

Start | Grid View | Author Index | View Uploaded Presentations | Meeting Information

GSA Annual Meeting in Phoenix, Arizona, USA - 2019

Paper No. 124-2

Presentation Time: 9:00 AM-6:30 PM

CENTRAL CUBAN RIVER WATERS INDICATE HIGH RATES OF CHEMICAL WEATHERING WHEREAS LOW NUTRIENT LOADS REFLECT SUSTAINABLE AGRICULTURAL PRACTICES

BIERMAN, Paul 1, SCHMIDT, Amanda H.2, CAMPBELL, Mary K.3, DETHIER, D.P.4, DIX, Monica 5, RACELA, Jason 6, PERDRIAL, Julia 7, MASSEY-BIERMAN, Marika Eden 6, SIBELLO HERNÁNDEZ, Rita Y.8, CARTAS AGUILA, Hector A.8, GUILLÉN ARRUEBARRENA, Aniel 8, GARCÍA MOYA, Alejandro 8 and ALONSO-HERNÁNDEZ, Carlos 8, (1)Burlington, VT 05405, (2)Geology, Oberlin College, Oberlin, OH 44074, (3)Department of Geology, The University of Vermon Colchester Ave., Burlington, VT 05405, (4)Dept. Geosciences, Williams College, Williamstown, MA 01267, (5)Geology, Oberlin College, Geology Department, Rm. 403, 52 W. Lorain St, Oberlin, OH 44074, (6)Williams College, Cerfor Environmental Studies/Geosciences, 59 Lab Campus Drive, Thompson Bio, Williamstown, MA 01267, (7)Geology, University of Vermont, Delehanty Hall, 180 Colchester Avenue, Burlington, VT 05405, (8)Centro de Estudios Ambientales de Cienfuegos, Apartado Postal 5, Cienfuegos, 59350, Cuba

Cuba, the largest and most populous Caribbean Island, is underlain by diverse rock types. Its landscape has been affected by agriculture for centuries; yet, the biogeochemistry of Cuban river water is not well characterized. data are critical for sustainable development and for understanding rates of landscape change over time.

To address this data gap, in August 2018, a joint Cuban-American team collected water samples from 25 rivers in central Cuba where upstream land use varies widely from mostly forested to agricultural. Conductivity was h (130 to 1380 mS/cm) and well correlated with dissolved load (117 to 785 mg/L), oxygen saturation varied from 59 to 155%, and pH was circumneutral (6.8-8.5). *E. coli* bacteria were present in all samples. Total dissolved nitrowas low (<0.1-1.6 mg/L) and mainly present as nitrate. Orthophosphate levels were below 0.6 mg/L and chloride ranged from 5-180 mg/L. Concentrations of dissolved organic (1.5-10 mg/L) and inorganic carbon (15-93 mg/L varied widely, All base cations, anions, and trace metals were below Cuban and American health standards for drinking water.

Cuban river waters carry high dissolved loads. Summed cation, anion, and silica concentrations, considered with annual discharge estimates, indicate chemical denudation rates of 42-302 T/(sq km*yr). Such high rates of soi export suggest flow paths through fresh, relatively soluble rock. Water in many central Cuban rivers has high levels of organic carbon and £. coli bacteria which source molecular tracing suggests are from farm animals (ungulates). Concentrations of nitrogen and phosphate in Cuban river water are lower than in other areas where intensive agriculture is practiced, such as the Missisippi River, and similar to or slightly higher than less agricultural Caribbean islands. Low nutrient loads in river waters likely reflect the Cuban shift to sustainable agricultural practices after 1990 and resulting low application rates of inorganic fertilizers.

Session No. 124--Booth# 297

T15. Soil Forming Processes and Quaternary Landscape History (Posters) Monday, 23 September 2019: 9:00 AM-6:30 PM

Hall AB, North Building (Phoenix Convention Center)

Geological Society of America Abstracts with Programs. Vol. 51, No. 5

doi: 10.1130/abs/2019AM-336512

© Copyright 2019 The Geological Society of America (GSA), all rights reserved. Permission is hereby granted to the author(s) of this abstract to reproduce and distribute it freely, for noncommercial purposes. Permission is hereby granted to any individual scientist to download a single copy of this electronic file and reproduce up to 20 paper copies for noncommercial purposes advancing science and education, including classroom use, provic all reproductions include the complete content shown here, including the author information. All other forms of reproduction and/or transmittal are prohibited without written permission from GSA Copyright Permissions.

Back to: T15. Soil Forming Processes and Quaternary Landscape History (Posters)

<< Previous Abstract | Next Abstract >>