1, … , 𝑓𝑙} (14) 

  

where 𝑙 ≥ 1 and 𝜋(𝑓1) < ⋯ < 𝜋(𝑓𝑙). For example, given an optimal path r that corresponds to a 

set of three operators 𝐹𝑟 = {1,2,3} such that the ordering of operators along the path is 
[2,1,3]. Regardless of the ordering, the corresponding lexicographically ordered subcoalition is 

𝜋 = [1,2,3] with 𝜋𝑓1
= 1. 

 Next, we propose a decomposition technique similar to Bahel and Trudeau (2014) to derive 

the allocations that lie at the extreme points of the core 𝑎𝜋 associated with 𝜋 ∈ Π(𝐹𝑅𝑠
∗) that 

correspond to a set of optimal paths 𝑅𝑠
∗ ∀𝑠 ∈ 𝑆. Our algorithm differs from Bahel and Trudeau 

(2014) in two ways. They consider network nodes to be owned by a set of agents and focuses on 

logistics networks and use the algorithm to produce stable shortest paths. However, in our study 

we consider multimodal capacitated links. The paths generated are used as the equivalent 

replacement of a fully enumerated path set for determining the stable outcome subproblem 

constraints.  

 

Algorithm 1 generates stability constraints for each user in the network (step 1). If the set 𝑅𝑠
∗ 

contains more than one path, then: 𝐹𝑅𝑠
∗ =∪ 𝐹𝑟  ∀𝑟 ∈ 𝑅𝑠

∗ (step 2 & 3). The algorithm generates 

optimal paths (step 5) without the participation of any subset (permutation) of operators found in 

the set of optimal paths 𝑅𝑠
∗ (step 4).  



  

18 

 

 

Algorithm 1. Constraint generation for Eq. (6) without explicit path enumeration  

1. For each user in the set 𝑆 do 

2.        Set 𝑅𝑠
∗ = {𝑟 ∈ 𝑅𝑠|𝜔(𝑟) ≤ 𝜔(𝑟′) ∀𝑟′ ∈ 𝑅𝑠} 

3.               For each optimal path 𝑟 ∈ 𝑅𝑠
∗ do 

4.                       For 𝜋 in Π(𝐹𝑅𝑠
∗) do 

5.                               Generate 𝑢𝑠 + ∑ 𝑝𝑟𝑓𝑓∈(𝐹𝑟∩𝐹𝑟̅𝜋) ≥ 𝑈𝑠 − 𝜔𝑠(𝑟̅𝜋),  

where 𝑟̅𝜋 = arg min{𝜔𝑠(𝑟)|𝑟 ∈ 𝑅𝑠 𝑠. 𝑡. 𝜋 ∩ 𝐹𝑅𝑠
∗ = ∅ }   

 

In identifying the feasible paths 𝑅𝑠 for creating the stability constraints Eq. (6), a path in which 

the cost allocations lie outside of the core need not be compared to if there’s a better path to 

compare against, as presented in Proposition 2.  

 

Proposition 2. The generation of stability constraints for each optimal path 𝑟 ∈ 𝑅𝑠
∗ using 

Algorithm 1 is equivalent to the constraints in Eq. (6) formed from 𝑅𝑠. 

 

Proof. An allocation for the shortest path problem 𝑅𝑠 = (𝐹, 𝜔, 𝑑𝑠) and a permutation 𝜋 of an 

optimal path is given by 𝑎𝜋(𝑅𝑠). To establish that the constraint generation algorithm is 

equivalent, we need to show that 𝑎𝜋(𝑅𝑠) is an extreme point of the core of the SPP. The 

allocation 𝑎𝜋 is well defined since: 𝑎𝑠
𝜋 + ∑ 𝑎𝑓𝑖

𝜋𝑙
𝑖=1 = 𝑈𝑠 − 𝜔𝑟 and 𝑎𝑓 = 0 if  𝑓 ∉ {𝑓1, . . , 𝑓𝑙}. 

First, 𝑎𝜋 is shown to be stable when no sub-coalition 𝑉 ⊆ 𝑉∗ can achieve a higher profit in 

another coalition than through their share in 𝑎𝜋(𝑉). 

1) If the traveler 𝑠 ∉ 𝑉 then obviously no coalition can improve on 𝑎𝜋, since 𝑎𝜋(𝑉) ≤
0. 

2) If a path does not include any of the operators that lie in the optimal path set: 𝑠 ∈
𝑉 and 𝑉 \{𝑠} ⊆ 𝐹\{𝑓1, … , 𝑓𝑙} then: 

 

𝑎𝜋(𝑉) = 𝑎𝑠
𝜋 = (𝑈𝑠 − 𝜔(𝑟)) − 𝑎𝑓1

𝜋 − ⋯ − 𝑎𝑓𝑙

𝜋 = 𝑈𝑠 − 𝜔𝑠(𝑟̅𝜋) ≥ 𝑈𝑠 −

𝜔(𝑟′) ∀𝑟′ ∈ 𝑅𝑠 𝑠. 𝑡. 𝐹𝑟′ ⊆ 𝐹 \{𝑓1, … , 𝑓𝑙}.   
 

3) For the case that a path includes any subset of operators that also belongs to the 

optimal path operator set: 𝑠 ∈ 𝑉 and (𝑉\{𝑠}) ∩ {𝑓1, … , 𝑓𝑙} = {𝑘1, … , 𝑘𝑡}, 1 ≤ 𝑡 ≤
𝑙 𝑎𝑛𝑑 𝜋(𝑘1) < ⋯ < 𝜋(𝑘𝑡) < 𝜋(𝑠) we get:  

 

𝑎𝜋(𝑉) = 𝑎𝑘1

𝜋 + ⋯ + 𝑎𝑘𝑡

𝜋 + 𝑎𝑠
𝜋 = 𝑎𝑘1

𝜋 + ⋯ + 𝑎𝑘𝑡

𝜋 + (𝑈𝑠 − 𝜔𝑠(𝑟̅𝜋)) 

 

Assume by contradiction that there exists a higher payoff path 𝑟′ ∈ 𝑅𝑠 𝑠. 𝑡. 𝐹𝑟′ ⊆
𝑉: 

 

𝑈𝑠 − 𝜔𝑟′ > 𝑎𝜋(𝑉) = 𝑎𝑘1

𝜋 + ⋯ + 𝑎𝑘𝑡

𝜋 + (𝑈𝑠 − 𝜔𝑠(𝑟̅𝜋)) 

 

The number of permutations is 𝑛𝑡′ ≡ |{𝑓 ∈ 𝐹𝑟′  𝑠. 𝑡.  𝜋(𝑓) < 𝜋(𝑘𝑡′)}| + 1 for 1 ≤
𝑡′ ≤ 𝑡. Then we can write that: 
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𝑈𝑠 − 𝜔𝑛1
(𝑟′: 𝑓𝑘1

∉ 𝐹𝑟′) ≡ (𝑈𝑠 − 𝜔𝑛1−1(𝑟′)) − 𝑎𝑘1

𝜋  and since 𝜔𝑛1−1(𝑟′) ≤

𝜔(𝑟′): 

 

𝜔𝑛1−1(𝑟′) − 𝑎𝑘1

𝜋 ≤ 𝜔(𝑟′) − 𝑎𝑘1

𝜋 < 𝑎𝑘2

𝜋 + ⋯ + 𝑎𝑘𝑡

𝜋 + 𝜔𝑠(𝑟̅𝜋) 

 

For 𝑘2, we repeat the same process:  

 

𝜔𝑛2
(𝑟′: 𝑓𝑘1

, 𝑓𝑘2
∉ 𝐹𝑟′) ≤ 𝜔𝑛1

(𝑟′: 𝑓𝑘1
∉ 𝐹𝑟′) − 𝑎𝑘2

𝜋 < 𝑎3
𝜋 + ⋯ + 𝑎𝑘𝑡

𝜋 + 𝜔𝑠(𝑟̅𝜋) 

 

For the 𝑡𝑡ℎ repetition, we get Eq. (15). 

 

𝜔𝑛𝑡
(𝑟′: 𝑓𝑘1

, … , 𝑓𝑘𝑡
∉ 𝐹𝑟′) ≤ 𝜔𝑛𝑡−1

(𝑟′: 𝑓𝑘1
, … , 𝑓𝑘𝑡−1

∉ 𝐹𝑟′) − 𝑎𝑘𝑡

𝜋 < 𝜔𝑠(𝑟̅𝜋) (15) 

 

Given that 𝑓𝑞 ∉ 𝑉, for any 𝑓𝑞 ∈ 𝐹𝑟 s.t. 𝜋(𝑓𝑞) > 𝜋(𝑘𝑡) we can conclude that: 

𝜔𝑞(𝑟′: 𝑓𝑘1
, … , 𝑓𝑘𝑡

∉ 𝐹𝑟′) = 𝜔𝑛𝑡
(𝑟′: 𝑓𝑘1

, … , 𝑓𝑘𝑡
∉ 𝐹𝑟′), for any 𝑞 = 𝑛𝑡 , … , 𝑙 and  

𝜔𝑙(𝑟′: 𝑓𝑘1
, … , 𝑓𝑘𝑡

∉ 𝐹𝑟′) = 𝜔𝑛𝑡
(𝑟′: 𝑓𝑘1

, … , 𝑓𝑘𝑡
∉ 𝐹𝑟′). From Eq. (15) we get: 

 

𝜔𝑙(𝑟′: 𝑓𝑘1
, … , 𝑓𝑘𝑡

∉ 𝐹𝑟′) < 𝜔𝑠(𝑟̅𝜋) 

 

This is a contradiction since 𝜔𝑠(𝑟̅𝜋) is a minimal cost path. This concludes the proof 

that the constraint bound 𝜔(𝑟̅𝜋) generated by:  𝑟̅𝜋 = 𝑎𝑟𝑔𝑚𝑖𝑛{𝜔(𝑟)|𝑟 ∈ 𝑅𝑠 𝑠. 𝑡. 𝜋 ∩
𝐹𝑟 = ∅ corresponds to permutation the extreme point of the core 𝑎𝜋, which implies 

that 𝜔̅𝑙
𝑠(𝜋) is the minimal cost corresponding to the core vertices which includes 

operators 𝑓 ∈ 𝜋. This means finding only constraints corresponding to the extreme 

points is equivalent to constraints formed from explicit enumeration of all 

candidate paths. ∎ 

 

Bahel and Trudeau’s (2014) proof was applied to generate core extrema. Our proof explicitly 

deals with the equivalency of the constraint sets. Algorithm 2 provides a summary of the entire 

solution procedure that was described in Sections 3 and 4.   

 

Algorithm 2. Solution method for finding stable outcomes of many-to-many assignment 

game 

 

1. Solve the matching problem as an MCND using an existing solution algorithm, e.g. path-based 

column generation algorithm (Gendron and Larose, 2014), to obtain links operated 𝑦𝑖𝑗
∗  and a 

set of user paths 𝑅𝑠
∗.  

2. Fix the values of 𝑦𝑖𝑗
∗  and solve the LP subproblem of Eq. (4) to obtain link capacity dual 

variables 𝜇𝑖𝑗
∗  and path flows 𝑧𝑟

∗. 

3. Construct the stable outcome problem depending on objective function. The constraints of the 

program include the linear feasibility conditions in Eq. (5) and the linear stability conditions 

in Eq. (6). The extreme points of the core of 𝑅𝑠 are used to generate the stability constraints 

(Eq. (6)) using Algorithm 1. 
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4. Solve the stable outcome problem for the buyer-optimal and seller-optimal extremes to 

determine the range of stable outcomes corresponding to the matching solution.  

 

 

 

4.2. Illustrative instance 

An example of the model is shown in Figure 5 for a market with node 2 decomposed into 

transfer links ((21,22), (21,23)) not owned by any operator. There are two OD pairs, each with 

utilities of 𝑈𝑠 = 20 and demand 𝑑13 = 1000 and 𝑑14 = 500. Operator A (blue) owns links {(1,3), 

(1,21)}, operator B (orange) owns (22,3), operator C (green) owns (23,4), operator D (red) owns 

(1,4), operator E (purple) has (1,5) and (5,4), and operator F (yellow) (1,6) and (6,4). The optimal 

assignment from the matching problem has 1000 flow on (1,3), 200 flow on (1,21,23,4), and 300 

flow on (1,4). The grey colored links represent transfers between operators. The capacity at link 

(1,21) is binding with a corresponding dual variable 𝜇12 = 4. 

 

 
Figure 5. Example network with 6 nodes, 6 operators, and 2 OD pairs assigned to 6 paths. 

 

 

Algorithm 2 is illustrated to generate stability constraints for the stable outcome problem. 

The path flows are 𝑧1 = 1000, 𝑧2 = 200, 𝑧3 = 300 corresponding to the dashed lines in Figure 

5, where path 1 is (1,3), path 2 is (1,21,23,4), and path 3 is (1,4). The operator set is 𝐹 =
{𝐴, 𝐵, 𝐶, 𝐷}. Constraints (5a) – (5d) for this example are reflected as Eq. (16) – (23). 

 

𝑝1,𝐴 + 𝑢(1,3) = 13 (16) 

1 21 

3 

4 

[200] 

[300] 

[1000] (7,200,2000) 
(3,200,1000) 

(2,200,200) 

(2,200,1000) 

(10,200,1000) 

Legend: 

(𝑡𝑖𝑗 , 𝑐𝑖𝑗, 𝑤𝑖𝑗) 

[𝑧𝑟
∗],  [[𝜇𝑖𝑗

∗ ]] 

[[4]] 

22 

23 

(2,0,∞) 

(2,0,∞) 

5 

(5,200,1000) 

(5,200,1000) 

6 

(6,200,1000) 

(6,200,1000) 
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𝑝2,𝐴 + 𝑝2,𝑐 + 𝑢(1,4) = 14 (17) 

𝑝3,𝐷 + 𝑢(1,4) = 10 (18) 

1000𝑝1,𝐴 + 200𝑝2,𝐴 ≥ 400 (19) 

200𝑝2,𝑐 ≥ 200 (20) 

300𝑝3,𝐷 ≥ 200 (21) 

𝑝𝑟𝑓 , 𝑢𝑠 ≥ 0 (22) 

𝑝𝑟0 = 0 (23) 

 

The steps of Algorithm 1 are then shown below. 

 

1. For the user (1,3) we have only 𝑟 = (1,3) as the optimal path and 𝐹𝑟 = {𝐴} 

o The set of permutations: 𝜋 = {𝐴}   

o We solve the problem: 𝑟̅𝜋 = 𝑎𝑟𝑔𝑚𝑖𝑛{𝜔𝑠(𝑟)|𝑟 ∈ 𝑅𝑠 𝑠. 𝑡. 𝜋 ∩ 𝐹𝑟 = ∅ }  and obtain 

𝑟̅𝜋 = ∅, since the alternative path of link (1,21) also belongs to operator A.  

 

2. For the user (1,4) we have 𝑅(1,4) = {(1,23,24,4), (1,4)} as the optimal path set. 

o The operator set includes operators from both paths 𝐹𝑅(1,4)
= {𝐴, 𝐶, 𝐷} (we do not 

include the transfer link). 

o Π(𝐹𝑅(1,4)
) = {(𝐴), (𝐶), (𝐷), (𝐴, 𝐶), (𝐴, 𝐷), (𝐶, 𝐷), (𝐴, 𝐶, 𝐷)}. 

o For cases when 𝜋: 𝜋\{(𝐴, 𝐶)},  𝑟̅𝜋 = (1,23,24,4) and  𝜋: 𝜋\{(𝐷)}, 𝑟̅𝜋 = (1,4), we 

do not need to generate stability constraints for optimal paths since Eqs. (17) – (18) 

require equal user payoff for both routes 𝑢(1,4).   

o For the cases: 𝜋 ∈ {(𝐴, 𝐶, 𝐷), (𝐴, 𝐷), (𝐶, 𝐷)}, 𝑟̅𝜋 = (1,5,4) and 𝜔(𝑟̅𝜋) = 7 + 3 +

200⏟
𝑐15

+ 200⏟
𝑐54

  and optimal path 𝑟 = (1,23,24) we generate Eq. (24) as an equivalent 

to Eq. (6). 

𝑢(1,4) ≥ −390 (24) 

 

The algorithm avoids including the stability constraint for the alternative feasible path (1,6,4), 

𝑢(1,4) ≥ −392, since that is not part of the extrema. That constraint would be dominated by Eq. 

(24). 

Based on the constraints, the buyer-optimal and seller-optimal allocations are shown in Table 

2. Operator B does not enter the market. Since there are no identical non-binding, used paths in 

this example, the path flow solution is unique, and we can therefore get unique revenues per 

operator. For this mix of operated links, Operator A stands to gain net profits between 333.33 to 

15,600, Operator C can only gain up to 200 and Operator D up to 3000. As seen from these results, 

Operator A has the most profit to gain due to negotiating power from the binding capacity in link 

(1,21). At this stage, the operators and users (through the city agency as proxy) can work out the 

cost allocation mechanism that falls within the convex outcome range. 

From this example, we can extract sensitivity of each operator’s performance and consumer 

surplus based on changes in link capacities, OD demand, utility per OD pair (which relates to 

users’ preference relative to other mobility options outside of the platform), operating cost, 
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generalized travel disutility (alterations in-vehicle time, access time, transfer time, wait time due 

to external factors or operator policies), and addition/removal of operator candidate links. 

 
Table 2. Solution to example M2M problem 

  Buyer-optimal Seller-optimal 

(Operator,user-route) Flow ∑ 𝒛𝒓𝒓∈𝑹𝒇
 Price 𝒑𝒓𝒇 Price 𝒑𝒓𝒇 

   (A, (1,3)) 1000 $0 $13 

   (A, (1,21,23,4)) 200 $3.67 $13 

   (C, (1,21,23,4)) 200 $1.0 $1 

   (D, (1,4)) 300 $0.67 $10 

User group-route  

𝑼𝒔 − ∑ (𝒕𝒊𝒋)
(𝒊,𝒋)∈𝑨𝒓

 

𝑼𝒔 − ∑ (𝒕𝒊𝒋)
(𝒊,𝒋)∈𝑨𝒓

− ∑ 𝒑𝒓𝒇

𝑓∈𝐹𝑟

 

𝑼𝒔 − ∑ (𝒕𝒊𝒋)
(𝒊,𝒋)∈𝑨𝒓

− ∑ 𝒑𝒓𝒇

𝑓∈𝐹𝑟

 

   ((1,3),(1,3)) $13 $13 $0 

   ((1,4),(1,21,23,4)) $14 $9.33 $0 

   ((1,4),(1,4)) $10 $9.33 $0 

Operator  ∑ 𝑝𝑟𝑓𝑧𝑟

𝑟∈𝑅𝑓

− ∑ 𝑪𝒊𝒋𝒚𝒊𝒋

(𝒊,𝒋)∈𝑳𝒇

 ∑ 𝑝𝑟𝑓𝑧𝑟

𝑟∈𝑅𝑓

− ∑ 𝑪𝒊𝒋𝒚𝒊𝒋

(𝒊,𝒋)∈𝑳𝒇

 

   A  $333.33 $15,600 

   B  $0 $0 

   C  $0 $200 

   D  $0 $3000 

   E  $0 $0 

   F  $0 $0 

 

 

5. NUMERICAL TESTS 
 

 Having illustrated the model and algorithm, we test the effectiveness of the method on a larger 

instance, the classic 24-node Sioux Falls network (see Stabler, 2019) as shown in Figure 6a. In 

this duopoly there are two operators: Operator 1 (blue) is a bus network while Operator 2 (orange) 

is a set of two rail lines. Transfer links are denoted by grey links (28 additional links added, 14 

nodes added, for total of 38 nodes and 104 links). Since a network of even this size is too large for 

explicit path enumeration for the 552 OD pairs, we divide the tests into two sections: 

• Section 5.1 takes a subnetwork of Sioux Falls with only 4 OD pairs that can be solved using 

the explicit path enumeration to compare to the effectiveness of the proposed algorithm.  

• Section 5.2 takes the full Sioux Falls network with added transfer links to test the scalability 

of the algorithm. 

 

5.1. Sioux Falls subnetwork  

 

5.1.1. Experimental design 

We consider two operators in the base scenario. For this base scenario, we assume that both 

operators have revenue maximization (max 𝑍 = ∑ 𝑝𝑟𝑓𝑧𝑟𝑟∈𝑅𝑓
)  as their objective. Relative to this 

baseline, we seek several experimental objectives: 
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1) Assessing the new prevailing market conditions and payoff allocations when one of the 

two operators is acquired by a government agency and becomes welfare maximizing. 

2) Evaluate the entry of a new operator to the consumer surplus and market revenues of 

existing operators. 

3) Evaluate the impact of one operator increasing its binding capacity on the consumer 

surplus and market revenues of other operators. 

4) Evaluate the effect of technology improvement (e.g. improved matching algorithms) that 

reduce operating costs 𝑐𝑖𝑗 for privately operated links while increasing travel times 𝑡𝑖𝑗 for 

the whole network. 

 

The free flow travel times from Sioux Falls are used as the 𝑡𝑖𝑗 and set the same as 𝑐𝑖𝑗. The 

cost units are all in $. The parameters are listed in Table 3.  

 

 

 
Figure 6. Sioux Falls (a) network with transfer links (grey), a rail operator (orange), and a bus transit 

operator (blue); and (b) Eq. (4) assignment under modified subnetwork OD demand with 0 cost transfers.  
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Table 3. Parameters for Sioux Falls examples 

 (𝒊, 𝒋) 𝒘𝒊𝒋 𝒄𝒊𝒋/𝒕𝒊𝒋 (𝒊, 𝒋) 𝒘𝒊𝒋 𝒄𝒊𝒋/𝒕𝒊𝒋 (𝒊, 𝒋) 𝒘𝒊𝒋 𝒄𝒊𝒋/𝒕𝒊𝒋 (𝒊, 𝒋) 𝒘𝒊𝒋 𝒄𝒊𝒋/𝒕𝒊𝒋 

(1,2) 25901 6 (8,7) 7842 3 (13,24) 5092 4 (119,117) 4824 2 

(101,103) 23404 4 (8,9) 5051 10 (14,11) 4877 4 (119,120) 5003 4 

(2,1) 25901 6 (108,116) 5046 5 (14,15) 5128 5 (20,18) 23404 4 

(102,106) 4959 5 (9,5) 10000 5 (14,23) 4925 4 (120,119) 5003 4 

(103,101) 23404 4 (9,8) 5051 10 (15,10) 13513 6 (20,21) 5060 6 

(3,4) 17111 4 (9,10) 13916 3 (15,14) 5128 5 (20,22) 5076 5 

(103,112) 23404 4 (10,9) 13916 3 (15,19) 14565 3 (21,20) 5060 6 

(4,3) 17111 4 (10,11) 10000 5 (15,22) 9600 3 (21,22) 5230 2 

(4,5) 17783 2 (10,15) 13513 6 (116,108) 5046 5 (21,24) 4886 3 

(4,11) 4909 6 (10,16) 4855 4 (16,10) 4855 4 (22,15) 9600 3 

(5,4) 17783 2 (10,17) 4994 8 (116,117) 5230 2 (22,20) 5076 5 

(5,6) 4948 4 (11,4) 4909 6 (16,18) 19680 3 (22,21) 5230 2 

(5,9) 10000 5 (11,10) 10000 5 (17,10) 4994 8 (22,23) 5000 4 

(106,102) 4959 5 (11,12) 4909 6 (117,116) 5230 2 (23,14) 4925 4 

(6,5) 4948 4 (11,14) 4877 4 (117,119) 4824 2 (23,22) 5000 4 

(106,108) 4899 2 (112,103) 23404 4 (18,7) 23404 2 (23,24) 5079 2 

(7,8) 7842 3 (12,11) 4909 6 (18,16) 19680 3 (24,13) 5092 4 

(7,18) 23404 2 (112,113) 25901 3 (18,20) 23404 4 (24,21) 4886 3 

(108,106) 4899 2 (113,112) 25901 3 (19,15) 14565 3 (24,23) 5079 2 

 

5.1.2. Computational test for Algorithm 2 

The solution to Eq. (4) for the network with $0 cost transfer links is shown in Figure 6b, 

where the red links are the ones that need to be operated. From this solution, only link 58 (node 

119 to 117) is at binding capacity resulting in a dual variable of 𝜇58
∗ = 1. Table 4 summarizes all 

these results which are discussed subsequently in each section. Columns with brackets [  ] refer to 

measures for each operator (blue, orange, and green for the scenario with a new operator).  

 The last two columns refer to the run times via explicit path enumeration versus the Algorithm 

2 approach. Two numbers are included in each cell; the first number is the time it takes to construct 

the constraints for the stable outcome model while the latter is the solution time (in milliseconds).  

Two significant results are achieved. First, the tests verify that the proposed Algorithm 2 

obtains the same results as the path enumeration for Eq. (6). Second, the computational savings 

when using the constraint generation method instead of path enumeration are highly significant. 

The problem’s solution time is reduced on average by 98%.  

 

5.1.3. Rail-bus duopoly 

The network duopoly shown in Figure 6a is treated as the “base scenario”. We assume that 

the rail service sets a unique cash price for all O-D routes that use it. This “cash fare” policy results 

in a more constrained price setting than the stability conditions in Eq. (5) – (6) where pricing could 

vary by user route.   

 
Table 4. Comparison of aggregate measures of different scenarios with 𝑈𝑆 = 20 
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Parameters: 

Revenues ($) 

[𝒇 = 𝟏, 𝟐, 𝟑] 

Avg. 

operator fare 

($) 

[𝒇 = 𝟏, 𝟐, 𝟑] 

Avg. 

operated 

link revenue 

($) 

Operator 

ridership 

∑ 𝒛𝒓𝒓∈𝑹𝒇
 

[𝒇 = 𝟏, 𝟐, 𝟑] 

Runtime: 

Model 

generation / 

Solution 

(msec) 

(original 

LP) 

Runtime: 

Model 

generation 

/ Solution 

 (msec) 

(constraint 

generation) 

Scenarios: 

Network 

duopoly  

(Base scenario) 

[24424,18000] [2,2] 2497 [12200,9000] 
6259.2 / 

20.4 
28.8 / 0.3 

Government 

rail acquisition  
[42417,7] [3.47,0.0008] 2497 [12200,9000] 6259.2 /20.4 28.8 / 0.3 

Firm entry [60422,10000,0.75] [5,2,0.0002] 3912 [12200,5000,4000] 
12095.6 

/35.6 
32.8 / 0.2 

Binding 

capacity 

increase  

(𝒘𝟓𝟖 = 𝟒𝟗𝟎𝟎)  

[24500,18000] [2,2] 2497 [12200,9000] 
6259.2 / 

20.4 
28.8 / 0.3 

Binding 

capacity 

increase  

(𝒘𝟓𝟖 = 𝟓𝟎𝟎𝟎) 

[15600,27000] [1.3,3] 2663 [12200,9000] 
5300.8 / 

15.5 
27.8 / 0.2 

Technological 

change   
[27506,40500] [2.25,4.5] 3400 [12200,9000] 

6259.2 / 

20.4 
28.8 / 0.3 

 

 

The cost allocation mechanism assumes that both operators seek to maximize their revenues. 

This translates to an objective value of: 𝑍 = ∑ 𝑝𝑟1𝑧𝑟𝑟∈𝑅1
. The resulting revenue allocation for this 

example is 𝑅1 = $24,424 for the private mobility service and 𝑅2 = $18,000 for the public rail. 

The average fares, average revenue gains per link and passenger volumes per operator are 

summarized in Table 4. In this instance, travelers use 1.6 services on average to reach their 

destinations for the 4 OD pairs. The base scenario assumes that transfers are costless to users and 

operators.  
 

5.1.4. Government rail acquisition 

When the rail lines are acquired by the government, the stable outcome may change from 

revenue maximization to consumer surplus maximization (buyer-optimal): max
𝑝𝑟𝑓

𝑍 =

∑ 𝑢𝑠𝑠∈𝑆 (𝑝𝑟𝑓). This means the stable outcome objective value for the two operators is 𝑍 =

∑ 𝑝𝑟1𝑧𝑟𝑟∈𝑅1
+ ∑ 𝑢𝑠𝑠∈𝑆 (𝑝𝑟2). In this scenario the private operator’s revenues increase while those 

of the public rail service diminish. The problem is that all O-D pairs end up having to use both the 

public and private operator links to complete their trips. As a result, any reduction in outcome 

made by the public operator gets absorbed by the private operator instead of going to the travelers. 

This fact is established in the first term of Eq. (6).  

  

5.1.5. Firm entry 

What could be the effect of a new operator entering the market on users and on the other 

transit services? We assume that this new Operator 3 (green in Figure 7) is a direct competitor to 

the services offered by the western rail line (113-112-103-101) and operates parallel links 
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connecting the same nodes with $0 cost transfer links. This new operator only carries 25% of the 

rail capacities for those links. Suppose this new service also has significantly lower operating costs 

and travel times (travel times and operating cost set to 25% of the competing service links), which 

will make it a strong competitor to the rail service.  

The results of this analysis are surprising. Table 4 shows that the base flows among the two 

operators is 12000 and 9000. When the new operator joins, the 9000 is split to 5000 and 4000 for 

the new operator, which corresponds to all the demand that was originally using the western line. 

In other words, the new operator obtains the entire passenger volume of the western line but cannot 

generate any profit. The effect of strong competition also ends up diminishing the rail line’s 

revenues, while the payoff of the private bus operator is maximized. This can be attributed to the 

geometry of the network: since all O-D pairs need to use the services of the flexible operator it is 

completely logical that this will be the only service to benefit from this situation. 

 

 
 

Figure 7. Sioux Falls scenario with 3 operators. 

 

   

5.1.6. Capacity effects on MaaS market 

The model allows planners to evaluate the effects of changes in capacity of one operator’s 

link to the performance of all the operators and the users. Such capacity changes may refer to 

roadway capacity, frequency changes in urban rail lines (effective line capacities), station capacity 
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or queueing operations, fleet size of an on-demand service, or a rebalancing strategy for a bike 

sharing service that can effectively increase flow capacity along different corridors. 

We refer again to our base duopoly scenario in order to quantify the benefits of capacity 

increases on users and operators. From the matching problem solution described in Eq. (4) we see 

that link 58 capacity is binding. We test two capacity increases. In this first scenario, we increase 

capacity of link 58 from 4824 to 4900; in the second case, we go further up to 5000. With a change 

in capacity, the assignment solution to Eq. (4) may change, and that also impacts the stable 

outcomes.  

While the first scenario does not significantly affect our measures, increasing capacity to 5000 

significantly favors the rail operator. The average rail fare increases from $2 to $3, while the 

private bus operator is forced to reduce its average fare from $2 to $1.3.  

 

5.1.7. Technological change 

Consider the impact of such technological improvements as new routing or matching 

algorithms that can reduce operator cost and/or travel disutility on the stable outcome of the MaaS 

market. We assume that a new fleet management algorithm is deployed by Operator 1 that reduces 

their links’ operating costs by 50% and travel times for users on the same links by 20%. This may 

represent savings in users’ wait times, reduction in detours reducing vehicles miles traveled or 

empty trips, etc. Under this new technology, the results are quite surprising. While the revenues 

for Operator 1 increase by 12.5% as expected, we also see the rail service gaining 125% in revenue. 

The improved performance of the private “feeder” service results in allowing the rail service to 

respond with higher fares (from $2 to $4.50) and increase revenue distributed from user gains. 

This fact is attributed to the existing mutualistic relationship (see Chow and Sayarshad, 2014) 

between the two operators, as no operator alone can provide a complete service to users in the 

market setting. 

 

5.2. Sioux Falls example with complete O-D demand and transfer links  

To illustrate the scalability of our algorithm, we solve the Sioux Falls network example using 

the complete 552-OD demand matrix shown in Figure 8 to demonstrate the model tractability in 

comparison to explicit path enumeration. In addition, the transfer links are changed from $0 cost 

to $2 cost. The link costs and capacities remain the same as shown in Table 3.  

Table 5a reports the matching problem optimum for the complete Sioux Falls test case. Since 

network characteristics are only intended to demonstrate that our model scales efficiently, we do 

not make any further calculations about links operated by the rail service (frequencies, travel times 

etc.). Transfer links are listed as regular links with no operating cost and belong to a dummy 

operator.  

The revenue gains and pricing for operators are shown in Table 5b, which we acknowledge is 

not guaranteed to be a unique distribution among operators (although their total revenue in the 

platform should be unique). Passenger utilities of 𝑈𝑠 = 40 are assumed. The rail operator is to 

charge a single constant fare for all travelers.  

The solution time for the stable outcome problem using Algorithm 1 is 17 seconds. To 

compare against the original LP formulation in Eqs. (5) – (6) using explicit path enumeration, we 

used a modified depth-first search algorithm from the NetworkX Python library, originally 

proposed by Sedgewick (2001). The solution time for the Sioux Falls network exceeded 2 hours, 

which is significantly slower.  
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Figure 8. O-D demand (x100) for Sioux Falls network 

 

 

Table 5a: Link flow assignment results for Sioux Falls network  

Link Flow Link Flow Link Flow 

(20, 21) 6400 (23, 22) 8100 (19, 15) 15500 

(14, 11) 15400 (9, 5) 11000 (20, 22) 10917 

(22, 23) 8100 (15, 19) 15500 (103, 101) 6000 

(2, 1) 3800 (10, 16) 16183 (11, 14) 15400 

(13, 113)* 11000 (117, 17)* 16200 (17, 117)* 16200 

(106, 102) 6600 (1, 101)* 6000 (19, 119)* 15100 

(10, 15) 16617 (112, 113) 10900 (21, 20) 6300 

(23, 24) 6200 (3, 4) 7200 (103, 3)* 5800 

(4, 11) 6900 (7, 18) 15900 (6, 5) 8800 

(102, 106) 6600 (22, 20) 10817 (102, 2)* 6600 

(18, 20) 15583 (1, 2) 3800 (16, 18) 17983 

(112, 12)* 10400 (108, 116) 6700 (24, 23) 6200 

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

1 0 1 1 5 2 3 5 8 5 13 5 2 5 3 5 5 4 1 3 3 1 4 3 1

2 1 0 1 2 1 4 2 4 2 6 2 1 3 1 1 4 2 0 1 1 0 1 0 0

3 1 1 0 2 1 3 1 2 1 3 3 2 1 1 1 2 1 0 0 0 0 1 1 0

4 5 2 2 0 5 4 4 7 7 12 14 6 6 5 5 8 5 1 2 3 2 4 5 2

5 2 1 1 5 0 2 2 5 8 10 5 2 2 1 2 5 2 0 1 1 1 2 1 0

6 3 4 3 4 2 0 4 8 4 8 4 2 2 1 2 9 5 1 2 3 1 2 1 1

7 5 2 1 4 2 4 0 10 6 19 5 7 4 2 5 14 10 2 4 5 2 5 2 1

8 8 4 2 7 5 8 10 0 8 16 8 6 6 4 6 22 14 3 7 9 4 5 3 2

9 5 2 1 7 8 4 6 8 0 28 14 6 6 6 9 14 9 2 4 6 3 7 5 2

10 13 6 3 12 10 8 19 16 28 0 40 20 19 21 40 44 39 7 18 25 12 26 18 8

11 5 2 3 15 5 4 5 8 14 39 0 14 10 16 14 14 10 1 4 6 4 11 13 6

12 2 1 2 6 2 2 7 6 6 20 14 0 13 7 7 7 6 2 3 4 3 7 7 5

13 5 3 1 6 2 2 4 6 6 19 10 13 0 6 7 6 5 1 3 6 6 13 8 8

14 3 1 1 5 1 1 2 4 6 21 16 7 6 0 13 7 7 1 3 5 4 12 11 4

15 5 1 1 5 2 2 5 6 10 40 14 7 7 13 0 12 15 2 8 11 8 26 10 4

16 5 4 2 8 5 9 14 22 14 44 14 7 6 7 12 0 28 5 13 16 6 12 5 3

17 4 2 1 5 2 5 10 14 9 39 10 6 5 7 15 28 0 6 17 17 6 17 6 3

18 1 0 0 1 0 1 2 3 2 7 2 2 1 1 2 5 6 0 3 4 1 3 1 0

19 3 1 0 2 1 2 4 7 4 18 4 3 3 3 8 13 17 3 0 12 4 12 3 1

20 3 1 0 3 1 3 5 9 6 25 6 5 6 5 11 16 17 4 12 0 12 24 7 4

21 1 0 0 2 1 1 2 4 3 12 4 3 6 4 8 6 6 1 4 12 0 18 7 5

22 4 1 1 4 2 2 5 5 7 26 11 7 13 12 26 12 17 3 12 24 18 0 21 11

23 3 0 1 5 1 1 2 3 5 18 13 7 8 11 10 5 6 1 3 7 7 21 0 7

24 1 0 0 2 0 1 1 2 2 8 6 5 7 4 4 3 3 0 1 4 5 11 7 0
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(18, 7) 15900 (112, 103) 6400 (14, 23) 6000 

(17, 10) 7200 (18, 16) 17983 (23, 14) 6000 

(16, 116)* 10100 (119, 117) 15600 (120, 20)* 2900 

(8, 108)* 11500 (12, 11) 12200 (24, 13) 12100 

(15, 22) 26917 (16, 10) 16183 (13, 24) 12100 

(24, 21) 14300 (9, 10) 22000 (20, 120)* 2900 

(108, 8)* 11500 (116, 117) 13200 (116, 16)* 10100 

(106, 6)* 9600 (117, 119) 15600 (21, 24) 14400 

(116, 108) 6700 (11, 12) 12200 (119, 120) 2900 

(22, 21) 12600 (120, 119) 2900 (108, 106) 12000 

(11, 4) 7000 (10, 17) 7200 (15, 10) 16817 

(22, 15) 27017 (101, 103) 6000 (101, 1)* 6000 

(5, 6) 8800 (21, 22) 12600 (103, 112) 6400 

(113, 13)* 10900 (4, 3) 7200 (5, 4) 13100 

(11, 10) 18300 (106, 108) 12000 (15, 14) 11100 

(5, 9) 11000 (3, 103)* 5800 (7, 8) 10600 

(8, 7) 10600 (119, 19)* 15100 (8, 9) 3000 

(117, 116) 13200 (4, 5) 13100 (2, 102)* 6600 

(10, 9) 22100 (9, 8) 3000 (12, 112)* 10300 

(14, 15) 11100 (113, 112) 11000 (20, 18) 15483 

(23, 22) 8100 (6, 106)* 9600 (10, 11) 18500 

        Links with * represent operator transfers 

 

Table 5b: Pricing and ridership breakdown by operator 

Operator Revenue ($) Avg fare ($) Min fare ($) Max fare ($) Passengers 
Operating costs 

($) 

Bus Service (1) 6,509,832 23.68 1.00 38.00 274900 186 

Rail (2) 217,466 1.00 1.00 1.00 217466 128 

 

 

5.3.  Discussion 

The computational experiments with Sioux Falls verify that (1) Algorithm 1 is equivalent to 

explicit path enumeration for determining the stability constraints; and (2) Algorithm 1 can be run 

in 17 seconds while the explicit path enumeration takes longer than 2 hours.  

Scenarios related to operator interactions and dependencies can be captured. Pricing and 

changes in generalized travel costs can also be evaluated, allowing us to quantify the costs of new 

algorithmic developments not only on its own operator, but also on other operators and travelers 

in the market. We summarize several key lessons learned. 

• Having a firm enter to compete directly with Operator 2 can result in significant advantages to 

a third party; in this case, Operator 1 can benefit greatly by allowing them to increase their 

prices. 
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• Capacity increases even for single links have nonlinear effects, where exceeding some 

threshold improvement can lead to a significant shift in assignment and stable outcomes, as we 

see going from 4824 to 4900 to 5000 for link 58. These impacts effect the revenues of other 

operators as well, so this model allows a platform to monitor the effect of one operator’s 

capacity investments on their competitors. 

• Technological changes that impact either system-wide (or operator-wide) operating costs, 

travel disutilities, and capacities can be evaluated for the whole market. Depending on the type 

of relationship between the operators, it can be beneficial for multiple parties (if mutualistic) 

or detrimental to other parties (if parasitic). 

 

 

6. CONCLUSION 
With the emergence of MaaS ecosystems, public agencies need modeling tools to consider 

trade-offs when facilitating markets with private operators. For the most part, such modeling tools 

do not exist. Recent work from Rasulkhani and Chow (2019) sought to rectify this but only capture 

line-level interactions between operators and users without allowing users to make multimodal 

trips. A new modeling framework is proposed using the MCND as a capacitated link-based 

matching model to fully capture network effects and user paths.  

 Under this setting, we propose path-based stability conditions and solution algorithms for 

deriving stable outcomes corresponding to path flows obtained from an MCND along with link 

capacity dual variables. The modeling framework is tested on an illustrative network as well as in 

a series of comprehensive experiments on the Sioux Falls network to demonstrate the model’s 

capabilities. As we can see from the lessons learned, the strength of this model lies in using stability 

conditions to link network design decisions and algorithmic policies (effects on link capacities, 

operating costs, travel disutilities) as well as market dynamics (firm entry, market consolidation, 

subsidies, and bundled pricing) to capture market performance for both operators and users. 

 There are several directions for future research. The non-uniqueness issue suggests there is a 

problem to determine the minimum perturbations to the paramaters of the MCND such that an 

empty stable outcome space reaches a unique stable outcome. This is an inverse many-to-many 

assignment game. The current formulation of stability conditions correspond to planning-level 

decisions. However, we are also looking into dynamic stability conditions to address day-to-day 

operations based on probabilistic user route preferences (analogy of stochastic user equilibrium 

for the MaaS market), flow-dependent travel disutility functions for nonlinear congestion effects 

and time-dependent demand patterns. Empirical studies using the model and calibrating the model 

to real data are also important. There are many other fields that the proposed assignment game and 

algorithm can be applied to beyond MaaS platforms: freight, airlines, other two-sided markets with 

network effects, and other network flow games where user preferences are of import.  
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Proof.  

Operating on the cooperative path (links (1,2) and (2,3)) requires the following condition in 

Eq. (A1) derived from Eq. (4a). 

 

𝑡12𝑑 + 𝑡23𝑑 + 𝑐12 + 𝑐23 < 𝑡13𝑑 + 𝑐13 (A1) 

 

where 𝑑 is the OD demand for (1,3). The feasibility and stability conditions in this case are 

shown in Eq. (A2). 

 

𝑢 + 𝑝123,𝑏 + 𝑝123,𝑜 = 𝑈 − 𝑡12 − 𝑡23 (A2a) 

𝑢 + 𝑝123,𝑜 ≥ 𝑈 − 𝑡13 − 𝑐13 (A2b) 

 

where 𝑈 is the utility for each travelers and 𝑢 is the payoff to users. Defining Eq. (13a) in 

terms of 𝑈 and substituting it into Eq. (A2B), we get Eq. (A3). 

 

𝑡13 + 𝑐13 − 𝑡12 − 𝑡23 ≥ 𝑝123,𝑏 (A3) 

 

From feasibility condition we know that 𝑝123,𝑏𝑑 + 𝑝123,𝑜𝑑 ≥ 𝑐12 + 𝑐23, so 𝑝123,𝑏 ≥
𝑐12+𝑐23

𝑑
−

𝑝123,𝑜. Substituting the inequality with 𝑝123,𝑏 into Eq. (14) leads to the following bound for 

the operator’s price in Eq. (A4). 

 

𝑝123,𝑜 ≥
𝑐12 + 𝑐23

𝑑
− 𝑡13 − 𝑐13 + 𝑡12 + 𝑡23 (A4) 

 

Since there’s just one price, 𝑝123,𝑜 simplifies to 𝑝𝑜 .  ∎ 

 

 

APPENDIX B: PROOF OF LEMMA 2 

 

Proof.  

If link flow 𝑥23
𝑏 = 0, then we get the following feasibility and stability conditions in Eq. (B1). 

 

𝑢 + 𝑝2𝑏 + 𝑝2𝑜 = 𝑈 − 𝑡12 − 𝑡23
𝑜 − 𝑡34 (B1a) 

𝑢 + 𝑝2𝑏 ≥ 𝑈 − 𝑡12 − 𝑡23
𝑏 − 𝑡34 − 𝑐23

𝑏  (B1b) 

 

Incorporating Eq. (B1a) into Eq. (B1b) results in Eq. (B2). 

 

𝑝2𝑜 ≤ 𝑡23
𝑏 − 𝑡23

𝑜 + 𝑐23
𝑏  (B2) 
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If link flow 𝑥23
𝑏 > 0, the only difference is that 𝑦23

𝑏 = 1, which means 𝑐23
𝑏  drops out of the 

inequality, resulting in the final expression. However, the expression 𝑡23
𝑏 − 𝑡23

𝑜  is simply 0 

since the flow only occurs if 𝑡23
𝑜 = 𝑡23

𝑏 .  ∎  
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