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Abstract: Finding the solution to a large category of opti-
mization problems, known as the NP-hard class, requires
an exponentially increasing solution time using conven-
tional computers. Lately, there has been intense efforts to
develop alternative computational methods capable of
addressing such tasks. In this regard, spin Hamiltonians,
which originally arose in describing exchange interactions
in magnetic materials, have recently been pursued as a
powerful computational tool. Along these lines, it has been
shown that solving NP-hard problems can be effectively
mapped into finding the ground state of certain types of
classical spin models. Here, we show that arrays of metallic
nanolasers provide an ultra-compact, on-chip platform
capable of implementing spin models, including the clas-
sical Ising and XY Hamiltonians. Various regimes of
behavior including ferromagnetic, antiferromagnetic, as
well as geometric frustration are observed in these struc-
tures. Our work paves the way towards nanoscale spin-
emulators that enable efficient modeling of large-scale
complex networks.
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1 Introduction

Enhancing the efficiency of various computational tasks
has always been a major challenge in many and diverse
fields. Over the years, this class of problems has been
pursued in a number of fronts, like for example, in the
classical works of Gauss and Lamé in number theory [1].
However, the field of computational complexity theory
took a substantial leap in 1930s, after Turing proposed a
general model for computing machines [2]. Using such
standard models, it is believed that an important family of
optimization problems — known as NP-hard — are chal-
lenging for conventional digital computers. Such optimi-
zation tasks are widely encountered in many important
applications ranging from electronic chip testing and
computer design to drug discovery and community detec-
tion [3-5]. Consequently, the past few years have witnessed
intense research efforts in developing alternative compu-
tational platforms that may be capable of addressing such
problems more efficiently than digital computers.

Lately, it has been shown that the solution of an
NP-hard problem maps to finding the ground state of certain
types of spin Hamiltonians with polynomial overhead [6-8].
Such spin Hamiltonians naturally arise in certain magnetic
materials, representing the respective interactions among
magnetic moments. In most cases, however, these magnetic
materials lack the required versatility to be used for
computational optimization. To address this issue, ultracold
atoms in optical lattices have been employed to emulate
magnetic spins [9-13] and most recently, active photonic
platforms have been pursued as a viable means for experi-
mental realization of spin Hamiltonians. In this regard,
unlike passive implementations, such optical systems can
identify the ground state of the corresponding Hamiltonian
by their natural tendency to operate in the global minimum
loss. Thus far, spin exchange interactions including clas-
sical Ising or XY Hamiltonians have been demonstrated in
optical parametric oscillators (OPOs) [14-16], polaritonic
simulators [17-19], degenerate laser cavities [20, 21], multi-
core fiber lasers [22], and spatial light modulators [23]. At this
point, one may ask whether it is possible to exploit the
vectorial degrees of freedom of light [24] in nanoscale
structures in order to develop ultracompact photonic spin
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simulators. If so, such on-chip nanophotonic arrangements
could potentially enable large-scale optical emulators to
address NP-hard optimization tasks in a scalable manner.
Quite recently, we reported [25] an experimental reali-
zation of spin Hamiltonians in arrays of active metallic
nanocavities [26—30]. In this Letter, we discuss the details of
the theoretical model that is responsible for such spin-like
behavior in these arrangements. In particular, using a
detailed electromagnetic (EM) analysis, it will be shown that
the orientation of vectorial modal light fields in such
nanocavities can naturally assume the role of an artificial
“pseudospin”. Analytical expressions obtained for the
average EM loss in such nanolaser lattices suggest that these
systems are formally isomorphic to different types of spin
Hamiltonians. Moreover, we show that by properly
designing the individual cavities to lase in pre-specified
resonant modes, one would be able to implement the clas-
sical Ising Hamiltonian, in addition to the previously
demonstrated XY Hamiltonian with both ferromagnetic (FM)
and antiferromagnetic (AF) spin exchange couplings. In
some scenarios involving XY Hamiltonians with AF cou-
plings, our linear finite-element (FEM) simulations confirm
geometrical frustration in the associated lasing supermodes,
as expected from analytical results. Finally, we briefly
discuss the outlook for exploiting our proposed platform in
Hamiltonian optimization and computational applications.

2 Arrays of metallic nanolasers

To begin our analysis, let us consider an array of N iden-
tical metallic nanodisk lasers arranged in a circular
fashion, as shown schematically in Figure 1 for N = 5. Here,
the presence of the metallic cladding together with the
overlapping near-fields of the adjacent cavities lead into a
dissipative nearest-neighbor coupling. Under such condi-
tions, one can obtain the EM fields associated with the
resonant modes of each nanodisk from the longitudinal
field components. For instance, for the transverse electric
(TE) family of modes, the transverse distribution of the EM
fields in nanodisk j is given by

E,jo gln (kop) sin(ng + ¢;)

Epjoc [Tna(kop) = T (kop)] COS(n¢ + ¢;)
H,j oc = [y (kop) = Juia (Kpp)] cos(ng + ¢;)
Hyj o g]" (kop)sin(ne + ¢b;).
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Similarly, the associated EM field components for the
transverse magnetic (TM) family of modes can be found as
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In the above equations, n is the azimuthal mode number
while p, ¢ represent the local coordinates in
each nanodisk. It should be noted that in nanolasers, a
small variation in the radii of the disks can result in the
selection of a different mode. In our analysis, the field
distributions have the same form in all the array ele-
ments, while their relative orientations can change from
one nanocavity to another. Given the above field distri-
butions, for TE group of modes, the total EM power
dissipated in the metallic walls among the nanocavities
can be obtained as [25]

TEl
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On the other hand, one can find the total EM loss
associated with the TM modes to be
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Equations (3) and (4) clearly show that the total dissipated
power in the nanolaser array described here depends on
the relative orientation of the vectorial EM modes in the
individual cavity elements ((;b]-). In other words, one can
assign a pseudospin to the field distribution in each in-
dividual cavity as depicted in Figure 1. The overall loss
endured by each collective supermode of the system is
then effectively determined by the orientation of these
pseudospins. In this regard, the above loss functions
represent the spin Hamiltonians for the particular modes
of interest with various azimuthal orders. Once gain ex-
ceeds the lasing threshold of the system, the resulting
lasing supermode satisfies the minimum conditions for
the loss functions described above. Therefore, Eqgs. (3)
and (4) play the role of an equivalent energy landscape
function which is minimized by the structure when it
starts to lase. This can be formally established by
defining the following equivalent Hamiltonian
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associated with the TE and TM family of modes in the
metallic nanolaser arrays considered here:

N . N _
H = Y J;110.011 + Y. Jojju1 COS[; + by, + 2 x 2n7 /N,
j=1 j=1

)

where 3; is the classical pseudospin per each individual
nanocavity defined as 3,- = (cos ¢;, sin¢;). The exchange
interaction coefficients J;; and Jo;; are polarization mode
dependent and can be tuned via the structure geometry
(see Section 3). Depending on the azimuthal mode number
n, the Hamiltonian of Eq. (5) can represent a number of
different spin-exchange interactions which will be dis-
cussed in what follows.

2.1 Realizing the classical Ising Hamiltonian

When the magnetic moments (spins) in a spin Hamiltonian
are bound to vary in one spatial dimension (e.g., z-direc-
tion), the resulting Hamiltonian describes an Ising model.
In our nanolaser platform, for TEy,, and TM,,, modes, the
Hamiltonian H of Eq. (5) assumes the following simple
form, representing a classical Ising Hamiltonian:

N
Hlsing = ZIj,jJrlsjst» (6)
j=1

where s; = cos ¢; play the role of one-dimensional Ising
pseudospins, since in the weak coupling regime one can
assume that s; = +1. Under these conditions, the resonant
modes can be described by scalar variables, thereby
implementing the Ising pseudospins with one-dimensional
degrees of freedom. In addition, to achieve the aforemen-
tioned weak couplings, we place the nanocavities in close
proximity in such a way that they are separated by a thin
layer of metal. The associated exchange couplings J;; can
be tuned via the structure geometry and the type of the
resonant mode within nanolasers (TE,,, or TMo,,). Figure 2
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Figure 1: A schematic picture of an array of
N =5 metallic nanodisk lasers used in this
study. The green arrows depict the
orientation of the pseudospins. The inset
shows lasing mode of a five-element
nanodisk laser array as obtained from FEM
simulations. The rotation of the local reso-
nant modes is illustrated with dashed ar-
rows, indicating the pseudospins.

shows simulation results for different geometries in rela-
tion with the Hamiltonian of Eq. (6). To promote the TE,,
resonant modes in our system, we use metallic coaxial
nanolasers, which feature a metallic cylindrical rod in the
center of a nanodisk cavity [29]. As shown in Figure 2A, a
TE; lasing mode in coupled coaxial nanolasers separated
by metallic cladding leads to a negative exchange coupling
Ji <0, as expected from an FM Ising Hamiltonian. There-
fore, in order to minimize this Hamiltonian, such a system
tends to lase in the in-phase supermode, akin to the ground
state of the corresponding Ising Hamiltonian. On the other
hand, by judiciously designing the size and geometry of the
nanocavities in our proposed platform, one can obtain
lasing in a TM, resonant mode. This can be accomplished
by matching the resonant frequency of the individual
nanolasers with the gain bandwidth of the active material.
Figure 2B presents a degenerate ground state of an Ising
Hamiltonian with AF couplings in a triangle configuration,
together with the simulated lasing supermode emerging in
a three-element nanodisk laser array used to implement
such a Hamiltonian.
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Figure 2: Realizing the Ising Hamiltonian in nanolasers. (A) Ising
spins with FM exchange interaction implemented by the TEy; modes

in coaxial nanolasers. The black arrows show the direction of the
azimuthal electric fields. (B) A three-element Ising Hamiltonian with
AF couplings realized using a TMy, resonant mode of the nanodisk
lasers. One of the possible degenerate ground states is presented

here. The white arrows show the direction of the azimuthal magnetic
fields within the resonators.
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2.2 Higher-order lasing modes and the XY
Hamiltonian

We next consider the case when the nanolaser elements are
designed to predominantly lase in the higher-order modes

with n# 0. Under such conditions, the pseudospins 3,-
defined in Eq. (5) assume 2-dimensional degrees of
freedom. In this scenario, the exchange terms in the first
sum of Eq. (5) form the well-known XY Hamiltonian Hyy.
The total Hamiltonian can therefore be reformulated as
‘H = Hxy + Ho, Where Hj is an anisotropic extra term. By
properly choosing the lattice geometry and resonant
modes within the cavities, one can obtain the ground state
associated with the XY Hamiltonian Hyxy emerging as the
lasing supermode. Under these circumstances, depending
on the mode number n and number of array elements N,
various scenarios are expected to arise. For instance, when
nanodisks are emitting in a TE,, mode (n = 2), one can see
from Eq. (3) that the equivalent spin exchange interactions
are FM, i.e., J;<0. Figure 3A shows an array of such
nanolasers with N = 4 elements, together with its lasing
supermode, corresponding to the ground state of its XY
Hamiltonian counterpart. To further investigate such FM
behavior, we extended this same structure to a larger
square lattice. Figure 3B illustrates the expected ground
state of such an arrangement, signifying all the elements
lasing in unison. As mentioned earlier, by utilizing various
resonant modes within individual cavity elements in a
nanolaser lattice, one would be able to change the way the
ensuing pseudospins interact with each other. To demon-
strate this, let us assume each nanocavity is now pre-
dominantly oscillating in a TM> EM mode. In this scenario,
for an array arranged in a square geometry, the Hamilto-
nian of Eq. (5) represents an XY Hamiltonian with AF ex-
change interactions J; > 0. This behavior is clearly evident
in our FEM simulations presented in Figure 3C. Similar AF
states also arise in large square lattices comprising nano-
disk lasers emitting in the same TM» mode (Figure 3D).

2.3 Geometric frustration in nanolaser
arrays

So far, in all the cases considered in our study, the nano-
laser system was able to reach the minimum of the energy
landscape function by minimizing the corresponding local
energy exchange interactions. We now consider scenarios
where the competing interactions between nearby elements
tend to prevent the system from reaching a global minimum
of the Hamiltonian function. This phenomenon — known as
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Figure 3: Ferromagnetic and antiferromagnetic XY Hamiltonians in
various geometries. (A) A four-element nanodisk laser where a TEy,
mode is dominantly lasing. The corresponding ground state is ob-
tained from FEM simulations. (B) Square lattice of nanodisk lasers
emulating a lattice of FM coupled magnetic spins. (C), (D) Similar
geometries for nanodisk cavities lasing in a TM,; mode, where an AF
exchange interaction is expected to arise between nearby elements.

geometric frustration — results from an incompatibility
between a local order which is dictated by the Hamilto-
nian, and the geometrical constraints present in the sys-
tem. Such frustrated ground states occur in various
arrangements ranging from ice [31] to blue phases in liquid
crystals [32]. In order to demonstrate such states in our
nanolaser platform, we implement the TE;, family of
lasing modes within the nanocavities, hence resulting in
positive J;; >0 exchange couplings, associated with AF
interactions in the XY Hamiltonian of Eq. (5). We then
simulated arrays of such nanolasers with N =3 and N =5
elements. As is well known, the ground state of the XY
Hamiltonian with AF exchange interactions in these ge-
ometries exhibits geometric frustration, with a 120° and
144° successive rotation between the nearby pseudospins.
As depicted in Figure 4A, B, such frustrated ground states
are clearly observed in our FEM simulations involving
these structures. In magnetic materials, an important
example of geometric frustration arises in kagome anti-
ferromagnets [33, 34]. Figure 4C shows a schematic repre-
sentation of an AF kagome lattice, where a possible ground
state has also been depicted. Our simulations confirm that
the lasing supermode of a kagome nanolaser array with AF
exchange interactions exhibits the same frustrated
behavior (Figure 4C).

3 Discussion

In all the cases discussed in our study, the relevant ex-
change interactions J; can be adjusted via tuning the
metallic gaps between adjacent nanocavities. This changes
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Figure 4: Geometric frustration in the XY Hamiltonian with AF
couplings. (A) Lasing in the TEq3 and (B) TEq4 resonant modes of
nanodisk lasers arranged in arrays of three and five elements,
respectively. In these scenarios, the structure emulates an AF
exchange interaction among nearest-neighbor elements, where the
ground state is expected to show geometric frustration. The FEM
simulations indeed confirm such behavior with 120° and 144° suc-
cessive rotation between consecutive elements in (A) and (B),
respectively. (C) Kagome lattice of nanodisk lasers with AF exchange
interactions. A frustrated lasing supermode is observed in simula-
tions, as expected from the ground state shown in the right.

the strength of the overlapping near-fields of the nano-
lasers and therefore enables implementing more general
Ising and XY Hamiltonians with unequal exchange cou-
plings. Moreover, the fact that arrays of nanolasers have
ultra-small footprints means that in practice one could
fabricate many different versions of a spin Hamiltonian
with various exchange interactions on a single chip. By
simultaneously using the data acquired from all such
variations, one could effectively address the issue of
reconfigurability in nanolaser lattices intended for Hamil-
tonian optimization. Another approach that could poten-
tially address the issue of reconfigurability is to partially
use gain material in the gap region between the resonators.
By proper pumping of this gain material, one can then
adjust the coupling strength between the neighboring
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elements. In addition, as discussed before, the resulting
exchange couplings in arrays of nanolasers are by nature
limited to nearest-neighbor interactions. A possible
extension to more complicated Hamiltonians where cou-
plings among remote pseudospins are needed can be
achieved via introducing auxiliary nanolaser elements that
provide effective couplings beyond adjacent elements,
similar to quantum computation strategies [35].

4 Conclusion

In conclusion, we showed arrays of active metallic nano-
cavities can be utilized to emulate spin-Hamiltonians. Such
nanoscale structures support vectorial optical resonant
modes that exhibit similar behavior as interacting mag-
netic spins. Depending on the geometry, our analytical
expressions for the total electromagnetic losses in the
metallic cladding are formally equivalent to various types
of spin-exchange Hamiltonians. In particular, we demon-
strated Ising and XY Hamiltonians with both ferromagnetic
and antiferromagnetic interactions in our platform. In
some scenarios, the competing AF interactions among
nearby pseudospins resulted in geometric frustration in the
associated electromagnetic modes. In all cases, our FEM
simulations were in agreement with the theoretically pre-
dicted behaviors. It should be emphasized that for all the
scenarios considered here, our linear analysis successfully
predicts the steady-state behavior of the nanolaser system.
However, as the size and connectivity of the implemented
spin Hamiltonian increases, it is generally expected that a
more complicated energy landscape will emerge. This
latter effect, together with higher-order nonlinear phe-
nomena may preclude the system from settling into the
ground state corresponding to the linear Hamiltonian. In
our future steps, we plan to investigate the nonlinear dy-
namics associated with such regimes of behavior in our
system. Our results pave the way for an ultracompact, on-
chip platform for implementing spin Hamiltonians with
potential computational benefits.
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