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ABSTRACT
For the first time in more than half a cen-

tury, a joint Cuban/American science team 
has worked together to quantify the impacts 
of chemical weathering and sustainable agri-
culture on river water quality in Cuba—the 
largest and most populous Caribbean island. 
Such data are critical as the world strives to 
meet sustainable development goals and for 
understanding rates of landscape change in 
the tropics, an understudied region. To char-
acterize the landscape, we collected and ana-
lyzed water samples from 25 rivers in central 
Cuba where upstream land use varies from 
forested to agricultural.

Cuban river waters bear the fingerprint 
of the diverse rock types underlying the 
island, and many carry exceptionally high 
dissolved loads. Chemical denudation rates 
are mostly among the top 25% globally and 
are similar to those measured in other 
Caribbean islands. High rates of solute 
export and the distinct composition of the 
waters in specific basins suggest flow paths 
that bring river source waters into contact 
with fresh, weatherable rock—unusual in a 
warm, wet, tropical climate where weather-
ing should extend deep below the surface. 
Tectonically driven uplift likely maintains 
the supply of weatherable material, leading 
to channel incision and, thus, to the expo-
sure of bedrock in many river channels.

Despite centuries of agriculture, the 
impact on these rivers’ biogeochemistry is 
limited. Although river water in many cen-
tral Cuban rivers has high levels of E. coli 
bacteria, likely sourced from livestock, 

concentrations of dissolved nitrogen are far 
lower than other areas where intensive agri-
culture is practiced, such as the Mississippi 
River Basin. This suggests the benefits of 
Cuba’s shift to conservation agriculture after 
1990 and provides a model for more sustain-
able agriculture worldwide.

INTRODUCTION
The Republic of Cuba (Fig. 1) has more 

than 11 million inhabitants, but there has 
been little collaboration between U.S. and 
Cuban scientists for more than half a cen-
tury although only 160 km separates the 
two countries (Feder, 2018). River biogeo-
chemistry data, which are sparse in tropical 
regions, are needed to guide sustainable 
development in Cuba and, by example, in 
other tropical and island nations.

Here, we present and interpret extensive 
new data characterizing river waters in 

central Cuba, the result of a bi-national, col-
laborative field campaign. Biogeochemical 
analyses allow us to address fundamental 
geologic questions, such as the pace of 
chemical weathering in the tropics, as well 
as applied environmental questions related 
to the quality of river water and human 
impacts on a landscape where small-scale, 
sustainable farming has replaced substan-
tial swaths of industrial agriculture (The 
Guardian, 2017).

BACKGROUND AND METHODS
Cuba’s wet, warm tropical landscape is 

dominated by mountains (up to 1917 m 
above sea level [asl] in the east, 500–700 m 
asl elsewhere) running parallel to the north 
and south coasts (Fig. 1). Mainly forested 
uplands descend into farmed rolling plains 
and mangrove-lined, low-lying coastal 
estuaries. The climate is summer-wet and 

¡Cuba! River Water Chemistry Reveals Rapid 
Chemical Weathering, the Echo of Uplift, and 
the Promise of More Sustainable Agriculture
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Figure 1. Cuba with elevation as color ramp. Black outline is area mapped in Figure 3. Inset shows loca-
tion of Cuba in relation to North America.
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winter-dry with precipitation delivered 
both by trade-wind showers and by larger 
tropical storms.

The diverse geology of Cuba reflects its 
tectonic setting at the boundary of the 
North America and Caribbean plates. 
Central Cuban basement lithologies include 
accreted igneous rocks, sediments (clastic, 
carbonate, and evaporite) formed along pas-
sive margins, obducted ophiolite, and island 
arc rocks (Iturralde-Vinent et al., 2016). 
This basement is unconformably overlain 
by slightly deformed, younger marine and 
terrestrial sedimentary rocks (Iturralde-
Vinent, 1994). Where river water has inter-
acted with these diverse rocks, surface 
water chemistries should reflect the compo-
sition of underlying rock units.

Agriculture has been practiced in Cuba for 
centuries. Indigenous people cultivated cas-
sava, yucca, and maize (Cosculluela, 1946). 
Spanish colonization from 1492 brought 
slaves, large-scale sugar agriculture, and 
cattle farming (Zepeda, 2003). Following 
Cuba’s independence from Spain in 1898, 
sugar production in Cuba quadrupled under 
U.S. influence (Whitbeck, 1922). When 
Cuba allied with the Soviet Union in 1959, 
industrialization of the sugar industry to 
increase yields and exports became a central 
goal (Pérez-López, 1989). By the 1980s, 
Cuba boasted the most mechanized agricul-
tural sector in Latin America (Febles-
González et al., 2011); however, the collapse 
of the Soviet Union in 1991 catalyzed Cuban 
adoption of reduced tillage, organic soil 
amendments, the use of cover crops, and the 
replacement of fuel-hungry tractors with 
domesticated draft animals, including horses 
and oxen (Gersper et al., 1993).

Surface water biogeochemical monitor-
ing in central Cuba has focused mainly on 
reservoirs. In central Cuba, water chemis-
try data (1986–2005) from four reservoirs, 
representing two river systems and four 
basins with varied geology (Betancourt et 
al., 2012) showed that the primary control 
on major ion concentration is rock weather-
ing upstream; there was no statistically sig-
nificant difference in water chemistry 
between dry and rainy seasons in three of 
the four basins.

In August 2018 (the wet season), we col-
lected water samples from 25 river basins in 
central Cuba. We selected these sites to 
encompass a range of land uses, underlying 
upstream rock types, discharges, and basin 

sizes, while avoiding rivers that had major 
dams (Figs. 2 and 3N). See the GSA Data 
Repository1 for detailed methods. Our anal-
ysis assumes that the concentration of cat-
ions and anions we measured are represen-
tative of annual average values (Godsey et 
al., 2009).

RESULTS
River water samples from central Cuba 

contain high concentrations of dissolved 
material (Figs. 3 and 4). Conductivity and 
total dissolved load were high (130–1380 
μS/cm and 117 to over 780 mg/L, respec-
tively, Tables S1 and S2 [see footnote 1]); 
stream water, except that sampled from for-
ested catchments, was turbid. Sample pH 
was near neutral to slightly alkaline with 
high values of bicarbonate alkalinity (65–
400 mg/L). As, Ba, Cr, Mn, Ni, Sr, and U 
were present in some or all of the Cuban 
river waters we analyzed, in all cases at lev-
els below drinking water standards (Table 
S3 [see footnote 1]). Dissolved oxygen mea-
sured in the field ranged from 59% to 145% 
(average 97%). Using basin-specific pre-
cipitation (Fig. 3), along with run-off esti-
mates (Beck et al., 2015, 2017) and total dis-
solved solids (TDS) from each Cuban water 
sample, we estimate chemical weathering 
rates between 42 and 302 t km–2 y–1 with a 
mean of 161 ± 66 t km–2 y–1.

Dissolved organic carbon (DOC) was 
highly variable, ranging from <1 mg/L to  
9 mg/L (Table S4 [see footnote 1]). Total 
dissolved nitrogen (TDN) ranged from 
<0.1–1.5 mg/L (mean = 0.76 mg/L); on aver-
age 60% was present as nitrate (range 24%–
93%). Nitrate values measured in the field 
and then in the lab several weeks later are 
well correlated. Nitrite was present in all 
samples, averaging 1.2 mg/L (0.37 mg/L of 
N). DOC/TDN ratios also vary widely, from 
1.3 to 14.8. Anion concentrations decreased 
in the order HCO3 > Cl > SO4 > NO3 > HPO4 
> NO2 > Br > F.

The anion orthophosphate (as P) was mea-
sured both in the field (0.1–0.8 mg/L) and lab 
(0.4–0.5 mg/L); field and lab analyses were 
positively correlated. Cations decreased on 
average in the order Ca > Na > Mg > Si > K.

E. coli bacteria were found in all samples, 
and most samples (20/24) contained enough 
bacteria to be deemed unsafe for recreational 
use according to World Health Organization 
criteria (Most Probable Number (MPN) > 
127/100 ml). Genetic microbial source trac- 

ing in two samples with MPN/100ml >1000 
(CU-107 and 110) did not identify any human- 
sourced bacteria; rather, the bacteria in sam-
ple CU-110 were identified as being of ungu-
late origin, and no specific source could be 
determined for bacteria in CU-107.

There are numerous correlations between 
anions and cations in our river water sam-
ples (Table S5 [see footnote 1]). Na and Cl 
are positively correlated (p < 0.01) as well 
as Na and HCO3, F, SO4, NO2, K, Ca, Br, Ti, 
As, Rb, Sr, Ba, and U (p < 0.05, all positive, 
Fig. 4). These elements are also correlated 
to one another positively and significantly. 
In addition, Mg is positively correlated to 
SiO2, V, Cr, and Ni (p < 0.05). NO2 is posi-
tively correlated with conductivity.

Four of the 25 samples (CU-120, -121, 
-122, and -132), all collected in the north-
western part of the field area, are geochemi-
cally distinct (Figs. 3, 4, and 5). These sam-
ples have the highest or nearly highest Cl, 
SO4, Br, NO2, and Na concentrations, field 
conductivity, and TDS (Fig. 4, red symbols) 
in the sample set. These are four of only 
five samples to contain low but measurable 
As (1.0–1.4 ppb). They plot in a distinct 
zone of the Piper diagram (Fig. 5) and also 
have higher Rb, Sr, Ba, and U concentra-
tions (1.8–4.3 ppb) than other Cuban river 
water samples. Three of the four samples 
contain >115 mg/L Ca and high concentra-
tions of Na, Cl, and SO4. These four sam-
ples were collected near one another and 
drain the same bedrock map unit (post-
Eocene marine sediment). One (CU-122) 
drains mostly wetland while the others 
drain dominantly agricultural catchments.

DISCUSSION/INTERPRETATION

Bedrock Controls Central Cuban 
River Water Chemistry

In central Cuba, river water composition 
and TDS covary with rock types (Figs. 3 and 
4D) suggesting a close connection between 
river water chemistry and underlying rock 
units. For example, high concentrations of 
Ca, Mg, and alkalinity in most samples are 
consistent with the mapped presence of car-
bonate rocks in most sampled drainage 
basins (Fig. 3). Distinct anion, cation, and 
trace metal compositions of rivers draining 
four (CU-120, -121, -122, -132) watersheds in 
the NW quadrant of our field area and under-
lain by marine sediments (French and 
Schenk, 2004) suggest dissolution of evap-

1GSA Data Repository item 2020097, data tables and extended methods, is available online at https://www.geosociety.org/datarepository/2020.

https://www.geosociety.org/datarepository/2020
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orite deposits including those that contain 
nitrite (Figs. 3, 4, and 5).

The relationship between water chemis-
try and bedrock type in central Cuba sug-
gests the presence of fresh, weatherable 
mineral surfaces along flow paths carrying 
subsurface flow to Cuban rivers. This infer-
ence is supported by comparison of Cuban 
river water chemistry with that from 
Martinique, Guadeloupe, and Dominica 
(Rad et al., 2013). The latter three islands 
are underlain primarily by andesite, and 
their surface water contains more Si and K 
and less Ca and Mg than Cuban rivers (Fig. 
6A). The higher concentration of most other 
anions and cations in Cuban waters as com-
pared to waters from volcanic Caribbean 
islands reflects the influence of readily sol-
uble carbonate and evaporite rocks in Cuba. 
Although average TDS for waters from 

Cuba exceeds that on other, e.g., volcanic, 
Caribbean islands (Fig. 6A), chemical denu-
dation rates estimated from central Cuban 
river water samples are similar to other 
Caribbean islands (Fig. 6B) because mean 
annual precipitation and thus runoff in 
Cuba is lower. All Caribbean chemical 
denudation rates are high when compared 
to global data (Larsen et al., 2014).

Field observations of incised, bedrock-
floored river channels and the chemical 
data that mandate extensive water/rock 
interaction similar to that on tectonically 
active, volcanic Caribbean islands suggest 
ongoing bedrock uplift in central Cuba 
rather than tectonic stability and the devel-
opment of a deep tropical weathering man-
tle. Raised marine terraces along southern 
and eastern Cuba (Muhs et al., 2017) are 
consistent with such uplift, which, along 

with tectonically induced rock fracturing, is 
likely responsible for the continued supply 
of fresh, easily weatherable rock, and thus 
high chemical weathering rates.

Human Activities and Water Quality
High TDS in central Cuban river water as 

a result of bedrock chemical weathering is 
not hazardous but could limit some uses. 
About 20% of samples we collected have 
TDS and Na levels above the taste threshold. 
High TDS samples may cause CaCO3 scal-
ing on pipes, household cooking imple-
ments, and industrial equipment; scaling 
could be a health benefit if lead remains in 
the water distribution system. High levels 
of DOC (up to 9 mg/L) in central Cuban 
river water suggest a potential risk of triha-
lomethane formation during chlorination 
(Engelage et al., 2009), which is the most 

Figure 2. Common Cuban landscapes and example sample sites. (A) Sugarcane and dirt roads are common on the island. (B) Cattle grazing on cleared fields. 
(C) Citrus groves on slopes in southern field area. (D) Horses were frequently in rivers, CU-132. (E) Plane-bed sand and gravel channel with cows in the river, 
CU-101. (F) Large point bar flooded during Hurricane Alberto showing dynamic range of river flows over time, CU-114. (G) Boulder/bedrock channel during con-
ductivity measurement, CU-115. (H) Bedrock channel, CU-114. (I) Low flow sample site in incised channel, CU-122. Locations identified by letter in Figure 3N.
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frequently used water treatment technique 
in Cuba (Cueto and De Leon, 2010).

Bacterial contamination of river water in 
central Cuba is consistent with the nearly 
ubiquitous presence of livestock on the 
landscape, perhaps because animals have in 
part replaced fossil-fuel–powered transpor-
tation and farm equipment (Fig. 3). We do 
not know the source of the detected E. coli; 
however, the ungulate match in one of two 
samples we tested is consistent with numer-
ous cows we observed walking in and 
around rivers as well as extensive pastures 
near and upstream of many sampling sites.

High levels of E. coli are found in rivers 
around the world. Data from other Caribbean 
islands, including Martinique, Trinidad, and 
Puerto Rico, show similarly high E. coli lev-
els in river, spring, and coastal waters 
(Bachoon et al., 2010; Pommepuy et al., 
2000; Wampler and Sisson, 2011). E. coli lev-
els above health advisory levels are routinely 
measured in Vermont river water, a similarly 
agricultural state with more than a quarter 
million cows, only half the stocking density 
per area of Cuba (Riera, 1994). Although 
pigs and chickens were common in central 
Cuba, we did not see them near rivers, which 
may explain why tests for fecal matter from 
these animals were negative as were those 
for human fecal bacteria.

Central Cuban river waters provide evi-
dence that agriculture need not overload riv-
ers, and thus reservoirs and coastal zones, 
with nutrients. N and P are present in Cuban 
river waters, but at lower concentrations than 
in the United States, where agriculture is 
intensive and fertilizer use is heavy (Fig. 6). 
Total dissolved nitrogen in central Cuban river 
water is <50% of the Mississippi River aver-
age and <25% of peak Mississippi River con-
centrations (Fig. 6C). Cuban waters have only 
slightly more TDN than less agricultural 
Caribbean volcanic islands (Rad et al., 2013).

The history of fertilizer use over time is 
telling (Fig. 6D). Cuban fertilizer use peaked 
in 1978 and then declined, whereas fertilizer 
use in the United States rose after 1961 and 
has remained high, more than twice the area-
normalized value as Cuba. Sustainable agri-
cultural initiatives, implemented in Cuba 
after the end of Soviet assistance, have 
resulted in less fertilizer use and better river 
water quality (Fig. 6). The result is far less 
downstream transport and loading of nutri-
ents into coastal waters, nutrients that can 
have a profound and negative effect, includ-
ing the presence of anoxic, marine dead 
zones (Obenour et al., 2013).

Figure 5. Piper diagram of all data color-coded by mapped lithology (Fig. 3) (French and Schenk, 2004). 
Numbered samples are those with distinct water chemistry influenced by evaporite rocks.

Figure 4. Rock type influences river water chemistry. Red symbols indicate basins with distinct water 
chemistry highlighted in Figures 3 and 5. (A) Total dissolved solids (TDS) and field conductivity are well 
correlated. (B) Positive correlation of Na with SO4 and Cl suggests evaporite source of these solutes. 
(C) No correlation between percent basin area used for agriculture and total dissolved solids or con-
ductivity. (D) Basins underlain by marine and mafic rocks have higher river water TDS.
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IMPLICATIONS
Our data provide a comprehensive snap-

shot of the chemistry of water moving through 
rivers in central Cuba. From these data, we 
calculate high rates of rock weathering and 
landscape-scale denudation and thus infer the 
presence of flow paths through fresh rock or 
regolith supplying water to rivers we sam-
pled—perhaps in response to tectonic uplift. 
Cuba’s transition toward sustainable agricul-
ture (and its reduced use of fertilizer per acre 
of crop land) results in much lower river-water 
nutrient concentrations in central Cuban riv-
ers than in the Mississippi River—a model for 
other agricultural economies. Additional 
management strategies to reduce manure and 
sediment loads to rivers (such as fencing to 
keep cattle off river banks) could further and 
rapidly improve central Cuban river water 
quality. Reducing sediment and manure loads 
will have economic benefits, because rivers 
eventually discharge into the coastal zone 

where suspended sediment, and bacteria from 
agricultural activity, impact water quality and 
clarity on coral reefs and beaches frequented 
by tourists (Rawlins et al., 1998), a source of 
income to Cuba (Duffy and Kline, 2018).
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