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ABSTRACT

Declassified CORONA satellite imagery, collected from 1960-1972 as part of the world’s first
intelligence satellite program, provides nearly global, high-resolution, stereo imagery that predates
many of the land-use changes seen in recent decades, and thus has proven to be an immensely
valuable resource for archaeological research. While challenges involved in spatially correcting
these unusual panoramic film images has long served as a stumbling block to researchers, an
online tool called “Sunspot” now offers a straightforward process for efficient and accurate
orthorectification of CORONA, helping to unlock the potential of this historical imagery for global-
scale archaeological prospection. With these new opportunities come significant new challenges in
how best to search through large imagery datasets like that offered by CORONA. In contrast to
currently popular trends in archaeological remote sensing that seek to employ either automated,
machine learning-based approaches, or alternatively, crowd-sourced approaches to assist in the
identification of ancient sites and features, this paper argues for systematic, intensive, and expert-
led “brute force” methods. Results from a project that has sought to map all sites and related
features across a large study in the northern Fertile Crescent illustrate how an expert-led analysis
may be the best means of generating nuanced, contextual understandings of complex
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archaeological landscapes.

Introduction

Recent years have witnessed an unprecedented transform-
ation in the availability, diversity, and quality of space- and
aircraft-acquired imagery, offering a dizzying range of new
opportunities for discovery and interpretation of archaeologi-
cal landscapes (Bevan 2015; McCoy 2017; Opitz and Herr-
mann 2018). Over the past decade, commercially-acquired
high-resolution visible light and near-infrared optical ima-
gery has become increasingly easy for archaeologists to access
(e.g., Stott et al. 2018; Kennedy and Bishop 2011; Lasaponara
and Masini 2007, 2011; Salvi et al. 2011; Stone 2008). Google
Earth and other web-mapping online resources first appeared
just over a decade ago and have been used successfully as
research tools by many archaeologists, but over the past few
years researchers have begun to gain access to large imagery
archives via government agencies or private foundations
(e.g., Danti, Branting, and Penacho 2017; Casana and Laugier
2017; Rayne et al. 2017). Today, companies like Planet offer
high-resolution imagery over the entire globe collected on a
daily basis though the innovative use of small, inexpensive
satellites, and thus in the future imagery access and avail-
ability will likely continue to increase. At the same time, tech-
nologies that penetrate vegetation canopy are making high-
resolution topographic datasets available the world over,
through programs like TerraSAR-X, a high-resolution syn-
thetic aperture radar satellite system (e.g., Linck et al. 2013;
Balz et al. 2016). Even higher resolution topographic data
are being collected by aircraft-based lidar programs (e.g.,
Chase et al. 2011; Opitz and Cowley 2013; Ebert, Hoggarth,
and Awe 2016; Johnson and Ouimet 2014), and while these

data were once prohibitively expensive, government agencies
are increasingly making these data available for free, while
drone-based lidar promises to lower costs of acquisition dra-
matically (see VanValkenburgh et al, this issue). A new gen-
eration of small, lightweight sensors imaging in near, middle,
and thermal infrared are also being deployed on drones, offer-
ing new ways of seeing the archaeological landscape and
offering new means of discovery (Casana et al. 2014, 2017;
Hill and Rowan 2017; McLeester et al. 2018; Megarry et al.
2018; Wernke, Adams, and Hooten 2014). All of these data-
sets offer transformative potential for archaeological research,
with the possibility to radically improve rates of discovery and
the ease with which some sites and features can be recognized.

With the understandable excitement surrounding new
remote sensing datasets, historical aerial and satellite imagery
remain indispensable resources for archaeological discovery
and mapping, primarily because they offer a perspective on
the landscape that predates widespread land use changes
seen in recent decades. Processes including urban expansion
(Figure 1A), the industrialization of agriculture (Figure 1B),
and the construction of reservoirs (Figure 1C) have obscured
or destroyed countless archaeological sites and ancient cul-
tural features over the past century, and thus historical satel-
lite and aerial imagery is often the only means to resurrect
these lost landscapes. While many sources of historical aerial
imagery are available, including those from government-
sponsored mapping programs dating back to the 1920s—
1930s (e.g., Bitely 2013; Clark and Casana 2016), WWI and
WWII surveillance photos (Stichelbaut 2006; Stichelbaut
et al. 2013; Hanson and Oltean 2013) and more recently,
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CORONA (1967-1969)

Digital Globe (2014-2017)

Figure 1. Examples of recent land use changes detectable on CORONA imagery: A) Western Mexico City, Mexico, where massive urban sprawl has destroyed archae-
ological remains; B) Indus River Valley, Pakistan, where intensified irrigation agriculture has obscured archaeological sites; C) Three Gorges Dam, China, where con-
struction of the world’s largest dam project has submerged countless archaeological sites. (CORONA imagery courtesy United States Geological Survey; Modern

satellite imagery © ESRI and DigitalGlobe).

1950s U2 spy plane images (Hammer and Ur 2019), the
declassified Cold War-era satellite imaging program known
by its codename, CORONA, remains uniquely powerful. Col-
lected as part of the world’s first space imaging program from
1960-1972 (Day, Logsdon, and Latell 1998), CORONA is the
by far the oldest source of imagery providing global-scale,
high-resolution, stereo coverage of nearly the entire land sur-
face of the earth, making it an irreplaceable resource for
research across a variety of domains (Casana, Cothren, and
Kalayci 2012; Ur 2013).

There have been many archaeological investigations that
have utilized CORONA imagery since it was first made pub-
licly available in 1997, especially in the Middle East (Beck
et al. 2007; Casana and Cothren 2008; Casana, Cothren,
and Kalayci 2012; Casana 2014; Challis et al. 2002-04;
Kennedy 1998; Kouchoukos 2001; Philip et al. 2002; Ur
2003, 2013; Wilkinson, Beck, and Philip 2006), but recent
advances in the efficiency and accuracy of image correction
and processing methods are now unlocking new potential
for these data, offering the possibility to undertake archaeo-
logical remote sensing-based investigations at much larger

spatial scales than have previously been practical. However,
with these opportunities come significant challenges in how
to best explore this enormously rich dataset. Following an
overview of key archaeological applications of CORONA
imagery and a presentation of the new protocols for geo-
metric correction and online distribution developed as
part of the CORONA Atlas Project, this paper provides a
discussion of emerging approaches to the “big” data pro-
blems researchers inevitably encounter in undertaking
archaeological remote sensing-based investigations of large
regions. Much recent research has been devoted to the
design and implementation of either automated, machine
learning-based methods or alternatively to crowd-sourced
archaeological site and feature identification, both of
which may have some value but produce problematic
results. Informed by research on the importance of human
cognition and expertise in remote sensing science (e.g.,
Bianchetti 2016; Ringer and Loschky 2018; Hoffman
2018), I argue instead for the value of a “brute force”
approach (Casana 2014), in which expert-led, intensive,
and systematic imagery analysis constitutes an essential



step in the process of archaeological knowledge production.
Results illustrate how our own work employing such an
approach in analysis of regional-scale CORONA imagery
in the Middle East offers nuanced, reliable, and contextual
insights into the rich and diverse remnants of past human
activities preserved in these unique datasets.

A Global CORONA Atlas

CORONA satellite imagery offers several key advantages as a
tool in archaeological prospecting as compared to other forms
of aerial and satellite imagery. While some historical aerial
photographs may be older or higher resolution than COR-
ONA, they generally are available over relatively small
areas, whereas the CORONA program includes more than
more than 860,000 images covering most of the earth’s sur-
face (Figure 2). Meanwhile, other global-scale satellite ima-
ging programs such as Landsat and ASTER are of such low
spatial resolution that most archaeological features are
difficult to distinguish, while 705,000+ CORONA images
deriving from the most advanced cameras on board the
KH-4A and KH-4B satellites provide imagery of 9 and 6
feet (2.74 and 1.83 meters) resolution, enabling recognition
and mapping of architectural-scale features (Figure 3A).
Moreover, CORONA was collected in the late afternoon
with the intention of highlighting surface topography, unlike
modern satellite imagery which is most often collected at
solar noon in order to maximize surface reflectance, such
that archaeological sites and features with topographic
expression such as mounded settlements, field walls, or earth-
works appear more clearly than in modern high-resolution
satellite imagery (Figure 3B). In addition, most CORONA
images were collected in stereo, meaning that it is possible
to both view the landscape in 3D as well as to produce histori-
cal digital surface models of areas that have been leveled or
flooded in recent decades, a process that is significantly easier
than previously thanks to the continued improvement of
photogrammetric software (Figure 4). Finally, unlike most
historical imagery, the CORONA archive is maintained by
the United States Geological Survey (USGS) and can be
readily =~ searched through  EarthExplorer  (https:/
earthexplorer.usgs.gov/), from which images can either be
downloaded for free or purchased for only $30 USD. The glo-
bal coverage, relatively high-resolution, stereo capabilities,
and ease of access make CORONA a truly unique resource,
serving as the only extant record of archaeological sites and
other features in many parts of the world that have been
impacted by land use change in recent decades.

Despite the proven potential of CORONA imagery for
archaeological and other research, the majority of the COR-
ONA archive has never even been scanned, existing only in
analogue film format, as digitization of the imagery has
only been undertaken as an on-demand service, resulting in
haphazard and uneven coverage. But the major hurdle that
most researchers have encountered in attempting to make
use of CORONA is in correcting the geometric distortions
contained within raw images (Casana, Cothren, and Kalayci
2012). The CORONA camera system was ingeniously
designed to capture as large an area of the ground as possible
at resolution that approached conventional aerial photogra-
phy, but this was accomplished at the expense of spatial
fidelity. CORONA satellites used a cross-path panoramic
camera, in which a large telescopic lens would rotate, imaging
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a swath of the earth’s surface onto an elongate film strip that
rested on a curved film platen (Day, Logsdon, and Latell 1998;
Schenk, Csathé, and Shin 2003; Sohn, Kim, and Yom 2004).
Distortions caused by camera parallax as well as by the
motion of the satellite while the film was being exposed pro-
duce extreme spatial distortions in raw CORONA images,
and no commercial software currently offers tools that enable
these distortions to be easily corrected.

The CORONA Atlas Project team has worked over the
past decade to develop improved methods for efficient and
accurate orthorectification of CORONA images, as well as a
platform to facilitate viewing and distribution of these data
(Casana and Cothren 2013). Using only open-source soft-
ware, we have developed a system we call “Sunspot,” which
offers the ability to orthorectify CORONA images in a few
relatively simple steps (Figure 5). Through this online tool,
researchers can upload a USGS-scanned image, collect at
least 14 ground control points (GCPs) by comparing the
CORONA to modern Google-served imagery, and then cor-
rect the imagery through the push of a button. Users can
download both NITF and GeoTIFF versions of the image,
as well as complete error reports, image footprints, and
other data. The system is open-access and free to use, with
the one caveat that any images corrected through Sunspot
will ultimately be posted on the newly expanded CORONA
Atlas.

Using Sunspot, our research team has worked to correct
thousands of CORONA images, now available to view and
download through the online CORONA Atlas viewer
(Figure 6). We have carefully selected the best quality images
(i.e., cloud and haze free, high-resolution, and acquired
under optimal seasonal conditions), focusing on areas of
the world that have seen the greatest degrees of land use
change since the 1960s, such as agricultural plains, river val-
leys, densely populated areas, as well as places that have wit-
nessed major environmental changes such as the Arctic, the
Himalayas, and elsewhere. We also focus on areas where
more and higher quality CORONA imagery is available,
specifically places that were either part of the Cold War
communist bloc or sites of geopolitical struggles during
the 1960s. To date we have corrected imagery covering
much of eastern China, Central and South Asia, the Middle
East, the African Sahel, Eastern Europe, Greenland, central
Mexico, the Andean Altiplano, as well as selected areas of
the United States. As a consortium of users continue making
use of Sunspot, an increasing quantity of CORONA imagery
is available and ready for investigations of past human
landscapes.

Approaches to Large-Scale Archaeological
Remote Sensing

The continental-scale coverage offered by CORONA, which
the CORONA Atlas Project is working to realize, combined
with the exceptionally good visibility of archaeological
remains in these data open the door to new dimensions of
research that investigate patterns of human occupation and
land use across areas that are orders of magnitude larger
than typical archaeological survey projects. Remote sensing-
based archaeological investigations using CORONA are
now being conducted at much larger spatial scales, beyond
survey boundaries, across national borders, and in areas
that are inaccessible to traditional field-based research (e.g.,
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Figure 2. CORONA imagery coverage of KH4A and KH48B satellites (1963-1972) for Eurasia and Africa (Vector data courtesy United States Geological Survey; Basemap
courtesy ESRI).

Figure 3. (A) CORONA imagery is sufficiently high-resolution to reveal architectural details, as at the early medieval site of Khirbet Dihman in northern Syria.
(B) CORONA is captured in the late afternoon so that topographic features appear clearly, as at the multi-mound cluster of Tell Bokha, northern Irag (CORONA
imagery courtesy United States Geological Survey).
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Figure 4. A three-dimensional surface model of the Tigris River Valley, northern Irag. While the river valley and hundreds of sites within it are submerged by a
reservoir today, the topography of the sites and the surrounding landscape can be recreated from a series of 1967 CORONA images.

Lawrence et al. 2016, 2017; Kalayci 2016; Casana 2014, in
press; Bradbury et al. 2015). With a growing interest in lever-
aging the potential of CORONA and other imagery for
archaeological discovery, scholars are inevitably confronted
with the central problem of how to find, document, and ana-
lyze the seemingly overwhelming number of potential archae-
ological features contained within large imagery datasets. As
our vision moves from a site, to a survey area, to a vast
unknown region, and as the quality and quantity of remote
sensing resources continue to improve and expand, there
has been an increasing emphasis within archaeological
remote sensing scholarship to develop new search strategies
that rely upon either automated, machine learning-based dis-
covery, or alternatively, on crowd-sourced discovery. Below I
discuss these two approaches, and argue instead for an inten-
sive, systematic, and expert-led approach to archaeological
remote sensing, using results from my own research in the
northern Fertile Crescent as an example.

Automated Site Detection

There is tradition of research in archaeological remote sen-
sing dating back to the 1980s, when multispectral satellite
images from the Landsat program became available, that
sought to identify archaeological sites based on their spectral
signatures in imagery (e.g., Limp 1989) or to use reflectance
and other spatial data to construct rudimentary predictive
models that would indicate where archaeological sites
would be most likely discovered (e.g., Custer et al. 1986). In
many respects, to have a computer automatically identify
sites alongside other environmental features is something of
a Holy Grail of archaeological remote sensing, and recent
years have seen rapid advancements in the sophistication of
such efforts (e.g., Cerrillo-Cuenca 2016; Cowley 2012; D’Or-
azio et al. 2015; Freeland et al. 2016; Megarry et al. 2016).
Most automated detection efforts rely either on an assump-
tion that archaeological sites will possess spectral reflectance
characteristics that are sufficiently unique so as to permit
them to be recognized, or alternatively, they rely on a
shape- or object-based analysis, which often combines some
expected range of reflectance values with an expected shape
and size (e.g., De Laet, Paulissen, and Waelkens 2007; Due
Trier, Larsen, and Solberg 2009; Harrower et al. 2013; Schnei-
der et al. 2015). These rule-based approaches, all of which

necessitate a priori knowledge about the likely size, shape,
and reflectance of sites, can be effective at locating specific
types of features in particular environments (e.g., Schuetter
et al. 2013), but cannot by definition locate unusual or atypi-
cal features, and cannot be easily generalized to regions or
features outside of where they are developed (Lambers,
Verschoof-van der Vaart, and Bourgeois 2019).

Menze and Ur’s (2012) study in the Upper Khabur basin
of eastern Syria provides an good example of a relatively suc-
cessful automated site detection project in which the team
cleverly combine a time series of Landsat and Aster images
to build spectral classification for known sites, helping to
highlight the anthropogenic soils that are characteristic of
the region. They then use a shape-based algorithm to identify
clusters of pixels that conform to known sites in terms of size,
shape, and distribution. The team reports a 73-90% success
rate for identification of known sites across several survey
areas, but also 30-40% false positives as modern villages, allu-
vial soils, and a range of other features were identified by their
automated approach as archaeological features. Thus, despite
reporting some of the best results of any yet-published auto-
mated site detection effort, for a real-world application their
approach would leave researchers woefully unprepared,
knowing that they were missing as many as 20-30% of actual
sites and that their dataset of probable sites includes 30-40%
modern or geological features. In contrast, Ur (2010) reports
that his own more traditional, expert-led analysis of COR-
ONA satellite imagery for the same region enabled him to
confidently identify nearly 100% of sites. His intensive field
surveys in the region were unable to locate any significant
archaeological remains that were not previously identified
on CORONA imagery. Due to a combination of sparse veg-
etation, large archaeological sites, and relatively flat, homo-
geneous terrain, archaeological sites and features are more
easily recognized in satellite imagery on the plains of northern
Mesopotamia than perhaps anywhere else in the world, and
so it is not surprising that this same region is also one
where automated detection works best.

Recent research has sought to replace rule-based auto-
mated detection with machine learning-based approaches
that instead begin with a large training sample of sites and
allow for a more flexible set of criteria defining what consti-
tutes a “site” to be iteratively established (Lambers,
Verschoof-van der Vaart, and Bourgeois 2019; Zingman
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Figure 5. A screen shot of Sunspot, an online CORONA imagery orthorectification tool developed by the CORONA Atlas Project.

et al. 2016). While such approaches have promise, they
remain in early stages of development, and are often ham-
strung by the complexity and inconsistency of archaeological
site databases upon which they are intended to be built (e.g.,
Lambers, Verschoof-van der Vaart, and Bourgeois 2019; Sadr
2016). Despite the effort being devoted to development of
automated and machine-learning approaches to identifi-
cation of archaeological sites and features in remotely sensed
imagery, nearly all of these studies produce a large number of
false positives as well as missing many known sites, and can-
not yet outperform trained human analysts in terms of accu-
racy. Nonetheless, for the identification of archaeological
features that have a predictable shape, size, or reflectance
and which occur in particular environments, automated
detection methods can certainly constitute a complementary
approach to other means of analyzing large imagery datasets.
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Crowd-Sourced Discovery

The other major trend in the analysis of remotely sensed “big”
data has been crowd-sourcing approaches, in which research-
ers recruit a large group of volunteers who perform most of
the basic work of archaeological feature identification.
Often referred to optimistically as a form of “citizen
science”—akin to efforts to enlist the work of amateur astron-
omers in searching for undocumented planets through pro-
grams like the NASA-sponsored Planet Hunters TESS
(Transiting Exoplanet Survey Satellite) project, or of amateur
birders in the Audubon Society and Cornell Ornithology
Lab’s Great Backyard Bird Count (http://gbbc.birdcount.
org/)—proponents of crowd sourcing argue that enlisting
thousands or even millions of volunteers around the world
to peer over imagery will produce far more site identifications

Figure 6. A screen shot of the open-access CORONA Atlas, where orthorectified CORONA imagery can be viewed and downloaded.
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than would ever be possible by a handful of archaeologists
working alone. While few would argue about the educational
and public outreach benefits of citizen science projects, the
usefulness of the data they generate is less certain. Systematic
analysis of ecological citizen science projects shows that in
many cases, volunteers produce data that are so flawed as
to be analytically useless (e.g., Aceves-Bueno et al. 2017; Mac-
Donald 2018).

In archaeology, a handful of crowd-sourced efforts have
seen some success, primarily in cases where volunteers per-
form relatively rote tasks and in which there is a built-in
check on the quality of results (e.g., Bonacchi et al. 2015).
Our own experiments with crowd-sourcing orthorectification
of CORONA imagery in the Sunspot system provides one
such example. The most difficult and time-consuming step
in our image correction process is the identification of ground
control points (GCPs), established by locating features that
can be recognized in both 50+ year-old CORONA imagery
and modern high-resolution Google-served imagery. These
points must be well-distributed across the image and should
be accurate to within a few pixels. After users have identified
at least 14 points, they push a button to correct the image, and
the software attempts to fit the imagery to the GCPs using a
mathematical model of the underlying distortions, overlaying
it on an SRTM digital elevation model. If error calculations
are too large, the process fails, and users then must delete
GCPs with the highest error values or add additional points
until the correction process achieves our established
threshold for acceptable error. Thus, virtually anyone is
capable of identifying GCPs and there is a built-in filter to
prevent poorly corrected images from being uploaded to
the CORONA Atlas. Over the history of the CORONA
Atlas project, we have enlisted nearly 300 people to attempt
the correction process, from students in classes, participants
in workshops, volunteers, paid hourly staff members, and a
few project professionals. We have consistently found that
while students, volunteers, and other casual users might suc-
ceed in correcting a handful of images each, they tend to
quickly lose interest in what can be a monotonous and chal-
lenging exercise. Ultimately, then, close to 90% if the images
posted on the CORONA Atlas have been corrected by just a
handful of professional team members who are dedicated to
the project, skilled at the task, and invested in producing
good results. Thus, even though our attempt at crowd sour-
cing worked on a technical level, our expert team actually
completed most of the image processing.

In other crowd-sourcing projects where volunteers are
expected to undertake primary analysis of data and success-
fully replicate the work of trained archaeologists, the results
have been even less encouraging. For example, one of the
most popular crowd-based prospection efforts was a National
Geographic-sponsored search for Ghangis Khan’s tomb in
Mongolia (Lin et al. 2014). Focusing on a study area of
around 6000 square kilometers in central Mongolia where
they believed the tomb of Genghis Khan was likely located,
the well-funded team created a website in which volunteers
could examine small segments of pan-sharpened 0.5 m resol-
ution GeoEye satellite imagery and mark potential archaeolo-
gical features. The substantial fan base and wide media reach
of National Geographic combined with the excitement sur-
rounding the search for the fabled tomb of the medieval Mon-
gol ruler enabled the team to recruit more than 10,000
volunteers who collectively contributed 30,000 hours of
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effort to the project. In total, project volunteers identified
2.3 million potential archaeological features, and using a ker-
nel-based algorithm, the project identified those with the lar-
gest consensus of assessments. Ultimately, the remote-sensing
portion was followed up by field survey, which was able to
verify 53 sites discovered by the project. These results have
been painted in positive terms by project researchers, but
when one considers them against the 2.3 million potential tar-
gets identified by the volunteers, they appear much less com-
pelling. One might imagine that randomly placing 2.3 million
survey units in the same landscape would have yielded better
results. It is also likely that an archaeologist who specializes in
Central Asia and who is trained in remote sensing would have
been able to identify many more than 53 sites with a high
degree of confidence within a matter of hours. Thus while
the Ghangis Khan Tomb project had undoubted benefits in
terms of engaging a large segment of the public in a research
project, it did not actually develop an efficient or helpful
means of identifying archaeological sites.

Other crowd-sourced efforts have seen even less success.
In the wave of looting and site destruction that has spread
across the Middle East and North Africa over the past decade,
numerous researchers have turned to satellite image-based
analysis as a means to identify and track damage in remote
and war-torn regions (e.g., Stone 2008; Danti, Branting, and
Penacho 2017; Casana 2015; Casana and Laugier 2017;
Wolfinbarger et al. 2017; Rayne et al. 2017). With support
of the TED Foundation and National Geographic beginning
in 2017, Sarah Parcak launched GlobalXplorer, a crowd-
based effort to track looting and site damage globally. The
project follows similar protocols to the Genghis Khan tomb
project in which volunteers are given access to random
1km-square tiles of high-resolution, pan-sharpened imagery
and asked to identify evidence of looting within them.
While Parcak (2019, 219-228) has made broad claims
about the project, results have not been published in a man-
ner that allows them to be evaluated, and previous exper-
iments with crowd-sourced site discovery and looting
monitoring suggest we should be skeptical that volunteers
will be able to undertake this kind of higher-level analysis
successfully.

In my own experiment with crowd-sourcing, I had stu-
dents enrolled in a class on cultural heritage issues at Dart-
mouth College undertake a remote sensing-based analysis
of looting and site damage in Syria. Following a series of lec-
tures and readings on identification and interpretation of site
damage and looting, as well as discussion of the war in Syria
and its impact on cultural heritage, the class was divided into
six teams of three students each, each of which received a
dataset of approximately 300 sites located in northern Syria.
As part of US Department of State-funded effort, my research
team had already found 15-20% of sites in each dataset had
evidence of looting visible in satellite imagery (Casana 2015;
Casana and Laugier 2017), and students were then set to
the task of analysis. The students who participated in this pro-
ject were characteristically intelligent and hard-working, and
they were being graded on the assignment, yet their results
were nonetheless abysmal. Of the six teams, only two mana-
ged to correctly identify any looted sites; and of these, one
team found two sites with looting and another team located
one. At the same time, all of the teams incorrectly identified
what they believed to be looting at some 20-30% of other
sites in each dataset, commonly mistaking orchards,
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haystacks, or cemeteries for looting. These results suggest that
even students with some degree of training can only be
expected to identify <5% of looted sites, while producing a
very large sample of false positives. My own results are mir-
rored by the pilot study for the TerraWatchers project,
another crowd-sourcing effort to document looting and site
damage in the Middle East. This project found that student
participants were only able to correctly identify 7% of looted
sites, leading project director Stephen Savage to comment, “in
the initial mission, the false positives ended up creating much
more work for me than if I had done all the analysis myself”
(Ramsey 2016). With additional training and resources, the
TerraWatchers team was able to improve results to a reported
39% accuracy (Savage, Johnson, and Levy 2017), but in prac-
tice there remains no way for researchers to know how many
looted sites volunteers overlooked or which of their obser-
vations are correct without independently verifying all posi-
tive and negative assessments.

In comparison to tasks that have had some success using
crow-sourcing approaches, such as tracking bird species or
finding planets in the night sky, identifying archaeological
features in satellite imagery is a more specialized task with
a much smaller base of skilled amateurs. Even if volunteers
in an archaeological remote sensing project are given some
rudimentary degree of training, as many projects attempt to
provide, they simply do not have the depth of experience
necessary to identify archaeological sites and features.
Doing so requires a wide range of geographically specific
knowledge—of the types of sites or landscape features that
are likely to be encountered in a region, as well as of the con-
temporary land use practices, geology, and environment, and
how these factors might impact the visibility of certain fea-
tures. In this light, it is not surprising that untrained volun-
teers have trouble identifying sites, as learning to do so
reliably requires years of experience and specialized training.

Expert-Led “Brute Force” Remote Sensing

Both automated detection and crowd-sourcing approaches to
archaeological discovery often suffer from a similar theoreti-
cal shortcoming, in that they proceed operationally from a
perspective that archaeological sites are akin to Easter eggs
—that they are discreet, bounded, and readily identifiable fea-
tures which represent the only interesting or valuable com-
ponents of the landscape (see also Howey et al., this issue;
McCoy, this issue). In an Easter egg hunt, children search
for colorful eggs, and there is no question when one has
been discovered: it is a totally unique object, completely
unlike its surroundings. Moreover, for the children searching
for them, all Easter eggs have great value, because they are
often filled with something delicious. In the context of the
hunt, no other objects are of any interest whatsoever. Thus,
the central problem of an Easter egg hunt is to develop a
search strategy that will maximize recovery of eggs: the
more eggs we find, the more quickly, the better our results.
In many contemporary archaeological remote-sensing
efforts, projects conceptualize archaeological sites in a man-
ner similar to Easter eggs—as discreet, self-evident objects,
scattered across a vast landscape, and the only useful infor-
mation we get is in locating them, either through an algor-
ithm or through thousands of human eyeballs. It is ironic
that these approaches have gained such popularity and pro-
minence, as they run directly counter to several decades of

research in what we collectively now term landscape archae-
ology (Kantner 2008; Knapp and Ashmore 1999; Wilkinson
2003; Johnson 2012; David and Thomas 2008). Most archae-
ologists working today recognize that “site” is a problematic
notion; it is a construct that offers a shorthand method for
documenting the archaeological record and which has thus
become deeply embedded in cultural heritage management
infrastructure, but which does not actually reflect the com-
plexity or diversity of material remains spread across the
landscape (Banning 2002; Dunnell 1992; McCoy, this
volume). Even for projects that operate within a strictly
site-based model, “sites” can be ancient settlements, ceme-
teries, cultic constructions, rock reliefs, artifact scatters,
water management installations, extraction and quarry pits,
and a huge range of other potential features. And all these
things that we might arguably record as sites are themselves
nested within a continuous landscape of past human activi-
ties, manifested variably as agricultural fields, route systems,
sacred spaces, and natural environments.

I and my team have worked over the past several years to
develop an approach to regional remote sensing-based
archaeological research that I have termed “brute force”
(Casana 2014), because instead of attempting to shortcut
the process of discovery through a crowd-based or algorith-
mic method, we instead employ a small, collaborative team
of expert analysts to systematically and methodically inspect
the entirety of a study area. In so doing, we simultaneously
seek to discover and map ancient sites and features across a
large region, while also attempting to interpret their signifi-
cance through a contextual landscape analysis of observable
characteristics, spatial distribution, and environmental set-
tings. Our work has been focused for the past several years
on a 300,000 square kilometer research area in the northern
Fertile Crescent, an area extending from the Mediterranean
coast of western Syria to the Zagros Mountains of northern
Iraq (Casana 2014; Casana in press). We began by assembling
all known archaeological information, compiling evidence
from forty archaeological survey reports, as well as data
from several major gazetteer projects. We then examine
each survey report and dataset, attempting to locate pre-
viously recorded archaeological sites on CORONA imagery,
excluding sites from our analysis that cannot be confidently
identified. Collectively, our mapping effort created a database
of approximately 4100 sites, constituting essentially the entire
published record of sites in the region (Figure 7A). The
location of these sites illustrates the unevenness of the archae-
ological record as it exists to date, with dense clusters of sites
reflecting where survey projects have been undertaken, more
than the actual distribution of ancient settlement. These sites
are an essential part of the research process, as they both illus-
trate what sites and features look like within the study area,
and for those which have associated dating information, pro-
vide a training sample for morphological analysis.

Our next step was to expand our analysis to look for pre-
viously undocumented sites and site-like features. We divided
the entire region into 10 x 10 km search grids and carefully
inspected each one, marking in our database any potential
sites using a three-tiered certainty score of definitely, prob-
ably, and possibly. As in any archaeological prospection
effort, our ability to identify some kinds of sites, such a
mounded tells, is much greater than other kinds of sites,
such as lithic scatters or building remains. Similarly, sites in
some environmental zones, such as flat plains, are much
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Figure 7. (A) Map of all previously published archaeological sites (c. 4100) in a 300,000 sq km study area of the northern Fertile Crescent. (B) All additional sites
(c. 10,000) documented through systematic, expert-led analysis of CORONA satellite imagery (Basemap courtesy ESRI).

easier to recognize than those in geologically complex or
more densely vegetated zones. These issues are parallel to
any problem of archaeological visibility; in a conventional
archaeological survey, certain types of site or sites in certain
areas will be easier to discover than others, based on surface
topography, preserved architecture, artifact density, or veg-
etation cover. In our work, we face similar challenges but
the factors influencing site visibility are somewhat different.

Ultimately, our efforts succeeded in mapping more than
10,000 previously unidentified archaeological sites and site-
like features (Figure 7B). As we mapped sites and features,
we also recorded other information about them within a mor-
phological taxonomy, classifying them based on similarities in
their appearance (Casana in press). We consider many vari-
ables including, for example, the degree and shape of mound-
ing, the severity of erosional gullies, the evident rectilinear
architectural features, the association of radial routes, field sys-
tems of various configurations, or other off-site features, as
well as the presence of modern villages or installations.

Differences in site morphology are the product of distinct cul-
tural traditions regarding how settlements were organized
spatially, technologies used in construction, longevity of occu-
pation on a given spot, land rights and land tenure traditions,
agricultural and pastoral practices, as well as post-occu-
pational transformations by both environmental and anthro-
pogenic forces. As such, an analysis of site morphology can
be used to make inferences about a wide range of cultural
and historical questions (Casana 2013b, 2014, in press).
Additionally, the fact that our analysis is being conducted by
a small group of experts means that our search strategy is
also effective at identifying unusual or anomalous sites and fea-
tures. Unique features are unlikely to be recognized by any
automated site discovery protocol, while untrained observers
would not have the experience to recognize what is typical,
and yet these kinds of discoveries can be among the most
important things identified in a remote sensing project.

To date, the robust dataset created through our intensive,
expert-led analysis, which enables queries and exploration
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limited only by our own creativity, has facilitated a wide range
of new insights. An analysis of the size and distribution of dis-
tinctive radial route systems, and the discovery of such fea-
tures in unexpected areas, was used as the basis for an
analysis of intensive sheep-based pastoral practices in north-
ern Mesopotamia (Casana 2013a). Knowledge of the total dis-
tribution and size of mounded settlements likely occupied
during the third millennium B.C. enabled an analysis of agri-
cultural sustainability in light of past climate variability
(Kalayci 2016). An effort to map all Bronze Age sites in the
northern Levant and analysis of their relative size and
environmental distribution offers novel perspectives on the
political landscape of Late Bronze Age kingdoms (Casana
2013b). A morphological analysis of all mounded sites in
the Orontes River Valley of the same region permitted the
probable identification of several ancient cities known from
the historical record but not previously identified (Casana
2017). Analysis of small sites with rectilinear buildings,
most likely the remains of Roman and early medieval forts
or caravansaries, sheds new perspectives the nature of defen-
sive and communication systems on the Roman-Persian bor-
der (Casana in press). The comprehensive mapping of all
visible sites across the large study region has also served as
the basis for an analysis of looting and site destruction taking
place in the context of the Syrian civil war (Casana and Lau-
gier 2017; Casana 2015), as well as facilitating new regional,
field-based investigations in previously poorly-known areas
of the Kurdistan Region of Iraq (Casana and Glatz 2017).
By creating a remote sensing dataset that is very large, includ-
ing more than 14,000 sites and site-like features, but which is
also built on careful, contextual analysis by trained and
thoughtful archaeologists, we are able to use remote sensing
not only as a tool to help in survey, or as a technological gim-
mick, but as a method to make substantive observations about
people in the past that are otherwise invisible.

Conclusions

This paper has sought to highlight the unique possibilities for
analysis of archaeological landscapes offered by declassified,
Cold War-era CORONA satellite imagery, particularly
when used in large-scale, regional investigations. While past
research using CORONA has been challenged by the difficul-
ties in orthorectifying the imagery, the development of
improved processing methods through the CORONA Atlas
Project are now beginning to realize the full potential of
this powerful resource. The availability of global-scale COR-
ONA imagery is helping to facilitate a new era in archaeolo-
gical investigations, conducted at larger spatial scales than
were previously practical, offering new perspectives on the
history of human settlement, past land use practices, and a
range of other questions.

Mirroring trends in remote sensing science more broadly,
many researchers interested in pan-regional investigations
have turned to either automated, machine-learning approaches
to archaeological site detection or have attempted to rely on
crowd-sourced identification of cultural features. Automated
efforts are often driven by archaeological collaborations with
computer scientists who are interested in applying the same
kinds of machine learning or computer vision technologies
that have been successful in other areas to the problem of site
and feature identification in satellite imagery. As such, many
of these projects are interesting from a technical perspective,

but rarely offer a better means of identifying sites and features
than is possible by expert human analysts. Crowd-sourcing on
the other hand is more often implemented, at least in part, as
an education and outreach tool, and in this capacity has been
successful, but most efforts produce data that have so much
noise as to be analytically useless. Even more importantly,
both automated and crowd-sourced approaches fail to capture
the full range of the complex and subtle features that constitute
both archaeological sites and the cultural landscapes within
which they are situated.

I argue instead for an intensive, systematic, expert-led
“brute force” approach to archaeological remote sensing in
which regional-scale, imagery-based analysis is constructed
from contextual and nuanced observations by trained archae-
ologists. Rather than attempting to shortcut the process of
discovery and produce a map with a lot of dots but not
much useful information, an expert-led remote sensing-
based investigation foregrounds the fundamental role of
thoughtful, informed, creative interpretation, not only produ-
cing results that are more comprehensive and reliable, but
also facilitating a wide range of otherwise unknowable
insights into the ancient people we seek to study.
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